
Performance Evaluation of AES

Finalists on the High-End Smart Card

Fumihiko Sano� Masanobu Koike� Shinichi Kawamuray Masue Shiba�

� Toshiba System Integration Technology Center
3-22, Katamachi Fuchu-shi, Tokyo, 183-8512, JAPAN

y Toshiba Research and Development Center
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 210-8582, JAPAN

ffumihiko.sano, masanobu2.koike, shinichi2.kawamura, masue.shibag
@toshiba.co.jp

Abstract. This paper reports the performance of the AES finalists,
MARS, RC6, Rijndael, Serpent, and Twofish, on the high-end smart
card that has a Z80 core with Toshiba’s arithmetic coprocessor.

1 Introduction

During the first round of AES candidate assessment, some reported the perfor-
mance evaluation of the algorithms on low-end smart cards. Their reports are
important for understanding performance of each AES candidates in memory
and computing resource-restricted environments. However, there are, so called
high-end smart cards, which are equipped with a specific hardware for acceler-
ating cryptographic processing. In general these cards are less restricted in their
resource than low-end smart cards. So, it is important for better understanding
of the AES candidates to evaluate the performance on high-end smart cards.
NIST as well expressed their interests in such evaluation in [11]. This paper de-
scribes our experience in implementing five AES finalists, and summarizes the
performances on our high-end smart card available from Toshiba[17].

The high-end smart card is substantially different from low-end one in that its
core is equipped with a crypto coprocessor. It may usually correct to say that the
amount of memory for a high-end card is larger than that of low-end one. In some
cases, however, venders supply cards with large memory amount suitable for
their specific purposes regardless of the core. Therefore, we distinguish between
high-end and low-end cards based on the type of core.

At first, we present the architectures of the core on our smart card that in-
cludes a CPU and a coprocessor architecture. Next, we describe coding rules for
our implementation and then, present experiences of five AES finalists accompa-
nied by results of 64-bit ciphers such that DES[10] and MISTY1[9] on our smart
card for reference purpose. Finally, we summarize advantages and disadvantages
for each implementation.



2 Platform

High-end smart cards available now are usually equipped with 8/16-bit micropro-
cessor and a crypto coprocessor, or accelerator for cryptographic operations[7].
To evaluate the AES finalists’ performance on high-end smart cards, we choose
Toshiba’s T6N55 chip shown in table 1. The chip is equipped with Z80 micro-
processor and a coprocessor. The coprocessor is under the control of Z80 and
it carries out arithmetic/logical operations when Z80 asks to do so. The copro-
cessor is originally designed to accelerate the large integer arithmetics. As will
described shortly, it is also suitable to accelerate some operations required to
implement AES finalists.

Table 1. Features of Toshiba’s T6N55 chip

CPU Z80
ROM 48KB
RAM 1KB
EEPROM 8KB
Max. of Modulus 2,048-bit
Internal Clock Frequency 5MHz

2.1 Z80 Architecture

The Z80 is a famous 8-bit architectured microprocessor developed by ZiLOG[15].
It has an 8-bit accumulator and a flag register, six 8-bit general-purpose registers,
two 16-bit index registers, a stack pointer (SP), and a program counter (PC).
An accumulator A and a flag register F can be paired and dealt with as if it
is a 16-bit register AF. Similarly, 8-bit registers can be paired with particular
registers as BC, DE, and HL. Z80 incorporates dual register banks. Each register
bank has each register sets such as an accumulator, a flag register, and six 8-bit
registers. Note that one can use only one side of the banks at a time. If one want
to use registers belonging to the other side of the bank, he should change the
contexts with an EXX operation.

The instruction set includes the following classes:

– Load 8-bit values to registers or an accumulator.
– Load 16-bit values to registers.
– Arithmetic or logical instructions for the accumulator with registers.
– A single bit shift or rotate instructions.
– Compare, block transfer, and search instructions.
– Branch instructions.
– Subroutine calls and returns from them.
– I/O instructions.



– Checking or setting a single bit in registers.

There are some particular instructions for extended registers or control instruc-
tions of processor. Z80 can execute addition, subtraction, AND, OR, exclusive
or (XOR), and single-bit rotation and shift. It does not have instructions for
multiplication and division.

On using the ordinary Z80 core, we should take some features of its archi-
tecture into account. It needs four clocks even for the basic instructions, such as
a no operation ( NOP ) or a load instructions between registers ( LD r, r’ ). The
next fastest instructions, such as for loading a value to a register ( LD r, n ) con-
sume seven clocks. Operations for 16-bit register sets are more time consuming.
Although we try to use faster operations, the average number of clocks needed
for an instruction is about six.

2.2 Crypto Coprocessor

The coprocessor is developed mainly to accelerate the processing of the public
key cryptosystem. It has 512-byte RAM area (we call it the ‘CRAM’ area).
That area is segregated into two 256-byte RAM areas. The coprocessor can
execute various operations between the 256-byte RAM areas or on the 512-byte
RAM. Each maximum size of arithmetical operations supported by the crypto
coprocessor is shown in table 2.

It can execute the following classes of calculations:

– Addition, subtraction, multiplication, division, and logical operations.
– Modular multiplication.
– Modular exponentiation.
– Montgomery multiplication.
– Extended Euclidean algorithm.
– Memory transfer in CRAM area.

Here, the logical operations mean AND, OR, and exclusive OR(XOR). The mem-
ory transfer is used to transfer data on CRAM area efficiently. So, the feature is
similar to the direct memory access (DMA). The most time consuming opera-
tion is a modular exponentiation with a large exponent. Other operations, when
used in implementing AES finalists, are very fast and finish within a time for
the minimum execution time of a Z80 instruction.

The coprocessor executes logical operations between operands located on
each CRAM areas. Before executing these operations, Z80 have to put several
bytes of control words on the CRAM area in addition to the operands. Since Z80
does not perform so fast to the data on memory, using coprocessor operations
are efficient for large data, but not so much for small data.

3 Implementations

3.1 Coding Rules

When we implement the AES finalist, we apply the following rules for the coding.



Table 2. Features of Toshiba’s Crypto Coprocessor

Instruction Max. of Operands (bits)

Addition 2,048
Subtraction 2,048
Multiplication 1,024
Division 2,048
Modular Multiplication 1,024
Exponentiation 1,024

– Program codes are located on the ROM area, and we do not change the code
at any time.

– We can use all registers, i.e., registers on both sides of the banks.
– The codes run in constant time not depend on the data to avoid timing

analysis.
– We can use memory on the CRAM area if necessary.
– We write codes that generate the extension keys with on-the-fly, if possible.

A time constancy of a code is an imprecise term. We try to give more precise
idea behind the third rule. If we have only to realize the time-constancy, we may
choose an easy way to stretch the execution time by merely adding NOPs at
the end of the code. But what we really have to do is to avoid timing analysis.
So, we have to pay more attention not to leak meaningful information. If we
can successfully apply the third rule, we can prevent simple power analysis as
well as timing attack. The third rule is not sufficient, though it seems necessary,
to prevent the differential power analysis. We don’t discuss on the differential
power analysis in this paper any further.

It is interesting that we may neglect the differences between rounds, for
example the key expansion of DES need 2-bit rotations in some rounds. They
may leak some information, but it seems useless for analysis.

In this section, we report the performance of AES finalists in alphabetic
order. For comparison purpose, results for 64-bit block ciphers, such as DES,
triple DES, and MISTY1, will be shown, as well. We describe the speed of each
algorithm with clocks and RAM requirement: In each table, ‘Int.’ means that
size of required CRAM for coprocessor’s operations, and ‘Ext.’ means other work
area. Note that 5,000 clocks at 5MHz correspond to 1 millisecond. For example,
DES needs about 25,000 clocks, and thus it works in 5ms.

The code of DES does not necessarily obey the coding rules above since
some permutations for DES are realized by hard wired logic. The triple DES
is a two-keyed one, but it executes the key schedule three times with on-the-
fly. Therefore, three-keyed triple DES will have the same performance result.
MISTY means the MISTY1 algorithm[9] with eight rounds.

To apply our results easily for other processors that have similar features,
we try to reduce the memory usage on the CRAM area. But, in this paper, we
see that the memory usage is of little importance, since the platform chosen has
sufficient memory for these implementations.



3.2 MARS

It is the most difficult task for us to implement MARS on smart cards or other
limited resources. MARS has a complex high level structure such as eight rounds
of unkeyed forward mixing, eight rounds of keyed forward transformation, eight
rounds of keyed backward transformation, and eight rounds of unkeyed backward
mixing. Each of the eight rounds consists of so called type-3 Feistel network. In
a type-3 Feistel network, input data is segregated into four words. One of them
is taken as a pseudo-random function’s input and the output is used to modify
three other data words. Since MARS has a block length of 128 bits, each word
has 32 bit length.

There are three disadvantages of MARS when implemented on a smart card.
The first is that it needs 2KB table for S-boxes, but it is not serious. The second is
the weakness check of extended key on the key schedule. The last is the rotations
with variable shift amount. We discuss the last two disadvantages here.

It is necessary for MARS to implement complicated “weak” measures on the
key schedule[3]. The weak keys for MARS are different from those of DES. In
the case of DES, you may disregard the problem of weak key because it only
increases some potential threats caused by the weak key properties. However,
in the case of MARS, since the weak key check procedure is a part of the algo-
rithm specification, you have to check the weak on the key schedule certainly.
Otherwise, you may see a terrible result, such as differences in cipher text, al-
though it encrypts the same plain text with common key. As mentioned above,
the function of checking the weak on the key schedule is primarily needed.

Although implementing weak key check is necessary, it is also true that this
introduces another problem for smart card implementation. If we check the weak
and regenerate extension keys, there is a risk of applying timing attack. The
regeneration of extension keys causes difference in processing time and leaks
some information on the key. Further study of coding is necessary to avoid this
problem.

To save our time, our implementation just omits the weak key check. There-
fore, it is not complete. Our implementation is not so slow because of customiza-
tion for 256-bit key and omitting to check ‘weak’ on the key schedule. The codes
for check ‘weak’ on the key schedule will increase the requirement of ROM and
processing time.

The rotations depend on a key data or an internal data are crucial for Z80
or other 8-bit processors since we need to write codes that run in constant
time, or else an attacker can get some information about the key. Fortunately,
our coprocessor can operate modular multiplications over any modulus. We use
them for rotations. Modular multiplications on our smart card are very fast, and
finish within a single instruction of Z80. It means that we can operate modular
multiplications and data dependent rotations in a constant time and avoid timing
attack.

It seems that MARS is a prudent algorithm against cryptanalysis. But it
causes some difficulties in implementing on smart cards or similar resource-
restricted environments.



Table 3. MARS

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 60 36 24 3,977 45,588

Schedule 512 512 0 1,491 21,742

Total 512 512 24 5,468 67,330

3.3 RC6

RC6 has various parameters and is defined as RC6-w/r/b where w means the
word length, r means the number of rounds, and b means the length of key with
bytes. We write the code with the recommended parameters for AES such as
RC6-32/20/32.

RC6 has a simple structure, but the round function includes various oper-
ations such as, addition, subtraction, multiplication, and rotations depending
on a variable data. Most part of RC6 constructed by arithmetical operation.
Therefore, we operate almost all operations on the coprocessor. Furthermore,
since the coprocessor can operate up to 1,024 bits for operand, we can execute
the pair of rotations with constant shift amount in parallel. An n-bit rotations
to two data is written as follows: We duplicate each of data and put them on
corresponding CRAM area, then multiply them with 2n. As a result, we can
improve the performance and reduce the size of code.

The coprocessor can execute RC6 data encryption efficiently. RC6 has a
simple key schedule but need much iterations and does not suitable with on-the-
fly. The key schedule takes four times as long execution time as encryption.

There is an idea to improve the key schedule processing time. A precomputed
table improves the speed, but increase the size of code. It omits the computation
of 43 initial values (S[i]) with 32-bit word. The modified code copies S[i]s from
precomputed ROM table to RAM area instead of computing S[i]s with constant
values. It shall reduce about 4,000 clocks. It needs some extra code or table for
precomputed table, thus the size of code increases about 150 bytes.

On the smart cards, RC6 has a moderate encryption speed among the final-
ists, but its key schedule is slower than Rijindael or Twofish. Note that it has
been reported that on the 32-bit processor, RC6’s performance is faster than
Rijndael and Twofish[5].

Table 4. RC6

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 124 124 0 489 34,736

Schedule 90 90 0 571 138,851

Total 156 156 0 1,060 173,587



3.4 Rijndael

256-bit key is the fastest for on-the-fly key generation, since we can translate
the internal key every two rounds. 128-bit key is a little slower than 256-bit key,
since we need to make extension keys every round. In the case of 192-bit key,
since the key length is not the multiple of the block length, it is not so easy to
implement on-the-fly key generation.

The xtime is an important subroutine for time constancy. It needs modulus
operation with the primitive polynomial. Here is an example of straightforward
implementation of the xtime(a) algorithm where the original value is stored in
A register.

RLA
JR NC, SKIP
AND PRI ; PRI means the primitive polynomial.

SKIP:
... ; end.

This is a very dangerous code. Since ‘AND PRI’ operation is operated only
when the carry is ‘1’, an attacker can know whether the value excesses 28 or not
in this code. We must avoid such an implementation. Therefore, we use some
techniques to avoid differences of processing time and thus prevent cryptanalysis
using timing attack. Here is an example of xtime(a) operation with constant
time, where a is stored in A register.

RLA
LD B, A
SBC A, A
AND PRI

XOR B

RLA is a instruction of 1-bit leftward rotation for A register. If RLA is carried
out, MSB of A register is set to the carry flag. ‘SBC A, A’ is an instruction which
substract a value in A register and a carry from A register. It means that if the
carry flag is ‘1’ then A register has a value 0xff, otherwise A register has a value
0x00. Next we operate AND instruction with PRI for A register. Then we get
PRI or a value 0x00 in A register, and we can operate whether ‘XOR PRI’ or
‘NOP’ with the same instructions and processing time.

The transformation MixColumn is implemented in an efficient way shown in
section 5.1 in [4]. We implement the AddRoundKey and data transfers with the
coprocessor. Other transformations in Rijndael are not so heavy even for only
the Z80 core. Rijndael is the most efficient algorithm on the finalists on our
smart card.



A disadvantage of Rijndael is that it needs another code for decryption be-
cause of the asymmetry of encryption and decryption. If you need both encryp-
tion and decryption algorithms, it takes twice ROM area for code since most
part of it cannot be shared.

Table 5. Rijndael

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clocks)

Encrypt 34 32 2 700 25,494

Schedule 32 32 0 280 10,318

Total 66 64 2 980 35,812

3.5 Serpent

There is two kinds of implementation of Serpent: ordinary implementation and
bitsliced implementation. Here is the result of an ordinary implementation of
Serpent. It is not a bitsliced implementation. It needs a 2,048-byte ROM table
on the ordinary implementation.

Serpent has various rotational operations. As is described in MARS imple-
mentation, modular multiplication with coprocessor can be used if they improve
the performance. Most of the rotations are, however, more efficient with the Z80
operations than with the coprocessor. 1-bit leftward or rightward rotations can
be implemented with the Z80 operations, and shifts with multiplies of 8-bit are
reorder of bytes. We use the coprocessor operations only for 11-bit rotations,
XOR, and memory transfer. Due to the architecture of our coprocessor, it is not
suitable to efficiently implement three-operand operation used in Serpent.

In [2], Serpent can be implemented using under 80 bytes of RAM with on-
the-fly. Our implementation needs twice more RAM, because we write it with
coprocessor’s operation XOR between halves of CRAM with different offsets.

It has more rounds than other finalists do, so its performance is not so good
as Rijndael or Twofish.

The bitsliced implementation will reduce the size of code and required RAM
with a little degradation in speed. In memory-restricted environment, bitsliced
implementation may be better than the ordinary coding. In this paper, we at-
tach importance to the speed. So, we choose the ordinary implementation for
performance comparison.

3.6 Twofish

In the case that the length of key is less than 256-bit, we need to pad out the
original key until it becomes 256-bit. We implement Twofish with 128-bit key to



Table 6. Serpent

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 68 68 0 3,524 71,924

Schedule 96 96 0 413 147,972

Total 164 164 0 3,937 219,896

take the processing time for padding into account. It includes code for padding,
and it is a little slower than 256-bit key.

There are two models for implementing Twofish, such as Feistel model and
non Feistel model[14]. We implement it with non Feistel model. We assume that it
is faster than Feistel. We use coprocessor’s operations for additions with subkeys,
XOR, and memory transfers on CRAM area, but rotations are implemented with
Z80’s rotations.

The performance of Twofish depends on the size of precomputed tables’ [14].
We consider that the case of using some tables amounted to 1,536 bytes. This
code is compact for processing the key schedule with precomputed tables. It
seems be compatible with 2200 bytes for code and table size model in [14]. The
size of precomputed tables is belongs to encryption code in table 7.

Twofish is as fast as DES on throughput. It does not have any exceptional
advantages, but we have nothing to complain about the performance.

Table 7. Twofish

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 34 32 2 2,493 31,877

Schedule 56 32 24 315 28,512

Total 90 64 26 2,808 60,389

4 Summary

We summarize the performance and the required resources on our implemen-
tations in table 8. The RAM includes required byte in the RAM area and the
CRAM area. Note that when using a coprocessor, the required amount of RAM
increase, because of the alignment rules for CRAM area.

Some finalists are designed to have heavy key schedules. They are intended
to prevent exhaustive search attacks, but resulting in speed reduction on smart
cards. We consider that Rijndael is excellent on all aspects. RC6 is as good as
Rijndael on the code point of view, but the key schedule consumes more time.



Twofish needs much ROM memory than RC6 and Rijndael because of the
table. It is faster than Triple DES and equal to DES on the throughput. It
will have good performance on any smart cards. MARS has disadvantages of
its code size caused by four of eight round iterations and a 2,048-byte table.
The speed is equal to Twofish’s one. We consider MARS has some difficulties
to check ‘weak’ on the key schedule and regenerate. Serpent has disadvantages
of its performance caused by the iterations of rounds and the difficulty of key
schedule. The bitsliced implementation will improve the requirement of ROM or
RAM, but slower than others.

We tried to write all program codes to consume as little RAM area as possible.
On the other hand, if we may regard the RAM area, especially CRAM area, as
a kind of free work space, it will be unfair to compare finalists how little work
area they consume. Nevertheless, notice that MARS consumes all the CRAM
area, whereas others consume at most half of the area.

Table 8. Comparison of AES finalists and the algorithms

RAM ROM Time (clock)
Cipher

(bytes) (bytes) Encrypt Schedule Encrypt + Schedule

MARS 572 5 5,468 45,588 4 21,742 2 67,330 3 �
RC6 156 3 1,060 2 34,736 3 138,851 4 173,587 4
Rijndael 66 1 980 1 25,494 1 10,318 1 35,812 1 only encryption
Serpent 164 4 3,937 4 71,924 5 147,972 5 219,896 5
Twofish 90 2 2,808 3 31,877 2 28,512 3 60,389 2

DES 17 772 25,398
Triple DES 17 849 72,341
MISTY 44 1,598 25,486

�: omit to check “weak” in the key schedule.

5 Conclusion

We have implemented AES finalists on a high-end smart card that is equipped
with a crypto-coprocessor. The resulting code has higher performance than that
on a low-end smart cards, since multiplication and rotation are efficiently imple-
mented using the coprocessor’s commands. Coprocessor’s RAM are also useful
for work memory, as well.

Regarding speed, Rijndael is the best one and is as fast as our DES imple-
mentation. It is twice faster than DES on the throughput. RC6 is suitable for
our smart card same as on the 8051[6, 8], but not to be compared with Rijndael
or Twofish because of the key schedule.

For smart card implementation, it is necessary to perform key schedule at
least for every processing block, in order to save memory areas to store extended



key. For the same reason, it is desirable for key schedule to be suitable for on-
the-fly key generation. As a result, design concept for key schedule affects the
performance very much, and those algorithms that have heavy key schedule are
not advantageous for smart card implementation.

Finally, we report the performance of E2[12] that is a candidate on the first
round in the appendix.

References

1. R. Anderson, E. Biham, and L. Knudsen, \Serpent: A Proposal for the Advanced

Encryption Standard", AES submission, 1998.
2. R. Anderson, E. Biham, and L. Knudsen, \Serpent and Smartcards", CARDIS
’98, 1999, available on http://www.cl.cam.ac.uk/~rja14/serpent.html.

3. C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,
S. M. Matyas Jr., L. O’Connor, M. Peyravian, \MARS -a candidate cipher for

AES", AES submission, 1998.
4. J.Daemen, V.Rijmen, \AES Proposal: Rijndael", AES submission, 1998.
5. B. Gladman, “AES Algorithm Efficiency”,
http://www.btinternet.com/~brian.gladman/cryptography technology/Aes/

6. G. Hachez, F. Koeune, and J. Quisquater, \cAESar results: Implementation of

Four AES Finalists on Two Smart Cards", The second AES conference, 1999,
available on http://www.dice.ucl.ac.be/crypto/CAESAR/caesar.html.

7. H. Handschuh, and P. Paillier, \Smart Card Crypto-Coprocessors for Public-Key

Cryptography", CryptoBytes, Vol. 4, No. 1, RSA Laboratories, 1998.
8. G. Keating, \Performance Analysis of AES candidates on the 6805 CPU core",
The second AES conference, 1999,
available on http://www.ozemail.com.au/~geoffk/aes-6805/.

9. M. Matsui, \New Block Encryption Algorithm MISTY", Fast Software Encryp-
tion, 4th International Workshop Proceeding, LNCS 1267, Springer-Verlag, 1997,
pp.54-68.

10. National Bureau of Standards, \Data Encryption Standard", U.S.Department of
Commerce, FIPS 46-3, October 1999.

11. J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E. Roback, \Sta-
tus Report on the First Round of the Development of the Advanced Encryption

Standard", http://csrc.nist. gov/encryption/aes/round1/r1report.pdf
12. Nippon Telegraph and Telephone Corporation, \Speci�cation of E2 { a 128-bit

Block Cipher", AES submission, 1998.
13. R.L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, \The RC6 Block Cipher",

AES submission, 1998.
14. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, \Two�sh; A 128-Bit Block

Cipher", AES submission, 1998.
15. ZiLOG, \Z80 Microprocessor Products",

available on http://www.zilog.com/products/z80.html
16. http://csrc.nist.gov/encryption/aes/round2/Round2WhitePaper.htm, 1999.
17. http://www.toshiba.co.jp/about/press/1999 02/pr j0301.htm, (in Japanese).



A E2

E2 is not selected as a finalist for the second round review. But it has a good
performance, especially encryption speed without key schedule. The serious dis-
advantages of E2 are that it has time consuming key schedule and can’t execute
it with on-the-fly. Fortunately, since the RAM usage fits on the half of CRAM
area, we select a way to extend all round keys on the half of them, at first. In this
case, E2 is efficient for encryption just like the report in [6]. The round function
is designed as suitable for byte oriented operations. It is good for the Z80 archi-
tecture. It is, however, difficult for Z80 to execute multiplication on the IT and
division on the FT. We use the coprocessor’s commands for these operations.
Those commands include XOR, memory transfer, multiplication, and inverse.

Table 9. E2

RAM (byte)
Total Int Ext

ROM (byte) clock

enc 26 24 2 1,519 17,018

key 548 512 36 296 79,358

Total 548 512 36 1,815 96,376


