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Abstract. In this note we consider the conjectured resistance of MARS
to linear cryptanalysis and discover that some of the existing analysis
may well be flawed.

1 Introduction

As the AES process nears its conclusion, five algorithms remain for considera-
tion. In this note we describe the preliminary findings of an investigation of the
resistance of MARS to linear cryptanalysis. Our attention focuses on the main
source of cryptographic strength in MARS [2], the so-called E function and its
combination in successive rounds with other instances of the same function.

The designers of MARS justify their claims for the resistance of MARS to dif-
ferential and linear cryptanalysis by providing [2] “crude (though conservative)
bounds on the complexity of such attacks.” After some analysis and extensive
experimentation, it is our conclusion that these bounds for resistance to linear
cryptanalysis could be flawed.

In particular, we have shown that the style of analysis used by the MARS
designers seems to provide an upper bound of only 2−49 for the bias of a linear
approximation to the cryptographic core. (Their analysis showed a bound of
2−69.) Whether or not a linear approximation can be found that meets the bias
of 2−49 is, of course, unknown. While unlikely, if such an approximation did exist
then the data requirements for an attack on the cryptographic core of MARS
would be of the order of 298 plaintexts.

2 MARS

MARS is one of the five finalists for the AES and it has many novel and successful
design features. It is however, an exceedingly complicated cipher to analyze.
Given that the time for public cryptanalysis in the second round is so short, it
is questionable how much attention has been made to the detailed design of this
and other more complicated AES candidates [9].
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Our attention in this note is almost exclusively focused on the role of what is
termed the E function [2]. It consists of one 32-bit word of input I and produces
three 32-bit words of output L, M , and R. The action of this function is illus-
trated graphically in Figure 1 where left rotations by a fixed amount have the
rotation amount indicated and rotation amount for the variable left rotations is
indicated by the source of the arrow.
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Fig. 1. The E function in MARS.

3 Linear cryptanalysis

Linear cryptanalysis [6, 7] is an intriguing style of analysis. While it is very
effective against DES [7] it is typically not as successful as differential crypt-
analysis [1] in the analysis of other ciphers. It is also a style of analysis for which
there remain many complex and unanswered questions [10].

The aim of a linear cryptanalytic attack is to find an effective linear ex-
pression connecting some bits of the intermediate text related to the plaintext,
some bits of the intermediate text related to the ciphertext, and some bits of
the key. When the probability that such an approximation holds is biased, by
taking sufficiently many plaintext/ciphertext pairs the correct value of a bit
of key information can be identified. The greater the bias, the fewer the num-
ber of plaintext/ciphertext pairs needed and the data requirements for a linear
cryptanalytic attack are inversely proportional to the square of the bias of the
approximation [6].

In this note, we follow the style of analysis of the MARS designers but we
demonstrate that some upper bounds on the bias of basic approximations used
as building blocks in their assessment are incorrect. We do this using simple
and established techniques. We also wonder whether established results on the
resistance of MARS to linear cryptanalysis are that conservative when advanced
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techniques such as linear hulls [8], multiple linear approximations [3, 4], and the
effects of key dependence [10], are not considered.

3.1 Notation

The approximations that we consider in this note involve four 32-bit words that
are denoted [2] as I, L, M , and R (Figure 1). An approximation involving n bits
from these 32-bit words in positions ti (1 ≤ i ≤ n) from word I (say) will be
denoted as I[t1, . . . , tn]. We consider the rightmost bit of a 32-bit word to be the
least significant bit and denote its position by 0.

In a slight abuse of notation we will consider a word as a vector in Z32
2

and we will use Γ (say) to indicate the bits of the word that are to be used
in a linear approximation. This is most conveniently described by means of
the scalar product of two vectors. Thus the {0, 1}-vector Γ might denote the
bits of I to be used in an approximation and I · Γ is the value of these bits
combined using exclusive-or. An example linear approximation might be written
(I · Γ1)⊕ (M · Γ2) = 0.

4 The S-box

The S-box S(·) in MARS gives a 32-bit output that is chosen from 512 using
a nine-bit input. The construction of S(·) is based on the hash function SHA-1
by choosing an appropriate set of parameters. On page 31 of [2] the designers of
MARS conjecture that there are

“ ... no approximations of the S-box with bias of more than 2−3.”

Some of the estimated upper bounds for the bias of linear approximations to
the E-function are based on this conjecture. In reality, a quick search of a small
fraction of the total number of possible linear approximations3 reveals many
linear approximation to the S-box that have a bias greater than 2−3.

Here we describe some experimental results on the bias of selected linear ap-
proximations for the S-box. There are a few interesting types of linear approx-
imations to consider which may prove beneficial in a wider linear-cryptanalytic
attack. Among them is the interesting case where a linear approximation to the
S-box involves no input bits but some of the 232 − 1 possible approximations of
the output bits. Let Γx ∈ {0, 1}9 and Γy ∈ {0, 1}32. Then an approximation to
the S-box is of the form

x · Γx = S(x) · Γy.

Since there are too many possible linear approximations, we can only consider
a small subset of them. Below are three types that we considered.
3 Independently, Knudsen and Raddum [5] have found a linear approximation to the

S-box with bias 82/512.
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1. Suppose Γx has Hamming weight zero or one. For each such Γx and all
232 − 1 non-zero Γy, we computed the bias. Table 1 gives the number of
approximations with a bias greater than the conjectured 2−3 and also the
maximum bias found for this type of approximation.

2. There are good analytical reasons to consider the least significant five bits
of the output from the S-box in a linear approximation, so we might take
0 ≤ Γx ≤ (29 − 1) and 1 ≤ Γy ≤ (25 − 1). These approximations are further
sub-divided into cases where the approximations involve only a single bit for
both the input and output, and the case where only output bits are involved.
Table 2 gives the distribution of the biases for all such approximations to the
S-box.

3. Suppose Γx = 0 and Γy consists of a periodic pattern of bits. For example,
with Γy = 0x15151515 the bias is 31/512 ≈ 2−4.0, and with Γy = 0x88888888
the bias is 23/512 ≈ 2−4.5. Such a periodic output mask helps increase the
bias of the data-dependent rotations and seems to be useful when we consider
certain variants of MARS in which the addition operations are changed to
exclusive-or. However we will not pursue this here.

Γx 0x000 0x001 0x002 0x004 0x008 0x010 0x020 0x040 0x080 0x100

# 41 44 50 36 40 37 43 42 45 46
biasmax × 512 68 73 72 71 70 73 71 72 73 72

Table 1. A partial search of all linear approximations to the S-box reveals numerous
approximations with bias greater than the conjectured 2−3. The number of such ap-
proximations (after searching over all output masks) for the given input mask is given
in the second row while the maximum bias (biasmax) for that input mask is given in
the third. Overall, the maximum bias we found was 73/512 and one of the masks that
gives this bias is Γx = 0x001 and Γy = 0xefde00f5.

5 Linear approximations of E

In this section we consider the formation of linear approximations to the E func-
tion in MARS (Figure 1). The designers of MARS present an analysis of the
different ways in which linear approximations can be formed and they present
their results in Table 7, on page 36 of [2]. The designers consider each subset of
the input I and the three output strands L, M , and R and for each subset they
list their

“... estimate of the highest possible bias which can be obtained with this
subset.”
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bias of number of all number of single-bit number of output-only
approximation approximations approximations approximations

= 0 522 1 1

[2−9, 2−8) 1165 5 1

[2−8, 2−7) 2177 2 4

[2−7, 2−6) 3955 17 9

[2−6, 2−5) 5340 10 12

[2−5, 2−4) 2614 10 4

[2−4, 2−3) 99 0 0

total 15872 45 31

Table 2. Distribution of the bias for linear approximations of the S-box with
0 ≤ Γx ≤ (29 − 1) and 1 ≤ Γy ≤ (25 − 1). Some of these involve only single bits
at the input and output and some approximations have no input bits involved.

In this section we first give immediate theoretical justification for why some
of these estimates must be in error. We then provide experimental confirmation
of the fact.

5.1 Approximations involving L and M

Here we consider linear approximations involving the outputs L and M from the
function E. In [2] it is conjectured that the highest possible bias is 2−20.

Why this bound is immediately suspect. Consider approximations of the
E function that involve only L and M . We will use notation from Figure 7 of [2].
Furthermore we will let r1 and r2 denote the 32-bit quantities from which the
two rotation amounts are induced by the R strand. There is then the following
relation between L and M .

M = w1<<<r1

w2 = S(w1)
w3 = w2 ⊕ r1 ⊕ r2

L = w3<<<r2.

Consider the least significant five bits of r1 and r2 and suppose that r1 mod 32 =
r2 mod 32 = r. So with probability 2−5 we have that

(L>>>r) ≡ S(M>>>r) mod 32.

Therefore, we can construct linear approximations for the L and M strands from
many linear approximations to S[·] and relate the biases of the two. From Table 2
this suggests that there will be many linear approximations involving L and M
with bias less than 2−20. Since the estimates in [2] take account of the integer
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addition that is required to mix the output from the L and M strands into the
data stream, a little more work and experimentation is needed. But already this
bound is very suspect.

Linear hulls and key dependency. For some linear approximations the ex-
perimental bias can be larger than that predicted by analysis. In addition, there
are often some complicated key dependencies when considering the susceptabil-
ity of a cipher to linear (and for that matter differential) cryptanalysis. As an
example, let us consider the relation between L[0] and M [0].

M [0] = (w1[32− r1])<<<r1

w2[i] = S(w1[j])
w3[i] = w2[i]⊕ r1[i]⊕ r2[i]
L[0] = (w3[32− r2])<<<r2.

The above set of equations certainly hold for i = j = r1 = r2 = 0. But they also
hold for many other proper choices of i, j, r1, r2 and so we see there are many
valid approximations that might contribute to the bias demonstrated by the
linear hull L[0]⊕M [0]. Furthermore, it is possible to consider the construction
of linear approximations that contribute to the linear hull L[0]⊕M [0] but which
also involve local linear approximations across the key-dependent operations.
While such approximations might be expected to have very low bias (particularly
those involving the integer multiplication) it is sometimes surprising to note the
significant variability in the bias observed.

Experimental Results
Choose 300 keys ka and km at random. Check that the multiplicative key
word km is valid for MARS. Compute the bias of L[0]⊕M [0] exactly over
all 32-bit input words.

bias number of keys
(2−12.4, 2−13.0) 276
(2−13.0, 2−13.8) 24

For all the keys tried, the bound for the largest bias to approximations involv-
ing L and M in the MARS analysis paper [2] has been contradicted. Sometimes
this is by as much as a factor of 27. While we only give results on experiments
involving L[0] and M [0] similar results hold for approximations involving other
bit positions.

5.2 Approximations involving M and R

In Table 7 of [2] it is conjectured that the bias of any approximation for the
M,R strands is at most 2−7. Below we will identify two linear approximations
of M,R which both have an average bias of 2−7. But for half the subkeys the
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bias is larger than 2−7 and for a fraction of 1/8 of the subkey the bias is at least
2−6.2 .

The M and R strands of the E function satisfy the following equations.

R = ((I<<<13)× km)<<<10,
M = (I + ka)<<<r1,

where ka, km are the addition and multiplication subkeys, and r1 is the rotation
amount determined by R>>>5.

There are three perfect linear approximations across the multiplication (since
the multiplicative keys in MARS have a special form) and two of them are useful
for our purpose. These two approximations correspond to the following perfect
approximations for the I and R strands; I[19]⊕R[10], and I[20]⊕R[10, 11].

Now let us consider two matching approximations for the I and M strands.
Note that we choose M [0] since it will can be used in an approximation to the
addition in the update step without losing bias.

I[j]⊕M [0], j = 19, 20. (1)

In [2] it is claimed that any approximation (except for the least significant bit)
for y = I + ka has a bias of at most 1/4. However, for fixed subkeys, the bias
can be larger. In particular, the bias depends on the probability that there is a
carry into bit j during addition for a random input I.

Let q represent the least significant j bits of ka. Then the bias of Approxima-
tion 1 across addition is given by q−2j−1

2j . Suppose that q ≤ 2j−4. Then the bias
across addition is at least 7

16 = 2−1.2. Similarly, we have the same result when
ka(j) ≥ 2j − 2j−4. Therefore, for a fraction of 1/8 of the addition subkeys4, the
bias across addition is at least 2−1.2.

Taking into account the bias of the data-dependent rotation operation, we
note that the two approximations M [0]⊕R[10] and M [0]⊕R[10, 11] have a bias
of at least 2−6.2 for a fraction of 1/8 of the addition subkeys.

Experimental Results
Choose 300 keys ka and km at random. Check that the multiplicative key
word km is valid for MARS. Compute the bias of M [0]⊕R[10] exactly over
all 32-bit input words.

bias number of keys
(2−6.0, 2−6.2) 34
(2−6.2, 2−7.0) 107

(2−7.0, 0) 159

4 Similarly, for a fraction of 1/4 of the addition subkeys, the bias across the integer
addition is at least 2−1.4.
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5.3 Approximations involving L, M , and R

The conjectured highest possible bias in [2] for approximations of this type is
2−13. However it is straightforward to observe that any linear approximation for
E of the type L[ΓL] ⊕M [ΓM ] can be converted into a linear approximation of
the type L[ΓL] ⊕M [ΓM ] ⊕ R[ΓR] (where 1 ≤ ΓR ≤ (25 − 1)) with a bias that
should be either the same or higher. From the results in Section 5.1 we might
immediately suspect the bound given in Table 7 of [2]. Experiments confirm that
this bound is regularly contradicted.

Experimental Results
Choose 300 keys ka and km at random. Check that the multiplicative key
word km is valid for MARS. Compute the bias of L[0]⊕M [0]⊕R[0] exactly
over all 32-bit input words.

bias number of keys
(2−11.9, 2−12.0) 11
(2−12.0, 2−12.6) 289

5.4 Approximations involving L only

Here we consider the bias of the linear hull L[0]. The bound for the largest
bias [2] is 2−15. While for the majority of cases this seemed to be a reasonable
estimate, we found that in 2% of the cases this bound was contradicted.

Experimental Results
Choose 500 keys ka and km at random. Check that the multiplicative key
word km is valid for MARS. Compute the bias of L[0] exactly over all 32-bit
input words.

bias number of keys
(2−13.5, 2−15.0) 10
(2−15.0, 2−16.0) 24

(2−16.0, 0) 466

5.5 Approximations involving I, L, and M

The conjectured bound for the largest bias [2] is 2−13. Once again, this is not
an unreasonable estimate, but we found that in 5% of the cases this bound was
contradicted.
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Experimental Results
Choose 300 keys ka and km at random. Check that the multiplicative key
word km is valid for MARS. Compute the bias of I[0]⊕L[0]⊕M [0] exactly
over all 32-bit input words.

bias number of keys
(2−12.5, 2−13.0) 15
(2−13.0, 2−15.0) 253

(2−15.0, 0) 32

5.6 Summary of intermediate results

So far we have considered some components of the analysis that led the MARS
designers to their conjectured resistance of MARS to linear cryptanalysis. While
some of the assumptions and estimates seem to be reasonable, some are clearly
in error. Much of this is due to the complexity of MARS and the difficulty in
providing accurate estimates as to how some of the internal operations interact.

To be fair, the components that are most in error are not directly used in the
estimate to the global resistance of the cryptographic core to linear cryptanalysis.
However we will now demonstrate that there are also errors in this later part of
the analysis.

6 Global Approximations to MARS

The designers of MARS [2] provide justification for the resistance of MARS to
linear cryptanalysis using a graphical approach. The function E is used within a
network. A very elegant argument is given [2] which provides a lower bound on
the different types of approximations that would be present in a linear approx-
imation to the core. Then, since Table 7 in [2] gives estimates for the highest
possible bias for these different types of approximations, a conservative bound
to the bias of the best linear approximation to the cryptographic core of MARS
is derived.

While this approach appears to be reasonable, it appears that its implemen-
tation within [2] is incorrect and leads to an estimate for the bias of a linear
cryptanalytic attack that cannot be substantiated by the analysis. This graphi-
cal approach also ignores the potential effects of linear hulls.

6.1 The super-round

Consider the forward transformation in the cryptographic core. It consists of
eight rounds of computation involving the E function. This is typically viewed
as two super-rounds with each super-round consisting of four of these individual
rounds (see Figure 2). The following line of reasoning is given in [2].

1. Analyze the graph-network of a super-round.
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2. Count the minimum number of times an approximation needs to involve L
and M . (Analysis in [2] reveals 1 and 2 respectively.)

3. From Table 7 in [2] observe the maximum bias for any approximation in-
volving L and M . (From [2] this gives 2−8 and 2−6 respectively.)

4. Estimate the bias for a super-round to be bounded by 2−8×2−6×2−6×22 =
2−18, and therefore that the bias for the keyed transformation is at most
(2−18)4 × 23 = 2−69.

First, we observe that the “conservative bound” of 2−6 for the bias of approx-
imations involving L given in Table 7 is derived under the assumptions that the
maximum bias of an approximation across a data-dependent rotation is 2−6 and
that the maximum bias of an approximation across the S-box is 2−3. However,
in Section 4 we showed that this latter assumption is incorrect. In fairness, we
have to say that the S-box approximations which contradict the conjectured bias
for the S-box might not be of immediate use. Nevertheless it provides additional
evidence to suggest that this bound for L might not be conservative.
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Fig. 2. The forward mode of the keyed transformation in MARS. There are eight for-
ward rounds, consisting of two so-called super-rounds [2]. The details of the E function
are given in Figure 1. Note that the three outputs from E can be read in a natural
fashion as L, M , and R.

Second, we observe something far more important. Namely, there exist linear
approximations to the super-round that involve only one approximation involv-
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ing an L strand and one approximation involving an M strand. This contradicts
the second point in the reasoning provided and is most easily demonstrated by
example. Consider Figure 2. We will denote the input to successive E functions
by Ij and the outputs by Lj , Mj , and Rj where 0 ≤ j ≤ 4. Recall that the struc-
ture of MARS is such that Ij is taken from a strand of data that is subsequently
combined with the output Rj+1. Similar relationships for the other inputs and
outputs can be derived. The values of the four data strands at the beginning of
the (j + 1)st call to the function E will be denoted by Aj , Bj , Cj , and Dj .

The following four approximations to successive E functions can be chained
together:

I0[x] ⊕ L0[y]
−

R2[y + 13] ⊕ I2[z]
M3[y + 13] ⊕ R3[z + 13]

Here x, y, and z can be any bit patterns, not necessarily single-bit approxima-
tions. When concatenated they lead to the following linear approximation to a
super-round

A0[x]⊕B0[y]⊕B4[y + 13]⊕ C4[z + 13].

What is important here is that both L and M are each involved only once. Thus,
if we were to follow the arguments given in [2] then we would only be able to
conclude the following:

1. Every approximation across a super-round must involve at least one approx-
imation involving L and one approximation involving M .

2. All linear approximations across a super-round are likely to have a bias less
than 2−6×2−8×2 = 2−13. All linear approximations across the cryptographic
core are likely to have a bias less than (2−13)4 × 23 = 2−49.

With a bias of 2−49 the keyed transformation, or cryptographic core, could
be compromised with 298 known plaintexts, far less than the notional aim of
2128 known plaintexts. Whether or not there is an approximation that achieves
this kind of bias is unknown.

6.2 Linear hulls

The graphical approach to considering the bounds of linear approximations to a
super-round (or more) neglects to take account of the effect of linear hulls. By
considering linear hulls we aim to take account of other internal linear approxi-
mations that might otherwise be overlooked. Again, we illustrate our point with
an example.

One very clear example of the possibility of a substantial linear hull effect
occurs when we consider five successive E functions. Once again, see Figure 2.
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Using the same notation as we have just introduced the following five linear
approximations can be concatenated together.

M0[x] ⊕ I0[y]
R1[y + 13] ⊕ L1[x]
M2[y + 13]
L3[y + 13] ⊕ R3[x+ 13]
I4[y + 13] ⊕M4[x+ 13]

Together these approximations can be combined to give a five-round linear ap-
proximation B0[x]⊕B5[x]. This is valid for any bit pattern x though of course a
single-bit value to x is likely to be the most useful. Note that this linear approx-
imation iterates. The internal bit pattern y can take on any value at all. The
bias of the linear hull is likely to be dominated by the action of single-bit values
to y but this is not necessarily the case.

Unfortunately it is very hard to get experimental confirmation of the likely
extent of this effect. Unlike some other AES finalists, MARS does not lend itself
it to the construction of small-scale versions on which to experiment. However
it seems to be reasonable to observe that by ignoring the implications of one
particular effect, the bounds that are derived for the resistance of MARS to linear
cryptanalysis could be over-estimates. The complexity of the cipher hinders us
from deciding how important this might be.

7 Conclusions

Our investigation of MARS has been very focused on one particular attribute
of the cipher. The very limited time available in the second round of the AES
process has meant that it has been very difficult to make any headway in pro-
viding an adequately accurate analysis of the cipher. However, our experiences
are sufficient to draw the following conclusions.

– The complicated design of MARS seems to force the use of potentially inac-
curate models in deriving estimates for the security offered.

– The non-existence of small-versions of the cipher means that analysis and
experimentation are severely hampered.

– It is unclear how significant the issues of linear hulls, key-dependency, and
multiple linear approximations might be in the linear cryptanalysis of MARS.
Both the E function and the global design of the network are somewhat novel.

As the AES process draws to a close, we are forced to look at the security
of the ciphers with only very partial evidence available. In such circumstances
it is important to feel that the evidence at hand is representative of the true
behavior of the cipher. However we have shown that the analysis provided in [2]
could be flawed in important ways.

After our experience with MARS we are forced to conclude that the com-
plexity of a cryptographic algorithm can be an enormous handicap to accurate
analysis.
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