
1

Report on the NIST Java™ AES Candidate Algorithm Analysis

Jim Dray
Computer Security Division

The National Institute of Standards and Technology
james.dray@nist.gov

November 8, 1999

1. Introduction

NIST solicited candidate algorithms for the Advanced Encryption Standard (AES) in a
Federal Register Announcement dated September 12, 1997[1]. Fifteen of the
submissions were deemed “complete and proper” as defined in the Announcement, and
subsequently entered the first round of the AES selection process in August 1998. Since
that time, NIST has been working with a worldwide community of cryptographers to
evaluate the submissions according to the criteria established in [1]. This paper
documents the test environment created by NIST to evaluate the optimized Java™
implementations provided by submitters, and the results of this evaluation to date.
Comments should be addressed to the author at the email address above.

2. Java Platform

AES candidate algorithm submitters were required to provide optimized implementations
of their algorithms in Java and the C language. The rationale for this was to provide
more information than could be obtained by testing implementations in a single language,
and to take advantage of the hardware independence of the Java virtual machine.

The Java virtual machine presents a uniform abstraction of the underlying hardware
platform to a Java application or applet. A Java programmer compiles source code into
byte code files, which are then interpreted by the Java virtual machine at runtime (byte
code files are also known as class files). In theory, a Java byte code file can be
interpreted on any hardware platform running the Java virtual machine without
recompilation. Since the virtual machine isolates the Java programmer from the
underlying hardware, Java programmers cannot write machine-specific code to take
advantage of the unique features of a particular platform. Machine-specific code allows
for optimization on a given computing platform, but also eliminates the code portability
that is a cornerstone of the Java philosophy.

2

The Java environment has two characteristics that facilitate the AES evaluation process.
First, candidate algorithms written in Java can be easily moved from one platform to
another to compare performance on different processors at different system clock speeds.
Second, submitters cannot write machine-specific code and so all implementations are on
a level playing field.

Java does not provide the level of performance that can be attained in some other
languages (C or assembler, for example). However, many applications do not require
high-speed encryption of large amounts of data, and cryptoalgorithms implemented in
Java are easier to integrate into Java applications. Other languages and hardware
implementations will be used for applications where absolute performance is an issue, but
there will also be a broad range of applications where the ease of implementing,
integrating, and maintaining Java AES code outweighs the performance issue.

3. Evaluation Criteria

The NIST Java AES evaluation process is designed to directly address the criteria
published in the Federal Register Announcement[1], Section 4. The goal is to provide
objective results that can be clearly quantified for use in the first-round selection process.
Sections of the Announcement that describe selection critera relevant to the Java AES
analysis are repeated here for convenience:

COST

ii. Computational Efficiency: “…Computational efficiency essentially refers
to the speed of the algorithm. NIST’s analysis of computational efficiency
will be made using each submission’s mathematically optimized
implementations on the platform specified under Round 1 Technical
Evaluation below.”

iii. Memory Requirements: “Memory requirements will include such factors
as gate counts for hardware implementations, and code size and RAM
requirements for software implementations.”

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

i. Flexibility:

b. “The algorithm can be implemented securely and efficiently in a wide
variety of platforms and applications (e.g. 8-bit processors, ATM
networks, voice & satellite communications, HDTV, B-ISDN, etc.).”

ii. Simplicity: “A candidate algorithm shall be judged according to relative
simplicity of design.”

3

Additionally, in Section 6.B (Round I Technical Evaluation):

iii. Efficiency testing: “Using the submitted mathematically optimized
implementations, NIST intends to perform various computational
efficiency tests for the 128-128 key-block combination, including the
calculation of the time required to perform:

• Algorithm setup,
• Key setup,
• Key change, and
• Encryption and decryption.

NIST may perform efficiency testing on other platforms.”

In condensed form, the published NIST criteria require testing of speed for a set of
cryptographic operations, code size and RAM requirements, flexibility, and simplicity of
design. Since the candidates have been implemented in Java, flexibility is a given for the
reasons discussed in the previous section. The Java AES candidates will run on any
device containing a Java 1.1 virtual machine and adequate memory, although
performance will obviously vary depending on the processing power of the underlying
hardware. Test results for the remaining selection criteria are presented in the next
section.

4. Test Procedures and Results

4.1 Overview

The test results presented here were obtained from the NIST-specified hardware platform
and Java environment (JDK1.1.6). Results for other hardware/Java virtual machine
combinations will be made available on the AES home page at http://www.nist.gov/aes,
and in papers submitted to NIST by other organizations[3,4]. Test results for DES were
generated by using the Java implementation of the DES algorithm included in the DEAL
candidate submission package. For each test category, results are summarized by
dividing the candidates into three groups based on performance. Detailed test results are
presented in tabular form in Appendix A and bar chart form in Appendix B. All NIST
testing was performed through the Applications Programming Interface (API) specified
in the NIST/Cryptix Java AES Toolkit. Links to the Toolkit and the Java AES API
specification can be found at http://csrc.nist.gov/encryption/aes/earlyaes.htm.

The Java compiler provides an option to optimize code during compilation via a
command-line flag (-•). The primary mechanism for optimization is to include classes in
the compiled Java bytecode files that would normally be loaded dynamically at runtime.
This speeds up program execution, but also makes the compiled bytecode files larger.

4

Java AES candidates were compiled without optimization for memory usage
measurements, and with optimization for speed measurements. This provides optimal
results for each test category. However, readers should note that the compiled class files
used to measure dynamic memory allocation were therefore different from those used to
measure speed, although they were compiled from the same source files (the –O option
was used for speed measurements).

4.2 Static Memory Usage

Static code sizes were taken from a DOS directory listing. Properties files were not
included in size estimates, but required external "helper" classes were. In some cases
implementers chose to build extra functionality into the class files that implement the
basic NIST/Cryptix API methods, making it difficult to determine an exact file size for
just the core API methods. For example, the Java source file HPC_Algorithm.java
contains a large number of methods that perform utility and/or test functions in addition
to the basic API methods. In these cases, the total class file size was used. Candidates
can be categorized as follows, in kilobytes:

20 to 40kb: Serpent, HPC, CAST256
10 to 19kb: MARS, Twofish, DEAL, E2, Rijndael, Crypton, Safer+
Under 10kb: LOKI97, DFC, RC6, MAGENTA, frog

Detailed results are presented in Chart 1.

4.3 Dynamic (Heap) Memory Usage

A Java test harness was developed to measure heap usage. This test program instantiates
any AES candidate algorithm and exercises setkey/encrypt/decrypt operations for any of
three key sizes. The -O (optimize) option was not used because it prevents generation of
debug tables needed by the Java profiler.

A DOS batch file was then created to run the Java test class for each algorithm/keysize/
operation combination using the java_g -prof -noasyncgc options to collect runtime
profile statistics. The –noasyncgc option turns asynchronous garbage collection off. This
allows measurement of the total dynamic memory used by an algorithm during its
execution.

Heap usage statistics were extracted from the raw data files created by the Java profiler,
and assembled into an ASCII comma-delimited file format. This file was imported into a
Microsoft Excel™ worksheet, and used to generate Chart 2.

Dynamic memory usage statistics were normalized by subtracting the heap usage of a
minimal NULL cipher from each entry, since the differences between candidates were
minor relative to the total heap used by most candidates. The NULL cipher
implementation allocates 110,408 bytes of heap for key setup, and 111,240 bytes for
cipher operations. The amount of heap allocated by all candidates for encrypt and

5

decrypt operations is the same, so Chart 2 simply lists these as cipher operations. The
candidates fall into the following three ranges for adjusted heap usage, in kilobytes:

14 to 20kb: Rijndael, DFC, and LOKI97
6 to 10kb: HPC, DEAL, Twofish, Crypton, CAST256
Less than 6kb: MARS, Serpent, frog, Safer+, MAGENTA, RC6

E2 is not listed above or on Chart 2 because it is an exceptional case. It uses 264kb of
heap, roughly ten times the heapspace required by the next highest candidate (Rijndael).
This can be attributed to the fact that the Java implementation of E2 allocates an array of
256 x 256 32-bit integers. It should be noted that E2 can be implemented in ways that
consume far less memory, but the results in this paper are derived from the official
implementation of E2 submitted to NIST.

4.4 Computational Efficiency (Speed)

Candidate algorithms were compiled from source files provided by submitters. The
JDK1.1.6 compiler was used, with the -O (optimize) option. The resulting bytecode files
were packaged into a standard Java ARchive (JAR) file named AESCLASSES.jar.

A Java application was developed to allow testing of any candidate/ keysize/operation
combination. The test application instantiates the desired candidate from
AESCLASSES.jar, and uses the Java reflection API to invoke the Basic API methods.
The -nojit option was used to turn off the default JDK1.1.6 Just-In-Time (JIT) compiler
during execution of the test application. Use of the JIT compiler increases the speed of
most candidates by an order of magnitude, but a bug in this specific version of the
compiler causes problems with some of the candidates. This compiler bug is documented
at http://developer.java.sun.com, bugParade ID 4171185. Readers should note that the
data presented by NIST at the Second AES Candidate Conference (AES2) differs from
the data in this paper. The results presented at AES2 did not use the –O compiler
optimization option, and did use the JIT compiler. The data in this paper will be used for
the first-round selection process.

Fifty thousand cycles of each candidate/keysize/crypto operation were executed and the
total time was recorded for each combination. Start and stop times were obtained
through calls to the System.time.millis() method provided in the Java core library,
immediately before and after starting the loop that executed the crypto operations. Charts
3,4, and 5 present performance data for key setup, encrypt, and decrypt operations
respectively. Data points are included for 128, 192, and 256-bit key sizes (the first-round
selection process will focus on performance for 128-bit key operations). For the majority
of candidates, encryption speed is approximately equal for all three key sizes. Rijndael
and Safer+ are the two exceptions: for these candidates, encryption speed decreases as the
key size is increased.

MAGENTA is not shown on Chart 3 because it executes 128-bit key setup operations at
6.3mbps, over a thousand times faster than the next fastest candidate (Crypton).

6

Results for 128-bit key setup in kilobits per second are:

200 to 600kbps: Crypton, Rijndael, RC6
50 to 199kbps: Safer+, E2, MARS, LOKI97, CAST256, DEAL
0 to 49kbps: Twofish, Serpent, HPC, DFC, frog

Results for 128-bit encryption in kilobits per second are:

600 to 1400kbps: RC6, Rijndael, E2, Crypton
200 to 599kbps: HPC, MARS, Serpent, CAST256, Twofish,

LOKI97, frog
0 to 199kbps: Safer+, DEAL, MAGENTA, DFC

4.5 Simplicity

One of the stated selection criteria for AES candidates is simplicity. It is more common
to measure the complexity of source code. Since one is the inverse of the other,
translating between the two domains is straightforward. Most analytic tools present
results in terms of complexity, so this paper follows that convention.

Total program size in lines of code is one way to measure complexity. All other factors
being equal, larger programs are more complicated than smaller programs because they
contain more code. This measure is addressed in Section 4.1. To provide insights into
code complexity at a finer level of detail, further analysis of the AES candidates was
performed at the method level. International Software Automation’s Panorama for Java
tool[2] was used for this. Panorama claims to provide objective measures of code quality
and complexity, based on a set of metrics standards defined by the test engineer.

The following definitions are summarized from the Panorama for JavaTM reference
manual[2]. More detailed descriptions can be found there:

• Size in lines: Average method size measured in lines of source code.
• Cyclomatic Complexity (with case): An initial complexity of 1 is assigned to each

method. This initial complexity is incremented by 1 for every decision or loop
statement. An N-way switch increments the complexity measure by N.

• Cyclomatic Complexity (without case): Calculated the same way as Cyclomatic
Complexity (with case), except that each switch statement increments the
complexity measure by 2.

• J-Complexity: Code analysis tools insert instrumentation points into the code to
be analyzed, to provide test points for recording data. The number of test points is
a measure of code complexity, since more complex code will require more test
points for adequate coverage. J-Complexity measures the minimum number of
instrumentation points required to record test data in three categories:

• J-Complexity0: Block test coverage.
• J-Complexity1: Basic segment test coverage.

7

• J-Complexity1+: All segment test coverage.

For the purposes of this analysis, standards for the Java AES software quality metrics
were established by setting the upper limit for each metric to the highest value attained by
any candidate. These metrics are applied at the method level (each value is an average
taken across all the methods within a class), and all were assigned an equal weight of 1:

• Size in lines: 196
• Cyclomatic Complexity (with case): 48
• Cyclomatic Complexity (without case): 48
• J-Complexity0: 55
• J-Complexity1: 99
• J-Complexity1+: 122

Chart 6 summarizes the complexity analysis.

5. Related Java AES Analysis Efforts

Two independent Java AES analyses have been performed by groups outside NIST. The
first is documented in a paper by Alan Folmsbee (Sun Microsystems), and published in
the Proceedings of the Second Advanced Encryption Standard Candidate Conference[3].
A second paper has been submitted to NIST by Kazumaro Aoki (Nippon Telephone and
Telegraph)[4].

The Folmsbee paper presents timing data in the context of Known Answer Test(KAT)
and Monte Carlo Test(MCT) operations, so a direct comparision to the data presented in
this paper in kbits/sec is not possible. Performance data in this paper roughly correlates
to NIST data, but there are a number of exceptions. It is interesting to note that some
candidates change position in the ranking by a significant amount when KAT and MCT
results are compared.

Folmsbee measures memory usage in terms of ROM size and RAM size. These
measurements are equivalent to static code size and dynamic memory (heap) usage,
respectively. Again there is a rough correlation between data presented in the Folmsbee
paper and NIST measurements, with some significant exceptions. Some of these
exceptions are probably due to the use of different measurement techniques. Folmsbee
measures dynamic memory usage by manually counting program variables, while NIST
chose to use the heap statistics provided by the Java profiler.

The Aoki paper addresses computational efficiency, using a variety of hardware
platforms and Java compilers/virtual machines. Aoki uses a more recent version of Java,
JDK1.1.7. For 128-bit key setup, the order of the candidates is the same as that obtained
by NIST except that E2 and Safer+ are reversed. These two differ by less than 5 percent
in both assessments, however.

8

NIST and Aoki also rank the candidates in the same order for speed of encryption and
decryption, except that Serpent and MARS are reversed. As was the case for E2 and
Safer+ in the rankings for key setup, measurements for Serpent and MARS differ by less
than 5 percent. Aoki’s measurements are 3.5 percent higher on average than those
obtained by NIST. This is not surprising since two different versions of the Java
Development Kit were used.

6. Conclusions

The Java virtual machine provides a hardware-independent platform for testing Java
implementations of the AES candidates. The syntax of the Java language is superficially
similar to some other languages such as C and C++, but the Java execution environment
is different in a number of fundamental ways from most other programming language
environments. AES implementations in other languages may be faster or slower, and
consume more or less memory. The ordering of candidates may also be different in other
languages, depending on the efficiency with which a given language handles the data
structures and operations required by each candidate. The comparative performance of a
candidate implemented in different languages is of interest to system designers, but cross-
language comparisons are less useful in terms of the AES evaluation.

NIST has used the results presented in this report as one set of decision points in the
process of selecting the five AES finalists. These results will also be of interest to those
wishing to use Java implementations of AES, or to create new ones. NIST has not
attempted to assign a weight to each of the evaluation criteria because the importance of
each criterion is application-dependent. For example, those implementing or using Java
implementations on hardware platforms with limited memory will be most concerned
with static and dynamic memory usage. In an application requiring high throughput
where memory resources are not limited, encryption speed will be the most important
factor. Key setup time will be an issue for applications requiring frequent key changes.
Implementers can use these results to measure the characteristics of Java AES
implementations against the requirements of various applications.

“Sun”, “Sun Microsystems”, “Solaris”, and “Java” are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries.

9

REFERENCES

All of the following documents except the Panorama for Java reference manual are
available online at http://csrc.nist.gov/encryption/aes/aes_home.htm.

1. “Announcing Request for Candidate Algorithm Nominations for the Advanced
Encryption Standard (AES)”, Federal Register: September 12, 1997 (Volume 62,
Number 177), Pages 48051-48058.

2. Panorama for Java™ Reference Manual,
http://www.softwareautomation.com/java/index.htm.

3. A. Folmsbee, “AES Java™ Technology Comparisons”, Proceedings of the
Second Advanced Encryption Standard Candidate Conference, March 22, 1999,
Pages 35-50.

4. K. Aoki, “Java Performance of AES Candidates”, Submitted to NIST via email in
response to the call for public comments on the AES candidates, April 15, 1999.

10

APPENDIX A: RAW DATA TABLE

11

Candidate Code Size
(bytes)

Heap
Usage

Key Setup
(128)

Encrypt
(128)

Decrypt
(128)

Avg
Method
Size

Cyclomatic
Complexity

J-Complexity

(bytes) (bytes) (kbits/sec) (kbits/sec) (kbits/sec) (lines)

CAST256 27531 7184 65 395 399 11 2 4
CRYPTON 12018 7513 601 653 653 14 2 4
DEAL 16965 8624 52 140 140 20 4 6
DFC 9623 16160 7 32 31 13 3 5
E2 14748 264840 123 897 918 47 5 10
Frog 4091 3984 0 204 233 14 3 7
HPC 38571 9680 17 506 489 16 6 12
LOKI97 9744 15016 96 294 294 19 4 7
MAGENTA 4975 3168 6295 38 38 15 4 7
Mars 18110 4808 107 492 469 19 3 7
RC6 7077 432 237 1371 1371 36 2 3
Rijndael 12158 18360 279 1129 1129 18 3 6
Safer+ 11295 3952 124 180 181 18 3 4
Serpent 39290 4680 31 485 462 41 3 6
Twofish 17189 7600 37 379 379 13 3 5

12

APPENDIX B: BAR CHARTS

13

Chart 1: Static Code Size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Ser
pe

nt
HPC

CAST25
6

M
ARS

Twof
ish

DEAL E2

Rijn
da

el

Cry
pt

on
Saf

er
DES

LO
KI9

7
DFC

RC6

M
AGENTA

fro
g

NULL

b
yt

es

14

NOTE: E2 uses 264kbytes of heap.

Chart 2: Heap Usage

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Rijn
da

el
DFC

LO
KI9

7
HPC

DEAL
DES

Twof
ish

Cry
pt

on

CAST25
6

M
ARS

Ser
pe

nt
fro

g
Saf

er

M
AGENTA

RC6

b
yt

es makeKey(Heap)

Cipher(Heap)

15

NOTE: MAGENTA performs 128-bit setKey operations at 6.3mbit/sec.

Chart 3: SetKey (O/no JIT)

0

200

400

600

800

1000

1200

1400

Cry
pt

on
DES

Rijn
da

el
RC6

Saf
er E2

M
ARS

LO
KI9

7

CAST25
6

DEAL

Twof
ish

Ser
pe

nt
HPC

DFC
fro

g

kb
it

s/
se

c setKey128

setKey192

setKey256

16

Chart 4: Encrypt (O/no JIT)

0

200

400

600

800

1000

1200

1400

1600

RC6

Rijn
da

el E2

Cry
pt

on
HPC

M
ARS

Ser
pe

nt
DES

CAST25
6

Twof
ish

LO
KI9

7
fro

g
Saf

er

DEAL

M
AGENTA

DFC

kb
it

s/
se

c Encrypt128

Encrypt192

Encrypt256

17

Chart 5: Decrypt (O/no JIT)

0

200

400

600

800

1000

1200

1400

1600

RC6

Rijn
da

el E2

Cry
pt

on
HPC

M
ARS

Ser
pe

nt
DES

CAST25
6

Twof
ish

LO
KI9

7
fro

g
Saf

er

DEAL

M
AGENTA

DFC

kb
it

s/
se

c Decrypt128

Decrypt192

Decrypt256

18

Chart 6: Average Method Size in Lines

0

5

10

15

20

25

30

35

40

45

50

E2

Ser
pe

nt
RC6

DEAL

M
ARS

LO
KI9

7

Rijn
da

el

Saf
er

HPC

M
AGENTA

fro
g

Cry
pt

on

Twof
ish DFC

CAST25
6

L
in

es

19

Chart 7: Cyclomatic Complexity

0

1

2

3

4

5

6

7

HPC E2

LO
KI9

7

M
AGENTA

DEAL

M
ARS

fro
g

Saf
er

Ser
pe

nt

Rijn
da

el

Twof
ish DFC

CAST25
6

RC6

Cry
pt

on

C
C

20

Chart 8: J-Complexity

0

2

4

6

8

10

12

14

16

HPC E2

M
ARS

DEAL

LO
KI9

7
fro

g

M
AGENTA

Rijn
da

el

Twof
ish

Ser
pe

nt
DFC

Saf
er

Cry
pt

on

CAST25
6

RC6

JC

JC0

JC1

JC1+

