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Abstract. In this paper, we discuss ways to attack various reduced-
round variants of MARS. We consider cryptanalysis of two reduced-
round variants of MARS: MARS with the full mixing layers but fewer
core rounds, and MARS with each of the four kinds of rounds reduced by
the same amount. We develop some new techniques for attacking both
of these MARS variants. Our best attacks break MARS with full mix-
ing and five core rounds (21 rounds total), and MARS symmetrically
reduced to twelve rounds (3 of each kind of round).

1 Introduction

MARS [BCD+98] is a block cipher submitted by IBM to the AES [NIST97a]
[NIST97b], and one of the five finalists for AES. The cipher has an uncon-
ventional structure, consisting of a cryptographic “core” in the middle, and a
“wrapper” surrounding the core to protect it from various kinds of attack. As
with all ciphers, the only way we know to determine the strength of MARS is
to try to cryptanalyze various weakened versions of it.

In this paper, we discuss attacks on reduced-round variants of MARS. Be-
cause of MARS’ unconventional structure, there are many different reduced-
round variants worth considering. Here, we focus on two: A variant with the full
“wrapper” but fewer rounds of cryptographic core, and a variant with both the
core and wrapper reduced by the same number of rounds. In other work [KS00],
we have considered the cryptographic core without the wrapper. In view of the
stated purpose of the “core” and “wrapper” rounds, we believe the two variants
in this paper have a great deal to teach us about the ultimate strength of MARS.

1.1 Current Results

Our results are as follows:

Attacks on Reduced-Round MARS Variants
Reduced-Round Work Memory Text Requirements
Version
Full Mixing + 5 Core 2232 half encs 2236 bytes 8 known plain
Full Mixing + 5 Core 2247 partial encs 2197 bytes 250 known plain
6 Mixing + 6 Core 2197 partial decs 273 bytes 269 chosen plain
0 Mixing + 11 Core 2229 partial encs 269 bytes 265 chosen plain



For reasons of both space and clarity of presentation, the attacks against the
core rounds only are not included in this paper, and can be found in [KS00].

1.2 Implications of the Results

None of our current results on MARS come close to breaking the full cipher; our
best results to date break only 21 out of 32 rounds (and this counts attacking 16
mixing rounds, which are far weaker than the core rounds). However, the attacks
in this paper demonstrate ways to attack the MARS structure, and so highlight
potential weaknesses of that structure. They also help us to understand how the
components of this complex cipher interact to resist attack.

We also introduce a new kind of meet-in-the-middle attack, which may be
of independent interest. Although we demonstrate its use initially on MARS, it
may be useful against other ciphers, especially other ciphers with heterogenous
structures.

1.3 Guide to the Rest of the Paper

The remainder of the paper is arranged as follows: First, we discuss the structure
of MARS, and introduce notation and terminology to describe its inner workings.
Next, we discuss a set of attacks on MARS with only the number of core rounds
reduced. Next, we develop attacks on MARS variants with the same number of
each kind of round taken out. We conclude the paper with a discussion of the
new techniques we have developed for MARS, the implications of our results,
and some open questions.

2 The MARS Structure

The MARS structure can be considered as six different layers through which a
plaintext block must pass to become a ciphertext block:

1. Pre-Whitening Layer: The plaintext has 128 bits of key material added to
its words modulo 232.

2. Forward Mixing Layer: Eight rounds of unkeyed mixing operations making
extensive use of the MARS S-box.

3. Forward Core Layer: Eight rounds of keyed unbalanced Feistel cipher, using
a combination of S-box lookups, multiplications, data-dependent rotations,
additions, and xors to resist cryptanalytic attack.

4. Backward Core Layer: Eight rounds of keyed unbalanced Feistel cipher, using
a combination of S-box lookups, multiplications, data-dependent rotations,
additions, and xors to resist cryptanalytic attack.

5. Backward Mixing Layer: Eight rounds of unkeyed mixing operations making
extensive use of the MARS S-box.

6. Post-Whitening Layer: The block has 128 bits of key material subtracted
from its words modulo 232.



In this paper, we typically discuss MARS in terms of two different compo-
nents. The forward and backward core layers together make up the “crypto-
graphic core”; this core looks like a relatively conventional block cipher, and
appears to be reasonably resistant to attack. The pre-whitening, forward mixing
layer, backward mixing layer, and post-whitening layer together make up the
“wrapper,” which protects the cryptographic core from various kinds of attack
by requiring a large key guess or some clever cryptanalysis to gain access to
inputs and outputs of the core. This is a very different block cipher design than
is used in the other AES candidates. Among other things, this new design makes
it relatively difficult to determine how to come up with reduced-round variants
of the cipher to attack.

2.1 The Cryptographic Core

The strength of MARS resides fundamentally in the strength of the core rounds.
Both forward and backward core rounds use the same E function, which takes
one 32-bit input and two subkey words, and provides three 32-bit words. Each
output is combined into one of the three other words. The only difference between
forward and backward rounds is the order in which the outputs are combined
with the words. The core rounds’ strength is based primarily on mixing incom-
patible operations in the E function, and in their target-heavy Feistel structure,
which causes both linear and differential characteristics to quickly spread out into
every word. A full description of the MARS core rounds appears in [BCD+98].

The cryptographic core, with a few additional rounds, could stand alone as
a cipher; indeed, this would have been a fairly conventional design. Instead,
the MARS design team chose to use a smaller number of core rounds,1 but to
surround the core with a “wrapper.”

2.2 The Wrapper

The key addition/subtraction and mixing layers surround the core rounds, pre-
venting direct access to the core rounds from either the plaintext or the cipher-
text side. While the wrapper itself isn’t particularly resistant to cryptanalysis, it
is quite different in structure than the core, and it is designed to require guessing
of key material before an attacker can learn or control either inputs or outputs
to the core.

The mixing layers, like the core, have an unbalanced (target-heavy) Feistel
structure, but use only S-boxes and mixing of addition and xor.

We are a little puzzled by the decision to involve only 128 bits of key material
on each side of the core. This leaves the possibility of an attacker guessing his
way past either half of the wrapper, and thus seeing either input or output, with
a guess of only half the maximum key length. A small change to the design would
have involved 256 bits of key material on each side, and thus made partial key

1 Assuming the same level of performance, adding the wrapper requires reducing the
number of core rounds.



guessing worthless as a method of bypassing the wrapper. Below, we consider
some attacks that simply guess key material to bypass the wrapper entirely.
Inclusion of additional key material would apparently have stopped such attacks
at very little cost. While we understand the role of the “wrapper” in helping the
core resist attacks, we don’t understand why it couldn’t fulfill this role just as
well with another 128 bits of key material being combined in on each side. Such
a change to the design would have rendered many of the attacks we describe in
this paper impossible, at a low performance cost.

2.3 Reduced-Round MARS Variants

In a conventional cipher design, the rounds are all more-or-less the same except
for subkeys (and sometimes round constants). There is an obvious way to develop
weakened versions of such ciphers: simply reduce the number of rounds. Because
of the very different roles of the different kinds of rounds in MARS, however,
there are a number of reduced-round MARS variants that can teach us valuable
lessons about the ultimate strength or weakness of MARS.

Some reduced-round variants we have considered include:

Chopping Off the Beginning or End We evaluate the strength of most ci-
phers by considering versions with several of the first or last rounds omitted:
first the whitening layers and then several rounds of the mixing layers. This
isn’t a terribly rewarding way to look at MARS, since it omits important
parts of the cipher’s structure.

Core Rounds Only Because most of the cryptographic strength of MARS ap-
parently resides in the core rounds, it is reasonable to consider the strength
of these rounds independently. By developing such attacks, we learn how
to attack a fundamental component of the cipher, which may be of use in
mounting attacks on the full cipher in the future. For space reasons, most of
our analysis of the MARS core is described in another paper [KS00].

Full Cipher with Reduced Core Rounds An alternative way to evaluate
the strength of MARS is to consider the full cipher, but with fewer core
rounds. This allows us to see how the core rounds might be attacked, even
through the whitening and mixing layers that wrap the core rounds of the
cipher. It also gives us insights into how strong the core needs to be to allow
MARS to resist cryptanalysis.

Symmetric Reductions of the Cipher In the full MARS, there are four dif-
ferent types of rounds, each repeated eight times, for a total of 32 total
rounds. It is reasonable to consider symmetric reductions of this; for ex-
ample, we can consider a MARS variant with only three or four or six of
each kind of round. In some sense, this probably provides more information
about attacking the full MARS cipher than other kinds of weakened variant,
because all the components of the cipher are present.

We believe the last three can teach us many lessons about the ultimate
strength of MARS, both in terms of developing tools for attacking the full cipher,
and in terms of evaluating how close the best current attacks come to breaking
the full MARS.



3 Full Mixing with Reduced Core Rounds

In this section, we consider attacks on a MARS variant with the full “wrapper,”
but a reduced “cryptographic core.” These attacks demonstrate how it is possible
to mount attacks on a cryptographic core, even through the full wrapper, albeit
against a much-weakened core. These attacks penetrate by far the largest number
of rounds of the cipher, because they focus on the relatively weak mixing rounds,
rather than the much stronger core rounds.

Our attacks in this section are meet-in-the-middle attacks, requiring enor-
mous memory resources to implement, and thus purely academic. In the re-
mainder of this section, we will assume that one memory access to these huge
memory devices costs about the same amount of work as a partial encryption.
There are ways to trade off time for memory in these attacks, but they generally
aren’t useful in the context of these attacks.

3.1 A Straightforward Meet-in-the-Middle Attack on Five Core
Rounds

Consider MARS with full mixing and whitening layers, but with the core reduced
to three forward and two backward core rounds. This is vulnerable to a meet-
in-the-middle attack as follows:

1. Request eight plaintext/ciphertext pairs.
2. From the plaintext side, guess:

(a) The 128-bit pre-whitening key.
(b) The 62-bit first round key.
(c) K× and the low nine bits of K+ for the second round.
(d) This yields knowledge of A2 = D3 >>> 13. Compute this value for all

eight plaintexts, and put the resulting 256-bit value in a sorted list.
3. From the ciphertext side, guess:

(a) The 128-bit post-whitening key.
(b) The 62-bit last round key.
(c) K× and the low nine bits of K+ for the next-to-last round.
(d) This yields knowledge of A2 = D3 >>> 13. Compute this value for all

eight ciphertexts, and search the sorted list from the plaintext guesses
for a match on this 256-bit value.

This attack passes through 16 mixing rounds and 5 core rounds (thus 21
rounds total), at a cost of about 2232 half encryptions’ work (that is, 2229 work
for each of the eight texts), and about 2236 bytes of memory. The memory re-
quirements are totally unreasonable in practice, so this attack is purely academic.

Summary of Results
Attack On: Full Mixing Plus Five Core Rounds (21 total rounds)
Attack Type: Meet-in-the-Middle
Work: 2232 half-encryptions
Memory: 2236 bytes
Texts: Eight known plaintexts



3.2 The Differential Meet-in-the-Middle Attack

Here, we introduce the concept of a differential meet-in-the-middle attack. This
attack is related to the attack on the Mansour-Even construction by Daemen
[Dae95], the attack on DESX by Kilian and Rogaway [KR96], and the inside-out
attack of Wagner [Wag99].

In a standard meet-in-the-middle attack, we guess some key from the first
and second halves of the cipher, and then match on some middle value. For
example, an attack on double-DES starts by getting two plaintexts and their
corresponding ciphertexts. We then guess the key for the first DES encryption,
and for each such key guess, we compute the middle value from the two plaintexts
if they were encrypted under that key. This is stored in a sorted list. We then
guess the second DES key, and compute, for each guess, the middle value from
decrypting the two ciphertexts. These values are searched for in the sorted list.
When we find a matching value, it is very likely that this corresponds to the
right key.

This attack can be generalized. For example, it is not necessary that the
whole intermediate value to an encryption be computed; we can compute a
single bit from each direction, and then examine more plaintext/ciphertext pairs.
Similarly, if we can compute some checksum from intermediate values we reach
by key guesses from the plaintext and ciphertext sides, then we need never have
any knowledge of actual intermediate text values, as in [KSW99].

An extension to this idea allows the use of probability one differentials
through some intermediate part of the cipher. Consider the truncated differ-
ential (0, 0, 0, δ0) → (δ1, 0, 0, 0), which goes through three MARS core rounds
with probability one. The truncated differential works the same way in reverse,
naturally. This means that if we see a right input pair (a pair with differ-
ence (0, 0, 0, δ0)), we will also see a right output pair (a pair with difference
(δ1, 0, 0, 0)).

In a meet-in-the-middle attack, we must find some value that can be com-
puted from both the top (input) and the bottom (output) of the cipher with
a key guess, build a sorted list of these values, and look for pairs of keys that
match on these values.

With these differentials, we can compute such a value as follows:

1. Get about 250 known plaintexts and their corresponding ciphertexts. Label
each plaintext/ciphertext pair with an index number, 0..250 − 1.

2. Guess part of the key from the top, and compute intermediate states for
each plaintext given that key guess.

3. Sort the plaintext-intermediate values on their first three words.
4. Go through these values, and note each pair of texts that matches on their

first three words by their index numbers. List these in sorted order, lower
index number first in each pair. We expect about eight of these pairs.

5. Guess part of the key from the bottom, and compute intermediate states for
each ciphertext from that key guess. Sort the ciphertext-intermediate values
on their last three words.



6. Go through these values, and note each pair of texts that matches on their
last three words by their index numbers. List these in sorted order, lower
index number first in each pair. We expect about eight of these pairs.

7. Because the differential has probability one in both directions, there must
be the same number of these pairs, and the pairs must be identical, from
both plaintext and ciphertext. All we’ve done here is to list which pairs have
the right input and output xor differences to fit this truncated differential.

From this, we now have a “checksum” (the right pair indices) that we can
compute across three MARS core rounds. (We can easily restrict the checksum’s
size to four or eight matching pairs. The indices of the pairs must be put in
some standard order; for example, note each right input pair of indices in sorted
order, and then sort the pairs in order of each pair’s lowest index number.) This
checksum costs about 50 × 250 ≈ 256 work to find for any block of 250 texts.
We can thus do the following differential meet-in-the-middle attack on the full
MARS mixing layers plus five rounds of core:

1. Get 250 known plaintext/ciphertext pairs, and label each by an index number
as described above.

2. From the plaintext side, guess the pre-addition key and the first core round
key, a total of 2190 different key guesses.

3. For each key guess, take the predicted inputs to the second core round, and
compute the input right pair indices as described above. This takes about
256 work per key guess. Write the input right pair indices to a huge list,
one entry per key guess with the first eight right input pair indices in sorted
order.

4. Do the same thing from the bottom, continuing to add entries to the huge
list.

5. Sort the huge list, which will now have 2191 entries in it, and should thus
take about 191× 2191 ≈ 2199 work to sort.

6. Find the match between key guesses from the plaintext and ciphertext sides.

The total work done is thus 2190× 256× 2+ 2199 ≈ 2247. The attack recovers
all key material used in the pre- and post-addition/subtraction keys, and the
first and last core rounds’ values, as well. The total memory taken is 56× 2191

bytes.

Summary of Results
Attack On: Full Mixing Plus Five Core Rounds (21 total rounds)
Attack Type: Differential Meet-in-the-Middle
Work: 2247 partial encryptions
Memory: 2197 bytes
Texts: 250 known plaintexts

3.3 Tradeoffs Between Differential and Conventional
Meet-in-the-Middle Attacks

Note that the differential meet-in-the-middle attack requires slightly more work
but considerably less memory than the conventional meet-in-the-middle attack.



The advantage of the differential meet-in-the-middle attack is that it allows us
to pass through three core rounds for free; the disadvantage is in the cost of
detecting the property that passes through those three core rounds for free, and
the far larger number of known plaintexts required. This tradeoff determines
which attack is best-suited for a given cipher and attack model.

For reference, we will point out that the differential meet-in-the-middle at-
tacks can be used with less memory against smaller numbers of core rounds. For
example, we can use the same truncated differential and filtering process against
three rounds of core, dropping the total memory required to about 2133 bytes of
memory, at a work factor of about 2185 partial encryptions.

We have considered ways of extending the differential meet-in-the-middle
attack another round. Unfortunately, there are complications involved in using
either differentials with probability substantially lower than one, or in using
differentials that don’t run both directions with approximately equal probability.

3.4 Using Lower Probability Differentials

Consider a differential with probability 1/2 through several rounds of some ci-
pher, and assume we must find four input right pairs that are also output right
pairs. The problem is that we must have an exact match for the final sorting and
searching phase of the meet-in-the-middle attack to work. The only way we can
see to mount the attack in this situation is to generate and store many different
input right pairs, in hopes that one will consist of all successful differentials, and
thus, right output pairs.

The most efficient way to do this will probably be to find R right input pairs,
and add to the sorted list of input right pairs every possible 4-tuple of the pairs,
and then to do the same with the right output pairs. That will involve R choose
4 entries in the list, and we can expect it to work if we expect at least 4 of the R
input right pairs to result in output right pairs. The number of expected right
output pairs from R right input pairs is binomially distributed; for reference,
with nine right input pairs, we expect four right output pairs with probability
1/2. With twenty right input pairs, we have about a 0.94 probability of getting
some subset of four right input pairs.

This implies an unpleasant tradeoff between probability of the differential
used, and memory required for the attack. Consider the following numbers, which
describe the impact of using lower-probability differentials on the difficulty of the
attack. These numbers are for parameters that give the attack an approximate
probability of success of 1/2.

Memory vs. Probability Tradeoff
Prob. of Num. Right Input Num. Entries in Sorted
Characteristic Pairs Required List per Key Guess
0.9 5 5
0.5 9 126
0.1 47 178365
0.01 467 1.96× 109

0.001 ≈ 5000 2.60× 1013



As a rule, multiplying the number of entries in the sorted list per key guess
by N multiplies the size of that list by N , which multiplies the work involved in
handling it by N log N . We thus have great difficulty in using differentials with
very low probabilities.

Truncated Differentials with Substantially Lower Probabilities in the
Decryption Direction Normal differentials must have the same probability
in both directions. (This can be established by a simple counting argument.)
However, truncated differentials, which don’t specify the whole difference, can
have different probabilities in different directions. For example, in the MARS
forward core rounds, the following four-round differential has probability one:

(0, 0, 0, 231)→ (?, ?, (low 12 bits = 0x1000), 212)

However, this truncated differential cannot be run backwards with reasonable
probability. There are about 2211+2127 pairs of inputs that will yield this output
difference; of these pairs, only about 2−84 have input difference (0, 0, 0, 231). This
makes the attack much more costly; in fact, our best methods to mount the
attack in this case allow us to attack the full mixing and four rounds of core,
but not five rounds of core.

3.5 Boomerang Meet-in-the-Middle Attacks

We have also considered using the same kind of technique, but with boomerangs
[Wag99] (basically, 4-tuples with a differential relationship between all four texts
in the middle of the cipher) instead of individual ciphertexts. The problem of
detecting when we have the expected boomerangs is difficult; thus far, we have
been unable to find a way to do this that isn’t far costlier than the rest of the
attack can afford.

3.6 Other Techniques

In this section, we have focused on meet-in-the-middle attacks, because these are
the most obvious kinds of attacks to consider. However, there are other attacks
that might be useful against this kind of reduced-round MARS version. For
example, we might guess our way past the pre-addition key and forward mixing
layers, and look for a set of text pairs whose properties will show through eight
rounds of backward mixing layer. We haven’t yet found an effective way to do
this for all eight backward mixing rounds, but research is ongoing.

4 Symmetric Reductions of the Cipher

MARS consists of eight rounds each of four kinds of round functions. A natural
way to derive a reduced-round version of MARS to analyze is to consider k
rounds of each kind. For example, when k = 2, we have eight total rounds; when



k = 3, twelve; and when k = 4, sixteen. Cryptanalysis of such reduced-round
versions of the cipher allows us to learn important lessons about how to attack
a the general MARS structure.

Our attacks typically work as follows:

1. First, we choose N batches of input pairs, so that one such batch is likely to
consist of many pairs that have some differential after the mixing layer.

2. We then exploit some differential property that passes through the core
rounds, leaving a detectable differential property somewhere near the end of
the cipher.

3. Finally, we guess enough key material at the end to detect the detectable
property; the partial key guess that allows us to detect the differential prop-
erty is the correct one.

4.1 Attacking MARS Symmetrically Reduced to Eight Rounds

When k = 2 (eight rounds total), we have a cipher that is obviously not very
strong. It is still worthwhile to consider how this might be attacked, in part to
help develop techniques for attacking stronger versions. Recall that this cipher
consists of the key addition, the first two forward mixing rounds, two forward
core rounds, two backward core rounds, the last two backward mixing rounds,
and the key subtraction.

For this version, we can simply use one of the meet-in-the-middle attacks
discussed in the previous section, since there are only four rounds. However, we
can do much better than that.

Our attack works as follows:

1. We choose N batches of eight pairs each, where N ≤ 240. The batches
will be described below; one batch will have all eight pairs with difference
(0, 0, 0, 231) after the forward mixing layer.

2. In the right batch, this passes through the four core rounds with probability
one, leaving (?, ?, ?, 212).

3. We guess a few bits of subtraction key at the end of the cipher, and thus
distinguish the right batch from all the wrong batches. If we guess m bits
of effective key, we will need about 2m+44 partial decryptions to distinguish
the right batch from the wrong batches.

Choosing the Batches The first step to this attack is to get pairs of texts
through two forward mixing rounds, so that we have pairs with the difference
(0, 0, 0, 231) in the input to the first core round.

Our plan is to put a 27 difference in A, and an offsetting difference T in B,
and finally a difference to cancel A’s difference in D. To simplify the filtering
problem at the end, we will choose batches of eight pairs of texts, so that one of
the batches will give us eight right pairs through the forward mixing layer.



Choosing A, A∗ We show the first difference as being 27, in A, which passes
through the key addition with approximate probability 1/2, and then generates
expected difference T in the output to the first use of S-box s0 with probability
2−7. This then has probability of 2−8. This is based on simply looking for a pair
of S-box inputs, (u, u⊕ 27), such that s0[u]⊕ s0[u⊕ 27] = T . We look at all 128
such pairs, and use the difference with the lowest weight in its low 31 bits, for
reasons that will become clear momentarily.

For each batch, we hold the low eight bits of A constant. For one such value,
A, A∗ = A⊕ 27 will leave a 27 difference in A, and a T difference in the output
from the first s0.

Choosing B, B∗ The second difference is shown as being T , in B. This passes
through the key addition with approximate probability 2−w(T ), where w(T ) is
the Hamming weight of the low 31 bits of T . If we get T as the xor differences in
both line B and the s0 output from A, they cancel out with probability one. (We
can also consider a mod 232 difference T that passes through the key addition
with probability one, and cancels out the T additive difference in the s0 output
with probability about 2−w; naturally, there is no difference in the probabilities
involved.) Recall that we chose u, u⊕ 27 in A to minimize w(T ). Let us assume
that the minimum value for w(T ) is 12. Then, we have about 2−12 probability of
finding a pair B, B∗ such that their difference after the key addition is T , simply
by using the rule that B∗ = B ⊕ T . We can actually do somewhat better than
this in our selection of batches.

Building the Batches The third difference is shown as being 231, in D. This
difference passes through all xors and additions with probability one.

We can thus build batches of (A, B, C, D), (A∗, B∗, C, D∗) pairs. Each batch
of eight pairs contains the same low-order eight bits for A and all the same bits
for B. There are thus 224 × 232 × 232 = 288 possible pairs for each batch, and
there are 240 batches possible, and about 212×28 = 220 expected to be necessary.

We build 220 batches of eight pairs, for a total of 224 chosen plaintexts.

Guessing Key at the End After the core rounds, input pairs with difference
(0, 0, 0, 231) must have output difference (?, ?, ?, 212). We must thus learn the
value of D in the output from the core rounds. To do this, we must guess about
12 bits of the subtractive key for C, and all of the subtractive key for D. Using
these guesses, we can derive the values for D after the core rounds. We must do
this for all 224 texts. We thus have total work of about 224 × 244 = 268 partial
decryptions. (We suspect that there are better attacks for k = 2, but that these
attacks don’t generalize for larger k values.)

Summary of Results
Attack On: MARS Symmetrically Reduced to Eight Rounds
Attack Type: Differential
Work: 268 partial decryptions
Memory: 229 bytes
Texts: 225 chosen plaintexts



4.2 Extending the Attack to k = 3 (Twelve Rounds)

We now consider an attack on MARS symmetrically reduced to 12 rounds. Again,
the cipher is obviously not very strong. However, the structure is beginning to
add difficulties to the attack. We use a boomerang-amplifier to cover the six core
rounds with probability 2−96 for each pair of pairs with difference (0, 0, 0, 231)
into the core rounds. With about 250 right pairs into the core rounds’ input, we
expect to see about four right pairs of pairs. These pairs will then pass through
six more rounds, and can be detected by examining the whole output blocks
from all the texts.

Requesting Inputs We use the same input structure as before, but instead of
requesting eight pairs for each batch, we request 250 pairs for each batch.

The Boomerang Amplifier The boomerang-amplifier attack is introduced in
[KS00], and is based on the concept of “boomerangs,” as described in [Wag99].
The basic idea of the attack involves a property occurring in pairs of pairs of
texts.

For the MARS core, we use the batches of input pairs described above to try
to find a batch of 250 pairs of texts, all of which will have difference (0, 0, 0, 231)
in the input to the first core round. Since there is a probability one differential
for the core rounds, (0, 0, 0, 231) → (231, 0, 0, 0), this means that all 250 pairs of
the batch will have difference (231, 0, 0, 0) after three core rounds.

Consider the set of 250 of these pairs in the batch. We will refer to these
pairs as ((W0, W

∗

0 ), (W1, W
∗

1 ), ..., (Wi, W
∗

i )) in input to the core rounds, and as
((X0, X

∗

0 ), (X1, X
∗

1 ), ..., (Xi, X
∗

i )) after round three. There are about 299 pairs

of pairs. That is, there are about 299 different ways to choose two of these pairs
out of this batch and look at them together; for example, ((Xi, X

∗

i ), (Xj , X
∗

j )).
Now, consider the difference (0, 0, 0, a), where a is unknown. For any pair of
texts to have such a difference, they must collide in 96 bits; the difference thus
is expected to occur in 2−96 of all random pairs of texts. Thus, if Xi, Xj can
be considered as a more-or-less random pair of texts (and they apparently can),
then the probability that each i, j pair will have this difference is 2−96, and since
we have 299 such pairs, we expect about eight pairs Xi, Xj with this difference.
However, we know that Xi⊕X∗

i = (231, 0, 0, 0) for all i. This lets us algebraically
show that when Xi ⊕ Xj = (0, 0, 0, a), X∗

i ⊕ X∗

j must also equal (0, 0, 0, a).
This boomerang structure thus amplifies the effect of the low-probability event,
making it detectable, since when this happens we get two pairs of texts that
follow the truncated differential (0, 0, 0, a)→ (b, 0, 0, 0) over three rounds.

Distinguishing the Right Key Guess To distinguish the right key guess,
we examine the result of trial partial decryption of a whole batch of pairs at
a time. Let Yi, Y

∗

i be the results of encrypting input pair Wi, W
∗

i through the
whole cryptographic core in some batch. We build a list of all the Yi and Y ∗

i

values. We then sort this list on its low-order 96 bits. Next, we go through the



list, and for each pair Yi, Yj or Yi, Y
∗

j that matches in those last 96 bits, the pair
i, j is added to a sorted list of pairs that collided. Finally, we count the number
of times each i, j appears in the list. When we see two or more instances of the
same i, j occurring twice, we are extremely likely to have a correct key guess.

Recall that we expect eight pairs i, j such that Xi ⊕ Xj = X∗

i ⊕ X∗

j =
(0, 0, 0, a) These will inevitably lead to eight pairs i, j such that Yi ⊕ Yj =
(b, 0, 0, 0) and Y ∗

i ⊕ Y ∗

j = (b′, 0, 0, 0). (The property works just as well if the
collision occurs between Xi and X∗

j , naturally.)
The probability of any given i, j pair having this property after a random

permutation has been applied to it is 2−192 Since there are 299 pairs in each
batch, we expect no such i, j pairs. The probability of seeing two such pairs in a
batch (that is, among 299 potential pairs) is about 2−186. We will be examining
220 different batches, each under 2128 different keys, so we’ll have 2148 total
batches to examine in this way. So with overwhelming probability, there will be
only one partial key guess that will give us two or more such i, j pairs.

Summary of the Attack The attack on 12 rounds (k = 3) makes use of a
boomerang amplifier. It requires about 220 × 248 × 2 = 269 texts, about 225

bytes of random-access memory (to hold a batch of texts at a time), and about
273 bytes of sequential memory to store all the ciphertexts so we can apply
our guesses to them. The attack also requires about 2128 × 269 = 2197 partial
decryptions, each consisting of about one quarter of the cipher.

Summary of Results
Attack On: MARS Symmetrically Reduced to 12 Rounds
Attack Type: Boomerang Amplifier
Work: 2197 partial decryptions
Memory: 273 bytes
Texts: 269 chosen plaintexts

5 Conclusions

In this paper, we have developed several new attacks on reduced-round versions
of MARS. While none of these attacks is able to break the full cipher, we feel
that these results provide valuable insights into the security of MARS. We regard
these results as preliminary, and would be unsurprised to see moderate improve-
ments in any of our attacks. However, if major improvements in the results are
possible, we expect that they will require new techniques. Below, we describe
some ideas for additional attacks on reduced-round MARS variants.

5.1 Lessons from the Analysis

The results in this paper show the overwhelming importance of the strength of
the MARS cryptographic core; we can attack the full mixing layers with only
five core rounds, a total of 21 rounds, but can currently attack no more than 11
core rounds.



Our results also show how the “wrapper” layers protect the core rounds from
attacks that require large numbers of chosen plaintexts or chosen ciphertexts.

Finally, our results demonstrate that, when evaluating a fundamentally new
cipher design, it is important to be able to innovate—to develop new techniques
to attack the cipher, rather than merely reusing the standard differential and
linear attacks. Because MARS is such an unconventional block cipher, we needed
to develop new attacks to get very far in our analysis.

5.2 Why This Is Important

The only way we know of actually determining the strength of a cipher is to try
to attack it, including reduced-round versions. Proofs of security have proven
unreliable; security arguments based on estimates of the best differential and
linear characteristics tell us little about what other attacks may be done; design
principles that protect against some attacks sometimes allow new attacks in their
place; as in Square, where the use of the MDS matrix made differential attacks
extremely difficult, while allowing Knudsen’s dedicated attack. The history of
cryptography is littered with ciphers whose designers were convinced of their
security, but whose attackers were not. Without a solid understanding of the
security of each of the AES finalists, NIST and the cryptographic community
will likely make a final decision on AES based only on performance.

In this paper, we have done some very preliminary analysis of two versions
of MARS with reduced rounds. MARS is a complicated enough design that
beginning to analyze it involves a significant investment of time (though even
conceptually very simple ciphers seem to have much the same property). We
hope to see our work spur others to go beyond the very preliminary results in
this paper.

5.3 Ideas for Future Attacks

We have spent considerable time trying to get boomerangs to work within meet-
in-the-middle attacks. A “boomerang-in-the-middle” attack would go through
six rounds for free, and thus would be quite powerful. Similarly, there is a seven-
round impossible differential through the core rounds; we are as yet unable to
find a way to use either of these ideas in a meet-in-the-middle attack. The un-
derlying problem in the case of the boomerang-in-the-middle attack is that a
boomerang 4-tuple can be identified only by considering both input and output
simultaneously. We have not been able to find a way around this problem so
far. The underlying problem with the impossible differential meet-in-the-middle
attack is that we can rule out candidate key guesses only by (again) examining
right pairs for both input and output simultaneously. We are still looking for a
way around this problem, or for a proof than none exists.

In our differential meet-in-the-middle attacks, we dealt with the mixing layers
by simply guessing our way past them. We expect significant improvements to
the attacks are possible with more analysis of the mixing layers, particularly in
terms of partial guessing of key material. We have spent far more time analyzing



the core rounds than the unkeyed mixing layers, and so this is a good area for
further research.

Attacking the symmetrically reduced version of the cipher with k = 4 ap-
parently requires a better way of choosing inputs than the input structure we
discuss above. We hope to find a better input structure, or a better property
to push through all eight core rounds. Previous attempts to attack k = 4 have
exceeded 2256 work, usually due to the huge plaintext requirements.

It may also be worthwhile to attack variants of MARS that cut off in the
middle (after 12 or 16 rounds total); we have some ideas in this direction.

Finally, in future work, we hope to examine how the MARS key schedule
functions with various reduced-round variants.
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