
The DFC Cipher : an attack on careless
implementations

Ian Harvey, nCipher Corporation Ltd

Abstract: The Decorrelated Fast Cipher (DFC)

presented as a candidate for the Advanced

Encryption Standard (AES), contains a primitive

operation which, in typical implementations, is

susceptible to an attack which can recover some

key material. Whilst this is not a mathematical

flaw in the algorithm, it presents concerns that a

correct implementation may be difficult to

achieve.

1. Description of DFC
DFC [1] is a 128-bit block cipher proposed for the future

Advanced Encryption Standard to replace DES. It is

conventional Feistel-structure cipher, using a 64-bit round

function, over 8 rounds.

The round function RF, takes a 64-bit input x, two 64-bit

parameters a and b derived from the key, and computes:

RF(x,a,b) = CP((ax+b) mod (W+13) mod W)

where W is the value 2
64

 and CP (the ‘Confusion Permutation’) is a

fixed function. The precise details of CP are not relevant.

2. Computation of RF
The core of the round function, requiring the majority of the

computational effort, is the calculation of ax+b mod (W+13). a, x,

and b are 64-bit quantities, so ax+b has up to 128 bits. Reducing

this modulo a 65-bit number (W+13) is beyond the range of most

processors’ instructions, and a full long division would require an

impractical amount of CPU cycles, so an iterative approach

similar to the following is almost always taken.

In the following description, A to F are 64-bit working variables,

W is the quantity 2
64

and the notation A::B means A

concatenated to B (i.e. the value WA+B).

Input: a, x and b

Output: (ax+b) mod (W+13) mod W

1. A::B = (a*x + b)

// Range 0..FFFFFFFF FFFFFFFF 00000000

00000000

2. C::D = (A*13)

// D has range 0..W-1, C has range 0..12

3. E::F = (signed) B + 13*C - D

// Range -(W-1) to (W-1)+156

// Here we have calculated

// B + 13C -D =

// (WA+B)-WA-(WC+D) + (WC+13C) =

// (WA+B) - WA -13A + (W+13)C =

// congruent to (WA+B) mod (W+13)

4. If E::F < 0

return (F+13) mod W

// Add on (W+13), give answer mod W

// range 0..W-1

5. If E::F < W+ 13

return (F)

// Implicit mod W

// range 0..W-1

6. Otherwise,

return (F-13)

// Take off (W+13)

// Range 0..142

The important thing to notice in this algorithm (and many similar

variants) is that the execution path is variable and more

particularly, for some execution paths, the range of possible outputs

is limited. In particular, in this algorithm step 6 can only produce a

fraction of the possible 2
64

 output values. This provides the key

to the attack.

Many other implementation details have been skipped, and would

give rise to similar attacks. For instance, most of the additions

require multiple-precision operations with carries. High-level

languages such as C do not have an “add with carry” operation,

so carries need to be implemented with some form of branch.

This may provide the required difference in execution path; such

things may occur with probabilities ranging from a few times in

2
64

 to once in 2
32

, all of which provide a suitable basis for an

attack.

3. Mounting the attack

In order to mount an attack on DFC, we need first to select an

event E associated with an execution path producing a limited

range of (ax+b mod (W+13)) values. Call the set of such values V.

In addition, construct a set D of all possible differences between

elements of V:

D = { d: d =v
i
-v

j
 mod (W+13), v

i
 ∈V, v

j
 ∈V, d ≠0 }.

Next we observe the DFC implementation and collect the

ciphertexts produced whenever E occurs in the final round.

Final Round

CP ax+b

R8 (=x)

v x

R9

From the ciphertext, we obtain a set of x
i
 such that v

i
 = a x

i
+b

mod (W+13) where v
i
 ∈V.

Taking the first two such values, x
1
 and x

2
, we obtain the

simultaneous equations

ax
1
 + b = v

1
mod (W+13)

and

ax
2
 + b = v

2
mod (W+13)

Subtracting,

a(x
1
- x

2
) = v

1
- v

2
 mod (W+13) = d, d ∈D .

We now solve the equation g(x
1

- x
2
) = 1 mod (W+13), and the

possible candidates for a are given by a = gd mod (W+13), for all d

 ∈D.

The procedure is repeated again with the ciphertexts x
2
 and x

3
 to

give another g and thus candidate list of a values. The real value

of a will appear in all candidate lists; after enough tries only one

will remain.

This attack also provides a means of detecting success or

failure (i.e. either one a will remain after several tries, or no such a

will be found), so it is possible to eliminate incorrect x
i
 values if

the procedure for observing them is not totally reliable.

Using this attack, there is no obvious way to directly recover b

and thus strip off the final round. Note, however that the range

of possible values for b is greatly reduced (for all x
i
, (ax

i
 + b) ∈V),

which means that brute-force searching for b in conjunction with

an attack on event E occurring in the previous round may become

possible. If so, the entire cipher can be undone.

4. Analysis
This attack depends on observing event E a sufficient number of

times. A randomly picked value of (ax
i
 + b) will fall in set V with

probability approximately |V|/2
64

. Depending on the

implementation, not all occurrences of this will cause event E.

The probability of E in a given ciphertext is then α|V|/2
64

, where

α ≤ 1.

For each event E (not counting the first) we will eliminate the

majority of the keyspace for a, ending up with a fraction |D|/2
64

left. Assuming each E eliminates an independent fraction, it will

take 1 + log(2
64

)/log(2
64

/|D|) events before we have one candidate.

For most implementations, the values of v ∈V are in a simple

arithmetic progression - in general c, c+d, c+2d, c+3d ... c+(m-1)d,

where c and d are constants, and m = |V|). For such values, the

values in the difference set D will be ±d, ±2d .. ±(m-1)d, and the

value of |D| is 2|V|-1.

Plugging these values in, if we can observe an event E based on

32-bit operations which occurs (say) whenever the high or low

word of a 64-bit value is zero, we have |V| = 2
32

 and α=1. E occurs

once on average every 2
32

 ciphertexts, and we need about 4 E

events to find a unique candidate. The attack will therefore take

approximately 2
34

 encryptions to recover a.

For a rare event E (e.g. one which occurs 13 times out of 2
64

 with

a likelihood α of 0.5), we have a probability of 6.5 . 2
-64

 per

ciphertext, and we need (rounded up) 3 events to find a. This

requires of the order of 2
63

 plaintexts - still less expensive than

brute force search.

5. Practicalities
Many practical attacks have been published against

cryptography in smartcards based on measuring such things as

overall execution time, or current consumption as a function of

time. It is realistic to suggest that event E would be observable

in a typical smartcard implementation. It is also likely that a

dedicated hardware implementation could contain an observable

E if steps were not taken to eliminate it.

Observing the event E occurring in the algorithm executing on a

typical desktop machine may not be practical. The small

variations in execution time or current consumption will most

often be masked by other activity (cache fills, interrupts,

context switches, etc.). However, note that event E implies a

different path through the code is being taken, and this occurs

with very low probability. The following “bug attack” scenario

becomes a possibility:

Suppose the code implementing event E has a bug in it, which is

not discovered during testing as it occurs so rarely. When it

does occur, some time later, some failure will result - an

incorrect ciphertext block will be sent causing a connection to be

dropped, or the machine may crash - which may be observable by

an attacker. Alternatively an attacker may be able to tamper

with an implementation such that E is easily observable in some

way, but such a modification will not be detected when standard

test vectors are applied.

6. Conclusion
While not weakening the theoretical basis of the DFC cipher, this

paper has illustrated that a practical implementation may

contain weaknesses which lead to an attack. These weaknesses

stem from a key part of the cipher algorithm, and mean that

extreme care must be taken when an implementation is designed.

In particular, in a software implementation this may require the

use of assembly code rather than a high-level language.

Of equal concern is the fact that not all possible execution paths

through the core of the cipher code (or, not all gates in a

hardware implementation) will necessarily be executed during

testing. Firstly, this requires extreme care during design to

ensure it is correct, and secondly, it may be impossible to

produce a set of standard test vectors which validate all parts

of the design, and therefore tampering with the design may go

undetected.

7. References
1 S. Vaudenay, ‘Decorrelated Fast Cipher: an AES Candidate’,
ftp://ftp.ens.fr/pub/dmi/users/vaudenay/GG+98b.ps

