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Abstract

One of the evaluation criteria for AES candidate algorithms is

\their demonstrated suitability as random number generators". To

evaluate AES candidates against this criterion, NIST has conducted

statistical testing on the candidate algorithms. This paper examines

the statistical methodology employed by NIST.
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1 Introduction

One of the evaluation criteria for AES candidate algorithms is \their demon-
strated suitability as random number generators". To evaluate AES candi-
dates against this criterion, NIST has conducted statistical hypothesis testing
on the candidate algorithms.

In the next section, we describe the methodology of the NIST statistical
testing. In the following sections, we consider the general mathematical
framework of hypothesis testing and consider its application in cryptology. In
subsequent sections, we make some comments about the general methodology
of the NIST statistical testing of AES candidates and about the relevance of
particular tests. We �nish with some conclusions.

2 The NIST AES Statistical Methodology

The statistical methodology used by NIST to evaluate AES candidate al-
gorithms is described in the NIST AES document [4]. The essence of this
methodology can be briey summarised in the following steps.

1. \Categories of data" are chosen that correspond to potential crypto-
graphic weaknesses.

2. Data blocks corresponding to a category C of data are generated using
the AES candidate block cipher with �xed/random keys and/or text.

3. The set of data blocks is partitioned into subsets of data blocks accord-
ing to the key/text used by the AES candidate block cipher.

4. Each subset of data blocks is concatenated arbitrarily to produce a long
sequence.

5. A number of statistical tests are employed that test sequences for cryp-
tographic weaknesses. All of these statistical tests are applied to each
sequence. We term these tests sequence tests.

6. For each statistical test T , a set AC;T of passes and fails from the
sequence tests are obtained. The set AC;T is used to produce an overall
pass or fail for that statistical test T on that category of data. We term
this a category{test decision.

2



7. If an encryption algorithm fails a category{test decision, it is noted
that there is a potential problem with that encryption algorithm for
that category of data under that test.

The choice of data categories and statistical tests is to an extent arbi-
trary. However it is not clear why certain data categories or statistical tests
were chosen. We now give examples of such a data category and of such a
statistical test. Following this section, we discuss the general methodology
and only mention speci�c data categories and statistical tests for illustrative
purposes.

2.1 Random Plaintext/Random 128-bit Key Category

The rationale for and de�nition of the random plaintext/random 128-bit key
category (category 3) is given as [4]:

In order to examine the randomness of ciphertext (based on random plain-
text and random 128-bit keys), 128 sequences were constructed. Each se-
quence was a result of the concatenation of 8128 ciphertext blocks using 8; 128
random plaintexts and a random 128-bit key in the ECB mode.

A sequence test randomly generates 8128 plaintext blocks and encrypts
them all under the same key to obtain 8128 ciphertext blocks. As an encryp-
tion under a key is a permutation of the plaintext blocks, the 8128 ciphertext
blocks are a re-labelling of the 8128 plaintext blocks. Thus any statistical
test for non{uniformity based on the ciphertext blocks is merely a test for
non{uniformity of the plaintext blocks and gives no information about the
encryption algorithm. The NIST AES document [4] reports that some AES
candidate algorithms failed certain tests in this data category, but the only
inference that could be drawn from an algorithm failing a test is that the
plaintext block generator may be defective.

2.2 Linear Complexity Test

The linear complexity test for most data categories tests the linear complex-
ity of a sequence of independently generated blocks. The nature of linear
complexity is such that the only block distributions that the linear complex-
ity test would appear to be able to detect is those in which only one block
is likely to occur, that is those with almost zero entropy. If such a property
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were not obvious from the algorithm description, there are far simpler ways
of testing a distribution for this property.

3 Hypothesis Testing

Hypothesis testing is concerned with the problem: \Is a given observation
consistent with some stated hypothesis or not?" In the context of crypto-
graphic testing, the problem can be formulated as: \Is the cryptographic data
consistent with some desirable cryptographic property or not?" A hypothesis
test is a rule for deciding whether each possible observation is consistent or
not with the stated hypothesis.

The mathematical framework consists of a sample space 
 and a family of
probability distributions on 
. The sample space 
 is the set of all possible
observations. The family F = fP�j� 2 �g of probability distributions on 

is labelled by a parameter � which ranges over a parameter space �. There
is one member of the F , P�� say, which represents the true distribution on 
.
The actual speci�cation of the family F in testing stream ciphers depends
on the cryptographic property being considered. Di�erent tests on the same
data set could have di�erent families of distributions and parameter spaces.

A hypothesis is a statement that the true parameter �� belongs to a
proper subset H0 of the parameter space �. A hypothesis test is a procedure
for deciding from the data to which of the two complementary subsets H0

or HA = � n H0 of � the true parameter �� belongs. Thus a hypothesis
test is a function from 
 to the set f consistent, not consistent g, indicating
whether the data is consistent with the hypothesis H0. H0 is known as the
null hypothesis and HA the alternative hypothesis. In classical hypothesis
testing, H0 and HA generally ful�l di�erent roles. It is usual to regard a
hypothesis test as asking whether the data gives overwhelming evidence for
favouring the alternative hypothesis HA to the null hypothesis H0. Note that
in this paper, we shall be concerned only with simple null hypotheses H0,
that is H0 consists of a single element, H0 = f�0g say. For cryptographic
testing, a hypothesis test is a rule for deciding whether the cryptographic
data is consistent or not with a desirable cryptographic property.

Mathematically, a hypothesis test partitions the sample space 
 into two
subsets, one subset is consistent with the hypothesis H0, the other is not
consistent. The latter subset is known as the critical region. Thus any
subset of the sample space 
 de�nes a hypothesis test for any hypothesis H0,
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but, clearly, di�erent subsets have di�erent error probabilities for a given
hypothesis H0. It is the task of the test designer to choose a \good" test in
some sense. There are two possible ways that such a statistical test can be
in error:

� Type I Error: The statistical test decides that �� 2 H0, when in fact
�� 2 HA;

� Type II Error: The statistical test decides that �� 2 HA, when in fact
�� 2 H0.

In terms of testing encryption algorithms, these two errors can be described
as follows:

� Type I Error: The statistical test classi�es a \good" encryption algo-
rithm as \bad".

� Type II Error: The statistical test classi�es a \bad" encryption algo-
rithm as \good".

These errors are quanti�ed by the size and power of the test, which can be
loosely de�ned in the following way.

� The size of the test is the probability that a Type I error is made, that
is the probability that the statistical test classi�es a \good" encryption
algorithm as \bad";

� The power of the test is the probability that a Type II error is not
made, that is the probability that a statistical test classi�es a \bad"
encryption algorithm as \bad".

A test of size � is known as an �-test. Note that for a simple null hypoth-
esis, the term signi�cance level for a statistical test as used in the NIST
documentation [4] is equivalent to the size of the test.

Every subset of 
 de�nes a test for any hypothesis, so merely de�ning
a test without quantifying the error probabilities does not provide any in-
formation. The classical approach to hypothesis testing is to �x the size �
(probability of a Type I error) of the test. Every subset of 
 with measure
� de�nes an �-test. It is thus very diÆcult to interpret an �-test without
considering the Type II error probabilities. There is clearly little point in
choosing a test of size � if there exists another test of size � that has better
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power over the entire alternative hypothesis. For this reason, a test whose
power function is dominated by another test's power function is sometimes
described as inadmissible. The classical approach is to choose an �-test
which optimises the power (minimising the probability of a Type II error)
from amongst all �-tests satisfying certain natural criteria, such as unbiased-
ness and invariance. An unbiased test is one whose power always exceeds its
size. In a test which is not unbiased, there is the possibility of being more
likely to select HA when it is false than when it is true. A test is invariant
under a group of transformations if the action of that group on the data
does not a�ect the result of the test. Clearly, it is natural to choose a test
that is invariant under statistically unimportant transformations of the data.
There is a large body of theory about the selection of such tests such as the
Neyman{Pearson Lemma and likelihood ratio tests.

If the true distribution P�� is not a member of the family of distributions
F under test, so �� =2 �, then the test generally has little relevance. The
power at �� was not considered when the test was designed, so generally the
test has low power at ��. Thus a pass or fail decision from a test in these
circumstances generally has a high error proability.

Further details about the mathematical theory of hypothesis testing can
be found in [3].

4 Statistical Testing of Encryption Algorithms

In this section, we consider how the theory of hypothesis testing should be
applied to the black{box statistical testing of encryption algorithms.

When performing a statistical test on data from a cryptographic algo-
rithm, we wish to test whether the data appears random or not. However, it
is impossible to design a meaningful test without specifying what is meant
by random and non{random. There are though many di�erent properties
(such as balance) of randomness and non{randomness, and it is possible to
design meaningful tests for these properties. However, some properties are of
far more concern cryptographically than other properties. It is the existance
of these properties that should be tested. Specifying such a property allows
the speci�cation of a family of probability distributions F as in Section 3. A
test can then be de�ned as in Section 3 by optimising error probabilities.

Thus to construct a test, we have seen that we have to make some as-
sumptions about the family of distributions, that is what properties of non{
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randomness we are testing for. If we are not prepared to make any assump-
tions, then it is not possible construct any tests whatsoever. If the assump-
tions are not true, then, as we discussed in Section 3, the outcome of the test
has to be carefully examined for relevance. If the assumptions are broadly
true, then the outcome may be relevant; if the assumptions are broadly false,
then the outcome is not relevant. To conduct exhaustive testing, a suite of
tests has to be constructed that test for the range of properties of randomness
and non{randomness of interest. It is not the role of a test for one property
of randomness and non{randomness to test for another property. For exam-
ple, the balance test assumes that the bits are independent Bernoulli random
variables with parameter p. The test is solely concerned with whether p = 1

2

or not (given the independence assumption). To construct a test, we have to
make these assumptions about the family of distributions. We should then
design the best possible test given the independence assumption. It is the
role of other tests to check this independence assumption. Indeed, criticising
a test on these grounds is analogous to criticising a medical diagnostic test
for measles on the grounds that it does not detect mumps.

Considering how the statistical theory given in the Section 3 can be ap-
plied in cryptology, the following principles suggest naturally suggest them-
selves.

1. Hypotheses and tests should be stated clearly and unambiguously.

2. Without error quanti�cation, a test is diÆcult to interpret.

3. Power is more important cryptographically than size.

4. Admissible tests are preferable to inadmissible tests.

5. Invariant tests under data transformations of no cryptographic or sta-
tistical importance are preferable to non{invariant tests.

These principles are all self{evident, with the arguable exception of the
third principle. This principle is in contradiction to the classical situation in
hypothesis testing. An example of a classical test would be \does drug X
produce physiological e�ect Y ?" In order to be convinced that this is so, we
need good evidence to this e�ect. The worse error we could make is a Type I
error, measured by the size, that we believe drug X has an e�ect Y when it
does not. By contrast, consider a test concerning an encryption algorithm.
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� Which of two types of error is of more concern cryptographically?

{ Type I Error: A \good" encryption algorithm is rejected by the
test as \bad".

{ Type II Error: A \bad" encryption algorithm is accepted by the
test as \good".

If a Type II error occurs, there is potentially complete cryptographic
loss. This is measured by the power function of the test. However, if a
Type I error is made by a test, there is no cryptographic loss, merely a
loss in eÆciency of the testing procedure. Thus the size of a cryptographic
statistical test measures the eÆciency of the testing procedure. The size is
not a cryptographic measure except in that it sets a lower bound (usually
the limiting value) on the power function for an unbiased test. Therefore,
for a cryptographic hypothesis test, power is more important than size.

Cryptographic hypothesis testing is very similar to a type of industrial
quality assurance testing. For this type of industrial quality assurance test-
ing, a batch of components is accepted or rejected according to the results of
statistical tests on some components in the batch. There are costs associated
both with a Type I error (discarding a batch built to speci�cation) and with
a Type II error (accepting a batch not built to speci�cation) and a balance
has to be made between the two types of error. In the context of crypto-
graphic hypothesis testing, it is interesting note that in quality assurance
testing, a Type I error is sometimes known as the producer's risk and the
Type II error as the consumer's risk. The relevant British standard on Lot
Acceptance Sampling, BS6001-1 [1] (see also ISO 2859-1) gives a detailed
discussion of the operating characteristic curve, the graph of probabilility of
acceptance versus defect size. Thus the operating characteristic is essentially
the complement of the power (1 � Power). Indeed, the importance of the
power function in this type of statistical testing is discussed by NIST in their
Engineering Statistics Handbook, [2] which states:

The Operating Characteristic Curve [Complement of Power] is the pri-
mary tool for displaying and investigating the properties of a Lot Acceptance
Sampling Plan.
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5 The NIST Statistical Tests for AES

In this Section, we consider how the statistical tests of NIST compare with
the principles of Section 4. In order to examine the NIST tests, the following
analogy is useful. Consider the following three �-tests to test the balance
versus the imbalance of a sequence S, as discussed in Section 4.

� Test T .

{ Analyse S using the standard balance test of size �.

� Test T 0.

{ Interleave S with a sequence R to give S 0.

{ Analyse S 0 using the standard balance test of size �.

{ Use the result for S.

� Test T 00

{ Decimate S (discarding every other bit) to give S 00.

{ Analyse S 00 using the standard balance test of size �.

{ Use the result for S.

If S is balanced, then all three tests reject S as balanced with probability
�, so have size �. If S is highly unbalanced, then all three tests should
reject S as balanced (though T is more likely to do so than T 0 or T 00). If S is
slightly unbalanced (the critical situation cryptographically), then T is much
more likely to reject S as being balanced than T 0 or T 00. Though T 0 and T 00

are testing for the correct property, it would be strange to prefer them to T ,
especially as T is easier to perform. Essentially, T is searching for a signal
(of imbalance) amongst noise. T 0 adds some noise before searching the signal
amongst the noise, whereas T 00 removes some signal before searching for the
signal amongst the noise. If there is no signal (S is balanced), it does not
matter whether we use T , T 0 or T 00. If there is a signal (S is unbalanced),
then T is more likely to �nd it than T 0 or T 00. Many of the NIST testing
procedures are analogous to T 0 or T 00 in that they add noise or remove signal
before searching for the signal amongst noise. Note that the role of the
sequence R in test T 0 is discussed in Section 5.4.

We now consider the application of the principles of Section 4 to the NIST
tests.
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5.1 Ambiguous Statement of Hypotheses

The null and alternative hypotheses in the NIST category{test decisions are
not precisely speci�ed. There are two di�erent alternative hypotheses that
are naturally suggested for the category{test decision. Di�erent optimal
(under standard assumptions) tests exist for the two di�erent alternative
hypotheses giving di�erent power functions. The alternative hypothesis is
not stated in the NIST documentation [4] so the error quanti�cation and
hence the interpretation of the category{test decisions are ambiguous.

We consider a category{test decision T on a data category C, without
loss of generality the plaintext/ciphertext correlation category (category 3).
In this data category, a random set K of 128 keys is generated. For each
k 2 K, 8128 data blocks Dk;i = Pi � AESk(Pi) are generated using 8128
random plaintexts Pi (i = 1; � � � ; 8128). The data used for an individual
sequence test is

Sk = (Dk;1; � � � ; Dk;8128)

The category{test decision of pass or fail is derived from the set AC;T of
passes and fails from the sequence tests on individual data sets Sk. It is not
clear, however, exactly what is being tested, as the family of distributions
and the alternative hypothesis are not stated. There appear two possibilities
for modelling this situation depending on what exactly it is desired to test.

Suppose the family of distributions FS = fP�j� 2 �Sg for the sequence
test has parameter space �S. One member of FS describes the distribution
of the statistic Sk, that is there is a true �� 2 �S that describes Sk. Fur-
thermore, there exists a �0 that is consistent with the cryptographic property
under test. The ambiguity in the category{test decision arises because it is
not clear whether a global value of � is being used to describe all Sk, or a
local value �k is being used for each Sk.

Parameter Space Null Hypothesis (H0) HA

Local �L = �8128

S (�1; � � � ; �8128) = (�0; � � � ; �0) �L nH0

Global �G = f(�; � � � ; �gj� 2 �Sg (�1; � � � �8128) = (�0; � � � ; �0) �G nH0

Under both null hypotheses (global and local), the distribution of S is identi-
cal. However, the parameter space for the local test �L = �8128

S is very much
larger than the parameter space of the global test �G, which has the same
size as �S. In the local test, the null hypothesis H0 is tested against the
alternate hypothesis �L nH0, whereas in the global test the null hypothesis
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H0 is tested against the alternate hypothesis �G nH0. Thus in the local test,
the null hypothesis is being tested against a far wider range of alternatives
than in the global test. It is therefore appropriate to design a local test to
maintain power over �L nH0 and not just �G nH0 (as for the global test).

However, the category{test decisions with their intermediate stage of a
set AT;C of passes and fails are sub{optimal in both the global and local
cases. In the global case, analysing the collected data S (not grouped by
k 2 K) in one global test gives uniformly (against all permitted alternatives)
more powerful tests than the NIST tests. In the local case, analysing the
data S = fSkjk 2 Kg using multivariate techniques gives more powerful
tests than the NIST tests. In either case, the NIST tests are inadmissible (as
described in Section 3).

The intermediate stage of the NIST tests produces a set of passes and
fails, which needlessly discards much relevant information (such as how close
a \fail" was to \passing"). Thus the NIST tests are analogous to T 00 in that
signal is removed, that is the overall pass or fail decision is made with the
reduced information in the set of passes and fails rather than the data itself.

It is never explicitly stated whether the NIST tests are concerned with
the local or global case. The intermediate stage of producing a pass or fail
for every key (for example) gives the impression of considering the local
case, in that the data for every key is individually tested, though the overall
processing is more appropriate for the global case. In either case, the error
rates are not quanti�ed.

5.2 Error Quanti�cation

The NIST documentation [4] never gives the size of the category{test deci-
sions. In this section, we derive the sizes of NIST category{test decisions.

On a category C of data, each category{test decision produces an overall
pass or fail from a set AC;T of passes or fails each derived from an individual
sequence test T . AC;T consists of 128, 300 or 384 pass or fail elements. We
denote the size of AC;T by n, so n = 128; 300; 384. The size of the test,
�n say, depends solely on n. The category{test decision produces an overall
fail if the number of fails in the set AC;T exceeds some threshold tn. These
thresholds are decided by using a normal approximation to the binomial
distribution, which is not an accurate approximation at these parameter
sizes. Furthermore, the NIST documentation [4] states that the thresholds
are chosen to give one{sided tests of size 0:01, but are computed at 3 Normal
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standard deviations above the mean, which gives a size of about 0:001. In any
case, these thresholds are set at t128 = 4, t300 = 8 and t384 = 9. The individual
tests have size 0:01, so, for a sequence test, under the null hypothesis, a fail
occurs with probability 0:01. Let Xn denote the number of fails in the set
AC;T , so Xn � Bin(n; 0:01). Thus the sizes of the category{test decisions are
given by:

�128 = P (X128 > t128) = 1�
4X
i=0

 
128
i

!
0:01i 0:99128�i = 0:0096

�300 = P (X300 > t300) = 1�
8X
i=0

 
300
i

!
0:01i 0:99300�i = 0:0036

�384 = P (X384 > t384) = 1�
9X
i=0

 
384
i

!
0:01i 0:99384�i = 0:0059

It can be seen that the sizes of the tests seem arbitrary and extremely
varied. All are smaller (many considerably) than any test size given in the
NIST documentation [4]. The value of n, the size of AC;T , and hence the
size of the test is determined by the category C alone. Thus within each
data category, all the category{test decisions have the same size. However,
di�erent data categories can have category{test decisions of di�erent sizes.
Thus it is possible within the NIST methodology to apply the same test to two
di�erent categories of data and only note the result of far lesser signi�cance.

5.3 The Importance of Power

We have argued above than power is the cryptographically important quan-
tity. However, only the size of a test is discussed in the NIST documentation
[4]. The power of a test is never mentioned.

More generally, the power is often used to discriminate between two tests
of equal size. For example, of the three �-tests T , T 0 and T 00 given in
Section 5, T has more power than T 0 or T 00. As we saw in Section 5.1, there
are usually tests of equal size as a category{test decision but more power
against all alternatives. Even in situations where it is diÆcult to calculate the
power function exactly, it may be possible to compare power functions of two
�-tests. Furthermore, examination of the power function may indicate the
relevance. For example, any test used on the random plaintext/random 128-
bit key data category (see Section 2.1) has constant (low) power equal to the
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size, and the linear complexity test on most data categories (see Section 2.2)
has constant (low) power for almost all alternatives.

To illustrate the role the power function can play in designing a cryp-
tographic test, we now give some power curves for testing for balance. We
consider data of the most common type of data category used by NIST, so
the data consists of 128 subsequences of length 1; 048; 576, giving a total of
134; 217; 728 bits of data. The top graph is the power curve of the NIST
(global) balance test and the middle graph is the power of the standard bal-
ance test. The size of both tests has been set at 0:0096, the size used by
NIST for these data categories. The bottom graph is the power ratio curve
for these two tests. Its value at a particular bias gives the relative odds that
the NIST and standard balance tests detect that bias exists.

We now make some comments about these power curves that have general
applicability. For a bias or imbalance smaller than 0:0001, both tests have
low power, that is both tests are highly unlikely to detect that bias exists.
For a bias larger than 0:0006, both tests are almost certain to detect that bias
exists. There is a critical region between these two values where the two tests
have quite di�erent behaviour. At a bias of 0:0002, the standard balance test
is almost certain to detect that bias exists, whereas the NIST balance test is
highly unlikely to do so. In fact at a bias of 0:0002, the standard test is about
twenty times more likely to detect that a bias exists than the NIST test. The
NIST test only becomes almost certain to detect that a bias exists once that
bias reaches 0:0006. Therefore it can be said that the NIST test of balance
can only detect (without error) three times the bias that the standard test of
balance does. If it is considered that a bias of 0:0006 does not constitute a
cryptographic weakness, then it is better to reduce the amount of data tested
and use the better test than use the weaker test.
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When assessing the power of a test, there is usually a complicated rela-
tionship between four parameters of the test:

� the e�ect size, for example the true imbalance in the balance test;

� the sample size of the test;

� the size � of the test;

� the power of the test.

Increasing the sample size moves the power curve to the left, which increases
power for a given e�ect size. Decreasing the size � of the test moves the power
curve down (decreasing power). One approach to cryptographic statistical
testing would be to decide when e�ect size becomes a cryptographic weakness
and then choose the sample size and size appropriately, so that the power
at this e�ect size was almost 1. This would allow the design of a test that
it is almost certain to detect the cryptographic weakness with a trade{o�
between the sample size and test size (eÆciency of the testing procedure in
the sense of Section 4). This is an approach often used in lot acceptance
sampling, as discussed in Section 4.

It is widely believed that decreasing the size � of a test gives a more
stringent test, for example a test of size 0:01 is more stringent than a test of
size 0:05. However, all other things being equal, decreasing the size lowers
the power. Therefore for cryptographic testing, decreasing the size gives a
less stringent test.

5.4 Test Invariance

Test results should be invariant under statistically and cryptographically
unimportant transformations of the data. With the exception of Cipher Block
Chaining Mode data category, the data categories specify that encryption
algorithms are used in ECB mode to produce data blocks. Without loss
of generality, we consider the plaintext/ciphertext correlation data category
considered in Section 5.1 as an example of such a data category. The data
produced in this category is a set of data blocks

fDp;kjp 2 P; k 2 Kg

parameterised by a random set P of plaintexts and a random set K of keys.
Any test result should clearly be invariant under permutations both of the
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plaintexts and of the keys. Most of the NIST tests are not invariant under
this group of transformations. This can be interpreted as saying that the
NIST test results depend on the arbitrary and unimportant ordering of data
blocks.

There is also no temporal ordering of the bits within a data block derived
from an ECB encryption. All bits are equivalent irrespective of their position.
The relationship between neighbouring bits (say 0 and 1) of a data block is
no more signi�cant than the relationship between any pair of bits (say 0 and
73). Thus, a test should also be invariant under bit permutations of the data
block. Considering the data set as bits,

fdk;p;bjp 2 P; k 2 K; b 2 Bg;

where B parameterises the bit positions, then a test should be invariant
under the group of transformations SP � SK � SB acting in the obvious
way on the set. Almost all of the NIST tests are not invariant under this
group of transformations. Almost all of the NIST tests were designed for
stream ciphers and as such test for sequence structure, in particular temporal
structure. This non{invariance can be interpreted as saying the sequence
tests are not the most appropriate method for testing block ciphers.

Suppose that G is a group of statistically and cryptographically unim-
portant transformations of the data. All values Zg of a test statistic Z under
data transformations by g 2 G have equal statistical and cryptographic va-
lidity. If Z is not invariant under G, there could be many such values Zg.
Choosing one value of Z arbitrarily is exactly like estimating the mean � of
a data sample Y = (Y1; � � � ; Yl) by Y1 alone. The accuracy of the estimate
for Z and � depends on the variability of Zg and Yi respectively.

In terms of the three tests T , T 0 and T 00 of Section 5, choosing a non{
invariant test under a group G is analogous to choosing test T 0. If the test
design speci�es a transformation in G, which is analogous to specifying R in
T 0, this test adds noise. If the test design does not specify a transformation
in G, then the user has to select randomly a transformation in G, which
is analogous to the user choosing R randomly in T 0. This is not a pure
statistical test (in the sense of Section 3), but gives a randomised test [3].
In this case, two cryptographically and statistically equivalent tests can give
di�erent results on the same data set.
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5.5 Inadmissibility of Tests

As we discussed in Section 5.1, most of the NIST �-tests are inadmissible
(see Section 3), in that there exist �-tests with uniformly more power against
the alternatives under test. This is partially due to the intermediate stage, in
which the a pass or fail set AC;T is produced before producing the category{
test decision, thus discarding information. This procedure is analogous to
test T 00 in this respect. Moreover, the optimal tests are easier to implement
than the NIST tests. The balance test examples of Section 5.3 illustrate
these points.

6 Conclusions

We have made a number of comments about the methodology of the NIST
statistical testing of AES candidates. We briey summarise some of the
issues raised in this paper.

� Ambiguous Hypotheses. The NIST test hypotheses are not stated clearly
and unambiguously giving rise to di�erent interpretations of their test
results.

� Error Quanti�cation. The sizes of the category{test decisions are not
given. They are smaller than implied by the paper and are not constant
across categories. However they are the statistical criteria by which the
candidate algorithms are judged.

� The Importance of Power. This is a vital quantity cryptographically,
yet it is not discussed by the NIST documentation.

� Invariant Tests. Most of the NIST tests are not invariant under cryp-
tographically and statistically unimportant transformations of the data.
This means that cryptographically equivalent statistical tests performed
on the same data do not necessarily give the same test result. Further-
more the almost total use of sequence tests on data blocks is question-
able.

� Inadmissible Tests. Most of the NIST tests are inadmissible, in that
there are better tests. Moreover, the better tests are easier to imple-
ment.
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