The DFC Cipher : an attack on careless implementations

Ian Harvey, nCipher Corporat ion Lt d

Abstract

The Decorrelated Fast Cipher (DFC) presented as a candidate for the Advanced Encryption Standard (AES), contains a primit ive operation which, in typical implementations, is suscept ible to an at tack which can recover some key material. Whilst this is not a mathematical flaw in the algorit hm, it presents concerns that a correct implementation may be difficult to achieve.

1. Description of DFC

DFC [1] is a D8-bit block cipher proposed for the fut ure Advanced Encryption Standard to replace DES. It is conventional Feistel-structure cipher, using a $\mathbf{6 4 - b i t}$ round function, over 8 rounds.

The round function RF, takes a 64-bit input x, two 64-bit paramet ers a and bderived from t he key, and comput es:
$R F(x, a, b)=C P((a x+b) \bmod (W+13) \bmod W)$
where \mathbf{W} is the value $\mathbf{2}^{64}$ and CP (\mathbf{t} he 'Confusion Permut at ion') is a fixed funct ion. The precise det ails of $C P$ are not relevant.
2. Computation of RF

The core of the round function, requiring the majority of the comput at ional effort, is t he calculat ion of $a x+b \bmod (W+13) . a, x$, and b are 64 -bit quant it ies, so $a x+b$ has up to $\mathbf{1 2 8}$ bit s. Reducing t his modulo a 65 -bit number ($W+13$) is beyond t he range of most processors' inst ruct ions, and a full long division would require an impract ical amount of CPU cycles, so an it erative approach similar t 0 t he following is almost always t aken.

In the following description, A to F are 64 -bit working variables, W is the quant it $y 2^{64}$ and the notation $A: B$ means A concat enat ed to B (i.e. t he value WA +B).

Input: a, x and b
Out put : $(a x+b) \bmod (W+13) \bmod W$
$1 \quad \mathrm{~A}: \mathrm{B}=\left(a^{*} \mathrm{x}+b\right)$
// Range 0..FFFFFFFF FFFFFFFF 00000000 00000000
2. $\quad C:: D=(A * 13)$
// D has range 0 .. $\mathrm{W}-1, \mathrm{C}$ has range 0 .. D
3. $E:: F=($ signed) $B+13 * C-D$
// Range-(W-1) to (W-1)+15 6
// Here we have calculat ed
// B +13C-D =
// (WA +B)-WA-(WC+D) +(WC+1BC)=
// (WA +B) - WA -13A + (W+13)C =
// congruent to (WA +B) mod (W+13)
4. If $\mathrm{E}:: \mathrm{F}<0$
ret urn $(F+13) \bmod W$
// Add on (W+13), give ans wer mod W
// range 0 ..W-1
5. If $E:: F<W+13$
ret urn (F)
// Implicit mod W
// range 0 ..W-1
6. Ot herwise,
ret urn (F-13)
// Take off (W+13)
// Range $0 . .142$
The import ant t hing $t o$ not ice in t his algorit $h m$ (and many similar variants) is that the execution path is variable and more part icularly, for some execut ion pat $h s, t$ he range of possible out put s is limit ed. In part ic ular, in this algorit hm st ep 6 can only produce a fract ion of t he possible 2^{64} out put values. This provides t he key tothe at tack.

Many ot her implement at ion det ails have been skipped, and would give rise to similar at tacks. For inst ance, most of t he addit ions require mult iple-precision operat ions with carries. High-level languages such as C do not have an "add with carry" operation, so carries need to be implement ed with some form of branch. This may provide t he required difference in execution pat h; such t hings may occur wit h probabilit ies ranging from a few t imes in 2^{64} to once in 2^{32}, all of which provide a suitable basis for an attack.

3. Mounting the attack

In order to mount an at tack on DFC, we need first to select an event E associat ed with an execution path producing a limit ed range of ($a x+b \bmod (W+13)$) values. Call the set of such values V. In addit ion, const ruct a set D of all possible differences bet ween elements of V :
$D=\left\{d: d=v_{i}-v_{j} \bmod (W+13), v_{i} \in V, v_{j} \in V, d \neq 0\right\}$.

Next we observe the DFC implement ation and collect the ciphert ext s produced whenever E occurs in t he final round.

Final Round

From the ciphert ext, we obt ain a set of x_{i} such t hat $v_{i}=a x_{i}+b$ $\bmod (W+B)$ where $v_{i} \in V$.

Taking the first two such values, x_{1} and x_{2}, we obtain the simult aneous equat ions

$$
a x_{1}+b=v_{1} \quad \bmod (W+13)
$$

and

$$
a x_{2}+b=v_{2} \quad \bmod (W+13)
$$

S ubt ract ing,

$$
a\left(x_{1}-x_{2}\right)=v_{1}-v_{2} \bmod (W+13)=d, d \in D
$$

We now solve the equation $g\left(x_{1}-x_{2}\right)=1 \bmod (W+13)$, and the possible candidat es for a are given by $a=g d \bmod (W+13)$, for all d \in D.

The procedure is repeat ed again wit $h t$ he ciphert exts x_{2} and x_{3} to give anot her g and t hus candidat e list of a values. The real value of a will appear in all candidate lists; aft er enough tries only one will remain.

This attack also provides a means of detecting success or failure (i.e. eit her one a will remain aft er several tries, or no such a will be found), so it is possible to eliminate incorrect x_{i} values if t he procedure for observing t hem is not t ot ally reliable.

Using this attack, there is no obvious way to directly recover b and t hus st rip off t he final round. Not e, however t hat t he range of possible values for b is greatly reduced (for all $x_{\boldsymbol{p}},\left(a x_{i}+b\right) \in \boldsymbol{V}$, which means t hat brut e-force searching for b in conjunct ion wit h an at tack on event E occurring in t he previous round may become possible. If so, \mathbf{t} he ent ire cipher can be undone.
4. Analysis

This at tack depends on observing event E a sufficient number of t imes. A randomly picked value of $\left(a x_{i}+b\right)$ will fall in set V with probability approximat ely $\mid V / 2^{64}$. Depending on the implement at ion, not all occurrences of t his will cause event E. The probabilit y of E in a given ciphert ext is t hen $\alpha \mid V / / 2^{64}$, where $\alpha \leq 1$

For each event E (not count ing the first) we will eliminate the majority of t he keyspace for a, ending up with a fraction $|D| / 2^{64}$ left. Assuming each E eliminat es an independent fraction, it will t ake $1+\log \left(2^{64}\right) / \log \left(2^{64} /|D|\right)$ event s before we have one candidat e.

For most implement ations, the values of $v \in V$ are in a simple arit hmet ic progression - in general $c, c+d, c+2 d, c+3 d . . . c+(m-1) d$, where c and d are const ant s, and $m=|V|$). For such values, t he values in the difference set D will be $\pm d, \pm 2 d . . \pm(m-1) d$, and the value of $|\mathrm{D}|$ is $\mathbf{2 | V - 1}$

Plugging these values in, if we can observe an event E based on 32-bit operations which occurs (say) whenever the high or low word of a 64 -bit value is zero, we have $\mid V=2^{32}$ and $\alpha=1$ e occurs once on average every 2^{32} ciphert ext s, and we need about $4 E$ events to find a unique candidat e. The at t ack will t herefore t ake approximat ely 2^{34} encrypt ions to recover a.

For a rare event E (e.g. one which occurs 13 times out of $\mathbf{2}^{64}$ with a likelihood α of 0.5), we have a probability of $6.5 .2^{-64}$ per ciphert ext, and we need (rounded up) 3 events to find a. This requires of t he order of 2^{63} plaint ext s - $s t$ ill less expensive t han brute force search.

5. Practicalities

Many practical attacks have been published against crypt ography in smart cards based on meas uring such t hings as overall execut ion t ime, or current consumpt ion as a function of t ime. It is realist ic to suggest that event E would be observable in a typical smart card implement at ion. It is also likely t hat a dedicat ed hardware implement at ion could cont ain an observable E if st eps were not t aken $t o$ eliminat e it .

Observing the event E occurring in t he algorit hm execut ing on a typical desktop machine may not be practical. The small variat ions in execution t ime or current consumpt ion will most often be masked by ot her activity (cache fills, interrupts, cont ext switches, etc.). However, note that event E implies a different path t hrough t he code is being taken, and t his occurs with very low probability. The following 'bug attack" scenario becomes a possibilit y:

S uppose t he code implement ing event E has a bug in it, which is not discovered during testing as it occurs so rarely. When it does occur, some time later, some failure will result - an incorrect ciphert ext block will be sent causing a connect ion to be dropped, or the machine may crash - which may be observable by an attacker. Alt ernatively an attacker may be able to tamper wit h an implement at ion such that E is easily observable in some way, but such a modificat ion will not be det ect ed when st andard test vect ors are applied.

6. Conclusion

While not weakening t he t heoret ical bas is of t he DFC cipher, t his paper has illustrated that a practical implementation may cont ain weaknesses which lead to an at tack. These weaknesses stem from a key part of the cipher algorit $h m$, and mean t hat ext reme care must be t aken when an implement at ion is designed. In part ic ular, in a soft ware implement at ion t his may require t he use of assembly code rat her t han a high-level language.

Of equal concern is t he fact t hat not all possible execut ion pat hs t hrough the core of the cipher code (or, not all gates in a hardware implement at ion) will necessarily be executed during testing. Firstly, this requires ext reme care during design to ensure it is correct, and secondly, it may be impossible to produce a set of standard test vect ors which validate all parts of t he design, and t herefore t ampering with t he design may go undet ect ed.

7. References

1 S. Vaudenay, Decorrelated Fast Cipher: an AES Candidate', ftp://ftp.ens.fr/pub/dmi/users/vaudenay/GG+98b.ps

