
Realization of the Round 2 AES Candidates using Altera FPGA

Viktor Fischer
MICRONIC s. r. o., Dunajská 12, Košice, Slovakia

www.micronic.sk

Abstract
This paper presents an evaluation of five Round 2 Advanced Encryption Standard (AES) candidates
from the viewpoint of their realization in a FPGA. After the analysis of the general characteristics of
the algorithms a general cipher structure is defined. Using this structure, the suitability of available
FPGA families is evaluated. Finally, three algorithms – RIJNDAEL [5], SERPENT [6] and
TWOFISH [7] - are realized in VHDL and implemented in the selected FPGA family.

1. Introduction

One of restrictions given by the NIST on the AES candidates was the possibility of their hardware
realization. Two conferences have been organized for AES candidates presentation and evaluation. But
few assessments of hardware implementation of the proposed algorithms have been published up to now
[2]. The final report of the first round [8] has explicitly asked designers for hardware implementation
evaluation of all algorithms.

The aim of this paper is to evaluate AES candidates from the viewpoint of their hardware realization,
using Field Programmable Gate Arrays (FPGA). In the first paragraph we shall analyze the algorithms
regarding their limits in implementation in FPGAs. In the next chapter we shall define a basic structure
of a generalized cipher and we shall specify common parameters of the cipher so that different
algorithms could be easily compared. In the following paragraph we shall describe the structure of the
algorithms selected for the implementation (RIJNDAEL and TWOFISH) and we shall briefly describe
the implementation of the blocks and discuss different solutions from the viewpoint of the surface
occupation and the speed. Finally, we shall present the results of VHDL implementation of these
algorithms in Altera FPGA.

2. Analysis of the Round 2 AES candidates

In this chapter we shall analyze AES candidate algorithms regarding their suitability for implementation
in FPGA. Special attention will be paid on:
a) the evaluation of the operations used for encryption and decryption,
b) the difference between encryption and decryption,
c) the possibility of on-the-fly key calculation and evaluation of the RAM capacity for storing the key

in the FPGA,
d) the estimation of necessary resources like Logic Elements, RAM and ROM,
e) the estimation of the speed for different logic configurations.

Since number of rounds for some ciphers depends on the length of the key, in the next analysis we will
suppose that all ciphers use 128-bit input block and 128-bit user key. This will also simplify the
comparison of the algorithms. While some algorithms support on-the-fly key computing, others don’t.
To give the same starting conditions for all of them we presume, that round keys are pre-calculated and
stored in the local memory.
In the next analysis we denote operations as follows:

a + b integer addition modulo 232

a - b integer subtraction modulo 232

a ⊕ b bit-wise exclusive or
a × b integer multiplication modulo 232

a <<< b rotation of a by b position to the left
a >>> b rotation of a by b position to the right
a << b shift of a by b position to the left
a >> b shift of a by b position to the right

2.1 MARS
MARS is a shared-key (symmetric) encryption algorithm [3] supporting 128-bit blocks and variable key
size ranging from 128 to 1248 bits. Algorithm can be described as follows (for further details see [3]):

Encryption
Inputs/outputs: Data stored in four 32-bit I/O registers D[3], D[2], D[1], D[0]

32-bit round keys K[0], ... , K[39]

Algorithm: 1. D[0] = D[0] + K[0], ..., D[3] = D[3] + K[3];
2. Forward mixing – 8 rounds (substitutions, 32-bit additions, 32-bit XOR, rotations

by 24 bits, word permutations);
3. FOR i = 0 TO 15 DO:

3. (out1, out2, out3) = E(D[0], K[2i + 4], K[2i + 5]);
4. D[0] = D[0] <<< 13; D[2] = D[2] + out2;
5. IF (i <8) THEN (D[1] = D[1] + out1) ELSE (D[1] = D[1] ⊕ out3);
6. IF (i <8) THEN (D[3] = D[3] ⊕ out3) ELSE (D[3] = D[3] + out1);
7. D[3], D[2], D[1], D[0] ← D[0], D[3], D[2], D[1];

6. Backward mixing – 8 rounds (substitutions, 32-bit subtractions, rotations by 24
bits, word permutations);

7. D[0] = D[0] + K[36], ..., D[3] = D[3] + K[39].

Where E(in, key1, key2) represents E-function realizing several operations: 32-bit addition of input data
and key1, 32-bit multiplication modulo 232 of rotated input data and key2, two data-dependent rotations,
substitution using two 256-element S-boxes with 32-bit output, two 32-bit XOR operations and three
fixed rotations. out1, out2 and out3 are 32-bit outputs of the E-function.

Decryption
Decryption process is the inverse of the encryption process. The code for decryption is similar, but not
identical to the code for decryption (e. g. rotation direction is inverted, additions are replaced by
subtractions, etc.).

Algorithm evaluation
a) From the analysis of the algorithm it follows that MARS cipher has a relatively complicated structure
motivated by the robustness. It uses operations (multiplication modulo 232 and data-dependent rotations)
which are not easy to implement in an FPGA. Realization of S-boxes needs 16384 ROM bits. These
parameters seem to limit the implementation of MARS cipher in FPGA because of extensive usage of
resources.
b) Reversed order of subkeys during decryption can be classified as a very slight difference between
encryption and decryption. Since decryption replaces in some cases the addition with the subtraction,
some additional resources are needed to implement both encryption and decryption in the same circuit.
Encryption and decryption use the same subkeys – no additional RAM space is needed.
c) Algorithm does not directly support on-the-fly subkey computation. It needs 40 32-bit subkeys, thus
1280-bit RAM organized preferably in 40 x 32 bits.

d) Although the cipher core uses a small amount of RAM, it requires relatively high capacity ROM to
implement S-boxes. Implementation of addition, subtraction, fixed bit-wise rotation and block rotation
(exchange) should not cause any problems. On the other hand, the use of 32-bit multiplication and also
data-dependent rotations will necessitate the employment of huge logic blocks and the addition of clock
cycles in all rounds. It seems, that realization of MARS cipher in FPGA having reasonable parameters
will be very difficult, if possible.

2.2 RC6™
RC6™ is a block cipher using 128-bit input/output blocks, divided into four 32-bit words [4]. Although
number of rounds can vary, we have chosen the version with 20 rounds, where [(20 x 2) + 4] round
keys are added to 32-bit blocks and other operations are executed in the following scheme:

Encryption
Inputs/outputs: Plaintext and ciphertext stored in four 32-bit I/O registers A, B, C, D

32-bit round keys S[0], ... , S[43]

Pseudo-code: 1. B = B + S[0]; D = D + S[1];
2. FOR i = 1 TO 20 DO:

3. t = (B × (2B + 1) <<< 5; u = (D × (2D + 1) <<< 5;
4. A = ((A ⊕ t) <<< u) + S[2i]; C = ((C ⊕ u) <<< t) + S[2i + 1];
5. (A, B, C, D) = (B, C, D, A);

6. A = A + S[42]; C = C + S[43].

Decryption
Inputs/outputs: Plaintext and ciphertext stored in four 32-bit I/O registers A, B, C, D

32-bit round keys S[0], ... , S[43]

Pseudo-code: 1. C = C - S[43]; A = A - S[42];
2. FOR i = 20 DOWNTO 1 DO:

3. (A, B, C, D) = (D, A, B, C);
4. u = (D x (2D + 1) <<< 5; t = (B x (2B + 1) <<< 5;
5. C = ((C - S[2i + 1]) >>> t) ⊕ u; A = ((A - S[2i] >>> u) ⊕ t;

6. D = D - S[1]; B = B - S[0].

Algorithm evaluation
a) From the analysis of the pseudo-code it follows that this algorithm uses some operations (fixed
rotation, XOR) which are easy to implement. Since internal structure of most FPGAs is optimized for
fast 32-bit addition and subtraction realization, these operations can be realized very efficiently. But
FPGA structure is not well suited for 32-bit multiplication used in lines 4 and 5 for both encryption and
decryption. Variable rotations used in lines 5 could cause another problem for cipher implementation.
On the contrary, RC6™ does not use any S-boxes.
b) Reversed order of subkeys during decryption can be classified as a very slight difference between
encryption and decryption. Since decryption uses subtraction rather than addition (lines 1 and 5), some
additional resources are needed to implement both encryption and decryption in the same circuit.
Encryption and decryption use the same subkeys – no additional RAM space is needed.
c) Algorithm does not directly support on-the-fly subkey computation. For 20 rounds it needs 44 32-bit
subkeys resulting in 1408-bit ROM capacity.
d) From the above analysis it follows, that the cipher core uses relatively small amount of RAM and it
does not need ROM for S-boxes. Addition, subtraction, bit-wise rotation and block exchange can be
implemented in a very simple way. But the use of 32-bit multiplication and also data-dependent rotation

will necessitate the addition of important multilevel logic blocks. This will probably lead to poorer
performance and worth surface usage of the cipher.
e) Since all operations of the round can’t be realized in parallel in one clock period, the algorithm will
be executed in multiple of 22 clock periods. The final number of clock periods depends on
implementation of 32-bit multiplication and data-dependent rotation.

2.3 RIJNDAEL
RIJNDAEL is a block cipher using 128, 192 and 256-bit input/output blocks and keys [5]. The size of
both can be chosen independently. As it is explained in the beginning of chapter 2, in the next analysis
we use 128 bits for both I/O block and user key. Therefore the cipher in this configuration will operate
in 10 rounds.

Encryption
Inputs/outputs: Plaintext and ciphertext stored in one 128-bit I/O register R

128-bit round keys K0, ... , K10

Pseudo-code: 1. R = R ⊕ K0;
2. FOR i = 1 TO 10 DO:
3. {

4. R = S8(R);
5. R = P8(R);
6. IF (i < 10) THEN R = MC(R);
7. R = R ⊕ Ki;

8. }

Decryption
Inputs/outputs: Ciphertext and plaintext stored in one 128-bit I/O register R

128-bit round keys K0, ... , K10

Pseudo-code: 1. R = R ⊕ K10;
2. FOR i = 9 TO 0 DO:
3. {

4. IF (i >0) THEN R = IMC(R);
5. R = IP8(R);
6. R = IS8(R);
7. R = R ⊕ Ki;

8. }.

Here MC() and IMC() denotes MixColumn function and its inverse, both realizing matrix
multiplication on 32-bit blocks in GF(28), P8(R) and IP8(R) represents byte permutation and its inverse
and S8(R) and IS8(R) denotes byte substitution and its inverse applied byte-wise on the whole 128-bit
word.

Algorithm evaluation
a) RIJNDAEL has a relatively simple structure, while most of operations can be easily implemented in
FPGA. Since matrix multiplication could cause problems for implementation of the algorithms on 8-bit
processor, authors have proposed a XTime() function. This 8-bit function is applied byte-wise on 32-bit
blocks. It can be easily implemented in FPGA. Implementation of MC(), IMC(), P8(R), IP8(R), S8(R)
and IS8(R) is discussed more in details in section 3.3). Algorithm uses 2 types of fixed 8-bit S-boxes:
one for encryption and another one for decryption.

b) There is a quite important difference between encryption and decryption: the order of the operations,
but also their definition is changed: MC() is replaced by IMC(), P8(R) by IP8(R) and S8(R) by IS8(R).
Differences between these functions will be discussed in section 3.3. During decryption the subkeys are
used in reverse order and furthermore the IMC() function has to be applied on keys K1, ... , K9.
c) The round keys can be calculated easily from the user key using operations as XOR and rotation on
32-bit data. So the key schedule computation is very fast. Decryption applies subkeys in reverse order
and the IMC() function has to be applied on keys K1, ... , K9. Therefore decryption could be slower than
encryption.
Encryption and decryption use 11 128-bit keys, so the RAM capacity should be al least 1408 bits (if we
suppose, that IMC() function is calculated on-the-fly during decryption).
d) We can conclude that the cipher core should use relatively small amount of logic resources to realize
rotations and XOR operations. XTime function will simplify necessary matrix multiplication. The cipher
uses two 8-bit S-boxes that should be stored in ROM. The size of ROM memory depends on the
number of bytes that should be substituted in one clock period. If the whole 128-bit word should be
processed in one period, 16 identical S-boxes have to be used for encryption and 16 S-boxes for
decryption. This requires the total ROM capacity of 65536 bits.
e) Since all operations of the round can be realized in parallel in one clock period, the algorithm could
be executed in 11 clock periods. But this fast version of the cipher would hardly be realizable, due to a
size limitation of ROM blocks in FPGA. For example, the algorithm using 8 S-boxes (half number of S-
boxes) will be executed in half speed (22 clock periods).

2.4 SERPENT
SERPENT is a 32-round SP-network operating on four 32-bit words [6], thus giving a block size of
128 bits. It uses 33 128-bit subkeys obtained from a 256-bit user key. The user key can be shorter, but
in that case it has to be padded with one “1” followed by a necessary amount of “0” to get a 256-bit
key. 32 rounds of the cipher use 8 different S-Boxes, each of which maps four input bits to four output
bits. Each S-box type is used in four rounds. The same type is used 32 times in parallel in one round.
The bit slice version of the algorithm can be described as follows:

Encryption
Input: Plaintext stored in four 32-bit input registers X0, X1, X2, X3

128-bit round keys K0, ... , K32

Output: Ciphertext stored in X0, X1, X2, X3

Pseudo-code: 1. B0 = X0, X1, X2, X3;

2. FOR i = 0 TO 30 DO:
3. {
4. X0, X1, X2, X3 = Sj (Bi ⊕ Ki);
5. X0 = X0 <<< 13; X2 = X2 <<< 3;
6. X1 = X1 ⊕ X0 ⊕ X2; X3 = X3 ⊕ X2 ⊕ (X0 << 3);
7. X1 = X1 <<< 1; X3 = X3 <<< 7;
8. X0 = X0 ⊕ X1 ⊕ X3; X2 = X2 ⊕ X3 ⊕ (X1 << 7);
9. X0 = X0 <<< 5; X2 = X2 <<< 22;
10. Bi+1 = X0, X1, X2, X3;
11. }
12. X = S7 (X ⊕ K31) ⊕ K32;

Where
j – index of S-boxes, j = i mod 8,
Bi - intermediate data,
Si (Bi ⊕ Ki) - substitution of (Bi ⊕ Ki) using S-boxes.

Decryption
Decryption is the reverse order encryption using the inverse of the S-boxes, as well as the inverse linear
transformation.

Algorithm evaluation
a) Looking at the pseudo-code we can find that this algorithm uses operations as exclusive or, rotations,
shifts and substitutions. All of them can be implemented in FPGA very easily (see section 2.6).
Algorithm uses 8 types of 4-bit S-boxes.
b) Reversed order of subkeys and S-boxes during decryption can be classified as a very slight difference
between encryption and decryption. Inverse S-boxes and inverse linear transformation will need some
more resources in a combinatorial part of the cells. Encryption and decryption use the same subkeys –
no additional RAM space is needed.
c) Subkeys can be calculated using exclusive or, rotation and substitution operations. They can be
calculated on the fly but only in one direction - decryption necessitates unwinding of the subkeys.
Cipher requires 132 32-bit subkeys so the minimum RAM capacity is 4224 bits.
d) We can expect that the cipher will use a small amount of logic resources for realization of internal
128-bit register, logical operations and S-boxes. A minimum of 8 4-bit S-boxes is needed for low-cost
implementation. High-speed design will use 8 groups of 4 identical S-boxes to substitute 128 bits in
parallel. The realization of S-boxes will have dominant impact on the efficiency of the cipher.
e) Since all operations of the round can be realized in parallel in one clock period, the algorithm can
theoretically be executed in 32 clock periods.

2.5 TWOFISH
TWOFISH is a 128-bit block cipher [7]. It can work with several key lengths – 128, 192, or 256 bits. It
consists of 16 rounds based on modified Feistel structure. This modification concerns XOR operation
and rotation by one bit applied on two output blocks of the round.

Encryption
Input: Plaintext split into four 32-bit words X0, X1, X2, X3

32-bit subkeys K0, ... , K39, S0, S1

Output: Ciphertext stored in X0, X1, X2, X3

Pseudo-code: 1. X0 = X0 ⊕ K0; X1 = X1 ⊕ K1; X2 = X2 ⊕ K2; X3 = X3 ⊕ K3;
2. FOR r = 0 TO 15 DO:
3. {
4. G0 = g(X0); G1 = g(X1<<<8);
5. P0 = G0 + G1; P1 = P0 + G1;
6. F0 = P0 + K2r + 8; F1 = P1 + K2r + 9;
7. X2 = ((F0 ⊕ X2) >>> 1); X3 = (F1 ⊕ (X3 <<< 1));
8. X0 ↔ X2; X1 ↔ X3;
11. }
12. X0 = X2 ⊕ K4; X1 = X3 ⊕ K5; X2 = X0 ⊕ K6; X3 = X1 ⊕ K7;

where g() represents a function using 4-bit S-boxes, subkeys S0 and S1 and a Maximum Distance
Separable (MDS) matrix. It realizes key-dependent permutations and MDS matrix multiplication on 32-
bit input values. Function g() is explained more in details in section 4.2.

Decryption
Decryption is very similar to encryption: it uses the same structure, but the subkeys are applied in
reverse order. Also, line 7 should be replaced by the following code:

7. X2 = (F0 ⊕ (X2 <<< 1)); X3 = ((F1 ⊕ X3) >>> 1);

Algorithm evaluation
a) TWOFISH has a rather complicated structure, but it uses mostly operations that can be easily
implemented in a FPGA. The biggest problem to face seems to be the realization of MDS matrix
multiplication. Algorithm uses 8 types of fixed 4-bit S-boxes. They can be completed as a combinatorial
function or as a lookup table.
b) Strong feature of this algorithm is that there is a very slight difference between encryption and
decryption. During decryption the keys are applied in reverse order. Encryption and decryption use the
same subkeys – no additional RAM space is needed.
c) There are two different sets of subkeys: S and K. Subkeys S are obtained as a result of multiplying a
part of a user key with RS matrix. Subkeys K can be computed in a structure very similar to that used
for encryption (h() function followed by PHT transform). Both sets of the keys can be calculated on the
fly in random order. Cipher requires 42 32-bit subkeys, so the RAM capacity should be at least 1344
bits.
d) From the above analysis, it follows that the cipher should need a relatively small amount of logic
resources for additions, rotations, XOR operations and key-dependent permutations. Potential problem
lies in the realization of MDS matrix multiplication. To reduce the surface usage, the same block can be
used to calculate h() function for two blocks (see line 4 of the algorithm) in two steps. Relatively small
resources will be needed to realize 8 4-bit S-boxes.
e) Since all operations of the round can be realized in parallel in one clock period, the algorithm can
theoretically be executed in 16 clock periods.

2.6 Classification of basic operations used by ciphers
In this section the ability to implement basic cipher operations in Altera FPGA will be discussed. The
analysis has shown that all ciphers use mainly next operations:
- Bit-wise addition modulo 2 (XOR) – this operation is easily realizable in FPGA using input lookup

table of Logic Element (LE). XOR operation with two to four inputs can be realized in each LE.
- Fixed rotations and shifts – also these operations can be easily implemented but in this case routing

resources will be used: cell interconnections can be reordered in a very simple way to realize
rotations or shifts in both directions.

- S-boxes – they can be implemented as a lookup table using internal memory or as a combinatorial
function. 4-bit S-boxes can be implemented by the use of both methods depending on the in-
circuit memory availability. 8-bit S-boxes should preferably be realized using LUT, because
combinatorial function would occupy many resources.

- Additions and subtractions modulo 232 on 32-bit data – although these operations are not so
elementary as XOR, they still can be easily realized in FPGA. Fast carry chain interconnection
signals are dedicated in Altera FPGA to easy this task in an efficient manner.

- Matrix multiplication in GF(28) – these operations used in both RIJNDAEL and TWOFISH ciphers
constitute the main obstacle in realization of these ciphers in programmable devices. Authors of
RIJNDAEL propose a method using so called XTime function [5] to solve this problem. This 8-
bit function can be easily implemented in FPGA and the matrix multiplication represents XOR
operations applied on the outputs of this function. Since square matrices in both ciphers contain
constant elements (polynomials in GF(28)), it can be shown, that multiplication can be replaced
by several XOR operations.

- Data-dependent rotations – they can’t be realized by a simple interconnection of register cells as it is
in the case of the fixed rotations. A state machine or a counter will be necessary to control
number of cycles - several clock cycles will be needed to rotate data to the final position. This bit
manipulation will decrease overall speed of the cipher and it will increase the possibility of timing
attacks.

- 32-bit multiplication modulo 232 – these operations used in both MARS and RC6 ciphers represent
the main restriction of realization of these ciphers in FPGA. Altera propose macrofunctions for 8
x 8-bit multiplication implementation. To realize 32 x 32-bit multiplication a multilevel multiplier
has to be designed. Such a structure will occupy excessive resources. Multiple clock periods
needed to obtain final result will probably slow down the cipher in a great extent.

2.7 Selection of the algorithms to be implemented
In this section we will give an overview of critical problems concerning implementation of all ciphers.
MARS – 32-bit multiplication and data-dependent rotation will occupy an important part of the design.

These operations will also degrade the cipher performance. Large S-boxes will take up
considerable resources, too.

RC6 – as in the case of MARS cipher, 32-bit multiplication and data-dependent rotation will engage
relatively great part of the device. Also, the cipher performance will be degraded by these
operations.

RIJNDAEL – while 8-bit S-boxes can’t be realized as a combinatorial function, they have to be built as
a lookup table. To speed up the cipher more S-boxes have to be employed. The total ROM
memory capacity could limit the implementation of a fast algorithm in FPGA. Another limiting
factor could be the difference between encryption and decryption: although algorithm is almost
the same for both cipher modes, MixComumn function, S-boxes, subkeys and also byte-wise
rotation direction are changed.

SERPENT – relatively high RAM capacity is necessary to store the subkeys. To speed up the cipher,
great amount of S-boxes should be used. The way that these S-boxes will be realized will
determine the performance of the circuit.

TWOFISH – its relatively complicated key schedule could cause some difficulties. But the encryption
and decryption algorithm has no significant weakness from the point of view of the
implementation in FPGA.

Overview of basic parameters of the Round 2 AES candidates is presented in Table 1.

Table 1 – Basic parameters of the Round 2 AES candidates

Parameter MARS RC6 RIJNDAEL SERPENT TWOFISH
Number

of rounds
2+16+2 20 10 32 16

Operations used Complex Complex Simple Very simple Simple
Number

of subkeys
40 44 11 33 42

Size
of subkeys

32 bits 32 bits 128 bits 128 bits 32 bits

Total RAM bits 1280 1408 1408 4224 1344
Number

of S-Boxes
2 none 1 8 8

Size
of S-Boxes

8192 bits
(256 x 32)

- 2048 bits
(256 x 8)

64 bits
(16 x 4)

64 bits
(16 x 4)

Total ROM bits 16384 - 2048 512* 512*

* If S-boxes are realized using lookup table (embedded memory).

Using previous analysis we have selected as the most suitable for hardware implementation
RIJNDAEL, SERPENT and TWOFISH ciphers.
While MARS and RC6 seem to give acceptable results in software realization, their hardware
implementation in FPGA could be less competitive because the use of 32-bit multiplication and data-

dependent rotations, causing additional needs of hardware resources. For these reasons and also for the
lack of time we have decided to exclude these ciphers from our development effort up to now.

3. Implementation of selected ciphers

3.1 Implementation strategy
To obtain comparable results for different ciphers we have unified their configuration and we have
defined implementation limits in the next manner:
- The size of the input/output block will be limited to 128-bits.
- User key is supposed to have 128-bits.
- Round keys are pre-calculated and stored in local memory (EAB). Selected FPGA family (Altera

Flex 10KxxxE) contains memory blocks of 4096 bits, which will be in our case organized in 16 x
256 bits. Using two memory blocks we can save 256 32-bit subkeys. Note that SERPENT needs
132 32-bit words to store the subkeys.

- Three kinds of strategies will be applied on the designs: in the first one we will search a “fair”
cipher configuration, where all ciphers will have the same configuration parameters, especially the
width of processed data. In the second one we will look for the fastest configuration for each cipher
and finally, in the last strategy we will search the minimal (the most economic) configuration.

- We do not evaluate the possibilities of employment of pipelining structures in the ciphers.
- Each cipher is interfaced with the host system via the same interface (see section 3.2).
- The use of S-boxes (the way of their implementation and the number of S-boxes) was motivated by

the design strategies (fair configuration, fast configuration and minimal configuration).

3.2 Implementation of the external interface
The ciphers are interfaced with the host system by the way of the 32-bit interface. Two 128-bit registers
used to store plaintext and ciphertext (input and output registers) are accessible via 32-bit data bus in a
sequential manner. The encryption (decryption) starts automatically after reception of the forth 32-bit
data. The cipher is managed using control register containing encryption/decryption flag, run flag and a
reset bit. Data and control registers are accessible using /CS_DATA and /CS_CTRL signals.
Read/write action is realized at the rising edge of signal /WR or /RD.
Key memory is organized in 256 32-bit words. The pre-calculated subkeys can be entered to the cipher
via separated 32-bit local interface that can be connected for example to the local memory. New subkey
is written to the internal memory at the rising edge of a KEY_STRB signal, when /WR_KEY is low.
The interface contains control unit and 128-bit input and output registers, but in does not include cipher
control state machine. It occupies about 380 Logic Elements in Altera Flex 10K family.

Key
RAM

Input Register (128 bits)

KEY

DATA

Core
/CS_DATA

Output Register (128 bits)

Control
Unit

/WR
/RD
/WR_KEY

/CS_CTRL

32 32

32

3232

KEY_STRB

Figure 1 - Block diagram of the cipher
3.3 Implementation of the RIJNDAEL cipher
The encryption and decryption algorithm of the RIJNDAEL cipher is shown in Figure 2.

Plaintext (128 bits)

MixColumn

Byte Rotation

 Byte Substitution

Ciphertext (128 bits)

+

+

K0

Ki

i < 10i = 10

for i = 1 to 10

Ciphertext (128 bits)

Inv. Byte Substitution

 Inv. Byte Rotation

 InvMixColumn

Plaintext (128 bits)

+

+

K10

Ki

i > 0i = 0

for i = 9 to 0

a) b)

Figure 2 - Encryption (a) and decryption (b) algorithm

RIJNDAEL cipher is composed of four blocks: subkey addition modulo 2 (XOR), byte substitution
(using two types of S-boxes: one for encryption and another one for decryption), MixColumn
(InvMixColumn for decryption) function and byte rotation (exchange).
Byte substitution needs two types of S-boxes organized in 8 x 256 bits. Since Altera Flex 10KAE
family contains RAM blocks with 4096 bits, we have chosen a configuration of 8 x 512 bits per block.
That way in one block both encryption and decryption S-boxes can be saved.
MixColumn and InvMixColumn functions are applied on 32-bit words and they represent following
matrix multiplication (encryption matrix, left and decryption matrix, right):

Y0 02 03 01 01 X0

Y1 01 02 03 01 X1

Y2 01 01 02 03 X2

Y3 03 01 01 02 X3

= •
Y0 0E 0B 0D 09 X0

Y1 09 0E 0B 0D X1

Y2 0D 09 0E 0B X2

Y3 0B 0D 09 0E X3

= •

+

XTime XTime XTime XTime

+

+++

+
+

+

+

8 8 88

8 8 88 +
+

+
+

8 8 88

8 8 88

XTime

XTime

XTime

++

+ +

XTime

XTime

XTime

++

+ +

XTime

XTime

XTime

++

+ +

XTime

XTime

XTime

++

+ +

a) b)

 Figure 3 - Function MixColumn() (a) and InvMixColumn() (b)

There are two possibilities to implement matrix multiplication: the first method is based on the
algorithm developed by authors of the cipher [5]. It was elaborated for software implementation of the
matrix multiplication on 8-bit processors and it uses the XTime() function representing multiplication
by two of one byte in GF(28). Final structures based on this algorithm representing matrix multiplication
are presented in Figure 3 for both MixColumn (a) and InvMixColumn (b) functions. The XTime()
function is presented in Figure 4.

8 bits

8 bits

<< 1 << 1

+0x1B

Figure 4. Function XTime()

The second method consists in realization of matrix multiplication using the fact that the matrix is
composed only of constants. Since one operand of the multiplication is constant, multiplication in
GF(28) can be replaced by few additions modulo 2 that are simple to realize. For example, operation:

Y = X • 0x03,
where X and Y are input and output 8-bit values and the symbol • represents the multiplication in
GF(28) using the primitive polynomial x8 + x4 + x3 + x + 1, can be implemented using following bit-wise
additions modulo 2:

y7 = x7 ⊕ x6 y5 = x5 ⊕ x4 y3 = x7 ⊕ x3 ⊕ x2 y1 = x7 ⊕ x1 ⊕ x0

y6 = x6 ⊕ x5 y4 = x7 ⊕ x4 ⊕ x3 y2 = x2 ⊕ x1 y0 = x7 ⊕ x0

In that way matrix multiplication can be replaced by several additions modulo 2. We have implemented
and compared both methods. Although both of them seem to be different, they describe in a different
way the same combinatorial function. Therefore after the synthesis we have obtained almost the same
results. The slight difference is probably caused by different minimization of the logic in two cases by
the compiler.

Byte rotation (exchange) is specified in Table 2. It is very easy to implement (byte indexing in VHDL)
and it uses only routing resources.

Table 2 - Byte rotation for encryption (BR) and decryption (IBR)
Orig. BR IBR Orig. BR IBR Orig. BR IBR Orig. BR IBR

B0 B0 B0 B4 B4 B4 B8 B8 B8 B12 B12 B12

B1 B13 B5 B5 B1 B9 B9 B5 B13 B13 B9 B1

B2 B10 B10 B6 B14 B14 B10 B2 B2 B14 B6 B6

B3 B7 B15 B7 B11 B3 B11 B15 B7 B15 B3 B11

Fast configuration
The fast configuration of RIJNDAEL should use as much S-boxes as possible. To substitute 128 bits at
once, 16 S-boxes organized in 8 x 512 bits will be needed. Since two S-boxes, one for encryption and
one for decryption, occupy together one memory block (EAB), for the fast configuration we shall need
16 EAB to implement S-boxes. Subkeys are also stored in EAB, but memory blocks with subkeys are
organized in 16 x 256 bits. To cover the whole 128-bit data word, 8 memory blocks are needed. So the
total memory use for the fast configuration will be 24 EAB. Thanks to this encryption and decryption
will be done in 10 clock periods.

Fair configuration
In the fair configuration the RIJNDAEL cipher should process the same amount of data in one round as
for example TWOFISH. Since TWOFISH processes in one round two 32-bit data, in the fair
configuration the RIJNDAEL cipher should deal with 64-bit data word, too. Therefore 8 memory blocks
will be needed to implement S-boxes and 4 blocks to implement the subkey memory. Thus, 12 EAB will
be used and 10 rounds will be executed in 20 clock periods in the fair configuration.

Minimum configuration
In the minimum configuration the RIJNDAEL cipher should use as few memory blocks as possible.
Since the key memory block is always organized in 16 x 256 bits, the minimum reasonable data width
will be 16 bits. In that case the cipher will need two EAB for S-boxes and one for subkeys, giving a
total of 3 EAB. Because in the minimum configuration the data width is 16 bits, 8 clock periods will be
necessary to execute one round and so the complete encryption/decryption process will take 80 clock
periods.

The results of all configurations are presented in Table 4, 5 and 6.

3.4 Implementation of the SERPENT cipher
Algorithm of the SERPENT cipher is described in section 2.4. All the operations it uses are very simple
to implement in FPGA. The key-mixing phase (addition modulo 2) in the beginning of each of 32 rounds
is followed by the fixed rotations and two additions modulo 2 of three 32-bit blocks. Rotations and
additions are repeated two times on different blocks. All these operations need a minimum amount of
resources and they can be executed in one clock period. The only exception is the key mixing operation
in the last round, where the second clock period will be needed for the key addition. So the final period
count will be 33.
The algorithm uses 8 types of 4-bit S-boxes. Since it works with up to128-bit data, the way of how
these S-boxes will be implemented will have a general influence on the cipher performance. As it was
mentioned in section 2.6, 4-bit S-boxes can be realized as a lookup table using embedded memory
blocks or they can be implemented as a combinatorial function. Four S-boxes can be realized in one
EAB: two for encryption and two for decryption. For fast configuration, where 128 bits (32 nibbles) are
substituted in parallel, 32 x 8 = 256 4-bit S-boxes will be needed. This number is doubled, if encryption
and decryption have to be implemented in one circuit. So the fast configuration would need 128 memory
block to implement S-boxes. Even for fair and minimum configuration the number of EAB to realize S-
boxes would be too big: 64 and 16, respectively. For this reason we have decided to implement S-boxes
as the combinatorial function.

Fast configuration
The fast configuration of SERPENT should use as much S-boxes as possible. As it was explained in the
previous paragraph, S-boxes are realized as combinatorial functions. Each function needs a minimum of
four logic elements. To implement 512 S-boxes at least 2048 logical elements will be needed. Subkeys
are stored in EAB organized in 16 x 256 bits. To cover the whole 128-bit data word 8 EAB are used.
Encryption and decryption will be made in 33 clock periods.

Fair configuration
In the fair configuration the SERPENT cipher should process 64-bit data word in one round. Therefore
at least 1024 LE will be needed to implement S-boxes and 4 memory blocks to implement the subkey
memory. Thus, 33 rounds will be executed in 66 clock periods in the fair configuration.

Minimum configuration
As it is explained for the RIJNDAEL cipher, in the minimum configuration the cipher data width is 16
bits. From this point of view SERPENT could use only one EAB for subkeys, but the memory block
capacity is not high enough to store 4224 bits of round keys (see Table 1). Therefore in minimum
configuration we use 2 EAB for subkeys and. 64 S-boxes necessary for this configuration will need at
least 256 logic elements. Because in the minimum configuration the data width is 16 bits, 8 clock
periods will be necessary to execute one round. The complete encryption/decryption process will be
finished in 264 clock periods.
The results of all configurations of the SERPENT cipher are presented in Table 4, 5 and 6.

3.5 Implementation of the TWOFISH cipher
The algorithm of the TWOFISH cipher is described in section 2.5. A round function (see Figure 4.a) is
realized using two g() functions and the Pseudo-Hadamard transform (PHT). The g() function involves
two bit-wise additions modulo 2 with keys S0 and S1 to obtain key-dependent substitution. It also
includes q0 and q1 permutation functions (see Figure 4.B) and a MDS function. Round function contains
operations like fixed rotations, additions modulo 2 and additions modulo 232 that are easy to implement.
We shall now discuss the design of MDS matrix, q0 and q1 permutations and S-boxes.
MDS function represents following MDS matrix multiplication:

Y0 01 EF 5B 5B X0

Y1 5B EF EF 01 X1

Y2 EF 5B 01 EF X2

Y3 EF 01 EF 5B X3

= •

It seems to be difficult to implement, but it is shown in [9] that since MDS matrix contain only three
types of constants, only few operations of multiplication in GF(28) have to be executed. While one
operand of the multiplication is always constant, multiplication procedure can be replaced by several
additions modulo 2, which are easy to implement. For example, operation:

Y = X • 0x5B,
where X and Y are input and output 8-bit values and the symbol • represents the multiplication in
GF(28) with the primitive polynomial x8 + x6 + x5 + x3 + x + 1, can be implemented using following bit-
wise operations:

y7 = x7 ⊕ x1 y5 = x7 ⊕ x5 ⊕ x1 y3 = x5 ⊕ x3 ⊕ x0 y1 = x3 ⊕ x1 ⊕ x0

y6 = x6 ⊕ x0 y4 = x6 ⊕ x4 ⊕ x1 ⊕ x0 y2 = x4 ⊕ x2 ⊕ x1 y0 = x2 ⊕ x0

<<< 8

 MDS

q0

q1

q1

q0

+

q0

q0

q1

q1

+

q1

q0

q0

q1

 MDS

q0

q1

q1

q0

+

q0

q0

q1

q1

+

q1

q0

q0

q1

S0 S1

g

g

f

K2r + 9

K2r + 8

PHT

+

>>> 1 a(0), 0, 0, 0

t0 t1

+

4 4

+

>>> 1 a'(0), 0, 0, 0

t2 t3

+

a' b'

4 4

a b

a) b)

Figure 4. Single round f() function (a) and q() function

The multiplication Y = X • 0xEF can be replaced by following additions modulo 2:

y7 = x7 ⊕ x1 y5 = x7 ⊕ x5 ⊕ x1 y3 = x5 ⊕ x3 ⊕ x0 y1 = x3 ⊕ x1 ⊕ x0

y6 = x6 ⊕ x0 y4 = x6 ⊕ x4 ⊕ x1 ⊕ x0 y2 = x4 ⊕ x2 ⊕ x1 y0 = x2 ⊕ x0

Each permutation (q0 and q1) represents a fixed function that can be described by the structure shown in
Figure 4.B. It is evident that permutation q is easy to implement.
S-boxes t0 , t1 , t2 and t3 map 4-bit input to 4-bit output and they are different for q0 and q1. We have
realized each S-box as a combinatorial function. One S-box implementation needs 4 Logic Elements. To
execute g() function in one clock period 4 x 4 x 3 = 48 S-boxes (192 Logic Elements) will be needed.

Fast configuration
Four 32-bit subkeys (two K keys and two S keys) are required in one round, 8 EAB should be used in
the fast configuration. To speed up the design, we have used two g() functions as it is presented in
Figure 4.a. Each of them uses 48 4-bit S-boxes. So the total number of S-boxes to be implemented is 96
(at least 768 logic elements). Encryption and decryption will be realized in 17 clock periods.

Fair configuration
The fair configuration of TWOFISH differs from the fast configuration in number of EAB – only 4
memory blocks are used, so the keys are red in two clock periods.

Minimum configuration
The minimum configuration includes only one g() function and data from upper and lower path are
multiplexed to this block. We could also reduce the number of q blocks and so the number of S-boxes,
but we think that this wouldn’t save many resources (several additional multiplexers would be needed)
and the control logic would be more complex.

The results of all configurations are presented in Table 4, 5 and 6.

4. Results of implementation using Altera FPGA

We have selected VHDL (Very High Speed Integrated Circuit Hardware Description Language) to
synthesize the ciphers. The choice of VHDL should insure portability of the code to the devices of other
vendors. Nevertheless, although most of the code written in VHDL is portable, up to now the
description of embedded memories is vendor specific.
The devices have been synthesized using Altera MaxPlus2, version 9.3 development system. We have
chosen ALTERA FLEX10KE family to realize the ciphers, because it contains large embedded memory
blocks. To obtain comparable results, we have used the same circuit for all ciphers
(FLEX10K130EQC240-1). The parameters obtained are presented in Tables 4, 5 and 6.

Table 4 - Fast configurations
EAB usage

For subkeys For S-boxes Total
Usage of

Logic Elements
Speed

(Mbits/s)Algorithm
E D B E D B E D B E D B E D B

RIJNDAEL 8 8 8 16 16 16 24 24 24 1585 2145 3348 232.7 211.5 179.0
SERPENT 8 8 8 - - - 8 8 8 3678 3780 5816 125.5 119.0 111.4
TWOFISH 8 8 8 - - - 8 8 8 1950 1935 2104 81.5 81.5 80.3

Table 5 - Fair configurations (E = Encryption, D = Decryption, B = Both encryption and decryption)
EAB usage

For subkeys For S-boxes Total
Usage of

Logic Elements
Speed

(Mbits/s)Algorithm
E D B E D B E D B E D B E D B

RIJNDAEL 4 4 4 8 8 8 12 12 12 1604 2098 3320 121.9 110.8 93.8
SERPENT 4 4 4 - - - 4 4 4 2238 2309 3270 52.5 52.5 52.5
TWOFISH 4 4 4 - - - 4 4 4 1870 1798 1915 73.7 73.7 72.6

Table 6 - Minimum configurations
EAB usage

For subkeys For S-boxes Total
Usage of

Logic Elements
Speed

(Mbits/s)Algorithm
E D B E D B E D B E D B E D B

RIJNDAEL 1 1 1 2 2 2 3 3 3 1673 2033 3324 31.6 28.7 24.3
SERPENT 2 2 2 - - - 2 2 2 1385 1402 1579 13.4 13.4 13.4
TWOFISH 1 1 1 - - - 1 1 1 1318 1302 1409 26.7 26.7 25.3

5. Conclusions

In this paper we have evaluated AES candidates from the point of view of their hardware realization.
After a brief analysis we have chosen three candidates for hardware implementation in the FPGA. While
it is really difficult to compare cipher designs for efficiency, we have tried to realize similar structure
for all selected algorithms in order to obtain comparable results. It is clear, that the results given in the
previous paragraph are relative and that they depend significantly on the used technology. Nevertheless,
designs presented in this paper represent hardware implementations of different AES candidates on the
same platform. Subjective estimations on performance tradeoffs and on chip size of each author could
be so evaluated in a more objective manner.
Even though the speed of ciphers implemented in FPGA is comparable with that attained with software
implementation, the use of hardware for encryption and decryption can free up the CPU from a time-
consuming task and increase overall system security. Additional logic can be put into the circuit to
enlarge system performance.

References
[1] B. Schneier, Applied Cryptography Second Edition, John Wiley & Sons, 1996.
[2] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson, “Performance

Comparison of the AES Submissions”, 2nd AES conference, Rome, Italy, March 1999.
[3] C. Burwick et al., “MARS - a candidate cipher for AES”, 1st AES conference, Ventura, CA,

August 1998.
[4] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin “The RC6™ Block Cipher”, 1st AES

conference, Ventura, CA, August 1998.
[5] J. Daemen, V. Rijmen, “AES Proposal: Rijndael”, 1st AES conference, Ventura, CA, August

1998.
[6] E. Biham, R. Anderson, L. Knudsen, “SERPENT, A Proposal for the Advanced Encryption

Standard”, 1st AES conference, Ventura, CA, August 1998.
[7] B. Schneier et al., “TWOFISH: A 128-Bit Block Cipher”, 1st AES conference, Ventura, CA,

August 1998.
[8] James Nechvatal et al. “Status Report on the First Round of the Development of the Advanced

Encryption Standard”, NIST report, 1999.
[9] P. Chodowiec, K. Gaj, “Implementation of the Twofish Cipher Using FPGA Devices”, Technical

Report, George Mason University, July 1999.

