
From: zunic@us.ibm.com
X-Lotus-FromDomain: IBMUS
To: aesround2@nist.gov
Date: Mon, 15 May 2000 13:36:24 -0400
Subject: Final Comments

Attached are the final comments for Round 2 from the MARS team.
Nev Zunic

Internet: zunic@us.ibm.com
IBM Crypto Solutions
(914) 435-6949 (T/L 295)

---------------------- Forwarded by Nev Zunic/Poughkeepsie/IBM on
05/15/2000 01:37 PM ---------------------------

Nev Zunic
05/15/2000 01:30 PM

To: jfoti@nist.gov
cc: David Safford/Watson/IBM@IBMUS, shaih@watson.ibm.com@IBMUS
From: Nev Zunic/Poughkeepsie/IBM@ibmus
Subject: Final Comments

Jim,
Attached are our final comments for Round 2. I've also attached two
additional documents (one on key agility and the other on linear analysis)
which are referenced in the Final Comments. These are complementary
documents. I'm attaching three different (doc, pdf, and postscript)
filetypes of the Final Comments:

(See attached file: Final Comments.doc)(See attached file: Final
Comments.pdf)(See attached file: Final Comments.ps)(See attached file:
linear.ps)(See attached file: key-agil.ps)

If you have any questions, please let me know.
Nev

Internet: zunic@us.ibm.com
IBM Crypto Solutions
(914) 435-6949 (T/L 295)

Key Agility in MARS

Shai Halevi

May 12, 2000

Abstract

We discuss some technical solutions to obtain key agility for the MARS key-setup procedure.
(A discussion of the economics of the key agility issue appears in separate note.) We show three
techniques for achieving key agility in MARS, which o�er the following tradeo�s:

1. Pre-computing and storing an average of 4-8 additional bytes per key, makes it possible
to eliminate the \key �xing" part of the key-setup. In some hardware implementations, this can
reduce the key setup time by as much as a factor of two.

2. By pre-computing and storing 18 additional bytes per key (for a total of 22 additional
bytes), makes it possible to reduce the key setup time to about 2-3 block encryptions.

3. Pre-computing and storing about 40 more bytes per key (for a total of 60 additional
bytes), makes it possible to reduce the key setup time to around one clock encryption.

1 The key agility issue

This issue was recently raised as an argument against the key-setup routines of MARS and RC6.
The underlying architecture consists of a hardware encryption chip which is connected to a high-
capacity server. The premise is that the server keeps many di�erent keys, and need to switch often
between these keys. Hence, these keys are sent back and forth between the chip and the server. The
\benchmark" which was put forward for this architecture, is of a server with about half-a-million
di�erent keys, where the context-switch occurs every four encryptions.

It was argued that in MARS and RC6, the only options that one has, is either to send the expanded
key back and forth { which requires an additional memory on the server to store all the expanded
keys, or to compute the key setup in the chip, which takes some time. The economics of this
architecture are discussed in a separate note, where it is suggested that even these two choices do
not seem to pose a serious problem for real-life systems. In this note, however, we demonstrate
that at least for MARS, there are a few additional tradeo�s that one can use, which add just a few
bytes per key of storage, but signi�cantly reduce the key-setup time.

2 The MARS key-setup procedure

The MARS key-setup procedure consists of keeping a temporary array T of �fteen 32-bit words,
and manipulating it to get the expanded key. The array T is initialized from the key, and then
manipulated in four iterations, where each iteration generates ten of the forty words needed for the
expanded key.

1

In each iteration, a linear transformation is �rst applied to T , followed by four rounds of \stirring",
in which every entry in T is modi�ed by adding to it an entry of the S-box, which is determined by
the previous entry of T . Finally, the key words which are used in the cipher for multiplication are
checked for some conditions, and modi�ed if they do not meet these conditions. A pseudo-code for
this procedure is shown in Figure 1.

2.1 Hardware implementation of the key-setup

Since the key setup procedure is very serialized, with not much room for parallelism, it seems that
the critical path of any implementation in hardware would include nearly the entire procedure.
Speci�cally, a simple implementation would have for each of the four iterations �fteen cycles for
the linear transformation, followed by 60 cycles for the S-box stirring. Computing the mask to use
in the \key �xing" part may take up to 15 cycles, so depending on the size of the circuit, the entire
\key �xing" can take between 15 and 240 cycles.1

All in all, we have a critical path of anywhere between 315 and 540 cycles for the MARS key
setup, which is roughly equivalent to encryption of 10-17 blocks. With respect to the key-agility
\benchmark", this represents a slowdown of 250%-450% over the raw hardware encryption speed.

Below we persent three optimizations, which can be used in an architecture that needs key agility,
to reduce the critical path to just about 1-3 block encryptions (20-80 cycles), while requiering only
a small amount of additional storage. With respect to the key-agility \benchmark" from above,
this represents a slowdown of only 15%-65% over the raw hardware encryption speed.

3 Three optimizations

The principle behind the three optimizations that we show below, is to �rst have the server run
the key-setup procedure \o� line", and store some of the information that is obtained during the
procedure. This stored information is then used to speed up the computation of the \on line" key
setup on the chip.

3.1 Eliminating the \key �xing"

The �rst observation is that we can compute and store ahead of time all the masks that are used
in the \key �xing" part. This would save the time (and the hardware) needed of that part. The
problem, of course, is that there are 16 masks per key, so storing them all would cost additional 64
bytes of memory. However, we note that it is su�cient to store only the non-zero masks, and that
a typical key would have either zero or one such non-zero masks. It is therefore possible to store
16
ags, where the i'th
ag is 1 if the corresponding mask is non-zero and 0 otherwise, and then
to store only the non-zero masks.

The probability that a speci�c mask is non-zero is about 1/41, and so over 500,000 keys and 16
masks per key, we expect to have about 500; 000�16=41� 195; 000 non-zero masks. It follows from
the Cherno� bound that the probability of getting more than 250,000 non-zero masks is negligible
(less than 2�10000, see Appendix A. In fact, even the probability of getting more than 200,000

1Note that the \key �xing" for one iteration can be done in parallel with the next iteration, so it is possible to

get down to 15 cycles with only 5-wise parallelizm.

2

Key-Expansion(input: k[]; n; output: K[])

1. // n is the number of words in the key bu�er k[]; (4 � n � 14)
2. // K[] is the expanded key array, consisting of 40 words
3. // T [] is a temporary array, consisting of 15 words
4. // B[] is a �xed table of four words

5. // Initialize B[]
6. B[] = f0xa4a8d57b; 0x5b5d193b; 0xc8a8309b; 0x73f9a978g

7. // Initialize T [] with key data
8. T [0 : : :n � 1] = k[0 : : :n� 1], T [n] = n, T [n+ 1 : : :14] = 0

9. // Four iterations, computing 10 words of K[] in each
10. for j = 0 to 3 do
11. for i = 0 to 14 do // Linear transformation
12. T [i] = T [i]� ((T [i� 7 mod 15]� T [i� 2 mod 15])�< 3)� (4i+ j)

13. repeat four times // Four stirring rounds
14. for i = 0 to 14 do
15. T [i] = (T [i] + S[low 9 bits of T [i� 1 mod 15]])�< 9
16. end-repeat

17. for i = 0 to 9 do // store next 10 words into K[]
18. K[10j + i] = T [4i mod 15]
19. end-for

20. // Modify multiplication keys
21. for i = 5; 7; : : :35 do
22. j =least two bits of K[i]
23. w = K[i] with both of the least two bits set to 1

24. // Generate a bit-mask M

25. M` = 1 i� w` belongs to a sequence of ten consecutive 0's or 1's in w
26. and also 2 � ` � 30 and w`�1 = w` = w`+1

27. // Select a pattern from the �xed table and rotate it
28. r =least �ve bits of K[i� 1] // Rotation amount
29. p = B[j]�< r

30. // Modify K[i] with p under the control of the mask M
31. K[i] = w � (p^M)
32. end-for

Figure 1: The key-setup procedure in MARS

3

T0;4 : the initial array T

T1;0 : the array T after the 1st linear transformation

T1;1 : The array T after the 1st stirring round of the 1st iteration

T1;2 : The array T after the 2nd stirring round of the 1st iteration

T1;3 : The array T after the 3rd stirring round of the 1st iteration

T1;4 : The array T after the 4th stirring round of the 1st iteration

T2;0 : the array T after the second linear transformation

T2;1 : The array T after the 1st stirring round of the 2nd iteration
...

...

T4;4 : The array T after the 4th stirring round of the 4th iteration

Figure 2: The dynamic-programming notations of the key-setup procedure

non-zero masks is already as low as 2�90). Hence, it is su�cient to store two bytes per key for the

ags and an average of less than two bytes per key for the non-zero masks.2

3.2 A dynammic-programming approach to the key setup

Next, we show how to speed up the S-box lookup part of the key-setup procedure. To do that, we
adopt a dynammic-programming approach to this procedure. Instead of viewing the procedure as
operating on one array T , we view it as �lling rows in a two-dimesional table. Di�erent rows in
this table correspond to the temporary array T during di�erent times in the key setup procedure.
That is, the �rst row in the table consists of the initial array T , the second row consists of T after
the �rst linear transformation, the third row consists of T after the �rst stirring, and so on.

In the description below it is convenient to use the following notations: the array after the linear
transformation in the i'th iteration is denoted by Ti;0, and the array after the j'th stirring round in
this iteration by Ti;j (i; j = 1 : : :4). Using these notations, Ti;0 is obtained as a linear transformation
of Ti�1;4, and Ti;j is obtained from Ti;j�1 by setting, namely,

Ti;j[0] = (Ti;j�1[0] + S[low 9 bits of Ti;j�1[14]])�< 9; and

Ti;j [k] = (Ti;j�1[k] + S[low 9 bits of Ti;j [k � 1]])�< 9 (k = 1 : : :14)

The initial array which is computed from the key is denoted T0;4. The 40 words of the expanded
key are computed from rows T1;4; T2;4; T3;4; T4;4 of the table. See Figure 2 for an illustration of these
notations.

We now observe that each \internal entry" Ti;j [k] in this table that correspond to a stirring op-
eration, is computed from the entry above it Ti;j�1[k] and the low nine bits of the entry to its
left Ti;j [k � 1]. Similarly, each entry Ti;j [0] on the edge of the table that correspond to a stirring
operation, is computed from the entry above it Ti;j�1[0] and the low nine bits of the last entry in
the row above Ti;j�1[14].

2In reality, you may need to also store with each key a four-byte index into the table of non-zero masks, so you

get a total of eight additional bytes per key. It is possible to decrease this back to four bytes per key using slightly

more sophisitcated data structures.

4

Consider now what happens if we pre-compute and store the low nine bits of the entries Ti;j[14] for
i = 1 : : :4; j = 0 : : :3. Assume that we initialized the �rst row T0;4, and now we want to compute
the rows T1;0 through T1;4, which correspond to the �rst iteration. In the �rst clock cycle we can
compute the top-left corner T1;0[0] = T0;4[0]� ((T0;4[8]�T [13])�< 3)�0. In the next clock, we can
compute T1;0[1] and also T1;1[0] (since now we have T1;0[0] as well as the low nine bits of T1;0[14]
which we stored ahead of time). In the next clock we compute T1;0[2]; T1;1[1] and T1;2[0], then
T1;0[3]; T1;1[2]; T1;2[1] and T1;3[0]. From there on, in each cycle we compute one entry in each row.

Hence, we can compute the �ve rows T1;0 � T1;4 in just 19 cycles, and we can repeat this for the
other three iterations, and compute the entire table in 4 � 19 = 76 cycles. If we also used the
previous optimization to eliminate the \key �xing" part, we can potentially carry out the key setup
procedure in just under 80 cycles. The amount of storage that is needed for this optimization is 9
bits times 16 rows, for a total of 144 bits (18 bytes).

3.3 Additional speed-ups

Finally, we note that if we can a�ord some more storage, we can pre-compute and store one full
row of the table from above, instead of storing the original key and computing all the rows. The
simplest thing in this case would be to store the row T1;4, which is the �rst row that is used to
compute the resulting expanded key. This way, there are only three more iterations to compute
(rather than four), so we can reduce the computation time to just 60 cycles.

Even more, we can store some row in the middle of the table, and compute �rst half of the table
\backwards", at the same time that we compute the second part forward. This can even be pipelined
with the encryption/decryption of the �rst block. For example, when the key is used for encryption
we can store the row T2;4. Then, in 20 cycles we can compute both T1;4 and T3;4, at which time we
can start encrypting the �rst block (since we already have the �rst 30 words of the expanded key).
In an additional 20 cycles we compute also T4;4, so by the time we need the last 10 words, they are
already available.

This last optimization can potentially reduce the latency due to key setup to about 20 cycles, well
below the time of encrypting one block. The cost in storage is to keep one row of the table (60
bytes) instead of the original key (16-32 bytes). Since we also need twelve 9-bit pointers, the total
additional memory (as compared to storing only the key) is 42-58 bytes.

3.4 Summary

We presented above three optimizations, which allow a wide range of memory-speed tradeo�s in
the MARS key-setup, provided that we can compute and store some information ahead of time.
Table 1 summarizes the features of these optimizations. The \slowdown" column describes the
slowdown which is encountered by the key agility application, as expressed in the \four encryption
per key benchmark", vs. the raw encryption speed.

We note that the last two optimizations may require additional hardware since they require that
several operations be done in parallel. However, it seems that even with the last, most aggressive
optimization, the area needed for key setup is not more than what is needed for the encryp-
tion/decryption hardware.

5

Implementation storage needed key setup cycles slowdown

Full setup in hardware key only (16-32 bytes) 315-540 250%-450%
First two optimizations key + 22 bytes 80 65%
All three optimizations 80 bytes 20-60 15%-50%
Storing expanded key 160 bytes 0 0%

Table 1: Storage vs. speed in the MARS key setup

A Bounding the number of non-zero masks

Recall the Cherno� bound for the sum of 0-1 random variables. Assume that you have n indepen-
dent random variables, X1 : : :Xn, each of them is 1 with probability p and 0 with probability 1�p.
Then, for every � > 0, it holds that

Pr

"�����

1

n

nX
i=1

Xi

!
� p

����� > �

#
< 2e�(�

2n)=(2p(1�p))

In our case, we have n = 500; 000�16 = 8; 000; 000masks, each of them is non-zero with probability
p = 1=41, and we want to bound the probability that we get more than 250,000 non-zero masks.
Namely, Pr[

P
Xi > 250; 000]. We �rst note that

Pr

2
48;000;000X

i=1

Xi > 250; 000

3
5 = Pr

2
4
0
@ 1

8; 000; 000
�
8;000;000X

i=1

Xi

1
A >

250; 000

8; 000; 000

3
5

= Pr

2
4
0
@ 1

8; 000; 000
�
8;000;000X

i=1

Xi

1
A �

1

41
>

250; 000

8; 000; 000
�

1

41

3
5

< Pr

2
4
������
0
@ 1

8; 000; 000
�
8;000;000X

i=1

Xi

1
A �

1

41

������ >
250; 000

8; 000; 000
�

1

41

3
5

So we can use � = 250;000
8;000;000 �

1
41 � :00686 in the bound. Plugging in these values for n; p and �, we

get �2n=2p(1� p) � 7910, so we can bound the probability of getting more than 250,000 non-zero
masks by

Pr
hX

Xi > 250; 000
i
< 2e�7910 � 2�11411

6

