
From: "Mang Erica" <emang@keysys.ro>
To: <AESround2@nist.gov>
Subject: RC6
Date: Thu, 11 May 2000 15:26:13 +0300
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook IMO, Build 9.0.2416 (9.0.2910.0)
Importance: Normal
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2314.1300

My name is Erica Mang and I am assistant professor at the University of Oradea,
Romania.
I write you now to inform you that I implemented the RC6 cipher in a circuit named
CRIPTOR. The circuit has off line self-test facilities. In the two files I attached this
message I made an analysis of suitability for pseudorandom BIST for the RC6 Cipher,
and present than shortly the hardware implementation of the cipher. The circuit was
implemented first time last year in my laboratory, in Verilog and now in VHDL. For this
implementation I used Xilinx Foundation Series 1.5i Software and the VIRTEX XCV1000
board family.

Yours sincerely,

Erica Mang

Analysis of Suitability for Pseudorandom BIST of the
RC6 Cipher

Erica Mang
Computers Department,

University of Oradea, 5 Armatei Romane Str., 3700, Oradea, Romania

E-mail: emang@keysys.ro,

Abstract
Well-known cipher, like DES, FEAL, IDEA or RC6 gain their security by iterating a

cryptographically weak function more times. Data are transformed by reusing the same hardware a wished
number of times. The first step of a VLSI cipher implementation is the mapping of the cipher data flow onto
the hardware architecture. To prove that each combinational level has by entrance a pseudo-random data, the
order of the involved operations are relevant. In addition, the operation type is important and not the number of
instances of a certain operation. This observation can lead to a number of potential architectures, which realize
the same ordering of operations but differ in silicon area. In this paper, I will show that the Cipher Data Flow
Graph can also be used to study the randomization maintenance and the production of randomness during
cipher operation.

1. Formal Description

I begin with recalling a number of basic
definitions from graph theory.

Definition 1. A directed graph G is a pair
(V,E) such that

1. V={v1,…,vn} is a finite non-empty set,
whose elements are called vertices, and

2. E is a non-empty set of pairs of vertices,
whose elements are called directed edges.
The edge (a,b) has direction from a to b.

Definition 2. Let (V,E) be a directed graph.

1. For an edge (vi,vj) in E, vi is called
predecessor of vj, and vj is called successor
of vi.

2. For v∈V, the set •v :={vi(vi,v) ∈ E} is
called the predecessor set of v.

3. For v∈V, the set v• :={vi(v,vj) ∈ E} is
called the successor set of v.

4. The vertex v is called isolated if •v=
v•={}, i.e. if no edge ends in v and no edge
starts from v.

Definition 3. An m-tuple (v1,…,vm) of vertices
is called a path from v1 to vm in the directed
graph (V,E) if {(v1, v2),…,(vm-1 ,vm)} is a
subset of E.

I define now a special graph well suited
to describe the data flow of a cipher.

Definition 4. A Cipher Data Flow Graph,
CDFG, is a directed graph (V,E) with no
isolated vertices such that is at least one vertex
with no predecessor, at least one vertex with
no successor, and at least one vertex having
both predecessors and successors.

2. CDFG and ADFG for the RC6 Cipher

We call the vertices with no
predecessors the input vertices, those with no
successors the output vertices, and the
remaining vertices the inner vertices.

Having now the basic concepts, I will
construct a CDFG from the data flow graph of
RC6 [RRSY-98]. The inputs, both key and
plain text, specify the input vertices of the
CDFG, and the cipher text specifies an inner

vertex. Each of the inner vertices has at least
one predecessor and one successor, but this
predecessor and successor vertices need to be
inner vertices. An edge (v,w) between two
vertices v and w indicates that the output of the
operation denoted by vertex v is an input for
the operation denoted by w.

Figure 1. Data flow graph for the RC6 cipher.

In principle, a hardware implementation
of a cipher could be done by implementing
hardware sub blocks for each operation
required, putting the required number of
instances into silicon and connecting theses
blocks according to the edges in the cipher’s
CDFG. Obviously, each type of operation
requires a fixed number of inputs. Constraints
with regard to silicon area preclude a direct
mapping of most ciphers data flow graphs into
hardware architecture. To find a convenient
hardware architecture well suited to perform
the data transformation as prescribed by the
cipher algorithm, but with less hardware, is the
task of the designer. We can describe a
potential hardware architecture by a slightly
modified CDFG. This special CDFG is called
Architecture Data Flow Graph, ADFG, and can
be mapped into silicon basically in the same

way as the CDFG of the cipher’s complete data
flow graph. The smaller hardware architecture
is able to perform the data transformation as
prescribed by the cipher algorithm if:

1. the n types of inner vertices are the same
in the CDFG and the ADFG and

2. every path in the CDFG from an input to
an output is also a path in the ADFG
from the same input to the same output
with intermediate inner vertices of the
same type.

Reusing of the same hardware block for
computing several rounds requires additional
feedback path from the outputs of a number of
computational sub blocks to some inputs to
computational sub blocks [CuBo93].

Definition 5. An Architecture Data Flow
Graph, ADFG, is a CDFG with two disjoint
sets S and W of inner vertices such that

1. each s in S has at least one input and/or
operation vertex as predecessor and
exactly one operation vertex as
successor;

2. each w in W has selection vertices as
predecessors and selection and output
vertices as successors; all operation
vertices of the same operation type Wi

have the same number of predecessor
selection vertices.

Note that no selection vertex is followed by
another operation vertex. Then, a CDFG can
be made an ADFG by introducing a selection
vertex between all edges (v,w) with v being an
input or inner vertex and w being an inner
vertex.

Figure 2 shows the ADFG of an
architecture implementing one round of the
RC6. Selection vertices are drawn as black
bullets.

The set of input vertices in the CDFG
of RC6 is {A,B,C,D,S[0],S[1], …,S[2r+3]}and
the set of output vertices is {A,B,C,D}.
Important proprieties of the cipher are that all
operations are group operations and that no
operation is succeeded by an operation of the
same type. This manifests in the predecessor
list of RC6: the entry for the currently

considered operation type never appears as its
own predecessor.

In general many inner vertices in a
CDFG may be of the same computational type.
If there are n different types of operations, we
will let Wi denote the set of inner vertices of
type i. An architecture is able to perform the
data transformation as prescribed by the cipher
algorithm if each sequence of operations in the
CDFG is a sequence of operation types in the
ADFG. Therefore, we consider the sequence of

operation types in CDFGs. This sequence is
collected in a list of predecessors of operation
types. For each vertex in the graph, an entry is
made in a predecessor list containing the
operation type of the current vertex and type of
its predecessors list containing the operation
type of the current vertex and the type of its
predecessors from left to right, either being
operation vertices or input vertices. Identical
entries in the list are omitted.

Figure 2. An ADFG of an architecture for the RC6 implementing one round in silicon

The extraction of an ADFG’s
predecessor list can be done following the next
algorithm:

1. Starting vertices are all ADFG output
vertices; choose one of them that have
not yet been visited and select its
preceding operation vertices. This is the
entry in the predecessor list’s first
column.

2. Select the leftmost, not yet visited
predecessors of each preceding selection
vertex. Make an entry of their operation
types. If an identical entry is already
present, omit the whole entry. Repeat
this step until all predecessors of the
preceding selection vertices select the
rightmost predecessor operation type of
those selection vertices with less
predecessors. Mark the current vertex as

visited. Select the leftmost predecessor of
the preceding selection vertex that is not
an input vertex and has not yet been
visited. Choose it as the current vertex
and continue with step 2. If all
predecessors of all predecessor selection
vertices have been visited, return to the
successor of the current vertex and to
step 2.

3. Upon returning to the initially chosen
vertex, return to step 1 until all output
vertices have been visited.

Each vertex is visited once. The ADFG
is finite and therefore the algorithm terminates
after visiting all vertices because a visited
operation vertex is marked, and all vertices are
reachable from an output vertex.

A CB D

 f f
<<< <<<

<<< <<<

A CB D

S2i S2i+1

S0 S1

lgw lgw

S42
S43

I present the predecessors list for the
RC6 algorithm in the figure 3.

3. Random Pattern Propagation
 Capabilities of RC6 Cipher

A cipher is defined to have a perfect
secrecy when the cipher text is statistically
independent of the plaintext.

Figure 3. Predecessor list of the operation vertices
of the RC6 cipher

Shannon demonstrated the perfect
secrecy of the Vernam cipher given in the
following theorem:

Theorem 1. Suppose the three random
variables X,Y, and Z take the values in a finite
group, whose operation we denote by ∗, and
Y=X∗Z. If X and Z are statistically
independent and Z is equally likely to be any
group element, then X and Y are statistically
independent.

Proof: Z is uniformly chosen, so that its
statistic PZ(z)=1/#group elements, with z being
an element of the underlying group. Because of
∗ being a group operation, Y=X∗Z holds if
Z=X’∗Y and vice-versa, where X’ denotes the
inverse of X. With the probability PYX(yx)
being the cipher text statistics of a cipher text

y, regarding the plaintext statistics of a
plaintext x, the following equations hold:

()
()

()
()

)5(
#

1

)4('

)3('

)2('

)1(

'

elementsgroup

yxP

xyxP

xyxP

xyP

Z

XZ

XYX

XY

=

∗=

∗=

∗= ∗

Equation 2 is obtained by “left-
associating” X’ to Y. Replacing X’∗Y by Z, we
obtain equation 3. Then, we exploit the
statistical independence of X and Z (equation
4). The uniform distribution of Z yields
equation 5. Hence, we have proven that the
cipher text statistics regarding the plaintext
statistics is uniformly distributed in the group
and thus that Y is statistically independent from
X [Mas93][Kon81].

This theorem can be expanded for the
sequence of several group operations:

Corollary 1. Suppose that ∗ and # are group
operations on the same finite set and suppose
that A, B, and C are statistically independent;
the random variable A is equally likely to be
any group element. Then, for E=(A∗B)#D, B
and E are statistically independent and D and
E are statistically independent.

Proof: Because A is equally likely to be any
group element and is independent of B, (A∗B)
is equally likely to be any group element.
Because A, B and D are statistically
independent, (A∗B) and D are statistically
independent. Hence, by theorem 1 D and
E=(A∗B)#D are statistically independent.

Now let consider the cipher RC6. It is
constructed from group operations. Let
consider that the inputs of the cipher are
randomly chosen and pair wise independent.
Than it can be made the following statements
about RC6’s group operations:

Theorem 2. If X and Y are two random and
pair wise independent variables and Z=X+Y is
the output of an adder in the RC6 cipher, than
the inputs and outputs of each adder are
statistically independent.

Operation type Predecessor’s operation type

 input , <<< lgw

<<< lgw

<<< , input

input , , input

<<< lgw

 f

<<< lgw f

<<<

Proof: Knowing that all operations are group
operations and none of them is succeeded by
an operation of the same type, it can be seen in
the predecessors list, there are two cases to be
considered:

a. If the operands are input vertices,
independence follows directly from
theorem 1 and the quality of the input
vertices. Because the “+” operation is a
group operation, than Z=X+Y supposes
that Y=X’+Y and vice-versa, where X’
denotes the inverse of X. The probability

)|(| xzP xz being the cipher text statistics

of a cipher text y regarding the plaintext
statistics of a plaintext x is:

elementsgroup
zxP

xzxPxzP

y

xyxz

#

1
)'(

)|'()|(||

=+

=+=

Therefore, it is proven that the cipher
text statistics regarding the plaintext
statistics is uniformly distributed in the
group and thus the output Z is
independent from the input X,
respectively Y.

b. If the inputs are: one is the result of a
rotation and the other one is an input
node, following the same way it can be
proven that the inputs and outputs of
each adder are statistically independent.

Theorem 3. If X is a random and independent
variable and Z=X(2X+1) is the output of a
circuitry that implements the quadratic
function of the RC6 cipher, than the inputs
and outputs of this circuitry are statistically
independent.

Proof: Knowing that all operations in the RC6
cipher are group operations, and none of these
operations is succeeded by an operation of the
same type, (see the predecessors list), it can be
seen that the predecessor of the f function node
is the adder. As demonstrated in theorem 2, it’s
inputs and outputs are statistically independent.
On the other hand, the cipher text statistics
regarding the plaintext statistics is:

elementsgroup
xzP xz #

1
)|(| =

Using the statistically independence of X and Z
and regarding the uniform distribution of Z, it
can be said that the cipher text statistics
regarding the plaintext statistics is uniformly
distributed in the group and thus the output Z
is independent from the input X.

Theorem 4. If X and Y are two random and
pair wise independent variables and Z=X⊕Y is
the output of an XOR in the RC6 cipher, than
the inputs and outputs of each XOR are
statistically independent.

Proof: Following the CDFG and predecessors
list of RC6, it can be observed that the
predecessors of the XOR operation are either
inputs that are considered to be pair wise
independent, or rotation registers. For all this
operations it was proven the statistically
independence propriety. If Z=X⊕Y=XY’+X’Y
and knowing that the XOR operation is a
group operation, and because X can be any of
the group elements with the same probability
and X is statistically independent from Y’, than
XY’ can also be any of the group elements
with the same probability. Because X, Y’ and
X’ are independent, than XY’ and X’Y
respectively are independent. Applying the
theorem 1, we can say that the output Z is
independent from the input X, respectively Y.

Theorem 5. If X is a random and independent
variable and Z is the result of a variable
rotation or a rotation with (lgw) positions,
than the inputs and outputs of the rotation
register are statistically independent.

Proof: Observing the CDFG and predecessors
list of the RC6, cipher it can be observed that
the predecessors of the RC6 rotations – with
(lgw) positions or variable rotations – are
either outputs of an adder and a rotation or a
quadratic function. As it has been proved in
theorem 1 and Corollary 1, we can again say
that the cipher text statistics regarding the
plaintext statistics is uniformly distributed in
the group and thus the output Z is independent
from the input X.

Note that the random data property of
RC6 has been proven based upon the
predecessor list. Note also that if we make a
distinction between plaintext and key inputs in
RC6’s CDFG and ADFGs, random selection
remains necessary for the keys whereas the
plaintext needs only be chosen independently
from the keys, but not necessarily random.

It was shown that on each node of
RC6’s data flow graph random data appear if
random sub keys are used for encryption. This
random data propriety permits the
implementation of an efficient built-in self-test
scheme to test the complete data path.

The security standards recommend
cryptographic equipment to be concurrently
testable. Usually, concurrent checking
capabilities are achieved by introduction of
some kind of redundancy. There are several
types of redundancy to achieve self-checking
proprieties: hardware redundancy, that usually
means duplication of hardware and code
redundancy, that means application of error
detecting codes [Bon92].

It is a basic design goal of cipher
algorithms to make them well suited for both
hardware and software implementations. One
of the most important issues is the similarity of
encryption and decryption that allows
utilization of the same hardware for the both
data transformation directions. The basic
underlying concept is the use of involution
ciphers.

Definition 6. A function In(⋅,⋅) from {0,1}mx

{0,1}k a {0,1}m is called an involution cipher
if for every z∈{0,1}k, In(In(x,z),z)=x for all
x∈{0,1}m.

Thus, an arbitrary input block, say x,
applied to an involution cipher In, yields an
output block y of the same length for a certain
key z. If y is applied to In for identical z, then x
will come out: In(x,z)=y and In(y,z)=x. Figure
4 shows the structure that makes the according
substructure of RC6 an involution cipher. The
function f(..) can be chosen arbitrary and does
not at all influence the involution cipher
property.

The structure of involution ciphers can
be utilized for a concurrent self-test in a
number of situations. The involution property
creates invariants: identical values are
produced regardless of the data and key
applied. If not only one, but at least two,
rounds have been hard-wired on a single chip
than two identical involution functions are
present. Whenever one of them is idle during
the data transformation process, it can be
provided with the same key and output of the
other involution structure. Its result must be
identical to the working structure’s input.

Figure 4. Involution cipher of RC6

Suppose now that there is only one
involution structure. Whenever it is idle during
the data transformation process, one of its
results can be fed back to the inputs. The result
must match the original data input. Note that
this test does not check for static faults of the
function f(..) inside the XOR structure.
Remember that f(..) can be chosen arbitrarily.
Nevertheless, the check is well suited for the
test of the XOR structure itself. Whenever f(..)
is implemented with a number stages, the
intermediate stages needed for implementation
of the involution cipher are tested as well.

References

[Bon92] H. Bonnenberg. Secure and self-testing
implementation of the IPES cipher. Presentation at

 A, C B, D

 f(..)

 <<<

 A, C B, D

the Eighth European Workshop on Design for
Testability, Bruges, Belgium, June 2-4, 1992.

[CuBo93] A. Curiger and H. Bonnenberg. VINCI:
VLSI-based high-speed encryption using the new
cipher IDEA. Technical Report 05/93, Integrated
System Laboratory, ETH Zurich, April 1993.

[Kon81] Alain G. Konheim. Cryptography: A
Primer. Wiley Interscience Publication. John
Wiley&Sons, Inc. New York, Chichester, Brisbane,
Toronto, 1981.

[Mas93] J.L. Massey. A proposal for a new block
encryption standard. In Proc. EuroCrypt’90,
Aarhus, Denmark, May 1990.

[RRSY98] R. Rivest, M.J.B. Robshaw, R. Sidney,
Y.L..Yin, The RC6 Block Cipher, M.I.T.
Laboratory for Computer Science, RSA
Laboratories, 1998.

