A collision attack on 7 rounds of Rijndael

Henri Gilbert and Marine Minier

France Télécom R \& D
38-40, rue du Général Leclerc
92794 Issy les Moulineaux Cedex 9 - France
email : henri.gilbert@cnet.francetelecom.fr

Abstract

Rijndael is one of the five candidate blockciphers selected by NIST for the final phase of the AES selection process. The best attack of Rijndael so far is due to the algorithm designers; this attack is based upon the existence of an efficient distinguisher between 3 Rijndael inner rounds and a random permutation, and it is limited to 6 rounds for each of the three possible values of the keysize parameter (128 bits, 196 bits and 256 bits). In this paper, we construct an efficient distinguisher between 4 inner rounds of Rijndael and a random permutation of the blocks space, by exploiting the existence of collisions between some partial functions induced by the cipher. We present an attack based upon this 4 -rounds distinguisher that requires 2^{32} chosen plaintexts and is applicable to up to 7-rounds for the 196 keybits and 256 keybits version of Rijndael. Since the minimal number of rounds in the Rijndael parameter settings proposed for AES is 10 , our attack does not endanger the security of the cipher, indicate any flaw in the design or prove any inadequacy in selection of number of rounds. The only claim we make is that our results represent improvements of the previously known cryptanalytic results on Rijndael.

1 Introduction

Rijndael [DaRi98], a blockcipher designed by Vincent Rijmen and Joan Daemen, is one of the 5 finalists selected by NIST in the Advanced Encryption Standard competition [AES99]. It is a variant of the Square blockcipher, due to the same authors [DaKnRi97]. It has a variable block length b and a variable key length k, which can be set to 128 , 192 or 256 bits. The recommended $n r$ number of rounds is determined by b and k, and varies between 10 and 14 . In the sequel we will sometimes use the notation Rijndael $/ b / k / n r$ to refer to the Rijndael variant determined by a particular choice of the b, k and $n r$ parameters.

The best Rijndael attack published so far is due to the algorithm designers [DaRi98]. It is a variant of a the "Square" attack, and exploits the byte-oriented structure of Rijndael [DaKnRi97]. This attack is based upon an efficient distinguisher between 3 Rijndael inner rounds and a random permutation. It is stated in [DaRi98] that "for the different block lengths of Rijndael no extensions to 7 rounds faster than exhaustive search have been found".
In this paper we describe an efficient distinguisher between 4 Rijndael inner rounds and a random permutation, and we present resulting 7 -rounds attacks of Rijndael $/ b=128$ which are substantially faster than an exhaustive key search for the $k=196$ bits and $k=256$ bits versions and marginally faster than an exhaustive key search for the $k=128$ bits version.

This paper is organised as follows. Section 2 provides an outline of the cipher. Section 3 investigates partial functions induced by the cipher and the existence of collisions between such partial functions, and describes a resulting distinguisher for 4 inner rounds. Section 4 presents 7 -rounds attacks based on the 4 -rounds distinguisher of Section 3. Section 5 concludes the paper.

2 An outline of Rijndael/b=128

In this Section we briefly described the Rijndael algorithm. We restrict our description to the $b=128$ bits blocksize and will consider no other blocksize in the rest of this paper.
Rijndael $/ b / k / n r$ consists of a key schedule and an iterated encryption function with $n r$ rounds. The key schedule derives $n r+1128$-bit round keys K_{0} to $K_{n r}$ from the $k=128,196$ or 256 bits long Rijndael key K. Since attacks presented in the sequel do not use the details of the dependence between round keys, we do not provide a description of the key schedule.
The Rijndael encryption function is the composition of $n r$ block transformations. The current 128 -bit block value B is represented by a 4×4 matrix :

$$
B=\begin{array}{|c|c|c|c|}
\hline b_{0,0} & b_{0,1} & b_{0,2} & b_{0,3} \\
\hline b_{1,0} & b_{1,1} & b_{1,2} & b_{1,3} \\
\hline b_{2,0} & b_{2,1} & b_{2,2} & b_{2,3} \\
\hline b_{3,0} & b_{3,1} & b_{3,2} & b_{3,3} \\
\hline
\end{array}
$$

The definition of the round functions involves four elementary mappings :

- the $\sigma=$ ByteSub byte substitution transforms each of the 16 input bytes under a fixed byte permutation P (the Rijndael S-box).
- the $\rho=$ ShiftRow rows shift circularly shifts row $i(i=0$ to 3$)$ in the B matrix by i bytes to the right.
- the $\mu=$ MixColumn is a matrix multiplication by a fixed 4×4 matrix of non-zero $\operatorname{GF}\left(2^{8}\right)$ elements.
- the $\kappa_{r}=$ KeyAddition is a bitwise addition with a 128 -bit round key K_{r}.

The Rijndael cipher is composed by an initial round key addition $\kappa_{0}, n r-1$ inner rounds and a final transformation. The r th inner round $(1 \leq r \leq n r-1)$ is defined as the $\kappa_{r} \circ \mu \circ \rho \circ \sigma$ function. The final transformation at the round $n r$ is an inner round without MixColumn mapping : FinalRound $=\kappa_{n r} \circ \rho \circ \sigma$. We can thus summarise the cipher as follows:

$$
\begin{aligned}
& B:=\kappa_{0}(B) ; \\
& \text { For } r=1 \text { to } n r-1 \\
& \quad B:=\operatorname{InnerRound}(B) ; \\
& \text { FinalRound }(B) ;
\end{aligned}
$$

Remarks :

- σ is the single non $G F(8)$-linear function of the whole cipher.
- The Rijndael S-box P is the composition of the multiplicative inverse function in GF(8) (NB : '00' is mapped into itself) and a fixed GF(2)-affine byte transformation. If the affine part of P was omitted, algebraic methods (e.g. interpolation attacks) could probably be considered for the cryptanalysis of Rijndael.
- The $\mu \circ \rho$ linear part of Rijndael appears to have been carefully designed. It achieves a full diffusion after 2 rounds, and the Maximum Distance Separability (MDS) property of μ prevents good differential or linear "characteristics" since it ensures that two consecutive rounds involve many active S-boxes.

3 Distinguishing 4 inner rounds of Rijndael/ $b=128$ from a random permutation

3.1 Notation

Figure 1 represents 4 consecutive inner round functions of Rijndael associated with any 4 fixed unknown 128 -round keys. Y, Z, R, S represent the input blocks of the 4 rounds and T represents the output of the 4 th round. We introduce short notations for some particular bytes of Y, Z, R, S, T, which play a particular role in the sequel : $y=Y_{0,0}, z_{0}=Z_{0,0}, z_{1}=Z_{1,0}, z_{2}=Z_{2,0}, z_{3}=Z_{3,0}$, and so on. Finally we denote by c the $\left(c_{0}=Y_{1,0}, c_{1}=Y_{2,0}, c_{2}=Y_{3,0}\right)$ triplet of Y bytes.

Let us fix all the Y bytes but y to any 11-uple of constant values. So the c triplet is assumed to be equal to a constant $c=\left(c_{0}, c_{1}, c_{2}\right)$ triplet, and the 12 $Y_{i, j}, \mathrm{i}=1$ to $3, \mathrm{j}=0$ to 3 are also assumed to be constant. The Z, R, S, T bytes z_{0} to z_{3}, r_{0} to r_{3}, s, and t_{0} to t_{3} introduced in Figure 1 can be seen as c-dependent functions of the y input byte. In the sequel we sometimes denote by $z_{0}^{c}[y]$ to $z_{3}^{c}[y], r_{0}^{c}[y]$ to $r_{3}^{c}[y], s^{c}[y], t_{0}^{c}[y]$ to $t_{3}^{c}[y]$ the z_{i}, r_{i}, s, t_{i} byte value associated with a c constant and one $y \in 0 . .255$ value.

Figure 1: 4 inner rounds of Rijndael

3.2 The 3-rounds distinguisher used in the Rijndael $/ \mathrm{b}=128$ designers' attack

The Rijndael designers' attack is based upon the observations that :

- bytes z_{0} to z_{3} are one to one functions of y and the other Z bytes are constant. - bytes r_{0} to r_{3} are one to one functions of y (as well as the 12 other R bytes). $-s$ is the XOR of four one to one functions of y and thus $\sum_{y=0}^{255} s[y]=0$.

Thus 3 consecutive inner rounds of Rijndael have the distinguishing property that if all Y bytes but y are fixed and y is taken equal to each of the 256 possible values, then the sum of the 256 resulting s values is equal to zero.

This leads to a 6-rounds attack (initial key addition followed by 5 inner rounds followed by final round). As a matter of fact an initial round (i.e. an initial key addition followed by 1 inner round) can be added on top, at the expense of testing assumptions on 4 key bytes of the initial key addition. Moreover, two additional rounds can be added at the end (namely one additional inner round followed by one final round), at the expense of testing assumptions on 4 final round key bytes. Combining both extensions provides an attack which requires 2^{32} plaintexts and has a complexity of 2^{72} encryptions.

3.3 A 4-rounds distinguisher for Rijndael/b=128

We now analyse in detail the dependency of the byte oriented functions introduced in Section 3.1 in the c constant and the expanded key. We show that the $s^{c}[y]$ function is entirely determined by a surprisingly small number of unknown bytes, which either only depend upon the key or depend upon both the key and the c value, and that as a consequence there exist $\left(c^{\prime}, c^{\prime \prime}\right)$ pairs of distinct c values such that the $s^{c^{\prime}}[\cdot]$ and $s^{c^{\prime \prime}}[\cdot]$ partial functions collide, i.e. $s^{c^{\prime}}[y]=s^{c^{\prime \prime}}[y]$ for $y=0,1, \cdots, 255$. This provides an efficient test for distinguishing 4 inner rounds of Rijndael from a random permutation.

The construction of the proposed distinguisher is based upon the following observations, which are illustrated in Figure 1.

Property 1: At round 1 , the $y \rightarrow z_{0}^{c}[y]$ one to one function is independent of the value of the c triplet and is entirely determined by one key byte. The same property holds for z_{1}, z_{2}, z_{3}. This is because at the output of the first round ShiftRow the c_{0} to c_{2} constants only affect columns 1 to 3 of the current block value, whereas the z_{0} to z_{3} bytes entirely depend upon column 0 . For similar reasons, the other bytes of Z are independent of y : each of the bytes of column 1 (resp 2 , resp 3) of Z is entirely determined by the $c_{0}\left(\operatorname{resp} c_{1}, \operatorname{resp} c_{2}\right)$ byte and one key-dependent byte.
More formally, there exist 16 MixColumn matrix coefficients $a_{i, j}, i=0 . .3$, $j=0 . .3$ and 16 key-dependent constants $b_{i, j}, i=0 . .3, j=0 . .3$ such that $z_{i}=$ $a_{i, 0} P(y)+b_{i, 0}, i=0 . .3$ and $z_{i, j}=a_{i, 0} P\left(c_{j-1}\right)+b_{i, j}, i=1 . .3, j=0 . .3$.

Property 2 : At round 2, each of the four bytes $r_{i}[y], i=0 . .3$ is a one to one function of $z_{i}[y]$, and the $r_{i}[y] \rightarrow z_{i}[y]$ is entirely determined by one single unknown constant byte that is entirely determined by c and the key.

More formally, there exist 16 MixColumn coefficients $\alpha_{i}, i=0 . .3, \beta_{i}$, $i=0 . .3 \gamma_{i}, i=0 . .3$ and $\delta_{i}, i=0 . .3$ and 4 key-dependent constants ϵ_{i}, $i=0 . .3$ such that $r_{i}=\alpha_{i} \cdot P\left(z_{i, 0}\right)+\beta_{i} \cdot P\left(z_{i, 1}\right)+\gamma_{i} \cdot P\left(z_{i, 2}\right)+\delta_{i} \cdot P\left(z_{i, 3}\right)+\epsilon_{i}$, $i=0 . .3$. The r_{i} bytes are thus related to c and y by the relations : $r_{i}=\alpha_{i} \cdot P\left(a_{i, 0} P(y)+b_{i, 0}\right)+\beta_{i} \cdot P\left(a_{i, 1} P\left(c_{0}\right)+b_{i, 1}\right)+\gamma_{i} \cdot P\left(a_{i, 2} P\left(c_{1}\right)+\right.$ $\left.b_{i, 2}\right)+\delta_{i} \cdot P\left(a_{i, 3} P\left(c_{2}\right)+b_{i, 3}\right)+\epsilon_{i}, i=0 . .3$.
Consequently, the $r_{0}[y]$ to $r_{3}[y]$ one to one functions of y are entirely determined by the 4 key-dependent constant unknown bytes $b_{i, 0}$ introduced in property (1) and the $4 c$ - and k-dependent bytes $b_{i}=\beta_{i} \cdot P\left(a_{i, 1} P\left(c_{0}\right)+\right.$ $\left.b_{i, 1}\right)+\gamma_{i} \cdot P\left(a_{i, 2} P\left(c_{1}\right)+b_{i, 2}\right)+\delta_{i} \cdot P\left(a_{i, 3} P\left(c_{2}\right)+b_{i, 3}\right)+\epsilon_{i}, \mathrm{i}=0 \cdots 3$.

Property 3 : At round 3 , the s byte can be expressed as a function of the r_{0} to r_{3} bytes and one c-independent and key-dependent unknown constant. Consequently, the $s^{c}[y]$ function is entirely determined by 4 key-dependent and c-dependent constants and $5 c$-independent and key-dependent constants.

Property 4 : Let us consider the decryption of the fourth inner round : s can be expressed as $s=p^{-1}\left[\left(0 E . t_{0}+0 B \cdot t_{1}+0 D \cdot t_{2}+09 . t_{3}\right)+k_{5}\right]$ where p represents the single S-box. In other words $0 E . t_{0}+0 B . t_{1}+0 D . t_{2}+09 . t_{3}$ is a one to one function of s, and that function is entirely determined by one single key byte k_{5}. Thus $0 E . t_{0}+0 B . t_{1}+0 D . t_{2}+09 . t_{3}$ is a function of y that is entirely determined by 6 unknown bytes which only depend upon the key and by 4 additional unknown bytes which depend both upon c and the key.

The above properties provide an efficient 4-rounds distinguisher. We can restate property (3) in saying that the $s^{c}[y]$ function is entirely determined (in a key-dependent manner) by the $4 c$-dependent bytes b_{0} to b_{3}. Let us make the heuristic assumption that these 4 unknown c-dependent bytes behave as a random function of the c triplet of bytes. By the birthday paradox, given a C set of about $2^{16} c$ triplet values, there exist with a non negligible probability two distinct c^{\prime} and $c^{\prime \prime}$ in C such that the $s^{c^{\prime}}[y]$ and $s^{c^{\prime \prime}}[y]$ functions induced by c^{\prime} and $c^{\prime \prime}$ are equal (i.e. in other words such that the $\left(s^{c^{\prime}}[y]\right)_{y=0 . .255}$ and $\left(s^{c^{\prime \prime}}[y]\right)_{y=0 . .255}$ lists of 256 bytes are equal). Property (4) provides a method to test such a "collision", using the t_{0} to t_{3} output bytes of 4 inner rounds : c^{\prime} and $c^{\prime \prime}$ collide if and only if $\forall y \in[0, \ldots, 255], 0 E . t_{0}^{c^{\prime}}+0 B . t_{1}^{c^{\prime}}+0 D . t_{2}^{c^{\prime}}+09 . t_{3}^{c^{\prime}}=$ $0 E . t_{0}^{c^{\prime \prime}}+0 B . t_{1}^{c^{\prime \prime}}+0 D . t_{2}^{c^{\prime \prime}}+09 . t_{3}^{c^{\prime \prime}}$. Note that it is sufficient to test the above equality on a limited number of y values (say 16 for instance) to know with a quite negligible "false alarms" probability whether the $s^{c^{c}}[y]$ and $s^{c^{\prime \prime}}[y]$ functions collide.

We performed some computer experiments which confirmed the existence, for arbitrarily chosen key values, of ($c^{\prime}, c^{\prime \prime}$) pairs of c value such that the $s^{c^{\prime}}[y]$ and $s^{c^{\prime \prime}}[y]$ functions collide. For some key values, we could even find four byte values $c_{1}^{\prime}, c_{2}^{\prime}, c_{1}^{\prime \prime}$ and $c_{2}^{\prime \prime}$ such that for each of the 256 possible values of the
c_{0} byte, the $s^{c^{\prime}}[y]$ and $s^{c^{\prime \prime}}[y]$ functions associated with the $c^{\prime}=\left(c_{0}, c_{1}^{\prime}, c_{2}^{\prime}\right)$ and $c^{\prime \prime}=\left(c_{0}, c_{1}^{\prime \prime}, c_{2}^{\prime \prime}\right)$ triplets of bytes collide. This stronger property, which is rather easy to explain using the expression of the b_{i} constants introduced in Property (2), is not used in the sequel.

The proposed 4 rounds distinguisher uses the collision test derived from property (4) is the following manner :

- select a C set of about $2^{16} c$ triplet values and a subset of $\{0 . .255\}$, say for instance a Λ subset of $16 y$ values.
- for each c triplet value, compute the $L_{c}=\left(0 E \cdot t_{0}^{c}+0 B \cdot t_{1}^{c}+0 D \cdot t_{2}^{c}+\right.$ $\left.09 . t_{3}^{c}\right)_{y \in \Lambda}$. We claim that such a computation of 16 linear combinations of the outputs represents substantially less than one single Rijndael operation.
- check whether two of the above lists, $L_{c^{\prime}}$ and $L_{c^{\prime \prime}}$ are equal. The 4 round distinguisher requires about 2^{20} chosen inputs Y, and since the collision detection computations (based on the analysis of the corresponding T values) require less operations than the $2^{20} 4$-inner rounds computations, the complexity of the distinguisher is less than 2^{20} Rijndael encryptions.

Note that property (4) also provides another method to distinguish 4 inner round from a random permutation, using $N \leq 256$ plaintexts and $2^{80} N$ operations, namely performing an exhaustive search of the 10 unknown constants considered in property (4). Note that a value such as $N=16$ is far sufficient in practice. However, we only consider in the sequel the above described birthday test, which provides a more efficient distinguisher.

4 An attack of the 7-rounds Rijndael/ $b=128$ cipher with 2^{32} chosen plaintexts

In this Section we show that the 4 inner rounds distinguisher of Section 3 provides attacks of the 7 -rounds Rijndael for the $b=128$ blocksize and the various keysizes. We present two slightly different attacks. The first one (cf Section 4.2 hereafter) is substantially faster than an exhaustive search for the $k=196$ and $k=256$ keysizes, but slower than exhaustive search for the $k=128$ bits keysize. The second attack (cf Section 4.2) is dedicated to the $k=128$ keysize, and is marginally faster than an exhaustive search for that keysize.

The 7-rounds Rijndael is depicted at Figure 2. X represents a plaintext block, and V represents a ciphertext block. In Figure 2 the 4 inner rounds of Figure 1 are surrounded by one initial $X \rightarrow Y$ round (which consists of an initial key addition followed by one round), and two final rounds (which consist of one $T \rightarrow U$ inner round followed by an $U \rightarrow V$ final round).

Our attack method is basically a combination of the 4-round distinguisher presented in Section 3 and an exhaustive search of some keybytes (or combinations of keybytes) of the initial and the two final rounds. In the attack of Section

X	X	X	X	$u_{0,0}$
X	X	X	X	...
X	X	X	X	\ldots
X	X	X	X	$u_{3,3}$
X	X	X	X	$v_{0,0}$
X	X	X	X	
X	X	X	X	
X	X	X	X	$v_{3,3}$

Figure 2: 7-rounds Rijndael
4.1 we are using the property that in the equations provided by the 4 -rounds distinguisher there is a variables separations in terms which involve one half of the 2 last rounds key bytes and terms which involve a second half of the 2 last round key bytes in order to save a 2^{80} factor in the exhaustive search complexity. In the attack of Section 4.2, we are using precomputations on colliding pairs of c values to test each 128-bits key assumption with less operations than one single Rijndael encryption.

4.1 An attack of the 7 -rounds Rijndael $/ b=128 / k=196$ or 256 with 2^{32} chosen plaintexts and a complexity of about 2^{140}

We now explain the attack procedure in some details, using the notation introduced in Figure 2. We fix all X bytes except the four bytes x_{0} to x_{3} equal to 12 arbitrary constant values. We encrypt the 2^{32} plaintexts obtained by taking all possible values for the x_{0} to x_{3} bytes, thus obtaining $2^{32} V$ ciphertext blocks. We are using the two following observations :

Property 5 : If the 4 key bytes added with the x_{0} to x_{3} bytes in the initial key addition are known (let us denote them by $k_{\text {ini }}=\left(k_{0}, k_{1}, k_{2}, k_{3}\right)$, then it is possible to partition the 2^{32} plaintexts in 2^{24} subsets of 256 plaintext values satisfying the conditions of Section 3, i.e. such that the corresponding $256 Y$ values satisfy the following conditions :

- the y byte takes 256 distinct values (which are known up to an unknown constant first round key byte which is not required for the attack).
- the $c=\left(c_{0}, c_{1}, c_{2}\right)$ triplet of bytes is constant ; moreover, each of the 2^{24} subsets corresponds to a distinct c value (the c value corresponding to each subset is known up to three constant first round keybytes which are not required for the attack).
- the 12 other Y bytes are constant and their constant values $Y_{i, j}$ for $i=1 . .3$ and $j=0 . .3$ is the same for all subsets.
Note that the same property is used in the Rijndael designers' attack.
Property 6 : Each of the $t_{0}, t_{1}, t_{2}, t_{3}$ bytes can be expressed as a function of four bytes of the V ciphertext and five unknown key bytes (i.e. 4 of the final round key bytes and one linear combination of the penultimate round key bytes). Therefore, we can "split" the $t^{c}[y]={ }^{\prime} 0 E^{\prime} . t_{0}^{c}[y]+{ }^{\prime} 0 B^{\prime} . t_{1}^{c}[y]+{ }^{\prime}$ $0 D^{\prime} . t_{2}^{c}[y]+^{\prime} 09^{\prime} . t_{3}^{c}[y]$ combination of the four $t_{i}^{c}[y]$ bytes considered in the 4-rounds distinguisher as the XOR of two terms $\tau_{1}^{c}[y]$ and $\tau_{2}^{c}[y]$ which can both be expressed as a function of 8 ciphertext bytes and 10 unknown key bytes, namely $\tau_{1}=^{\prime} 0 E^{\prime} . t_{0}^{c}[y]+^{\prime} 0 B^{\prime} . t_{1}^{c}[y]$ and $\tau_{2}={ }^{\prime} 0 D^{\prime} . t_{2}^{c}[y]+{ }^{\prime} 09^{\prime} . t_{3}^{c}[y]$. We denote in the sequel by $k_{\tau_{1}}$ those 10 unknown keybytes which allow to derive τ_{1} from 8 bytes of the V ciphertext, and by $k_{\tau_{2}}$ those 10 keybytes which allow to derive τ_{1} from 8 bytes of the V ciphertext.

We perform an efficient exhaustive search of the $k_{i n i}, k_{\tau_{1}}$ and $k_{\tau_{2}}$ keys in the following way :

- For each of the 2^{32} possible $k_{i n i}$ assumptions, we can partition the set of the 256^{4} possible X values in 256^{3} subsets of $256 X$ values each, according to the value of the c constant, and select say 256^{2} of these 256^{3} subsets. Thus each of the 256^{2} selected subsets is associated with a distinct value of the c constant. Note that the c value associated with a subset and the y values associated with each of the X plaintexts of a subset are only known up to unknown keybits, but this does not matter for our attack. We can denote by $c *$ and $y *$ the known values which only differ from the actual values by fixed unknown key bits.
- Now for each subset associated with a $c *$ constant triplet, based on the say 16 ciphertexts associated with the $y *=0$ to $y *=15$ values, we can precompute the $\left(\tau_{1}^{c}(y)\right)_{y *=0 . .15} 16$-tuple of bytes for each of the 2^{80} possible $k_{\tau_{1}}$ keys. We can also precompute the $\left(\tau_{2}^{c}(y)\right)_{y *=0 . .15} 16$-tuple for each of the 2^{80} possible $k_{\tau_{2}}$ keys.

Based on this precomputation, for each $\left(c^{\prime} *, c^{\prime \prime} *\right)$ pair of distinct c^{*} values :

- We precompute a (sorted) table the $\left(\tau_{1}^{c^{\prime}}(y) \oplus \tau_{1}^{c^{\prime \prime}}(y)\right)_{y *=0.15}$ 16-tuple of bytes for each of the 2^{80} possible $k_{\tau_{1}}$ keys (the computation of each 16 tuple just consists in xoring two precomputed values)
- For each of the 2^{80} possible values of the $k_{\tau_{2}}$ key, we compute the $\left(\tau_{2}^{c^{\prime}}(y) \oplus\right.$ $\left.\tau_{2}^{c^{\prime \prime}}(y)\right)_{y *=0 . .15} 16$-tuple of bytes associated with the observed ciphertext, and check whether this t-uple belongs to the precomputed table of 16tuple $\left(\tau_{1}^{c^{\prime}}(y) \oplus \tau_{1}^{c^{\prime \prime}}(y)\right)_{y *=0.15}$. If for a given $k_{\tau_{1}}$ value there exists a $k_{\tau_{2}}$ value such that $\left(\tau_{1}^{c^{\prime}}(y) \oplus \tau_{1}^{c^{\prime \prime}}(y)\right)_{y *=0.15}=\left(\tau_{2}^{c^{\prime}}(y) \oplus \tau_{2}^{c^{\prime \prime}}(y)\right)_{y *=0 . .15}$, (i.e. $t^{c^{\prime}}[y]=t^{c^{\prime \prime}}[y]$ for each of the y values associated with $y *=0$ to 16 , this represents an alarm). The equality between the t bytes associated with c^{\prime} and $c^{\prime \prime}$ is checked for the other $y *$ values. If the equality is confirmed, this means that a collision between the $s^{c}[y]$ functions associated with c^{\prime} and $c^{\prime \prime}$. This provides 20 bytes of information on the last and penultimate key values, since with overwhelming probability, the right values of $k_{i n i}, k_{\tau_{1}}$ and $k_{\tau_{2}}$ have then been found.

Since the above procedure tests whether the exist collisions inside a random set of 256^{2} of the 256^{4} possible $s^{c}[y]$ functions, the probability of the procedure to result in a collision, and thus to provide $k_{i n i}, k_{\tau_{1}}$ and $k_{\tau_{2}}$ is high (say about $1 / 2)$. In other words, the success probability of the attack is about $1 / 2$.

Once $k_{i n i}, k_{\tau_{1}}$ and $k_{\tau_{2}}$ have been found, the 16 -bytes final round key is entirely determined and the final round can be decrypted, so one is left with the problem of cryptanalysing the 6-round version of Rijndael. One might object that the last round of the left 6 -round cipher is not a final round, but an inner round. However, it is easy to see that by applying a linear one to one change of variable to U and the 6 th round key (i.e. replacing U by a U^{\prime} linear function of U and K_{6} by a linear function K_{6}^{\prime} of K_{6}), the last round can be represented as a final round (i.e. U^{\prime} is the image of T by the final round associated with
$\left.K_{6}^{\prime}\right)$. Thus we are in fact left with the cryptanalysis of the 6 -round Rijndael, and the last round subkey is easy to derive. The process of deriving the subkeys of the various rounds can then be continued (using a subset of the 2^{32} chosen plaintexts used for the derivation of $k_{i n i}, k_{\tau_{1}}$ and $k_{\tau_{2}}$), with negligible additional complexity, until the entire key has eventually been recovered.

4.2 An attack of the 7-rounds Rijndael $/ b=128 / k=1282^{32}$ chosen plaintext

We now outline a variant of the former attack that is dedicated to the $k=128$ bits version of Rijndael and is marginally faster than an exhaustive search. This attack requires a large amount of precomputations.

As a matter of fact, it can be shown that the $4 c$-dependent bytes that determine the mapping between four $z_{i}^{c}[y]$ bytes and the four $r_{i}^{c}[y]$ are entirely determined by 12 key-dependent (and c-independent) bytes. For each of the 256^{12} possible values of this $\phi(K) 12$-tuple of bytes, we can compute colliding c^{\prime} and $c^{\prime \prime}$ triplets of bytes (this can be done performing about 256^{2} partial Rijndael computations corresponding to say 256^{2} distinct c values and looking for a collision. One can accept that no collision be found for some $\phi(K)$ values : this just means that the attack will fail for a certain fraction (say $1 / 2$) of the key values. We store c^{\prime} and $c^{\prime \prime}$ (if any) in a table of $256^{12} \phi(K)$ entries.

Now we perform an exhaustive search of the K key. To test a key assumption, we compute the $k_{i n i}, k_{\tau_{1}}, k_{\tau_{2}}$ and $\phi(K)$ values. Then we find the $\left(c^{\prime}, c^{\prime \prime}\right)$ pair of colliding c values in the precomputed table, compute the two associated $c^{\prime} *$ and $c^{\prime \prime}$ values, determine which two precomputed lists $\left(V^{c^{\prime}}[y]\right)_{y *=0 . .15}$ $\left(V^{c^{\prime \prime}}[y]\right)_{y *=0 . .15}$ of 16 ciphertext values each are associated with $c^{\prime} *$ and $c^{\prime \prime} *$, and finally compute the associated $\left(t^{c^{\prime}}[y]\right)_{y *=0 . .15}$ and $\left(t^{c^{\prime \prime}}[y]\right)_{y *=0 . .15}$ bytes by means of partial Rijndael decryption. The two values associated with $y *=0$ are first computed and compared. The two values associated with $y *=1$ are only computed and compared if they are equal, etc, thus in average only two partial decryption are performed. It the two lists of $16 t$ bytes are equal, then there is an alarm, and the K is further tested with a few plaintexts and ciphertexts.

We claim than the complexity of the operations performed to test one K key is marginally less than one Rijndael encryption.

5 Conclusion

We have shown that the existence of collisions between some partial byte oriented functions induced by the Rijndael cipher provides a distinguisher between 4 inner rounds of Rijndael and a random permutation, which in turn enables to mount attacks on a 7 -rounds version of Rijndael for any key-length.
Unlike many recent attacks on block ciphers, our attacks are not statistical in
nature. They exploit (using the birthday paradox) a new kind of cryptanalytic bottleneck, namely the fact that a partial function induced by the cipher (the $s^{c}[y]$ function) is entirely determined by a remarkably small number of unknown constants. Therefore, unlike most statistical attacks, they require a rather limited number of plaintexts (about 2^{32}). However, they are not practical because of their high computational complexity, and do not endanger the full version of Rijndael. Thus we do not consider they represent arguments against Rijndael in the AES competition.

References

[AES99] http://www.nist.gov/aes
[DaKnRi97] J. Daemen, L.R. Knudsen and V. Rijmen, "The Block Cipher Square". In Fast Software Encryption - FSE'97 , pp. 149-165, Springer Verlag, Haifa, Israel, January 1997.
[DaRi98] J. Daemen, V. Rijmen, "AES Proposal : Rijndael", The First Advanced Encryption Standard Candidate Conference, N.I.S.T., 1998.

