
A collision attack on 7 rounds of Rijndael

Henri Gilbert and Marine Minier

France T�el�ecom R & D

38-40, rue du G�en�eral Leclerc

92794 Issy les Moulineaux Cedex 9 - France
email : henri.gilbert@cnet.francetelecom.fr

Abstract

Rijndael is one of the �ve candidate blockciphers selected by NIST for
the �nal phase of the AES selection process. The best attack of Rijndael
so far is due to the algorithm designers ; this attack is based upon the
existence of an eÆcient distinguisher between 3 Rijndael inner rounds and
a random permutation, and it is limited to 6 rounds for each of the three
possible values of the keysize parameter (128 bits, 196 bits and 256 bits).
In this paper, we construct an eÆcient distinguisher between 4 inner
rounds of Rijndael and a random permutation of the blocks space, by
exploiting the existence of collisions between some partial functions in-
duced by the cipher. We present an attack based upon this 4-rounds
distinguisher that requires 232 chosen plaintexts and is applicable to up
to 7-rounds for the 196 keybits and 256 keybits version of Rijndael.
Since the minimal number of rounds in the Rijndael parameter settings
proposed for AES is 10, our attack does not endanger the security of the
cipher, indicate any 
aw in the design or prove any inadequacy in selec-
tion of number of rounds. The only claim we make is that our results
represent improvements of the previously known cryptanalytic results on
Rijndael.

1 Introduction

Rijndael [DaRi98], a blockcipher designed by Vincent Rijmen and Joan Daemen,
is one of the 5 �nalists selected by NIST in the Advanced Encryption Standard
competition [AES99]. It is a variant of the Square blockcipher, due to the same
authors [DaKnRi97]. It has a variable block length b and a variable key length
k, which can be set to 128, 192 or 256 bits. The recommended nr number of
rounds is determined by b and k, and varies between 10 and 14. In the sequel
we will sometimes use the notation Rijndael/b/k/nr to refer to the Rijndael
variant determined by a particular choice of the b, k and nr parameters.
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The best Rijndael attack published so far is due to the algorithm designers
[DaRi98]. It is a variant of a the "Square" attack, and exploits the byte-oriented
structure of Rijndael [DaKnRi97]. This attack is based upon an eÆcient distin-
guisher between 3 Rijndael inner rounds and a random permutation. It is stated
in [DaRi98] that "for the di�erent block lengths of Rijndael no extensions to 7
rounds faster than exhaustive search have been found".
In this paper we describe an eÆcient distinguisher between 4 Rijndael inner
rounds and a random permutation, and we present resulting 7-rounds attacks
of Rijndael/b=128 which are substantially faster than an exhaustive key search
for the k = 196 bits and k = 256 bits versions and marginally faster than an
exhaustive key search for the k = 128 bits version.

This paper is organised as follows. Section 2 provides an outline of the
cipher. Section 3 investigates partial functions induced by the cipher and the
existence of collisions between such partial functions, and describes a resulting
distinguisher for 4 inner rounds. Section 4 presents 7-rounds attacks based on
the 4-rounds distinguisher of Section 3. Section 5 concludes the paper.

2 An outline of Rijndael/b = 128

In this Section we brie
y described the Rijndael algorithm. We restrict our
description to the b=128 bits blocksize and will consider no other blocksize in
the rest of this paper.
Rijndael/b/k/nr consists of a key schedule and an iterated encryption function
with nr rounds. The key schedule derives nr+1 128-bit round keys K0 to Knr

from the k = 128; 196 or 256 bits long Rijndael key K. Since attacks presented
in the sequel do not use the details of the dependence between round keys, we
do not provide a description of the key schedule.
The Rijndael encryption function is the composition of nr block transformations.
The current 128-bit block value B is represented by a 4� 4 matrix :

B =

b0;0 b0;1 b0;2 b0;3
b1;0 b1;1 b1;2 b1;3
b2;0 b2;1 b2;2 b2;3
b3;0 b3;1 b3;2 b3;3

The de�nition of the round functions involves four elementary mappings :

� the �=ByteSub byte substitution transforms each of the 16 input bytes
under a �xed byte permutation P (the Rijndael S-box).

� the �=ShiftRow rows shift circularly shifts row i (i = 0 to 3) in the B

matrix by i bytes to the right.

� the �=MixColumn is a matrix multiplication by a �xed 4 � 4 matrix of
non-zero GF(28) elements.

� the �r=KeyAddition is a bitwise addition with a 128-bit round key Kr.
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The Rijndael cipher is composed by an initial round key addition �0, nr� 1
inner rounds and a �nal transformation. The rth inner round (1 � r � nr � 1)
is de�ned as the �r Æ � Æ � Æ � function. The �nal transformation at the round
nr is an inner round without MixColumn mapping : FinalRound = �nr Æ � Æ �.
We can thus summarise the cipher as follows:

B:=�0(B);
For r = 1 to nr � 1

B:=InnerRound(B);
FinalRound(B);

Remarks :

� � is the single non GF (8)-linear function of the whole cipher.

� The Rijndael S-box P is the composition of the multiplicative in-
verse function in GF(8) (NB : '00' is mapped into itself) and a �xed
GF(2)-aÆne byte transformation. If the aÆne part of P was omit-
ted, algebraic methods (e.g. interpolation attacks) could probably
be considered for the cryptanalysis of Rijndael.

� The � Æ � linear part of Rijndael appears to have been carefully de-
signed. It achieves a full di�usion after 2 rounds, and the Maximum
Distance Separability (MDS) property of � prevents good di�eren-
tial or linear "characteristics" since it ensures that two consecutive
rounds involve many active S-boxes.

3 Distinguishing 4 inner rounds of Rijndael/b=128
from a random permutation

3.1 Notation

Figure 1 represents 4 consecutive inner round functions of Rijndael associated
with any 4 �xed unknown 128-round keys. Y; Z;R; S represent the input blocks
of the 4 rounds and T represents the output of the 4th round. We introduce
short notations for some particular bytes of Y; Z;R; S; T , which play a particular
role in the sequel : y = Y0;0, z0 = Z0;0, z1 = Z1;0, z2 = Z2;0, z3 = Z3;0, and
so on. Finally we denote by c the (c0 = Y1;0, c1 = Y2;0, c2 = Y3;0) triplet of Y
bytes.

Let us �x all the Y bytes but y to any 11-uple of constant values. So the c
triplet is assumed to be equal to a constant c = (c0; c1; c2) triplet, and the 12
Yi;j , i=1 to 3, j=0 to 3 are also assumed to be constant. The Z;R; S; T bytes z0
to z3, r0 to r3, s, and t0 to t3 introduced in Figure 1 can be seen as c-dependent
functions of the y input byte. In the sequel we sometimes denote by zc0[y] to
zc3[y], r

c
0[y] to r

c
3[y], s

c[y], tc0[y] to t
c
3[y] the zi, ri, s, ti byte value associated with

a c constant and one y 2 0::255 value.
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Figure 1: 4 inner rounds of Rijndael
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3.2 The 3-rounds distinguisher used in the Rijndael/b=128
designers' attack

The Rijndael designers' attack is based upon the observations that :
- bytes z0 to z3 are one to one functions of y and the other Z bytes are constant.
- bytes r0 to r3 are one to one functions of y (as well as the 12 other R bytes).

- s is the XOR of four one to one functions of y and thus
P255

y=0 s[y] = 0.
Thus 3 consecutive inner rounds of Rijndael have the distinguishing property

that if all Y bytes but y are �xed and y is taken equal to each of the 256 possible
values, then the sum of the 256 resulting s values is equal to zero.

This leads to a 6-rounds attack (initial key addition followed by 5 inner
rounds followed by �nal round). As a matter of fact an initial round (i.e. an ini-
tial key addition followed by 1 inner round) can be added on top, at the expense
of testing assumptions on 4 key bytes of the initial key addition. Moreover, two
additional rounds can be added at the end (namely one additional inner round
followed by one �nal round), at the expense of testing assumptions on 4 �nal
round key bytes. Combining both extensions provides an attack which requires
232 plaintexts and has a complexity of 272 encryptions.

3.3 A 4-rounds distinguisher for Rijndael/b = 128

We now analyse in detail the dependency of the byte oriented functions intro-
duced in Section 3.1 in the c constant and the expanded key. We show that the
sc[y] function is entirely determined by a surprisingly small number of unknown
bytes, which either only depend upon the key or depend upon both the key
and the c value, and that as a consequence there exist (c0; c00) pairs of distinct c
values such that the sc

0

[�] and sc
00

[�] partial functions collide, i.e. sc
0

[y] = sc
00

[y]
for y = 0; 1; � � � ; 255. This provides an eÆcient test for distinguishing 4 inner
rounds of Rijndael from a random permutation.

The construction of the proposed distinguisher is based upon the following
observations, which are illustrated in Figure 1.

Property 1 : At round 1, the y ! zc0[y] one to one function is independent of
the value of the c triplet and is entirely determined by one key byte. The
same property holds for z1; z2; z3. This is because at the output of the
�rst round ShiftRow the c0 to c2 constants only a�ect columns 1 to 3 of
the current block value, whereas the z0 to z3 bytes entirely depend upon
column 0. For similar reasons, the other bytes of Z are independent of y :
each of the bytes of column 1 (resp 2, resp 3) of Z is entirely determined
by the c0 (resp c1, resp c2) byte and one key-dependent byte.
More formally, there exist 16 MixColumn matrix coeÆcients ai;j ,i=0..3,
j=0..3 and 16 key-dependent constants bi;j , i=0..3, j=0..3 such that zi =
ai;0P (y) + bi;0, i=0..3 and zi;j = ai;0P (cj�1) + bi;j , i=1..3, j=0..3.

Property 2 : At round 2, each of the four bytes ri[y], i = 0::3 is a one to one
function of zi[y], and the ri[y]! zi[y] is entirely determined by one single
unknown constant byte that is entirely determined by c and the key.
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More formally, there exist 16 MixColumn coeÆcients �i, i = 0::3, �i,
i = 0::3 
i, i = 0::3 and Æi, i = 0::3 and 4 key-dependent constants �i,
i = 0::3 such that ri = �i �P (zi;0)+�i �P (zi;1)+
i �P (zi;2)+Æi �P (zi;3)+�i,
i = 0::3. The ri bytes are thus related to c and y by the relations :
ri = �i � P (ai;0P (y) + bi;0) + �i � P (ai;1P (c0) + bi;1) + 
i � P (ai;2P (c1) +
bi;2) + Æi � P (ai;3P (c2) + bi;3) + �i, i = 0::3.
Consequently, the r0[y] to r3[y] one to one functions of y are entirely de-
termined by the 4 key-dependent constant unknown bytes bi;0 introduced
in property (1) and the 4 c- and k-dependent bytes bi = �i �P (ai;1P (c0)+
bi;1) + 
i � P (ai;2P (c1) + bi;2) + Æi � P (ai;3P (c2) + bi;3) + �i, i= 0 � �3.

Property 3 : At round 3, the s byte can be expressed as a function of the r0
to r3 bytes and one c-independent and key-dependent unknown constant.
Consequently, the sc[y] function is entirely determined by 4 key-dependent
and c-dependent constants and 5 c-independent and key-dependent con-
stants.

Property 4 : Let us consider the decryption of the fourth inner round : s can
be expressed as s = p�1[(0E:t0 + 0B:t1 + 0D:t2 + 09:t3) + k5] where p

represents the single S-box. In other words 0E:t0 + 0B:t1 + 0D:t2 + 09:t3
is a one to one function of s, and that function is entirely determined by
one single key byte k5. Thus 0E:t0 + 0B:t1 + 0D:t2 + 09:t3 is a function
of y that is entirely determined by 6 unknown bytes which only depend
upon the key and by 4 additional unknown bytes which depend both upon
c and the key.

The above properties provide an eÆcient 4-rounds distinguisher. We can
restate property (3) in saying that the sc[y] function is entirely determined (in
a key-dependent manner) by the 4 c-dependent bytes b0 to b3. Let us make
the heuristic assumption that these 4 unknown c-dependent bytes behave as a
random function of the c triplet of bytes. By the birthday paradox, given a C

set of about 216 c triplet values, there exist with a non negligible probability
two distinct c0 and c00 in C such that the sc

0

[y] and sc
00

[y] functions induced
by c0 and c00 are equal (i.e. in other words such that the (sc

0

[y])y=0::255 and

(sc
00

[y])y=0::255 lists of 256 bytes are equal). Property (4) provides a method to
test such a "collision", using the t0 to t3 output bytes of 4 inner rounds : c0

and c00 collide if and only if 8y 2 [0; :::; 255], 0E:tc
0

0 + 0B:tc
0

1 + 0D:tc
0

2 + 09:tc
0

3 =
0E:tc

00

0 + 0B:tc
00

1 + 0D:tc
00

2 + 09:tc
00

3 . Note that it is suÆcient to test the above
equality on a limited number of y values (say 16 for instance) to know with a
quite negligible "false alarms" probability whether the sc

0

[y] and sc
00

[y] func-
tions collide.

We performed some computer experiments which con�rmed the existence, for
arbitrarily chosen key values, of (c0; c00) pairs of c value such that the sc

0

[y]
and sc

00

[y] functions collide. For some key values, we could even �nd four byte
values c01, c

0

2, c
00

1 and c002 such that for each of the 256 possible values of the
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c0 byte, the sc
0

[y] and sc
00

[y] functions associated with the c0 = (c0; c
0

1; c
0

2) and
c00 = (c0; c

00

1 ; c
00

2) triplets of bytes collide. This stronger property, which is rather
easy to explain using the expression of the bi constants introduced in Property
(2), is not used in the sequel.

The proposed 4 rounds distinguisher uses the collision test derived from
property (4) is the following manner :

� select a C set of about 216 c triplet values and a subset of f0..255g, say
for instance a � subset of 16 y values.

� for each c triplet value, compute the Lc = (0E:tc0 + 0B:tc1 + 0D:tc2 +
09:tc3)y2�. We claim that such a computation of 16 linear combinations
of the outputs represents substantially less than one single Rijndael oper-
ation.

� check whether two of the above lists, Lc0 and Lc00 are equal. The 4 round
distinguisher requires about 220 chosen inputs Y , and since the collision
detection computations (based on the analysis of the corresponding T

values) require less operations than the 220 4-inner rounds computations,
the complexity of the distinguisher is less than 220 Rijndael encryptions.

Note that property (4) also provides another method to distinguish 4 inner
round from a random permutation, using N � 256 plaintexts and 280 N oper-
ations, namely performing an exhaustive search of the 10 unknown constants
considered in property (4). Note that a value such as N = 16 is far suÆcient in
practice. However, we only consider in the sequel the above described birthday
test, which provides a more eÆcient distinguisher.

4 An attack of the 7-rounds Rijndael/b=128 ci-
pher with 2

32 chosen plaintexts

In this Section we show that the 4 inner rounds distinguisher of Section 3 pro-
vides attacks of the 7-rounds Rijndael for the b=128 blocksize and the various
keysizes. We present two slightly di�erent attacks. The �rst one (cf Section 4.2
hereafter) is substantially faster than an exhaustive search for the k=196 and
k=256 keysizes, but slower than exhaustive search for the k=128 bits keysize.
The second attack (cf Section 4.2) is dedicated to the k=128 keysize, and is
marginally faster than an exhaustive search for that keysize.

The 7-rounds Rijndael is depicted at Figure 2. X represents a plaintext
block, and V represents a ciphertext block. In Figure 2 the 4 inner rounds of
Figure 1 are surrounded by one initial X ! Y round (which consists of an initial
key addition followed by one round), and two �nal rounds (which consist of one
T ! U inner round followed by an U ! V �nal round).

Our attack method is basically a combination of the 4-round distinguisher
presented in Section 3 and an exhaustive search of some keybytes (or combina-
tions of keybytes) of the initial and the two �nal rounds. In the attack of Section
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U
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X X X X ...
X X X X v3;3

V

Figure 2: 7-rounds Rijndael
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4.1 we are using the property that in the equations provided by the 4-rounds
distinguisher there is a variables separations in terms which involve one half of
the 2 last rounds key bytes and terms which involve a second half of the 2 last
round key bytes in order to save a 280 factor in the exhaustive search complexity.
In the attack of Section 4.2, we are using precomputations on colliding pairs of c
values to test each 128-bits key assumption with less operations than one single
Rijndael encryption.

4.1 An attack of the 7-rounds Rijndael/b=128/k=196 or
256 with 232 chosen plaintexts and a complexity of
about 2140

We now explain the attack procedure in some details, using the notation intro-
duced in Figure 2. We �x all X bytes except the four bytes x0 to x3 equal to 12
arbitrary constant values. We encrypt the 232 plaintexts obtained by taking all
possible values for the x0 to x3 bytes, thus obtaining 232 V ciphertext blocks.
We are using the two following observations :

Property 5 : If the 4 key bytes added with the x0 to x3 bytes in the initial
key addition are known (let us denote them by kini = (k0; k1; k2; k3),
then it is possible to partition the 232 plaintexts in 224 subsets of 256
plaintext values satisfying the conditions of Section 3, i.e. such that the
corresponding 256 Y values satisfy the following conditions :
- the y byte takes 256 distinct values (which are known up to an unknown
constant �rst round key byte which is not required for the attack).
- the c = (c0; c1; c2) triplet of bytes is constant ; moreover, each of the
224 subsets corresponds to a distinct c value (the c value corresponding to
each subset is known up to three constant �rst round keybytes which are
not required for the attack).
- the 12 other Y bytes are constant and their constant values Yi;j for i=1..3
and j=0..3 is the same for all subsets.
Note that the same property is used in the Rijndael designers' attack.

Property 6 : Each of the t0; t1; t2; t3 bytes can be expressed as a function of
four bytes of the V ciphertext and �ve unknown key bytes (i.e. 4 of the
�nal round key bytes and one linear combination of the penultimate round
key bytes). Therefore, we can "split" the tc[y] =0 0E0:tc0[y] +

0 0B0:tc1[y] +
0

0D0:tc2[y] +
0 090:tc3[y] combination of the four tci [y] bytes considered in the

4-rounds distinguisher as the XOR of two terms �c1 [y] and �c2 [y] which can
both be expressed as a function of 8 ciphertext bytes and 10 unknown key
bytes, namely �1 =

0 0E0:tc0[y] +
0 0B0:tc1[y] and �2 =

0 0D0:tc2[y] +
0 090:tc3[y].

We denote in the sequel by k�1 those 10 unknown keybytes which allow to
derive �1 from 8 bytes of the V ciphertext, and by k�2 those 10 keybytes
which allow to derive �1 from 8 bytes of the V ciphertext.

We perform an eÆcient exhaustive search of the kini, k�1 and k�2 keys in the
following way :
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� For each of the 232 possible kini assumptions, we can partition the set of
the 2564 possible X values in 2563 subsets of 256 X values each, according
to the value of the c constant, and select say 2562 of these 2563 subsets.
Thus each of the 2562 selected subsets is associated with a distinct value
of the c constant. Note that the c value associated with a subset and the y
values associated with each of the X plaintexts of a subset are only known
up to unknown keybits, but this does not matter for our attack. We can
denote by c� and y� the known values which only di�er from the actual
values by �xed unknown key bits.

� Now for each subset associated with a c� constant triplet, based on the
say 16 ciphertexts associated with the y� = 0 to y� = 15 values, we
can precompute the (� c1 (y))y�=0::15 16-tuple of bytes for each of the 280

possible k�1 keys. We can also precompute the (�c2 (y))y�=0::15 16-tuple for
each of the 280 possible k�2 keys.

Based on this precomputation, for each (c0�; c00�) pair of distinct c* values :

� We precompute a (sorted) table the (�c
0

1 (y) � �c
00

1 (y))y�=0::15 16-tuple of
bytes for each of the 280 possible k�1 keys (the computation of each 16-
tuple just consists in xoring two precomputed values)

� For each of the 280 possible values of the k�2 key, we compute the (�
c0

2 (y)�
�c

00

2 (y))y�=0::15 16-tuple of bytes associated with the observed ciphertext,
and check whether this t-uple belongs to the precomputed table of 16-
tuple (�c

0

1 (y) � �c
00

1 (y))y�=0::15. If for a given k�1 value there exists a k�2
value such that (� c

0

1 (y) � �c
00

1 (y))y�=0::15 = (�c
0

2 (y) � �c
00

2 (y))y�=0::15, (i.e.

tc
0

[y] = tc
00

[y] for each of the y values associated with y� = 0 to 16, this
represents an alarm). The equality between the t bytes associated with c0

and c00 is checked for the other y� values. If the equality is con�rmed, this
means that a collision between the sc[y] functions associated with c0 and
c00. This provides 20 bytes of information on the last and penultimate key
values, since with overwhelming probability, the right values of kini, k�1
and k�2 have then been found.

Since the above procedure tests whether the exist collisions inside a random set
of 2562 of the 2564 possible sc[y] functions, the probability of the procedure to
result in a collision, and thus to provide kini, k�1 and k�2 is high (say about
1/2). In other words, the success probability of the attack is about 1/2.

Once kini, k�1 and k�2 have been found, the 16-bytes �nal round key is
entirely determined and the �nal round can be decrypted, so one is left with the
problem of cryptanalysing the 6-round version of Rijndael. One might object
that the last round of the left 6-round cipher is not a �nal round, but an inner
round. However, it is easy to see that by applying a linear one to one change of
variable to U and the 6th round key (i.e. replacing U by a U 0 linear function
of U and K6 by a linear function K 0

6 of K6), the last round can be represented
as a �nal round (i.e. U 0 is the image of T by the �nal round associated with
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K 0

6). Thus we are in fact left with the cryptanalysis of the 6-round Rijndael,
and the last round subkey is easy to derive. The process of deriving the subkeys
of the various rounds can then be continued (using a subset of the 232 chosen
plaintexts used for the derivation of kini, k�1 and k�2), with negligible additional
complexity, until the entire key has eventually been recovered.

4.2 An attack of the 7-rounds Rijndael/b=128/k=128 232

chosen plaintext

We now outline a variant of the former attack that is dedicated to the k=128
bits version of Rijndael and is marginally faster than an exhaustive search. This
attack requires a large amount of precomputations.

As a matter of fact, it can be shown that the 4 c-dependent bytes that de-
termine the mapping between four zci [y] bytes and the four rci [y] are entirely
determined by 12 key-dependent (and c-independent) bytes. For each of the
25612 possible values of this �(K) 12-tuple of bytes, we can compute colliding
c0 and c00 triplets of bytes (this can be done performing about 2562 partial Ri-
jndael computations corresponding to say 2562 distinct c values and looking for
a collision. One can accept that no collision be found for some �(K) values :
this just means that the attack will fail for a certain fraction (say 1/2) of the
key values. We store c0 and c00 (if any) in a table of 25612 �(K) entries.

Now we perform an exhaustive search of the K key. To test a key assump-
tion, we compute the kini, k�1 , k�2 and �(K) values. Then we �nd the (c0; c00)
pair of colliding c values in the precomputed table, compute the two associ-
ated c0� and c00 values, determine which two precomputed lists (V c0

[y])y�=0::15
(V c00

[y])y�=0::15of 16 ciphertext values each are associated with c0� and c00�,

and �nally compute the associated (tc
0

[y])y�=0::15 and (tc
00

[y])y�=0::15 bytes by
means of partial Rijndael decryption. The two values associated with y� = 0 are
�rst computed and compared. The two values associated with y� = 1 are only
computed and compared if they are equal, etc, thus in average only two partial
decryption are performed. It the two lists of 16 t bytes are equal, then there is
an alarm, and the K is further tested with a few plaintexts and ciphertexts.

We claim than the complexity of the operations performed to test one K

key is marginally less than one Rijndael encryption.

5 Conclusion

We have shown that the existence of collisions between some partial byte ori-
ented functions induced by the Rijndael cipher provides a distinguisher between
4 inner rounds of Rijndael and a random permutation, which in turn enables to
mount attacks on a 7-rounds version of Rijndael for any key-length.
Unlike many recent attacks on block ciphers, our attacks are not statistical in
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nature. They exploit (using the birthday paradox) a new kind of cryptanalytic
bottleneck, namely the fact that a partial function induced by the cipher (the
sc[y] function) is entirely determined by a remarkably small number of unknown
constants. Therefore, unlike most statistical attacks, they require a rather lim-
ited number of plaintexts (about 232). However, they are not practical because
of their high computational complexity, and do not endanger the full version of
Rijndael. Thus we do not consider they represent arguments against Rijndael
in the AES competition.
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