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Some Informal Reflections on Rijndael and Twofish
By Dr. B. R. Gladman, Worcester, UK, March 2000

Introduction

During the implementation of Rijndael [1] and Twofish [2] with pre-computed key schedules the author has
been struck by similarities between the round functions of these algorithms when implemented in this way.
This paper considers these functions informally from a security perspective and concludes by raising a ques-
tion about the relativesecurity strengthsof the two algorithms.

In reading this paper it is important to understand that Twofish provides considerable implementation flexi-
bility that allows optimisation depending on the expected size of the encryption task. Because similarities
between the Rijndael and Twofish round functions are evident with pre-computed key schedules it is inevi-
table that this paper will focus on this mode of operation. Nevertheless, it should be remembered that
Twofish can be implemented in other ways that will often reducesomeof thecostsdiscussed here.

The Round Functions

In what follows the sixteen 8-bit bytes of the cipher state block will be designated s00 to s15; each 32-bit
word in this cipher state will be designated by the range of bytes it contains using, for example, the notation:
s08: 11. Left and right circular rotations will be designated by <<< and >>> respectively. A superscript
‘ ' ’ after a variable will denote an updated state variable that is not used on the right hand side of subsequent
expressionsduring thecalculation of the round function (i.e. thevalue isstored at theend of the round).

The operation that is common to both Rijndael and Twofish when implemented for bulk encryption takes 4
of the16 bytesof thecipher stateand mixes these to form a32-bit output using theoperation:

mi x( p, q, r , s) = T0[ p] ^ T1[ q] ^ T2[ r ] ^ T3[ s]

where p, q, r and s are the chosen bytes and T0, T1, T2 and T3 are four tables that each contain 256 32-bit
words. This function updates one of the four 32-bit words in the cipher state using four selected state bytes
as input. By applying this function four times the four 32-bit words in the cipher statecan hencebeupdated,
this being one round for Rijndael and one cycle – two Feistel rounds – for Twofish. The two algorithms use
different byte selections and different updating orders; they also employ different key mixing approaches as
shown in the following C pseudo-code:

r i j ndael _r ound( s00: 15, * ksch)
{

s00: 03' = mi x( s00, s05, s10, s15)
s04: 07' = mi x( s04, s09, s14, s03)
s00: 03’ ^= * ksch++
s04: 07’ ^= * ksch++
s08: 11' = mi x( s08, s13, s02, s07)
s12: 15' = mi x( s12, s01, s06, s11)
s08: 11’ ^= * ksch++
s12: 15’ ^= * ksch++

}

t wof i sh_cycl e( s00: 15, * ksch)
{

x = mi x( s00, s01, s02, s03)
y = mi x( s07, s04, s05, s06)
s08: 11 = [ s08: 11 ^ ( x + y + * ksch++) ] >>> 1
s12: 15 = [ s12: 15 <<< 1] ^ ( x + 2 * y + * ksch++)
x = mi x( s08, s09, s10, s11)
y = mi x( s15, s12, s13, s14)
s00: 03 = [ s00: 03 ^ ( x + y + * ksch++) ] >>> 1
s04: 07 = [ s04: 07 <<< 1] ^ ( x + 2 * y + * ksch++)

}

The Twofish cycle is applied 8 times whereas the Rijndael round is applied 10, 12 or 14 times for 128, 192
or 256 bit keys respectively. Each of these functions takes a 16 byte input cipher state and 16 bytes of the
key schedule (produced from the key) and mixes these to produce the 16 bytes of the output state. The ta-
bles for the mix() function in Rijndael are fixed but those in Twofish are key dependent. However, in what
follows these two functions will be compared for fixed tables since the security properties provided by key
expansion will beconsidered separately later.

For Rijndael each byte in the output state is dependent on 4 bytes of the input state and on 1 byte from the
key schedule.

The situation for Twofish is more complex. Bytes in the upper half of the state block are mixed with values
that depend on all the bytes in the lower half. This means that they depend on 9 of the 16 input bytes. Be-
cause of the additions and the rotations in the PHT stage there are some additional dependencies but these
will be ignored. Output state bytes in the lower half of the state depend on all 16 bytes of the input state.
On average, therefore, each output byte is dependent on at least 12 of the 16 input bytes. The situation for
key schedule bytes is also more complex because the keys are added rather than XOR’d so that carries be-
tween bytes create additional dependencies. But ignoring these nuances once again, the bytes in the lower
half of the state block depend on 1 byte in the key schedule while bytes in the upper half depend on 9 bytes
of theschedule.



Some Informal Reflections on Rijndael and Twofish The NIST AES Programme

Dr B. R. Gladman, 15th March 2000 page 2

This issummarised in the following table.

Average number of input bytes on which
bytes in the output cipher state depend

Input cipher state
bytes (average)

Key schedule bytes
(average)

Rijndael 4 1

Twofish 12 5

In addition the use of key dependent tables in the Twofish round function provide even greater diffusion of
thekey into theoutput state.

This analysis suggests that the Twofish cycle is more effective than the Rijndael round in diffusing the input
state and key schedule bytes across the bytes of the output state. We would thus expect Rijndael to need
more rounds than Twofish and this is, indeed, reflected in the two designs. But the ratio of rounds – 10:8 –
seemssomewhat less than might beexpected from thisdiffusion comparison alone.

A naïve calculation of overall diffusion as the product of ‘single round diffusion count’ multiplied by the
number of rounds givesa ratio of 12:5 (Twofish/Rijndael) but this is really meaninglesssincecomposition of
diffusion between rounds is certainly far from linear. In consequence determining whether the increased
number of Rijndael rounds is sufficient to offset what appears to be a somewhat stronger Twofish cycle is a
matter for cryptanalysts.

In performance terms, inspection of these functions suggests that the processing cost of a Rijndael round and
a Twofish cycle will be quite similar but with a disadvantage for Twofish as a result of itsmorecomplex key
mixing and PHT operations. This isconfirmed by practical results for the two algorithms:

Cycles/block (bulk encryption, 128-bit keys) Twofish Rijndael Cost (Twofish Cycle/Rijndael Round)
Pentium II, C (Gladman) 373 363 1.30
Pentium II, Assembler (Lipmaa) 286 237 1.50
Merced (Whiting) 232 170 1.70
McKinley (Whiting) 181 126 1.80

The values given in the last three lines are those provided by Helger Lipmaa at [3]. The round cost ratio
takes account of the different numbers of rounds or cycles involved. Hence while the Twofish cycle is more
effective in diffusion terms, it is also about 50% more expensive in processing cost. Taking account of the
different number of rounds and cycles this suggests that for software based bulk encryption Rijndael will
typically be around 20% faster than Twofish for 128-bit keys, about the same for 192-bit keys and 20%
slower for keysof 256 bits.

Key Expansion

Although the byte mixing functions used by Rijndael and Twofish are the same, they operate on different
bytes and, more importantly, they use tables that are generated in entirely different ways. In Rijndael these
tables are fixed in design whereas in Twofish they are key dependent. Moreover the generation of the two
key schedules are also very different with Rijndael employing a very simple key expansion process which
contrasts sharply with the much more complex mechanism used by Twofish. The latter also uses key de-
pendent tables for the mix() function and hence provides for a stronger influence of the key on the encryp-
tion process.

The end result is a radical difference in the cost of the two key schedules (as used here the term ‘key sched-
ule’ for Twofish includes thegeneration of its key dependent S-Boxes):

Key Expansion Cost for Bulk Encryption Encrypt (Forward) Decrypt (Inverse)
Rijndael (Pentium II, C, 128-bit keys) 213 1338

Twofish (Pentium II, C, 128-bit keys) 8530 8590

The disparity in the cost of pre-computed key schedules – 40:1 for encryption and 6.4:1 for decryption – is
striking and suggests that the two design teams must have taken very different views of the security proper-
ties required of key expansion. This disparity is particularly large for encryption because Rijndael has been
specifically designed to make this operation very efficient in the knowledge that a number of applications
and block chaining modes do not require the inverse cipher. Since the round functions for the two algo-
rithms appear to be much closer to each other in security performance, it seems reasonable to conclude that
either theRijndael key expansion isunder-engineered or that of Twofish isover-engineered (or both).

This is an important issue since the cost difference is significant. In view of the similarities evident in the
two round/cycle functions it seems rather unlikely that their security ‘strengths’ will differ by more than 2:1
and we might hence expect that key schedules designed to match the security of these functions would have
costs that differ by much less than 6.4:1 or even 40:1. Of course, for bulk encryption the impact of key ex-
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pansion cost declines as the number of blocks increases but if the simpler and faster key expansion used in
Rijndael is sufficient to achieve the required level of security, this algorithm will have a considerable per-
formanceadvantage in tasks involving encryption for small and medium numbersof blocks.

But this paper has so far considered implementations tuned for bulk encryption whereas Twofish can be im-
plemented in different ways to give a much lower encryption cost for small numbers of blocks. Figures
given at http://www.counterpane.com/twofish_key_setup.html suggest a Twofish single block encryption
cost of 2110 cycles for an assembler implementation, made up of 1250 cycles for key expansion and 860
cycles for encryption. Equivalent results provided by Helger Lipmaa at [3] suggest that a reasonable esti-
mate for Rijndael in similar circumstances would be 427 cycles consisting of 190 cycles for key expansion
and 237 cycles for encryption (190 cycles for key expansion is an assembler estimate based on a cost of 213
cycles in C). While a lot smaller than 40:1, this shows that Rijndael is still a factor of five faster than
Twofish for encryption, which remains a large performance advantage (the advantage for decryption ismuch
less– about 1.4:1).

With an encryption cost penalty of somewhere between 5:1 and 40:1, it would be hard not to conclude that
Twofish key expansion should be more robust in security terms than that of Rijndael. But since this can
have a big impact on performance, it is important to understand if this is necessary in order to meet AES se-
curity requirements. If Rijndael key expansion is ‘good enough’ to meet AES needs, does this mean that
Twofish is over-engineered? On the other hand, if Twofish has set the right level of security performance, is
Rijndael key expansion too simple and hence vulnerable to attack? These are important questions in the
final monthsprior to theselection of theAES finalist algorithm(s).

Conclusion

The Twofish cycle and Rijndael round functions possess similarities that suggest that their respective secu-
rity strengths and encryption/decryption speeds will be significantly, but not radically, different when con-
sidered with fixed tables. The Twofish round function appears to be stronger than that of Rijndael but this is
offset by theadditional number of rounds that Rijndael employs.

But the costs of key expansion in software for pre-computed key schedules differ by a factor of 40:1 for en-
cryption (6.4:1 for decryption) and such a large disparity raises the question of whether Rijndael is under-
engineered and/or Twofish is over-engineered in this respect. For single block encryption the cost ratio is
less extreme but still gives Rijndael a 5:1 (1.4:1 for decryption) advantageover Twofish on thePentium plat-
form.

The aim of this paper is not to show preference for either algorithm but rather to promote discussion of what
might be a significant trade-off between security and performance. If this is suggestive of over-engineering
in Twofish then this just illustrates a conservative algorithm design. If, however, this is indicative of under-
engineering in Rijndael, thiswould beaseriousconcern sincealgorithm security isparamount.

The author is not a cryptanalyst but would like to hear more from the cryptanalytic community on the mis-
match in the complexity of the Rijndael and Twofish key expansion processes in the light of round functions
which, when considered with fixed tables, appear to becloser in termsof their security performance.
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