
From: "Mang Erica" <emang@keysys.ro>
To: <AESround2@nist.gov>
Subject: RC6
Date: Thu, 11 May 2000 15:26:13 +0300
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: Normal
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

My name is Erica Mang and I am assistant professor at the University of Oradea,
Romania.
I write you now to inform you that I implemented the RC6 cipher in a circuit named
CRIPTOR. The circuit has off line self-test facilities. In the two files I attached this
message I made an analysis of suitability for pseudorandom BIST for the RC6 Cipher,
and present than shortly the hardware implementation of the cipher. The circuit was
implemented first time last year in my laboratory, in Verilog and now in VHDL. For this
implementation I used Xilinx Foundation Series 1.5i Software and the VIRTEX XCV1000
board family.

Yours sincerely,

Erica Mang

CRIPTOR1.0. VLSI Implementation of the RC6 Block Cipher

 Erica Mang

Computers Department,
University of Oradea, 5 Armatei Romane Str., 3700, Oradea, Romania

E-mail: emang@keysys.ro

Abstract

In 1997, the National Institute of Standards and Technology (NIST) initiated a process to select a
symmetric-key encryption algorithm to be used to protect sensitive Federal Information. In 1998 was
announced the acceptance of fifteen candidate algorithms, and in 1999 five of them where selected. One of
them is the RC6 cipher-block. In this paper I present a hardware implementation of this version of RC6
algorithm using VHDL Hardware Description Language. For this implementation we used Xilinx Foundation
Series 1.5i Software and VIRTEX XCV1000 board family.

The RC6 block chipper is a fully
parametrized family of encryption algorithms.
RC6 is more accurately specified as RC6-w/r/b
were the word size is w bits, encryption
consists of r number of rounds and b denotes
the lengths of the encryption key in bytes.

Since the AES submission is targeted at
w = 32 and r = 20, we implemented this version
of RC6 algorithm, using a 32 bits word size, 20
rounds and 32 bytes (256 bits) encryption key
lengths.

In this paper we present a hardware
implementation of this version of RC6
algorithm using VHDL hardware description
Language. For this implementation we use
Xilinx Foundation 1.5i Software and VIRTEX
XCV1000 board family. We chose this board
for its characteristics: more than one million
equivalent gates and 512 input/output buffers.

In VHDL Hardware Description
Language (the IEEE 1076 standard from 1987,
reviewed in 1993) we have to define two
elements in the code: the entity and the
architecture. The entity in VHDL describes the
interface to a hierarchical block, without
defining its behavior. An architecture is always
associated with an entity and it defines the
behavior of the entity.

Because the board capacity did not
allow us to design both processes of encryption
and decryption we had to design two codes for
two boards. In figure 1 we have the block
structure for encryption/decryption circuit.

Figure 1. The block structure for
encryption/decryption circuit

Both encryption and decryption circuits
consist of three components: one module for
subkeys generation, one for encryption/
decryption for each round and the command
structure for encryption/decryption.

In figure 2 we have the circuit structure
with every block that was mention before.
Subkeys generation module for RC6 algorithm
is the same for encryption and for decryption
process. Subkeys generation module is part of
the command structure for encryption/
decryption.

Figure 2. The encryption/decryption circuit

Figure 3. Detailed structure for encryption circuit

The command structure calls for every
round the module for encryption/decryption for
each round. The command structure sets the
value for the four registers and for the two
subkeys needed for the rounds calculation. The
module for encryption/decryption for each
round receives those data and after it finishes
the calculation return the data to the command
structure. Subkeys are available for the
command structure from subkeys generation
module.

In figure 3 we have the detailed
structure with all the signals requested in the
encryption circuit.

 The command structure calls the
module for encryption for each round, sets all
data require and sets cript signal. After the

module for encryption for each round finish the
calculations, the results are set on the module
outputs and in the meen time sets done signal.
That means that the command structure has
available data from the module.

After twenty rounds, on the encryption
circuit outputs we have the cipher text.

We implemented the RC6 algorithm
using Finite State Machine (FSM). The general
architecture of an FSM consists of
combinational block of next state logic, state
registers, and combinational output logic.

Each module from figure 3 is described
using an FSM. There are many ways to
describe a finite state machine in VHDL. We
use a process containing a case statement. The
state of the machine is stored in a state

variable, and the possible states are represented
with a user-defined enumeration type. The type
declaration gives symbolic names to each of the
states, but say nothing about their hardware
implementation.

Finite state machine must be initialized
by means of an explicit reset signal (reset).
Otherwise, there is no reliable way to get the
VHDL and gate level representation of the

FSM into the same known state, and thus no
way to verify their equivalence. The description
of a finite state machine consists of a process,
synchronized on a clock edge (clk).

The state transition diagram for
encryption command structure is shown in
figure 4. The possible states are: idle, key_gen,
call_cript, new_round, and final.

Figure 4. The state transition diagram for encryption command structure

All state transitions occur on a rising
edge of a global master clock (clk). Some of
the transitions depends on signals such us init,
count20 and done.

Here we make a short description of
the way that the state machine from figure no.
4 works. Idle is a waiting state, the
initialization state for the finite state machine.
On the first rising edge of the clock, after the
init signal is set key_gen becomes current state.
In this state the variable are initialize and the
subkeys table is generate. On the next rising
edge of the master clock call_cript becomes
current state, cript signal is set, the data
(plaintext) from A, B, C, D registers and the
two subkeys for the first round are available for
the module for encryption for each round.
Becouse cript signal is set the module for
encryption for each round leaves idle state. On
the next rising edge the cript signal is reset and
new_round becomes current state. The FSM
leaves this state only after the module for
encryption for each round sets done signal.

Depending on the value of count20 counter,
the next state is call_cript (if the counter is
less then 20) or the next state is final (if
count20 is 20). The counter count20 shows the
round number we reach. If current state is
call_cript the process works for the next round
else, if current state is final on the outputs we
have the ciphertext.

Reset and init are external
asynchronous signals, first for general reset and
the second for starting the encryption process.

The architecture for this command
structure consists of processes. In VHDL a
process contains sequential statements. While
each process executes its statements in
sequence, multiple processes interact with each
other concurrently. The command structure for
encryption have the next processes:
syncronous_p process synchronizes the
transitions to the next state with clk signal and
follow the value of reset signal, async_p
process describe the state trasition diagram.
Gen_keys_p initiate the 44 subkeys for

encryption, encryption_p control the data
transfer between the comand structure and the
module for encryption for each round,
encryp_p set or reset the cript signal when it is
necessarily, counter20_p increase the count20
counter and the last one, final_p puts on the
outputs the chipertext.

The subkeys generation module is also
design using finite state machine. The finite
state machine is shown in figure 5. The subkeys
generation module consists of following states:
idle, initialization, gen_keys and final.

Figure 5. The state transition diagram for
subkeys generation module

From idle state, on the first rising edge
of the clock after the signal init is set,
initialization become current state. On
initialization state all variables takes their
initial values. On the next rising edge of the
clock gen_keys become current state. The
module leaves this state only after all subkeys
were generated when the count132 counter
reaches value 132. This value is calculated
from the next formula of the RC6 algorithm:

v=3 x max {c, 2r+3}

where c is the number of blocks of 32 bits of
the key, r is the number of rounds. For our
version c=8 and r=20. Because those
calculations are simple we made them in order
not to overload the board with unnecessary
gates. When the counter reach the 132 value,
the next state is final. In this state all subkeys
are generated and they are ready to be use in
the encryption process.

The architecture for subkeys generation
module consists of the following processes:
sync_p, async_p similar with the processes
with the same names from command structure,
counter_p used to count the iteration value
(from 0 to v) and gen_subkey_p for computing
subkeys using the for loop from algorithm
description displayed bellow:

for s=1 to v do
{
 A=S[i]=(S[i]+A+B)<<<3
 B=L[j]=(L[j]+A+B)<<<(A+B)
 i=(i+1) mod (2r+4)

 j=(j+1) mod c
}

The for loop was implemented using
FSM and the count132 counter. The FSM
leaves gen_keys state only when s (count132)
reachs the maximum value (132). This
condition is writen in async_p process:

when gen_keys =>
 if count132=132 then

next_s=final;
 else

next_s=gen_keys;
 end if;

Fixed rotations were made using
concatenation operator '&'. Variable rotation
were made using a case syntax and
concatenation operator:

 when 7 =>
 temp:=interm2(24 downto 0)&

 interm2(31 downto 25);

where temp and interm2 are internal variable of
gen_subkeys_p process.

The subkeys generation module is the
same for encryption and decryption. This
module is called only when we change the
encryption or decryption key.

The module for encryption for each
round is declared as a component at the
beginning of the command structure. The
command structure calls the module for
encryption for each round using following
lines:

u1:m_cript
port map (reset, clk, crip, a_in1,
 b_in1, c_in1, d_in1, key1, key2,
 a_out1, b_out1, c_out1, d_out1,
 done);

616 1010
254 72 566 955 254 72

4720

15000

136

0

2000

4000

6000

8000

10000

12000

14000

16000

encryption decryption key seting

CRIPTOR performances vs.
 existing software implementations of RC6

ANSI C JAVA(JIT) Asambl. VHDL

Chart 1. Comparison of CRIPTOR 1.0 performances with other known software implementations

The signals from the port map match, in
the same order, with the signals from entity
declaration of the module for encryption for
each round.

The module for encryption for each
round is computing the next lines of the
algorithm:

t=(Bx(2B+1))<<<lg w
u=(Dx(2D+1))<<<lg w
A=((A⊕t)<<<u)+S[2i]
C=((C⊕u)<<<t)+S[2i+1]

also design using finite state machine. w is the
number of bit from the register (32 for our
chip, meaning that both rotations are fixed and
are with 5 bits to left. This rotation is
implemented also using the concatenation
operator. Multiplications are implemented
using shift left operations.

We already presented here the design
for encryption. The structure for decryption is
similar with this. The keys used for decryption
are the same with the keys from encryption but
there are used in opposite order. There is no
difference between those two processes in
terms of time performance.

In chart 1 we show the performances of
the CRIPTOR1.0 circuitry by comparing them
with the dates offered by RSA Laboratories

regarding the known software implemen-
tations [Biha-99] [NBDDFR-99] [SKWWHF-
99]. In this chart we specify the number of
clock cycles needed for encryption, decryption
and key settings. It can be observed the high
performances of our circuitry.

Now we are working for a new
implementation of the cryptochip, with better
time performances for encryption, decryption
and key settings.

This structure that I presented, was
than a little modified like in figure 6. So, the
cryptochip will have now also off-line test
capabilities. The new structure I proposed will
need about 20% more circuits.

As depicted in figure 6, a
pseudorandom master key and a fixed set of
pseudorandom input data are applied directly
behind the input pads instead of as external
inputs during self-test. Signature analysis is
applied on data just before they leave the chip.
The self-test controller simulate normal
operation for all other hardware subblocks and
is thus the only unit aware of self-test
operation. The advantages of this scheme are
twofold. First, the input is 64 bits wide, but the
input port is only a 16-bit bus. A pseudo-
random patern of 16 bits width can be
generated faster and with less overhead than

one of 64-bit size. Second, all the inputs,
subkey generating and scheduling, and outputs

circuitry is included in the self-test process.

Figure 6. Off-line BIST scheme for CRIPTOR 1.0

References

[Biha-99] E. Biham. A note on comparing the
AES candidates, The Second AES Conference,
March 22-23, pag 85-92; 1999.

[NBDDFR-99] J. Nechvatal, E. Barker, D.
Dodson, M. Dworkin, J. Foti, E. Roback –
Status Report on the First Round of the
Development of the Advanced Encryption
Standard, 1999.

[RRSY-98] R. Rivest, M.J.B. Robshaw, R.
Sidney, Y.L..Yin, The RC6 Block Cipher,
M.I.T.Laboratory for Computer Science, RSA
Laboratories, 1998.

[SKWWHF-99] B. Schneier, J. Kelsey, D.
Whiting, D. Wagner, C. Hall, N. Ferguson,
Performance Comparision of the AES
Submisions, The second AES Conference, pag
15-34; 1999.

[Xili-98a] Xilinx Coorporation. Foundation
Series User Guide, 1998.

[Xili-98d] Xilinx Coorporation. Hardware User
Guide, 1998.

[Xili-98g] Xilinx Coorporation. VHDL
Reference Guide, 1998.

[Yarb-97] J. Yarbrough. Digital Logic,
Applications and Design, Oregon Institute of
Technology, West Publishing Company, 1997.

