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Abstract

In this paper the block cipher RC6 is analysed. RC6 is submitted

as a candidate for the Advanced Encryption Standard, it has 128-bit

blocks and supports keys of 128, 192 and 256 bits, and is an iterated

20-round block cipher. Here it is shown that versions of RC6 with

128-bit blocks can be distinguished from a random permutation with

up to 15 rounds; for some weak keys up to 17 rounds. Moreover, with

an increased e�ort key-recovery attacks can be mounted on RC6 with

up to 15 rounds faster than an exhaustive search for the key.

Keywords. Cryptanalysis. Block Cipher. Advanced Encryption Standard.
RC6.

1 Introduction

RC6 is a candidate block cipher submitted to NIST for consideration as the
Advanced Encryption Standard (AES). RC6 (see [10]) is an evolutionary
development of RC5. Like RC5, RC6 makes essential use of data-dependent
rotations. New features of RC6 include the use of four working registers in-
stead of two, and the inclusion of integer multiplication as an additional
primitive operation. RC6 is a parameterized family of encryption algo-
rithms, where RC6-w=r=b is the version with word size w in bits, with r
rounds and with an encryption key of b bytes.

The AES submission is the version with w = 32, r = 20, and RC6
is a shorthand notation for this version, whereby the key length can be
b = 16; 24, and 32 bytes, respectively. In [2, 3] the security of RC6 has
been evaluated with respect to di�erential and linear cryptanalysis. It was
concluded that RC6 is secure with respect to di�erential cryptanalysis for
12 or more rounds. For linear cryptanalysis, some variants are considered
in [2]. It was found that a two-round iterative linear approximation leads to
the most e�ective basic linear attack applicable up to 13 rounds. However,
no speci�c method for key-recovery was given. Furthermore, in [2] some
potential enhancements of linear attacks using multiple approximations and
linear hulls are sketched, and it is estimated that 16 rounds of RC6 can be
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attacked using about 2119 known plaintexts. These additional considerations
on linear cryptanalysis were used to set a suitable number of rounds for RC6
to be r = 20.

In this paper we investigate two-round iterations which are quite di�erent
from those considered in [2]. Instead of tracing bitwise linear approxima-
tions, we consider input-output dependencies by �xing the least signi�cant
�ve bits in the �rst and third words of the input block. The correlations
of the corresponding two 5-bit integer values at the output are caused by
speci�c rotation amounts in the data dependent rotations and can be e�ec-
tively measured by �2 tests. As con�rmed by extensive experiments, this
leads to an e�cient statistical analysis which considerably improves over the
basic linear attack. Estimates of the complexity of our analysis imply that
reduced round versions of RC6 with up to 15 rounds are not random.

The linear attacks in [2] deal with correlations between input and output
bits, but they do not involve key bits, whereas our statistical analysis can
be used to develop a method to �nd all round subkeys.

This attack is faster than an exhautive key search for the 128-bit version
of RC6 with up to 12 rounds, and for the 192-bit and 256-bit versions of
RC6 with up to 14 and 15 rounds.

After completion of the �rst version of this report [7], our attention was
drawn to an earlier result by Baudron et al in [1] where an attack similar
to ours is outlined. (See also [4].) Their attack distinguishes RC6 up to
15 rounds from a random permutation with a complexity of 2125 for 15
rounds. Although based on the same idea, their attack is less e�cient than
the attacks in this paper and no key-recovery algorithm is reported.

In the following we briey recall the description of RC6, see Figure 1. For
a detailed description we refer to [10]. The user-key has length b bytes and
the 4w-bit plaintext block is loaded into words A;B;C;D. These four w-bit
words also contain the ciphertext at the end. The key-schedule (see [10])
expands the user-key into subkeys S[0]; S[1]; :::; S[2r + 3]. In our considera-
tions we shall not make use of the detailed description of the key-schedule,
but we assume the subkeys to be uniformly random. To describe the encryp-
tion algorithm the following notation is used: (A;B;C;D) = (B;C;D;A)
means the parallel assignment of values on the right to registers on the left.
Moreover, a� b denotes integer multiplication modulo 2w, a << lg w means
�xed rotation of the w-bit word a by lg w, the base-two logarithm of w, and
a << b denotes rotation of a to the left by the amount given by the least
signi�cant lg w bits of b.
This paper is organized as follows: In section 2 we review �2 tests as a
useful tool to detect nonuniformness in probability distributions. In Section
3 the relationship between small rotation amounts and correlation in RC6 is
investigated and a class of weak keys is identi�ed. In Section 4 distinguishing
and key-recovery attacks are developed, and in Section 5 we draw some
conclusions.
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Input: Plaintext stored in four w-bit registers A;B;C;D
Number r of rounds
w-bit round keys S[0]; :::; S[2r + 3]

Output: Ciphertext stored in A;B;C;D

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

f
t = (B � (2B + 1)) << lg w
u = (D � (2D + 1)) << lg w
A = ((A� t) << u) + S[2i]
C = ((C � u) << t) + S[2i+ 1]
(A;B;C;D) = (B;C;D;A)

g
A = A+ S[2r + 2]
C = C + S[2r + 3]

Figure 1: Encryption with RC6-w=r=b.

2 �
2 tests

In this section we recall how to distinguish a random source with unknown
probability distribution pX from a random source with uniform distribution
pU . A common tool for this task is the �2 test, which is briey recalled
together with some useful facts (see e.g., [5], [6], [8], [11]). We shall later use
�2 tests to detect correlation between speci�c input and output subblocks
of r-round RC6.

Let X = X0;X1; :::;Xn�1 be independent and identically distributed
random variables taking values in the set fa0; a1; :::; am�1g with unknown
probability distribution. Then the �2 test is used to decide if an observation
X0;X1; :::;Xn�1 is consistent with the hypothesis PrfX = ajg = p(j) for
0 � j < m, where pX = fp(j)g is a (discrete) probability distribution on a
set of m elements. Let Naj (X) denote the number of times the observation
X takes on the value aj. Then obviously

P
iNaj (X) = n. The �2 statistic

is the random variable de�ned by

�2 =
mX

j=1

(Naj (X)� np(j))2=np(j) (1)

For the uniform distribution pU , the �
2 statistic is just m=n

P
i(Naj (X) �

n=m)2. In a �2 test, the observed �2 statistic is compared to �2a;m�1, the
threshold for the �2 test withm�1 degrees of freedom and with signi�cance
level a. In our investigation of RC6, we shall speci�cally need the threshold
values for 1023 degrees of freedom, as shown in Tables 1 and 2. For example,
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the entry 1131 for 0.99 in Table 1 says that the expressionm=n
P

i(Naj (X)�
n=m)2 for large n will exceed 1131 only in 1% of the time, provided the
underlying distribution of the observation X is indeed uniform.

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99 0.999 0.9999

�2 1022 1033 1046 1060 1081 1098 1131 1168 1200

Table 1: Selected threshold values of the �2 distribution with 1023 degrees
of freedom.

Level 1� 2�16 1� 2�24 1� 2�32 1� 2�48 1� 2�64

�2 1222 1280 1330 1414 1474

Table 2: Selected threshold values of the �2 distribution with 1023 degrees
of freedom.

For practical experiments the question arises how large the size n of the
observation should be in order to detect that a distribution pX is nonuniform.
In order to estimate n, consider the bias of a probability distribution pX
de�ned by the distance measure

jjpX � pU jj =
X

j

(pX(j)� pU (j))
2 (2)

From [5] we quote the expected value of the �2 statistic (1) of a distribution
pX , as well as some useful conclusions:

EX�
2 = nmjjpX � pU jj+m�mjjpX jj (3)

For the case of the uniform distribution this impliesEU�
2 = m�1. Moreover

it follows that for n = c=jjpX � pU jj the expected value is EX�
2 = cm +

m � mjjpX jj. Since in practical cases often jjpX jj � jjpU jj, this simpli�es
to EX�

2 � (c + 1)m � 1. Thus EX�
2 di�ers from EU�

2 signi�cantly, if
c = 
(1). As a conclusion, the size n = c=jjpX � pU jj of the observation
su�ces to distinguish a source with distribution pX from a source with
uniform distribution. Clearly, the constant c needs to be larger for higher
signi�cance level a.

3 Correlations in RC6

In [2], under the title of Type I Approximations, a two-round linear ap-
proximation has been studied which is based on small rotation amounts in
the data dependent rotations. This linear approximation is described by
(A � et)� (C � es) = (A00 � eu)� (C 00 � ev). Here A and C are the �rst and third
words of some intermediate data, A00 and C 00 are the �rst and third words
of the intermediate data after a further two rounds of encryption in RC6,
and et denotes the 32-bit word with a single one in the tth least signi�cant
bit position. It has been noticed that for t = s = u = v = 0 the case where
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both rotation amounts are zero in the �rst of the two rounds leads to a bias
of 2�11. This is derived by using the piling-up lemma and the fact that the
second and fourth words remain unchanged in the second round. If t; s; u; v
are nonzero but less than 5, there is a smaller bias, which depends on the
values of t; s; u; v. Note that no key bits are involved in the approximation.

In our approach we do not consider the XOR of single bits in the �rst and
third words. Instead we �x each of the least signi�cant �ve bits in words
A and C of the input and investigate the statistics of the 10-bit integer
obtained by concatenating each of the least signi�cant �ve bits in words A00

and C 00 every two rounds later. This is motivated by the fact that the least
signi�cant �ve bits in A and C altogether are not changed by the xor and
data dependent rotation if both rotation amounts are zero. More generally,
we can expect a bias for amounts smaller than �ve. As we shall demonstrate,
this leads to much stronger biases which can be iterated over many rounds,
just as linear approximations. In this way we can consider small rotation
amounts as a single event, in which amounts near zero from the negative,
like 30 or 31, prove to be useful as well.

3.1 Small Rotation Amounts

To see the e�ect of small rotation amounts on the values of the least sig-
ni�cant �ve bits in the �rst and third words in RC6, we implemented the
following tests with 2 rounds:

Let us denote by (a; b) the two amounts in the data dependent rotations
in the �rst round. To measure the e�ect on the distribution of the target
bits, we forced the values of a and b by taking appropriate plaintexts and
we computed the �2-value of the 10-bit integers after 4 rounds. For each
experiment we took 218 texts, although about 213 texts would do (see Sec-
tion 3.2), but we deliberately chose a big �2-value to clearly measure the
e�ect.

a; b �2

0,0 2775
0,31 2107
0,1 1998
31,31 1715
1,1 1643
0,30 1633
0,2 1572
30,31 1388
1,2 1326
0,3 1306
0,4 1145
0,5 1053

Table 3: Statistical e�ect of small rotation amounts

By the symmetry in the design of RC6, it can be expected that (a; b) gives
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the same �2-value as (b; a).
We observe that the �2-values for all pairs (a; b) with jaj < 5 and jbj < 5

are signi�cantly higher than the expected value 1023 for uniform 10-bit
integers. Note that these tests suggest that we get similar �2-values for
constant values of the \distance" ja � 32j + jb � 32j (mod32): The pairs
(0,31) and (0,1) both have distance 1 and similar �2-values, and the pairs
(1,1),(0,2), (31,31), and (0,30) all have distance 2 and have similar �2-values.

Let us take a closer look at how the above observations lead to a nonuni-
form distribution. Assume that the least signi�cant �ve bits of plaintext
words A and C are �xed, e.g., to zero bits. Let us denote by X the con-
catenation of the least signi�cant �ve bits of the ciphertext words A and
C after two rounds of encryption. In this example, for illustration, we will
ignore the addition of the subkeys in the output transformation, and also
we will assume that the least signi�cant �ve bits of both round keys S[2]
and S[3] are zero. Denote by t5 and u5 the least signi�cant �ve bits of t
and u, see Figure 1. Then in the �rst round, if t5 = u5 = 0, then X will
be zero. Since the function f is a permutation, t5 and u5 will be zero with
a probability of 2�5 each. If we assume that for t5 � 5 and u5 � 5, the
values of X will be distributed uniformly at random, the probability that
X is zero is at least 2�10 + (27=32 � 1=32)2 ' 2�10 + 2�10:5. With rotations
t5 = 1; u5 = 0, X will take the possible values (in bits) 0000b00001, where
`b' is a random bit. With rotations t5 = 0; u5 = 1, X will take the possible
values (in bits) 000010000b. Thus, X = 0000100001 with probabilty at least
2 � 2�11 + (27=32 � 1=32)2. Note that both these estimates are lower bounds.
E.g., in the case where t5 = u5 = 4, X will take the possible values (in bits)
0b1b2b3b40b5b6b7b8, and in the case where t5 = 1; u5 = 16, X will take the
possible values (in bits) b1b2b3b4b50000b6, where the bis are random bits.
Thus, X can take both the values 0000000000 and 0000100001 also in these
cases.

It has been clearly demonstrated that the distribution of X is nonuni-
form. Note that although it was assumed that the involved subkey bits were
zero, it follows easily that the nonuniformity remains when these key bits
are randomly chosen.

3.2 �
2 statistic of RC6

Here, we investigate the nonrandomness of r-round versions of RC6. This
analysis is based on systematic experiments on increasing numbers of rounds
of RC6 with varying word length w. Our method is used to demonstrate
that detecting and quantifying nonrandomness is experimentally feasible up
to 6 rounds of RC6.

For this purpose, the least signi�cant lg w bits in words A and C of the
input are �xed to zero. Depending on the experiment and the number of
rounds, the remaining input bits are either chosen randomly, or more of the
remaining input bits are suitably �xed so that one (or both) of the data
dependent rotations are zero. In our tests, we persue the �2 statistic of
the integer of size twice lg w bits as obtained by concatenating the least
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signi�cant lg w bits in words A00 and C 00 every two rounds later.
In the experiments, we consider versions of RC6 with word size w = 8; 16

and 32 bits, respectively (w = 32 corresponding to the AES candidate RC6).
It is instructive to see that the general behaviour of the �2 test for increasing
numbers of rounds in all three cases is very similar. To judge the outcome of
these �2 tests note that for the word sizes w as considered, 6-bit, 8-bit and
10-bit integers are tested at the output. Hence the numbers of freedom are
63, 255 and 1023 respectively, and these numbers coincide with the expected
value of the �2 statistic, provided the distribution to be tested is uniform.

Subsequently we discuss the results of implemented tests in more detail,
where the keys are chosen at random.

32-bit RC6. First consider a version of RC6 with block length of 32 bit.
This corresponds to the case w = 8, which is shown in Table 4. For r = 2 and
r = 4 rounds more than one entry is given. The �rst entry shows a number
of texts, measured in powers of two, which is necessary to detect that the
mean of the �2 values over 20 tests is higher than the expected value 63 if the
distribution would be random. The other entries show a signi�cant increase
of this mean if the number of plaintexts is doubled, thus a strong deviation
from the uniform distribution. For 28, 217 and 226 texts and correspondingly
for 2, 4 and 6 rounds, the �2 values are approximately the same. Thus we
have to increase the number of plaintexts by the same factor 29 for every
two more rounds to get a comparable statistical deviation as measured by
the �2 test. For this small version of RC6 we cannot go beyond 6 rounds,
as we have to �x 6 input bits, and for 6 rounds we already need 226 random
texts.

r #Texts �2 #Tests

2 28 77 20
2 29 107 20

4 216 68 20
4 217 73 20
4 218 83 20

6 226 78 20

Table 4: RC6 with 32-bit blocks and r rounds. Expected �2 for a random
function is 63.

64-bit RC6. Next consider the version of RC6 with word size w = 16, i.e.
RC6 with 64-bit blocks. The results are shown in Table 5. Here the expected
value of the �2 statistic is 255. Again a substantial increase is observed in
the mean for �2-values if the number of texts is doubled. We notice that
passing from 2 to 4 to 6 rounds, the averaged �2-values increase slightly if
the corresponding number of plaintexts is increased by a constant factor of
213.

128-bit RC6. Consider now r-round versions of RC6 with word size 32
bits, i.e. with round function as in the AES proposal. Table 6 shows the
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r #Texts �2 #Tests

2 210 283 100
2 211 308 100
2 212 364 100

4 223 286 100
4 224 318 100

6 236 298 10

Table 5: RC6 with 64-bit blocks and r rounds. Expected �2 for a random
function is 255.

results of implemented tests for r = 2 and r = 4 rounds. Recall that for
10-bit integers the expected value of the �2 statistic is 1023, and according
to Table 1 the 95% signi�cance level is 1098 and the 99% signi�cance level is
1131. Thus all tests as reported in Table 6 are very unlikely to be produced
by uniformly distributed 10-bit integers. In fact for 4 rounds and 233 texts
almost twice the expected value for a uniform distribution is achieved.

r #Texts �2 #Tests

2 213 1096 20
2 214 1196 20
2 215 1332 20
2 216 1649 20
2 217 2208 20

4 229 1096 20
4 230 1163 20
4 231 1314 20
4 232 1527 20
4 233 2054 20

Table 6: RC6 with 128-bit blocks and r rounds. Expected �2 for a random
function is 1023.

Table 7 shows the results of tests with up to 6 rounds but with one or both
data dependent rotations in the �rst round to be �xed to zero. The last
entry is the result of a test run on eight processors of a Cray Origin 2000
computer. Both, the experiments in Table 6 and in Table 7 demonstrate that
for up to 6 rounds each additional two rounds require roughly 216 times as
many texts to get about the same �2-value on average.

r #Texts �2 #Tests Comments

4 222 1124 20 zero rotation in 1. round at word D
4 223 1228 20 zero rotation in 1. round at word D

6 238 1106 1 zero rotation in 1. round at word D

Table 7: RC6 with 128-bit blocks and r rounds. Expected �2 for a random
function is 1023.
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3.3 A possible analytical explanation

In this subsection we make an attempt to analytically predict the complex-
ities of the �2 tests on RC6.

In the following, let X be the random variable representing the 10 bits as
considered in the ciphertexts after 2 rounds of encryption with RC6 in the
tests from the preceding section. Also, let Y and Z be the random variables
representing these 10 bits in the ciphertexts after 4 respectively 6 rounds of
encryption. It follows from the description of RC6, that the 10 bits in the
ciphertexts after six rounds are not the exclusive-or of 10 biased bits from
the �rst two rounds and 10 biased bits from the next two rounds. This is due
to the fact that the data-dependent rotations in RC6 are performed after
the exclusive-or with the data from the previous rounds. Thus, a parallel to
the Piling-Up Lemma used by Matsui [9] does not seem to be applicable.

With the test results of the preceding section and the estimate from
Sec. 2, that with n = c=jjpX � pU jj texts one can expect a �2-value of
(c+1)m, it is possible to compute estimates of jjpX � pU jj, jjpY � pU jj, and
jjpZ � pU jj.

64-bit RC6. The results of the tests in Table 5 yield the following
estimates for the distances:
jjpX�pU jj = 2�13:25, jjpY �pU jj = 2�26:03, jjpZ�pU jj = 2�38:57. Thus, this
is a clear indication that jjpY � pU jj > jjpX � pU jj

2, and that jjpZ � pU jj >
jjpX � pU jj � jjpY � pU jj.

This gives perhaps more convincing evidence, that passing from s to s+2
rounds in the tests of the preceding section, requires an increase in the texts
needed of a factor of a little less than 213.

128-bit RC6. The results of the tests in Table 6 with a �2-value greater
than 1300 yield the following estimates for the distances:
2�16:79 � jjpX � pU jj � 2�16:71, 2�33:02 � jjpY � pU jj � 2�32:81. Again with
a clear indication that jjpY � pU jj > jjpX � pU jj

2.
This con�rms the estimate from the preceding section that passing from

s to s+2 rounds in the �2-tests, requires an increase in the texts needed of
a factor of a little more than 216. Later, we will use the factor 216:2.

3.4 Weak keys

The test results from the previous sections were given as an average over
tests using randomly chosen keys. There was some deviation of the single
results, e.g., the �2-values of the tests for RC6 with 128-bit blocks and 4
rounds using 233 texts varied from 1731 to 2595 with an average of 2044.
Thus, for some keys the deviation is bigger than expected, for other keys it
is lower than expected. In this section we report on some weak keys, which
perform better than the average key. In Sec. 3.1 it was explained why there
is a nonuniform distribution of the 10 target bits, and why for two rounds
the involved key bits have no inuence on the nonuniformity of the target
bits in the �2-tests. However, when iterating the tests to several rounds, the
modular additions of round-key bits introduce carry bits which a�ect the
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nonuniformity. For 4 rounds, the key bits that may a�ect the nonuniformity
are the �ve least signi�cant bits of the round keys S[2] and S[3]. When
these bits are set to zeros, the �2-value increases. Similarly, for 6 rounds
the least signi�cant �ve bits of the subkeys 2,3,6, and 7 may inuence the
nonuniformity.

This is illustrated by a series of tests, the results of which are shown
in Table 8. For 4 rounds the \distance" to a uniform distribution is about

r #Texts �2 #Tests Comments

4 230 1398 20 1 in 210 keys

6 230 1093 10 zero rotation in 1.round at B and D

6 230 1368 10 same, for 1 in 220 keys

Table 8: RC6 with 128-bit blocks and r rounds for weak keys.

2�31:5 which is more than a factor of two higher than for the results averaged
over all keys. For 6 rounds the distance to the uniform distribution is about
2�33:87 for the second test of Table 8, and about 2�31:57 for the third test
using weak keys. Thus, a factor of more than 4.

4 Attacks on RC6

4.1 Distinguishing attacks

It is possible to exploit the �ndings in the previous sections to distinguish
RC6 with a certain number of rounds from a permutation randomly chosen
from the set of all permutations. In the previous sections we �xed bits in the
�rst and third plaintext words. As we shall see in the next section this makes
good sense when implementing key-recovery attacks. In a distinguishing
attack it is advantageous to �x the least signi�cant �ve bits in the second
and fourth words instead. It follows that after one round of encryption
the least signi�cant �ve bits in the �rst and third words of the ciphertext
are constant. Table 9 lists the result of tests implemented for RC6 with
128-bit blocks with 3 and 5 rounds. It follows that 213:8 texts are su�cient
to distinguish the 3-round encryption permutation from a randomly chosen
permutation in 90% of the cases. We estimate that for RC6 with 3 + 2r
rounds similar results will hold using 213:8+r�16:2 texts, which is con�rmed
by tests implemented on RC6 with 5 rounds.

Note that the �2 numbers of Table 9 for 3 rounds are slightly lower than
the numbers of Table 6 for 2 rounds. This stems from the fact that in the
latter tests, the least signi�cant �ve bits of the �rst and third words of the
plaintexts were �xed to zeros. In a distinguising attack, one gets the �rst
round \for free", by �xing totally 10 bits of the second and fourth words.
However, as these words are added modular 232 to subkeys in the input
transformation, the least signi�cant �ve bits of the �rst and third words
in the inputs to the second round are nonzero, but constant, and there is
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an e�ect of carry bits by the addition of subkeys after the second-round
approximation.

We estimate that for keys where the least signi�cant �ve bits of each of
the two subkeys in every second round are zeros, the attack improves with
more than a factor of two for each 2 rounds. This leads to the estimate that
for one in 280 keys, 17 rounds of RC6 with 128-bit blocks can be distinguished
from a randomly chosen permutation.

r #Texts �2 Comments

3 213 1079 Implemented, average 20 tests
3 213:8 1100 Implemented, average 20 tests
3 214 1141 Implemented, average 20 tests

5 229 1054 Implemented, average 20 tests
5 230 1099 Implemented, average 20 tests

7 246:2 Estimated.
9 262:4 Estimated.
11 278:6 Estimated.
13 294:8 Estimated.
15 2111:0 Estimated.
17 � 2118 Estimated. For 1 in every 280 keys.

Table 9: Complexities for distinguishing RC6 with 128-bit blocks and r
rounds from a random function.

4.2 Key-recovery

As con�rmed by several experiments, the �2-value is signi�cantly higher
if inputs are suitably �xed so that one (or both) of the data dependent
rotations in the �rst round of RC6 are zero. Clearly, the choice of the right
input depends on knowledge of the subkey S[0] (or S[1], respecively). We
now describe how the considerations and experimental results of previous
sections can be exploited for key recovery. Thereby we restrict to 128-bit
RC6 with word size 32 bits.

In the following we will assume that to get similar values in a �2-test
on s + 2 rounds compared to s rounds requires a factor of 216:2 additional
plaintexts. Recall that we always �x the least signi�cant �ve bits in words
A and C. In addition suppose we �x inputs so that the data dependent
rotation is zero in the �rst round at word D. Then with a factor of about
28:1 less plaintexts we achieve a similar �2-value as for random inputs at
word D (e.g. compare row 7 in Table 6 with the �rst row in Table 7). For
symmetry reasons, the same holds if inputs at word B are �xed.

With regard to inputs at word D (or B), some comments related to the
multiplication in RC6 are in order. The data dependent rotation amounts
are determined by the �ve leading bits of the output of the permutation as
given by the multiplication D � (2D + 1) (see Figure 1). The permutation
function restricted to these �ve output bits is therefore balanced. Rather
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than �xing inputs we can restrict to inputs leading to these �ve bits being
zero, resulting in more freedom for choosing plaintexts. For e�ciency we can
prepare a table T of the 227 inputs to the permutation giving zero rotation.
Thus for the correct key S[1] we can choose 227 di�erent inputs at word D,
all leading to zero rotation in the right half of the �rst round. (Alternatively,
we can enlarge the table, and also accept inputs giving rotation amount 1
or -1, which still lead to increased �2-values.) To test a �xed trial key S[1]
we thus can roughly choose amongst 2113 plaintexts at random.

The attack goes as follows, choose plaintexts such that the least signi�-
cant �ve bits of the �rst and third words are zeros. Prepare an array with
210 entries for each value of the subkey S[1]. For each plaintext use the
table T as prepared, to determine the values of S[1] which lead to a zero
rotation at word D. For each such value, update each array by incrementing
the entry corresponding to the value obtained from the 10 target bits of the
ciphertext. Each array is used to �nd the probability distribution of the 10
target bits. Repeat the attack su�ciently many times, until one array has
a signi�cantly higher value in the �2-test.

For an estimate of the complexity to recover subkey S[1], consider r-
round versions of RC6 with r even. For each trial key S[1] we perform a �2

test with
213 � (216:2)

r�2
2 � 2�8:1 (4)

plaintexts as described. Then for the correct choice of S[1] the �2-value is
expected to be around 1100, that is, signi�cantly higher than 1023. For each
key which produces an expected �2-value, repeat the attack with additional
plaintexts.

To rule out all false values of the key, we increase the number of texts
by up to a factor of 23. Enlarging the amount of plaintexts by this factor
has the e�ect of a substantial increase of the �2-value, as observed in our
experiments (see the tables in Section 3). Thus, to single out the correct

key out of suggested key values we would need about 216� (216:2)
r�2
2 �2�8:1

texts. And since only one in every 25 texts gives the desired zero rotation
at word D, the total number of plaintexts needed is

25 � 216 � (216:2)
r�2
2 � 2�8:1 = 2r�8:1�3:3:

The amount of work is estimated as follows. For each plaintext in the
attack, we update the counters of at most 227 keys. If we assume that
after the �rst two iterations of the attack, the number of remaining keys are
reduced by a factor of 4 or more, we obtain a complexity of

227+r�8:1�5:3 = 221:7+r�8:1;

where one unit is the time to update one entry of one array of size 210 of
totally 232 arrays.

After S[1] is correctly found, subkey S[0] can be determined with a re-
duced amount of texts and work. Knowing S[0] and S[1], the data dependent
rotations in the �rst round can be �xed to zero without e�ort. Thus the �2
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tests can now be applied by controlling inputs to the second round. This
enables �nding subkeys S[2] and S[3] in much the same way as we did for
S[0] and S[1]. After this we peel of the �rst round and proceed to determine
the other subkeys.

This attack is faster than an exhaustive key search for the 128-bit key
version of RC6 with up to 12 rounds, and for the 192-bit and 256-bit versions
of RC6 with up to 14 rounds. Table 10 lists the complexity for 12, and 14
rounds of RC6. For 16 rounds the number of texts needed is 2126:3 and thus
exceeds the number of available texts of 2118.

For key sizes 192 bits and 256 bits the computational e�ort for searching
subkeys can be larger. Thus for a 192-bit key we can do a simultaneous
search over S[0] and S[1], thereby improving the �2 statistic by two rounds.
In addition, we increase the factor 23 to 24 in order to single out the cor-
rect pair S[0], S[1] among the remaining pairs. Here only one in every 210

plaintexts give zero rotations at words B and D. The number of plaintexts
needed for this version of the attack is

210 � 217 � (216:2)
r�2
2
�1 = 2r�8:1�5:4;

and the time complexity is

254+r�8:1�7:4 = 246:6+r�8:1;

where one unit is the time to update one entry of one array of size 210 of
totally 264 arrays. Table 10 lists the complexities of this attack for 14 rounds
of RC6. The number of texts needed in the attack on 16 rounds is about
2124 and thus still exceeds 2118. However, as reported earlier there are keys
for which the complexities improve. We estimate that the attack is possible
for at least one in 260 keys with the complexity as stated in the table.

Finally, for the 256-bit key version of RC6 it is possible to further
extend the attack. In a 15-round version, one can search over the keys
S[0]; S[1]; S[32]; and S[33]. The latter two keys are used to decrypt the ci-
phertexts one round. In the updating of the probability-arrays, one only
uses ciphertexts for which there are zero rotations in the last round. The
number of texts needed is approximately 210 times that of 14 rounds, and
the time complexity increases with a factor of about 254. To rule out all
false values of the keys, we estimate that the number of plaintexts needed
increases by yet a factor of 2.

Note that in the above attacks the number of available texts is bounded
by 2118, since we need to �x 10 bits of each plaintext. The probability
distributions for each such �xed 10-bit value will be di�erent, but their
distance to the uniform distribution can be expected to be similar. As an
extension of the above attacks consider the following. Run the attack with x
texts for one �xed value of the 10 bits in the plaintexts. Record the �2-value
for each key in the attack, and rank the keys. Reset the arrays. Repeat the
attack x texts for another �xed value of the 10 bits. Record again the �2-
value for each key in the attack, and rank the keys. Repeat this a number
of times. If the �2-values for the correctly guessed keys will be larger than
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r #Texts Work �2 Memory Comment

12 293:9 2118:9 1500 242

14 2110:1 2135:1 1500 242

14 2108:0 2160:0 2000 274

16 2118:0 2171:0 2000 274 1 in 260 keys

15 2119:0 2215:0 > 2000 2138

Table 10: Complexities for key-recovery attacks on RC6 with 128-bit blocks
and r rounds. One unit in \Work" is the time to increment one counter.
The �2 value is the expected value for the correct key.

for random values, one can expect that the correct key will be high in the
rankings, and it can be detected after su�ciently many iterations. Thus this
variant would make available all 2128 texts. We conjecture that this attack
is applicable to 15 rounds of RC6 with a complexity as given in the last
entry of Table 10.

We leave it as an open question whether the attack and its variants can
be used to attack RC6 with 16 or more rounds.

Finally, note that the reported attacks are chosen plaintext attacks.
However, it follows that the basic attack reported earlier can be easily trans-
formed into a known plaintext attack with an increase in the needed texts
of a factor of at most 210, leaving the total time complexity unaltered.

5 Conclusion

In this paper we have presented an attack on RC6 which is based on a
strong relationship between the e�ects of data dependent rotations in the
round function and statistical input-output dependencies.

Estimates which are based on systematic experimental results show that
versions of RC6 with up to 15 rounds can be distinguished from a random
permutation. A class of weak keys has been identi�ed for which this nonran-
domness is estimated to persist up to 17 rounds. Finally, we have derived a
method for key-recovery for RC6 with up to 15 rounds which is faster than
exhautive key search. It is open whether our analysis can be used to attack
RC6 with 16 or more rounds.

We remark that similar attacks are applicable to reduced-round versions
of RC5. Work is in progress.

6 Acknowledgments

The authors would like to thank Vincent Rijmen for helpful comments and
discussions.

14



References

[1] O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux,
P. Nguyen, F. Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern,
and S. Vaudenay Report on the AES candidates. Available at
http://csrc.nist.gov/encryption/aes/round1/conf2/papers/baudron1.pdf.

[2] S. Contini, R.L. Rivest, M.J.B. Robshaw and Y.L. Yin. The Secu-
rity of the RC6 Block Cipher. v.1.0, August 20, 1998. Available at
www.rsa.com/rsalabs/aes/.

[3] S. Contini, R.L. Rivest, M.J.B. Robshaw, and Y.L. Yin. Improved
analysis of some simpli�ed variants of RC6. In L. Knudsen, editor,
Fast Software Encryption, Sixth International Workshop, Rome, Italy,

March 1999, LNCS 1636, pages 1{15. Springer Verlag, 1999.

[4] S. Contini, R.L. Rivest, M.J.B. Robshaw, and Y.L. Yin. Some Com-
ments on the First Round AES Evaluation of RC6. Available at
http://csrc.nist.gov/encryption/aes/round1/pubcmnts.htm.

[5] J. Kelsey, B. Schneier, and D. Wagner. Mod n cryptanalysis, with ap-
plications against RC5P and M6. In L. Knudsen, editor, Fast Software
Encryption, Sixth International Workshop, Rome, Italy, March 1999,

LNCS 1636, pages 139{155. Springer Verlag, 1999.

[6] A.G. Konheim. Cryptography: A Primer. John Wiley & Sons, 1981.

[7] L.R. Knudsen, and W. Meier. Correlations in RC6. Technical Report
177, Department of Informatics,University of Bergen, Norway, July 29,
1999.

[8] D.E. Knuth. The Art of Computer Programming, Vol. 2. Addison-
Wesley, 1981.

[9] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helle-
seth, editor, Advances in Cryptology - EUROCRYPT'93, LNCS 765,
pages 386{397. Springer Verlag, 1993.

[10] R.L. Rivest, M.J.B. Robshaw, R. Sidney and
Y.L. Yin. The RC6 Block Cipher. v1.1, August 20, 1998. Available
at www.rsa.com/rsalabs/aes/.

[11] S. Vaudenay. An Experiment on DES Statistical Cryptanalysis. 3rd
ACM Conference on Computer and Communications Security, ACM
Press, 1996, pp. 139-147.

15


