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Abstract. We explore the instruction-level parallelism present in a number
of candidates for the Advanced Encryption Standard (AES) and
demondtrate how their speed in software varies as a function of the
execution resources available in the target CPU. An analysis of the critical
paths through the algorithms is used to establish theoretical upper limits on
their performance, while performance on finite machines is characterized
on a family of hypothetical RISC/ VLIW CPUs having from one through
eight concurrent instruction-issue dots. The agorithms studied are
Crypton, E2, Mars, RC6, Rijndagl, Serpent, and Twofish.

1 Introduction

Several performance comparisons among AES candidate algorithms have already
been published, e.g. [6,7,8,10,16]. However, while such studies do indeed render
the valuable service of providing a quantitative rather than qualitative
comparison between candidates, and in some cases do so for a number of
currently popular processors, they are not necessarily very insightful as to how to
expect performance of the algorithms to compare on processors other than those
listed, nor in particular on future processors that are likely to replace those in
common use today.

One of the lessons of DES [11] is that, apart from having too short a key, the
original dominant focus on hardware implementation led to a design which over
the years has become progressively less able to take full advantage of each new
processor generation. In part this accounts for the ease with which AES
candidates have been able to achieve much higher levels of security than DES
while running as fast as or substantially faster than it on current generation
32-bit processors.

Since the Advanced Encryption Standard is expected to continue in use for
several decades after adoption, it is appropriate to consider how it might perform
on future processors, especially since it will take far longer for the AES to need
replacement due to inadequate key length than was the case with DES.

Among the characteristics expected of future high performance processors, that
which we dwell on here is the anticipated increase in the amount of
instruction-level parallelism. Instruction-level parallelism in CPUs can arise both
from pipelining of execution units and from provision of multiple concurrent
execution paths, as are present in superscalar, SIMD, and VLIW architectures
(see [4] for more discussion). Mainstream desktop processors have over the last



few generations seen the addition of increasing SIMD parallelism to existing
superscalar architectures, in the guise of Intel3 MMX and KNI (Katmai New
Instructions) extensions to the Pentium, and Motorola’ AltiVec extensions to the
PowerPC. Furthermore, Intel3 eagerly awaited Merced is expected to have much
greater instruction-level parallelism than its predecessors, being the first CPU to
employ Intel3 highly parallel EPIC (Explicitly Parallel Instruction Computing)
architecture. This variation on the VLIW theme promises to further raise public
awareness of instruction-level parallelism issues.

In this paper we examine the instruction-level parallelism present in a number of
the AES candidates in order to understand how their performance might vary as
a function of the execution resources available in the target CPU. By performing
an analysis of the critical paths through the algorithms we are able to establish
theoretical upper limits on their performance. As a separate exercise we
investigate performance on finite machines by using a parameterized C compiler
to generate scheduled assembly code for a family of hypothetical RISC / VLIW
CPUs having from one through eight concurrent instruction-issue slots.

The algorithms studied are Crypton [9], E2 [12], Mars [3], RC6 [14], Rijndael [5],
Serpent [1], and Twofish [15].

The rest of the paper is organized as follows:

Section 2 details the characteristics of the CPU family on which our analysis is
performed. This section can be skipped by readers who are willing to take on faith
that our architectural assumptions are reasonable. Section 3 describes our
analysis of the algorithms” critical path lengths, from which their theoretical
performance limits can be inferred, and section4 presents the results of
compiling C-code for machines having a range of instruction-level parallelism.

2 The hypothetical RISC/VLIW CPU

In order to perform our analysis we need to adopt a concrete instruction set and
CPU architecture. In particular we need to specify the available instructions
together with their respective latencies and issue-rates. By making some
simplifying assumptions we can avoid needing to unduly worry about other
architectural details such as the register set and memory / cache architecture.

For convenience we take as our hypothetical processor a set of characteristics
patterned on a real-life VLIW CPU - the Philips TriMedia TM-1100 multi-media
processor [13]. The TriMedia processor is a Very Long Instruction Word (VLIW)
CPU containing five 32-bit pipelined execution units sharing a common set of 128
32-bit registers. In the real processor all five execution units can perform
arithmetic and logical operations, but loads, stores, and shifts are each supported
by only two of them. The two execution units that support shifts are distinct from
the two that support loads and stores. Given an appropriate instruction mix the
processor can issue up to five instructions per clock cycle.

For our analysis we assume the same instruction set, instruction latencies and
issue rates, register set, and cache architecture as the real machine, but we let
the number of instruction-issue slots range between one and eight (versus five for
the real machine), and adjust the complement of instructions that can be



executed in each slot according to what we believe to be reasonable for machines
of a given degree of parallelism.

Despite patterning our architecture on a particular CPU, we believe that the
characteristics we have adopted are generic enough that our results should be
substantially applicable to other processors having RISC-like instruction sets and
family members with varying numbers of execution units.

2.1 The instruction set

Our hypothetical machine has a fairly typical RISC instruction set. It has a
load / store architecture and instructions that can specify two source registers
independent of the destination register. It has 128 internal registers, which is
quite large by current RISC standards, but a large register set is likely to be
appropriate for a machine with substantial parallelism, and of the few details so
far released on the Merced it too is known to have 128 integer registers. In any
case, for the AES algorithms we have coded the register usage is quite modest, so
that our results would be little changed if the register set was only one half or one
quarter of this size.

We keep our machine definition simple by specifying just two functional unit
types; a MEM functional unit performs Load and Store instructions while an
ALU functional unit performs all other (register to register) operations. A
particular CPU definition is completed by assigning a MEM functional unit, or an
ALU, or both, to each of the instruction-issue slots of the machine.

Table 1 lists each of the instruction types together with their latency and recovery
times. The latency is the number of cycles between the cycle in which an
instruction is issued and the cycle in which its result can be used by another
instruction (a latency of 1 means that its result can be used in the very next
cycle). The recovery time is the number of cycles between when an instruction is
issued to a functional unit and the cycle in which that functional unit is again
ready to accept such an instruction. The functional units in our machine are fully
pipelined meaning that every instruction can be issued on every cycle.

The only instruction we use which might seem a little uncommon is the Byte
Extraction instruction (subsequently referred to as BXT). This instruction allows
any byte of a 32-bit register to be extracted and returned as the low-order byte of
the result, with the upper three bytes of the result being zero-filled. Some other
RISC processors also support this capability (e.g. the rlwi nm and rlwnm
instructions on the PowerPC). Without this instruction, extraction of either of the
two middle bytes of the word would take two operations (a shift and a masking
operation) and two cycles. However, even without this specialization, the outer
bytes of the word can be accessed with just one instruction on most processors (a
masking operation for the low byte and a logical-shift-right for the high byte).

In our hypothetical machine we do not distinguish between its capability to
perform rotations to the left and to the right. In the real TriMedia CPU only a
rotate-left instruction is actually native to the instruction set. This lack of a
rotate-right instruction has no impact on rotations by a fixed amount, since the
conversion from a fixed rotate-right to the corresponding fixed rotate-left can be
done at compile time. However, right-rotations by a variable (data dependent)
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Instruction type Functional Recovery Latency

unit time (cycles) (cycles)

LOAD MEM 1 3
STORE MEM 1 1t
ADD, SUB ALU 1 1
AND, OR, XOR, NOT ALU 1 1
BYTE EXTRACT ALU 1 1
SHIFT, ROTATE ALU 1 1
MULTIPLY (32 x 32) ALU 1 3
CONSTANT ALU 1 1

BRANCH ALU 1 3 delay slots

T. A Store latency of 1 means that a Load from the same address can be issued in the
very next cycle, not that the write necessarily completes in one cycle

Table 1. Instruction characteristics

amount translate into two instructions: subtraction of the rotation amount from
32 followed by leftward rotation by the result of the subtraction. Thus, a variable
rotate-right uses two instructions and takes two cycles, while a variable
rotate-left takes just one of each. We mention this architectural asymmetry
because it is not restricted to just the TriMedia chip: the PowerPC instruction set
also only natively supports rotations to the left, so similar considerations will
apply there. Some other RISC instruction sets have no native support for
rotations. On such processors a rotation must be synthesized by two
complementary shifts and a merge of the results, which for a variable rotation
will use four instructions and have a minimum latency of three cycles after the
rotation amount becomes known. For these machines left- and right-rotations will
have identical performance but variable rotations will be more expensive than
fixed ones.

Of the algorithms studied here, only RC6 makes use of variable rotations to the
right, and then only for decryption.

One further restriction we place on our hypothetical machine is that just like in
the real TriMedia processor, no more results can be written to registers in any one
cycle than the number of instruction issue slots that the machine has. One
consequence of this is that the compiler cannot schedule single-cycle instructions
for issue in all slots in the cycle immediately preceding the result of an instruction
having multiple cycles of latency.

2.2 Instruction-level parallelism in the family members

Our family of CPUs is constructed by letting the number of instruction-issue slots
range between one and eight, and assigning a MEM functional unit, or an ALU,
or both, to each of the instruction-issue slots of the machine.

In every cycle the machine can issue one (or zero) instructions in each instruction
issue slot. The instructions that can be issued in a given slot are restricted to
those corresponding to the attached functional units.
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Our simplest machine has just one issues slot (a scalar machine) which performs
all instruction types. The next larger machine (which we refer to as configuration
1+1) can perform a memory operation concurrently with one ALU operation. Our
two-slot machine allows any combination of two instructions per cycle: two ALU
operations, one ALU operation and one memory reference, or two memory
references. Configuration 2+1 allows up to three instructions per cycle so long as
not more than two of them are ALU operations, and not more than two of them
are memory references. For the larger machines we continue adding ALU
functionality in each additional instruction issue slot, while holding the memory
accesses to a limit of two per cycle. We place this limit on memory accesses
because adding more read or write ports to cache memory is generally a much
more expensive proposition than adding computational units. Today it is quite
common for CPUs to have two concurrent ports into cache memory and we have
yet to see evidence of this increasing.

Our set of CPU configurations is summarized below in table 2.

Instruction Disposition of functional units
issue slots Slot 1 Slot 2 Slot3 Slot4 Slot5 Slot6 Slot7 Slot8
1 ALU, MEM

1+1 MEM ALU

2 ALU, MEM  ALU, MEM

2+1 ALU, MEM MEM ALU

3 ALU, MEM  ALU, MEM  ALU

4 ALU, MEM ALU, MEM ALU  ALU

5 ALU, MEM ALU,MEM ALU ALU ALU

6 ALU, MEM ALU,MEM ALU ALU ALU ALU

7 ALU, MEM ALU,MEM ALU ALU ALU ALU ALU

8 ALU, MEM  ALU, MEM ALU ALU ALU ALU ALU ALU

Key: ALU = Arithmetic / Logic Unit, MEM = Load / Store Unit

Table 2. CPU configurations

2.3 Compiling C-code for the hypothetical machines

Of particular interest for our purposes is that the TriMedia code generation tools
include an efficient parametrized C compiler in which the machine definition - the
number of registers, the number of parallel instruction units and their
capabilities, instruction latencies, etc. - can all be specified to the compiler
through a configuration file. By varying the machine definition from that of the
real-life device we can explore the performance of candidate algorithms on
hypothetical machines having varying CPU resources, while hopefully
eliminating the compiler as a variable in our comparisons.Jr

T. Thisfeatureis not officially supported, but is a vestige of the compiler’s heritage as aresearch vehicle for
exploring VLIW architectures. We take care to modify the machine definition within bounds that empirical-
ly have been found not to break the tool chain.



For most processors, an assembly listing tells relatively little about the run-time
performance of the code. This is because processor pipeline stalls arising from
instruction dependencies, memory latencies, cache-bank conflicts, or other effects
are not directly apparent from the assembly listing. For our VLIW processor it is
the nature of the compiler that instruction dependencies and cache memory
latency issues are resolved at compile time. Thus the assembly listing becomes a
cycle-by-cycle representation of how the CPU will perform except for stall
conditions which cannot be known until run-time. These include
instruction-cache misses, data-cache misses, cache-bank conflicts, and interrupts.
For the purposes of our analysis we ignore interrupts. We can also ignore
instruction-cache misses if we are only interested in the asymptotic performance
of the algorithms (i.e. their performance on large blocks of data). For the
algorithms considered, the fact that all sub-key arrays and look-up-tables are
static (for a given key) means that we can always avoid cache-bank conflicts by
replicating any necessary sub-keys or look-up-tables in multiple cache banks
(outside of the inner processing loop) and by then arranging for simultaneous
accesses to refer to distinct copies. The only remaining uncertainty is the impact
of data cache misses. However, for all of the algorithms studied the only memory
references not yet accounted for are those that access the input data buffer and
write back to the output data buffer (provided that our coding style allows all
intermediate results to remain in registers, which it does in practice). As a
practical matter we can reasonably expect the occasional cache miss arising from
these accesses to contribute very few additional cycles per block on average, so
that real-life performance would not degrade by more than a few percent from
that implied by the assembly code  static schedule.

From the foregoing discussion it can now be seen why some architectural details
such as the register set and memory / cache architecture are, within bounds,
largely irrelevant to our analysis, as was asserted earlier.

3 Critical-path analysis of the AES candidates

To determine the upper limit of performance of each candidate on our processor
architecture we attempt to identify the software critical path through the
algorithm. This is the path through the algorithm, from plaintext to ciphertext,
that has the largest weighted instruction count, the weighting being the number
of cycles of latency associated with each instruction in the path. This sets the
theoretical upper limit on performance (within the framework of the specified
instruction set) since no amount of added parallelism can let us evaluate this path
any faster.

In some cases an algorithm can be evaluated in several different ways, and there
might be a trade-off between arranging its computational flowgraph to minimize
the number of instructions used or to minimize the critical path length. We note
this to be the case for E2, and expect the same of Serpent. For all the other
algorithms studied we have not found a case where the flowgraph which
minimizes the critical path length is not one which also minimizes the number of
instructions used.



For this portion of our evaluation we comment that neither the C compiler nor a
particular piece of C-code plays any part in this analysis - we are simply
analyzing the computational flowgraphs of the algorithms.

The results of our paper analysis of the algorithms are summarized in table 3. For
more detail behind these results refer to Appendix A.

Algorithm Number of | Number of instructions | Cycles in critical path Effective Loads per
9 rounds per 128-bit block (per 128-bit block) parallelism critical-path cycle
Crypton 12 632 85 7.44x 2.9
E2 NIST 32-bit 12 844 210 4.02x 1.4
8-bit w/32-bit sub-keys 1096 150 7.31x 1.7
Mars 16 504 214 2.36x 0.6
RC6 Encrypt 20 328 181 1.81x 0.24
Decrypt 328 161 2.04x 0.27
Rijndael 10 528 71 7.44x 2.9
Serpent  Encrypt 32 1336 £526 32.54x 0.25
Decrypt 1332 £436 33.06x 0.3
Twofish 16 528 162 3.26x 1.0

Table 3. Instruction counts, critical path lengths, and effective parallelism

For the critical-path analysis reported here we only count the instructions and
cycles associated with the transformation of a plaintext block into a ciphertext
block (ECB mode) with both the plaintext and ciphertext assumed to reside in
registers. Unlike the real code whose performance is discussed later, here we
ignore instructions associated with loading the plaintext, storing the ciphertext,
and maintaining a software loop.

For all cases our instruction counts assume that sub-keys are re-loaded for every
encrypted block. For some of the algorithms the expanded key schedule is
sufficiently small that our generous register set (128 registers) would allow the
sub-keys to be loaded just once in an outer loop and then let multiple blocks be
encrypted without having to re-load them. Since sub-key loading is not a
critical-path operation, the inclusion of these instructions in our count does not
make the assessed speed any slower, rather, it has the effect of inflating the
apparent parallelism of the algorithms.fF

Judged by their lengths of their critical paths, Rijndael and Crypton stand well
ahead of the pack. E2, Mars, RC6, and Twofish form the second tier. The
remaining algorithm, Serpent, trails the next nearest candidate by somewhat
more than a factor of two.

The effective parallelism listed in the table is the ratio of the total number of
instructions per block to the number of cycles in the critical path. This simple
metric provides a useful indicator of how many concurrent execution units could
be put to good use by each of the algorithms. In general we can expect an

t. Note that the situation is different for real code running on finite machines - see later discussion.



algorithm to show little increase in performance once the number of concurrent
execution units exceeds the effective parallelism. Of course, such an analysis is
inexact since it does not account for the computational flowgraph being perhaps
wide” in some places and harrow”in others. Nor does it account for specific
resource constraints such as exhaustion of load / store resources. On the other
hand, our later analysis using real code does substantially validate the value of
this metric.

We comment that a large value for the effective parallelism is not per-se an
indicator of fHoodness? A case in point is the second implementation of E2
characterized in the table. This version achieves its shortened critical path by
resorting to mostly byte operations, which has the effect of inflating the total
number of operations needed to perform the round function. Since several byte
operations can occur in parallel it gives this implementation a high effective
parallelism, but in reality the algorithm would be making poor use of the
resources of a highly parallel 32-bit processor if all it was doing was 8-bit
operations.

Only Crypton, E2, and Rijndael show substantial promise of taking advantage of
more than three or four concurrent execution units. Among the other candidates
there is not enough variation in instruction-level parallelism for this
characteristic to be a significant discriminating factor between them.

Of the two algorithms showing differences between their encrypt and decrypt
critical paths (RC6 and Serpent), curiously both perform faster in the decrypt
direction.

For RC6 this difference is accounted for by the sub-key addition in each round
being in the critical path of the encryption flowgraph, but not in the critical path
of the decryption flowgraph.

For Serpent this difference is accounted for in part by the inverse S-boxes having
(on average) a shorter critical path than the S-boxes used for encryption (but see
below). The remaining difference is due to the linear transformation used in each
round being two cycles shorter in the reverse direction than in the forward
direction.

The true critical path of Serpent is rather difficult to establish. This is partly
because the S-boxes have many possible boolean implementations, and in general
there may not be an implementation which has both the lowest instruction count
and the shortest critical path. Another reason is that in general each of the four
outputs of the S-box has a different delay from each of the four inputs such that
when S-boxes are cascaded the critical path through the cascade is not
necessarily the sum of the longest paths through the individual S-boxes. The
possibility of multiple implementations for the linear mixing layer only
compounds this complexity. For the paper analysis reported here we have, for the
S-boxes, simply summed the critical paths of each of the S-boxes as implemented
in the optimized C-code for Serpent provided in the first-round AES submissions.
That this gives a pessimistic figure for Serpent? true critical path is evidenced by
the compiled C-code results, reported in the next section, in which Serpent3
performance in practice is found to exceed what our naive analysis would predict
is theoretically possible. Beyond this, there is reason to expect that alternative



implementations of the S-boxes could further shorten Serpent3 critical path given
that the current S-box implementations only show a parallelism factor of under
2.5x. Since in principle all four S-box output terms can be evaluated concurrently
(which would give at least a 4x parallelism factor) we suspect that they have been
tuned for the fewest instructions rather than shortest critical path.

E2 also offers several instruction-count/ critical-path trade-offs for its round
function. We have characterized two flowgraphs. The first is based on the
optimized C-code implementation provided to NIST in the first-round AES
submissions, and uses 63 32-bit instructions to perform the round function with a
16 cycle critical path. In the tables this is referred to as NIST 32-hit. The second case
assumes that all operations are done byte-wise, except for loading the round
sub-keys as 32-bit values (to keep the number of loads down). In this version we
assume that sub-key XORing is moved off of the critical path but we allow 4 XOR
gates delay for the P-function. This flowgraph takes 84 (mostly 8-bit) operations
to achieve an 11 cycle critical path per round and is referred to in the tables as 8-bit
w/32-bit sub-keys. At a cost of at most an additional 24 XOR operations per round the
critical path could be reduced by one additional cycle to its theoretical minimum
of 10 cycles per round. We have not analyzed this case in detail.

For Crypton and Rijndael the picture is not quite as rosy as their critical path
lengths would suggest. Their most efficient implementations have a somewhat
higher ratio of table look-ups to other operations than do the other algorithms.
This is represented by the column in table 3 which lists loads per critical-path
cycle. This is simply the ratio of the number of memory references per encrypted
block to the number of cycles in the critical path. For Crypton and Rijndael to run
at the speed that their critical path lengths predict, they would need to perform
on average almost three memory accesses per cycle.

Our hypothetical family of machines allows at most two memory references per
cycle, resulting in both algorithms being memory constrained. When load / store
constraints are taken into account their critical paths lengthen: Crypton uses 192
table-look-ups per block while Rijndael (for a 128-bit key) uses 160, and this is
without re-loading sub-keys for each block. This extends their critical paths to at
least 96 cycles per block and 80 cycles per block respectively. Thankfully, their
sub-key arrays are not so large as to preclude the possibility of their being kept
wholly in registers (at least when we have a total of 128 registers available). If we
remove the sub-key loads from the instruction count, and take the
memory-constrained cycle count as the critical path then Crypton and Rijndael
show an effective parallelism of 6.04x and 6.05x respectively, which is still very
high compared to the other candidates.

4 AES candidate performance on the family of finite CPUs

While the previous section concerned itself with assessing the theoretical
limitations of the candidates given unlimited instruction-level parallelism, in this
section we take real C-code implementations and compile them for our family of
CPUs.

For each of the algorithms benchmarked we started with the optimized C-code
implementations provided to NIST in the first-round AES submissions. Where it



Instruction issue slots

Algorithm
1 1+1 2 2+1 3 4 5 6 7 8

Crypton' 744 463 388 276 258 194 165 155 151 149
E2 1052 626 523 373 352 282 276 275 274 274
Mars 552 378 285 232 228 227 227 227 227 227
RC6 389 311 214 188 186 186 186 186 186 186
Rijndael 628 388 327 231 217 166 137 131 129 127
Serpent 1356 1216 714 624 541 472 468 468 468 468
Twofish 626 384 318 225 222 187 185 185 185 185

T. The results reported for Crypton are actually taken from 12-round Rijndael, as discussed in the text

Table 4. Encryption speed in cycles per block for each CPU configuration

had not already been done we unrolled the encryption routine until processing of
an entire 128-bit block was expressed as straight-line code. Where appropriate we
then expressed rotations and byte extractions using macros that efficiently invoke
our CPU3% native instructions for these operations. Our last transformation was
to eliminate, as far as possible, variables accessed as array references, replacing
them instead with simple variables that the compiler could assign to registers (an
exception to this is that we have uniformly maintained sub-key accesses as array
references in each implementation).

An exception to this strategy is Crypton, for which we have instead substituted
figures from our optimized version of Rijndael in its 192-bit key mode. The
validity of this substitution is that an optimized implementation of Crypton3
round function differs from that of Rijndael only in the contents of the
look-up-tables, and the contents of these have no impact on performance. Rijndael
uses 12 rounds in its 192-bit key mode, which is the same number of rounds
specified for Crypton.

We compiled the resulting C-code for each of our machine definitions and
inspected the scheduled assembly code produced by the compiler. The results
reported here are the number of cycles in the static instruction schedule. As
explained in section 2.3, we can expect this to be closely representative of the
dynamic performance that a machine of the specified architecture would achieve.

The number of cycles taken by each algorithm to encrypt one block on each
variant of the CPU is shown in table 4, while the corresponding throughput (in
bits per cycle) is graphed in figure 1.

Apart from Crypton and Rijndael, and to a lesser extent E2, the performance
achieved on the largest machine (8slots) is quite close to the theoretical
performance limits predicted by our critical-path analysis. This is a good indicator
that our code is being efficiently compiled, lending credence to the proposition
that the performance trends shown in figure 1 are inherent characteristics of the
algorithms rather than some quirk of the compiler or C-code implementation.
That Serpent actually does better than our critical-path analysis predicts is due to
our critical-path analysis for Serpent being only an approximation, as discussed
in the previous section, while for the other algorithms it is exact. In the case of
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Crypton and Rijndael the differences from the theoretical predictions are due to
them becoming memory constrained (which our critical-path analysis does not
consider). Their performance, more than the other algorithms, would likely
benefit by not re-loading the sub-keys for every encrypted block. So far we have
not applied this optimization to any of the candidate implementations.

E2 has the third highest ratio of memory accesses to critical-path cycles. Even
though it is less than two loads per cycle it is still high enough to start becoming a
limiting factor. The remaining algorithms, all with no more than about one
memory access per critical-path cycle on average, do not appear to suffer a
memory bottleneck.

Figure 2 shows that the relative performance of the algorithms remains
substantially constant for up to three instruction issue slots. Thereafter, as seen
in figure 1, Crypton and Rijndael whose performance had so far been in the
middle of the pack, take the lead while the others flatten out due to their inability
to take advantage of the increasing CPU resources.

RC6, having the least effective parallelism according to our critical-path analysis
is, not surprisingly, the first to flatten out.

Twofish continues to make performance gains up to the addition of the fourth
instruction-issue slot, at which point it essentially reaches performance parity
with RC6. This result is not so surprising when one notes that Twofish has a
slightly shorter critical path than RC6 (at least for encryption). However, we draw
a distinction from previous reports of Twofish matching or out-performing RC6 on
32-bit processors which have relied on RC6 being the victim of weaknesses in the
CPU% implementation of rotations or integer multiplication. RC6 suffers no such
penalty here since our machine architecture has a single-cycle rotate and
three-cycle multiply.

For E2 we comment that only the NIST 32-hit version is represented in these results.
The 8-bit w/32-bit sub-keys version would likely show superior performance in the
region of five to eight instruction issue slots, potentially even reaching parity with
Twofish and RC6 by eight slots, but we have not coded this version.

While Serpent is the slowest among the surveyed candidates, we point out that
there is expected to be some opportunity for improvement by modifying the
implementation of its S-boxes. However, we dont expect that such changes will
afford sufficient improvement to affect the relative ranking of the algorithms.

4.1 Normalized security comparisons

Biham [2] has proposed that a fairer basis for comparison among candidates than
simply measuring their speed as specified, is to compare their speed when all are
adjusted to give the same fhominal’level of security. While such a normalization
process is somewhat subjective, it is nonetheless clear that some algorithms have
indeed been specified with a much greater degree of conservatism than others.
While Biham3 normalization factors should be acknowledged as those of an
interested party, we accept them here as good-faith estimates and use them to
adjust our results. Table5 lists the adjusted number of rounds proposed by
Biham for comparison purposes.
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‘Official’ number of

Number of rounds for

Algorithm rounds (128-bit key)  ‘normalized’ securityJr
Crypton 12 11
E2 12 10
Mars 16+16 12+8
RC6 20 20
Rijndael 10 8
Serpent 32 17
Twofish 16 12

+. According to Biham, see [2]

Table 5. Number of rounds used for normalized security comparisons

The relative performance of the algorithms with correction having been made for
nominally equivalent security is shown in figures 3 and 4. For these results we
have not re-run the algorithms with an altered number of rounds implemented,
but have simply scaled the previous figures by the appropriate correction factor.

The primary effect of these adjustments is to promote Serpent3 ranking to be
essentially at parity with E2, and to demote RC6 to the middle of the pack.
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Fig. 4. Detail of Fig. 3.

5 Conclusion

We have examined some of the leading AES candidates for their ability to exploit
the substantial instruction-level parallelism anticipated in future high
performance processors. We performed a critical-path analysis to establish the
theoretical performance limits of the algorithms and a practical experiment of
compiling real C-code implementations of them for a family of hypothetical VLIW
CPUs. The experimental results were substantially in agreement with the
theoretical predictions.

With three instruction issue slots RC6 exhibits a distinct performance lead, with
Rijndael, Twofish, and Mars tying for second place.

With four instruction issue slots, Twofish, RC6, Rijndael, and Crypton showed
remarkably similar performance, all somewhat ahead of second placed Mars.

Of the candidates studied, Crypton and Rijndael show the greatest potential for
benefit from more than four instruction issue slots. Since their speed on machines
with quite modest resources is already very competitive, it can be expected that
the future will only make them even more appealing from the performance
perspective.
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Appendix A. Critical-path analysis details

Table 6 details the critical-path analysis the results of which are presented in
summary form in section 3. It should be understood that this analysis is specific
to the instruction set and corresponding latencies outlined in the text. In
particular, the latency for Load and Multiply instructions may differ on other
processors (for instance, the Pentium Il has a four cycle latency for a 32 x 32-bit
integer multiplication). Also, the lack of native support for rotations or byte

extraction in the instruction set would cause the analysis to need adjustment.

Number Instructions per Number of Instructions in Cyclesin | Cyclesin Effective
Algorithm of rounds round P instructions critical path critical path | critical path arallelism
per block per block (per round)" (per round) | (per block) P
Crypton
. XOR(16), BXT(16), XOR(3), BXT(1),
Main rounds 12 Load(20) 624 Load(1) 7 84 7.43x
Initial key addition 1 XOR(4), Load(4) 8 XOR(1) 1 1 8x
Total 632 85 7.44x
E2*
Main rounds XOR(23), BXT(17), XOR(8), BXT(2),
(NIST 32-bit) L2 Load(23) 756 Load(2) 16 192 S
Main rounds (8-bit XOR(48), BXT(16),
WI32-bit sub-keys) 12 Load(20) 1008 XOR(5), Load(2) 11 132 7.64x
XOR(4), AND(16),
Omrlgﬁﬂ;(lgﬁg 2 | orazmuLe), | 88 ng‘(%)'cl’f(%)' 9 18 | 4.89x
Load(8) '
Total
(NIST 32-bit) 844 210 4.02x
Total (8-bit with
32-bit sub-keys) 1096 150 7.31x
Mars
ADD(3), XOR(3), ADD(2), XOR(2),
fr"a’r”?’;f‘;‘r’n‘q‘ggg 8 | AND() ROTE) | 136 | AND(),ROT(), 9 72 1.89x
MUL(1), Load(3) Load(1)
ADD(3), XOR(3),
secvadiond| g | o ror, | 136 | RO |6 | g | 2
MUL(1), Load(3)
ADD(10), XOR(@8),
Forwards mixing 2 ROT(4), BXT(16), 108 ADD(4), XOR(4), 24 48 2.25x
BXT(4), Load(4)
Load(16)
SUB(L0), XOR(8),
Backwardsmiing| 2 | ROT(@),BXT(18), | 108 | SUB@LXOR@). |, 44 | 2.45x
BXT(4), Load(4)
Load(16)
Key addition layers 2 ADD(4), Load(4) 16 ADD(1) 1 2 8x
Total 504 214 2.36x
Table 6. Instruction counts, critical path lengths, and effective parallelism
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Number Instructions per Number of Instructions in Cyclesin | Cyclesin Effective

Algorithm of rounds round P instructions critical path critical path | critical path arallelism

per block per block (per round)’ (per round) | (per block) P
RC6
. ADD(6), XOR(2),
Main rounds ADD(3), XOR(2),
(encrypi) 20 ROT(4), MUL(2), 320 ROT(2), MUL(1) 9 180 1.78x
Load(2)
. ADD(6), XOR(2),
Main rounds ADD(2), XOR(2),
o) 20 ROT(4), MUL(2), 320 ROT(2), MUL(1) 8 160 2.00x
Load(2)

Key addition layers 2 ADD(2), Load(2) 8 ADD(0.5) 0.5 1 8x
Total (encrypt) 328 181 1.81x
Total (decrypt) 328 161 2.04x

Rijndael

. XOR(16), BXT(16), XOR(3), BXT(1),
Main rounds 10 Load(20) 520 Load(1) 7 70 7.43x
Final key addition 1 XOR(4), Load(4) 8 XOR(1) 1 1 8x
Total 528 71 7.44x
Serpent
S-box layers 32 AND/OR/XOR/NOT 576 AND/OR/XOR/NOT 8.625 £276 32 09x
(encrypt) (18 average) (8.625 average)
Inverse S-Box AND/OR/XOR/NOT AND/OR/XOR/NOT 9
layers (decrypt) 92 (17.875 average) Sz (7.75 average) [OE 2 ZatlL
Linear . .
) XOR(8), Shift(2) XOR(3), Shift(1)
transformations 31 ROT(6) 496 ROT(3) 7 217 2.29x
(encrypt)
Inverse linear . .
transformations 31 XOR(®), Shif(2) 496 XOR(3), Shift(1) 5 155 3.20x
ROT(6) ROT(1)
(decrypt)

Key addition layers 33 XOR(4), Load(4) 264 XOR(1) 1 33 8x
Total (encrypt) 1336 £526 32.54x
Total (decrypt) 1332 £436 33.06x

Twofish

ADD(4), XOR(8), ADD(2), XOR(3),
Main rounds 16 ROT(2), BXT(8), 512 ROT(1), BXT(1), 10 160 3.20x
Load(10) Load(1)
Key addition layers 2 XOR(4), Load(4) 16 XOR(1) 1 2 8x
Total 528 162 3.26x

T. In cases where multiple paths have the same critical length we only list the instructions in one of the paths

F. Two different implementations of E2 are characterized, one needing few instructions (NIST 32-bit), the
other having a shortened critical path (8-bit w/32-bit sub-keys).

Table 6. Instruction counts, critical path lengths, and effective parallelism
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