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Abstract.  We compared the performance of 5 AES candidates, with a new performance 
evaluation tool that we have developed. This tool automatically evaluates the results of a 
tune-up implementation without any manual tune-up so that it figures out the lower bounds 
of performance on real platforms. With this tool, we evaluated the performance of the 5 AES 
candidates on Pentium II, UrtraSPARC and Itanium systems.  Rijndael and Twofish 
attained the highest performances across all of these platforms, so we consider these two 
algorithms as good candidates for AES algorithms from the point of view of performance. 

 
1. Introduction 

In this paper, we are comparing the performances of 5 AES candidates [1][2][3][4][5]. For a fair 
comparison, each candidate must be implemented as fast as possible on the intended platform. Fast 
implementations, however, usually use a heuristic approach, so the resulting performance depends greatly 
on the know-how of the implementers. To solve this problem, we have developed a performance 
evaluation tool that enables a fair comparison on real platforms, such as Pentium, UltraSPARC, and 
Itanium. 

A fast implementation has two approaches: one is an improvement of the algorithm, and the other is a 
tune-up of the implement code. An improvement of the algorithm realizes higher speed processing by 
changing the structure of the algorithm and the instructions. This improvement is difficult to do work 
automatically. A tune-up of the implement code enables higher speed processing by choosing the best 
instruction order for a platform, a suitable usage of the variables that are dependent on the platform, and 
suitable options for a compiler.  

In this paper, we are introducing our tool that can automatically evaluate the results of tune-up 
implementations without any manual tune-up. In short, our tool can evaluate the lower bounds of the 
performance on real platforms for any given algorithm. 

Our tool evaluates performance under two conditions to achieve the automatic optimization and 
parallelism. The first condition is that the number of registers is to be unrestricted, and the second 
condition is that the algorithm should be expressed without branches and loops. We think these conditions 
are reasonable because of the following factors. About the first condition, the latest processors have a lot 
of registers. As for the second condition, branches and loops are not used for fast implementation of the 
symmetric key encryption algorithm.  

We evaluated the performance of 5 AES candidates on Pentium II, UltraSPARC, and Itanium system 
using our tool. The evaluation values on UltraSPARC are in a range from 80% to 90% of the 
measurement. This is a good index as a lower bound on UltraSPARC because it is RISC processor with a 
lot of registers. On the other hand, the evaluation values on PentiumII are in a range from 80% to 90% of 
the measurement of an implementation in assembly language and 60% to 70% in C language. This is a 
good index in assembly language, but not a good index in C language. Pentium II does not have many 
registers, so the measurement depends on an efficient usage of registers. We think that our tool can 
evaluate performance when registers are handled efficiently. Lastly, we also evaluated the performance on 
Itanium, but we cannot measure the performance of Itanium because it is not available to the general 
public, and only its architecture has been announced. However, we think our evaluation is good because 
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Itanium has many registers. 
In our comparison of 5 AES candidates using these evaluation criteria, Rijndael and Twofish attained 

the highest performances in our evaluated platforms. Therefore, we consider these two candidates are 
good as AES algorithm from the perspective of performance.  
 
2. Design Policy 

The purpose of our tool is to evaluate the lower bounds of performance, that is, the minimum number 
of clock cycles for processing an encryption algorithm. Our tool evaluates the number of clock cycles, but 
it does not simulate an operation; moreover, our tool does not support automatic optimization for 
improvement of the algorithm because such support is technically difficult.  

The design of our tool is based on the following four objectives. 
 
2.1. Support of multiple platforms  

Our tool can evaluate performance on a variety of platforms using information about both the 
platforms and instruction set. That is, our tool can evaluate performance by defining a target platform. 

More precisely, the platforms are defined by two types of files. One type of file is a definition of the 
number of pipelines provided by a platform. The other type is the definition of the instruction set. The 
instruction set should be definition based on the assembly instructions of the platform.  
 
2.2. Tiny programming language 

Our tool evaluates the algorithm expressed in the tiny programming language, which requires the 
instruction set to be defined beforehand; furthermore, it does not support loops and branches.  

Loop and branch operations are not supported for two reasons. First, these operations are not used for 
fast implementation of the symmetric key encryption algorithm. Second, these operations cause difficulty 
in automatic optimizing and parallel processing.  

The tiny programming language enables easy expression of the algorithm by a hierarchical subroutine, 
which is expanded like a macro during evaluation. 
 
2.3. Automatic optimization and parallelism 

In general, since the output of automatic optimization and parallelism cannot be expected to easily 
become an ideal code for use in a the widely used compiler, our tool provides ideally optimization under 
two limitations. 

One limitation is that loops and branches are not supported (see 2.2). Our tool optimizes neither 
branches nor loops, which are thought to be difficult in compiler design.   

The second limitation is that the number of registers on a platform is assumed to be unrestricted, which 
is a kind of idealized processor. For evaluating the performance, some works have evaluated the ideal 
performance of an ideal processor [6][7], but no work has been reported about evaluating the ideal 
performance on an actual platform. With this second limitation, our tool can solve the difficult problems 
for automatic optimization of register allocation because tune-up implementation are difficult to 
accomplish by changing the instruction order when the number of registers is limited in an actual 
platform. Furthermore, all state variables can easily be allocated with the registers. Recent platforms, such 
as RISC and IA-64, have a lot of registers, so the effect of this idealization is expected to be small, and 
our tool is expected to provide a good evaluation. On the other hand, CISC processors, such as Pentiums, 
have fewer registers, so any evaluation depends heavily on the coding technique. In other words, the 
evaluation will be good when the registers can be used efficiently, satisfying this limitation.  

Considering these two limitations, we solved the difficulties of automatic optimization and parallelism 
so that automatic optimization and parallelism can be ideally performed with the basic optimization 
techniques of compiler design [8].  

Ideal optimization and parallelism give algorithms a performance with lower bounds (i.e., minimum 
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clock cycles). All evaluation values with this tool have lower bounds because our tool provides 
optimization and parallelism ideally. 
  
2.4. Visualization of evaluation results 

This tool includes a simple viewer that shows results of an evaluation. This viewer shows the 
optimized instruction order, processing clock speed, and processing pipeline based on the expressed 
algorithm. These results can be used as a reference for implementing real code on the platform.  

 
3. Configuration of Evaluation Tool 

Figure 1 shows the construction of the evaluation tool. Our tool consists of a platform definition file, 
programs in the tiny programming language, an evaluation program, an evaluation results file, and a 
viewer program.  
 
3.1. Platform definition files 

Platform definition files must be prepared for each platform, and they consist of two types of files: 
function definition files, and a pipeline definition file. Function definition files define the instruction set. 
The pipeline definition file defines the number of pipelines. 

A function definition file is defined for each instruction and contains the following information: 
 

· Instruction name 
· Grammar of input/output 
· Executable type of pipeline 
· Clock cycles and latency 

 
In our tool, the processing of an instruction is not defined because it is not simulated.  

 

 
Figure 1. Structure of the evaluation tool 
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3.2. Programs in tiny programming language 
The tiny programming language consists of definitions of a function, routine, and constant. 

 
· Function definition 

Functions are defined, such as 
(output variable list) = Instruction (input variable list).
All variables used for defining functions are temporary. These variables define the data relationship 
among instructions, and their names are ignored when they are converted to the internal data form. 

The grammar of input/output follows the same rules as in the function definition files. 
  
· Routine definition 

Routines are defined between 
#begin ROUINTE_NAME

and 
#end ROUTINE_NAME,

including one or more functions.  
Routines are expanded as macros to be evaluated as sequential functions when they are converted to 

the internal data form. 
 
· Constant definition 

Constants are defined as #constant VALUE and processed as an argument of the main routine 
during the evaluation.  
 
3.3. Evaluation program 

The evaluation program consists of a platform information reading component, program analysis 
component and optimize-and-parallelism component. 
 
· Platform information reading component  

Platform definition files are stored in a separate directory for each platform. The files are read as a 
plug-in when a platform is specified, making the change of a platform easy. 
 
· Program analysis component 

This component interprets the algorithm expressed in the tiny programming language and converts it 
into a sequential program. The component then combines the sequential program with platform 
information, and it generates an internal data form (function tree). Critical path searches are also 
processed in this component.  

 
· Optimization and parallelism component. 

In this component, the internal data form is scheduled in pipelines using the simplified technique of 
Gibbons and Muchanic [8]. 

A function tree is scheduled from the bottom to the top. This scheduling is effective for suppressing 
the number of registers to their minimum. 
 
3.4. Evaluation results file 

An evaluation results file contains the output from the optimization and parallelism. The viewer 
program displays the contents of this file. The purpose of separating the viewer program and the 
evaluation program is to quickly provide the results of an evaluation for display by viewer program. In 
other words, processing to evaluate the algorithm requires more time compared to that required by the 
viewer program.  
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Figure 2. Viewer program 

3.5. Viewer program 
Figure 2 shows the viewer program. This program enables a graphic display of the evaluation results 

file. The program displays the total number of the clock cycles necessary for the algorithm, and it also 
displays a matrix that consists processing clock cycle in the rows and scheduled functions in the columns. 
If a function name in the matrix is clicked, information is displayed about the function and the functions 
linked to it. 
 
4. Evaluation results 

Table 1 lists the 128-bit key encryption performance for 5 AES candidates. These results consists of 
evaluation results with our tool 

· Gladman’s results [9],  
· Lipmaa’s results [10][15], 
· Aoki and Lipmaa’s result [14],  
· Measured results with Gladman’s source code compiled in our environment, and 
· Measured results with Gladman’s source code modified for UltraSPARC. 

 
Table 1. Evaluation results and measured results of 5 AES candidates (clock cycles)  

Evaluation Platform Evaluated codes MARS RC6 Rijndael Serpent Twofish

Pentium II Original code 249 205 214 605 261 
UltraSPARC Original code 641 1,006 232 821 294 

Evaluation 
using our 

tool 
Itanium Original code 326 303 136 602 196 

Gladman's C code[9] 376 270 374 992 378 Pentium Pro 
/ Pentium II Assembly[14][15] 306 223 237 - 292 

Measured 
results 

(in papers) 
UltraSPARC Ported Gladman's C code[10] 840 1,162 334 996 487 

Pentium II Gladman's C code 367 263 362 985 371 
Ported Gladman's C code 794 1,143 334 1,024 485 

Measured 
results 
(our 

environment) 

 
UltraSPARC Modified Gladman's C code 754 1,142 290 1,021 369 
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Note that the evaluation results with our tool include evaluations of only the encryption algorithms part, 

and they do not include evaluations of the clock cycles for memory access, such as subroutine calls and 
the argument handovers. 

On modifying Gladman’s source code for UltraSPARC, we changed the table reference method from 
direct addressing to pointer addressing, which is suitable for UltraSPARC. 
 
4.1. UltraSPARC 

Table 2 lists the instructions, clock latency, and executable processing unit names that are used in the 
evaluation for UltraSPARC [11]. In the evaluation, we presumed that Ultra SPARC has two 
integer-processing units (IU) and one load-store unit (LSU).  

 
Table 2. Instructions used in evaluation for UltraSPARC 

Execution unit Instruction Clock cycle 
SLL, SLLX, SRL, SRLX 1 IU0 
UMUL 20 

IU0, IU1 ADD, SUB, AND, OR, NOT, XOR 1 
LSU LD 2 

 
The evaluation clock cycles were 80% to 90% of the measured clock cycles. We consider these results 

are good enough as lower bounds of performance because our tool evaluates neither subroutine calls nor 
argument processing. 
 
4.2. Pentium II 

Table 3 lists the instructions, clock latency, and executable processing unit names that are used in the 
evaluation for Pentium II [12]. 

 
Table 3.  Instructions used in the evaluation for the PentiumII 

Execution unit Instruction Clock cycles 
shl, shr, rol, ror, lea 1 port#0 
mul 4 

port#0, port#1  add, sub, and, or, not, xor 1 
port#2 mov(memory read) 3 

 
For the evaluation, we set the number of pipelines for Pentium II based on [12]. Pentium II has two 

integer operation units (port#0, #1), one memory read units (port#3), and two memory write units (port #3, 
#4). However, we evaluated the pipeline number of Pentium II as 3 because we assumed all data is on the 
registers and not in memory; moreover memory write is not used in our tools. 

Compared to Gladman's C code, the evaluation clock cycles is about 60% to 70% of the measured 
clock cycles. This is because registers of Pentium II are not used efficiently in optimization by any widely 
used compiler. Therefore, the assumption of our tool about an unrestricted number of registers is not 
satisfied. 

On the other hand, compared to the assembly code of Aoki and Lipmaa, the evaluation clock cycles are 
about 80% to 90% of the measured clock cycles. Aoki and Lipmaa performed manual tune-up and the 
registers are used efficiently. Therefore, the assumption of our tool is satisfied. 
 
4.3. Itanium 

Using the instruction set of a platform, our tool can be applied for any platform. Thus, we ware able to 
evaluate Itanium, even though it is not available to the public and has only had its architecture announced. 
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Table 4.  Instructions used in evaluation for Itanium 
Execution unit  Instruction Clock cycles 

integer- memory (A) add, sub, and, or, not, xor, shladd 1 
integer- memory (I) extr, mux, shl, shr, shrp  1 

ld 2 integer- memory (M) 
getf, setf 1 

floating point (F) xmpy 5 
 

Table 4 lists the instructions, clock latency, and executable processing unit names that are used in the 
evaluation for Itanium [13]. 

For this evaluation, we set the number of pipelines based on [13]. Itanium has four integer-memory 
units and two floating-point units. Instructions of Itanium consist of 6 types, and 4 types of instructions 
are used in this evaluation: integer ALU (A), non-ALU integer (I), memory (M), and floating point (F). 
Type (A), (I), and (M) instructions are executed in integer-memory units, and type (F) instructions are 
executed in floating-point units.  

Itanium has 128 general registers, assuming the unrestricted number of registers is acceptable in this 
platform.  

The evaluation codes for Itanium are ported from those for Pentium II. As mentioned above, the 
evaluation values with our tool depend on the implementation algorithm. Therefore, a higher performance 
may be obtained when a suitable algorithm for Itanium is selected. 
 
5. Performance comparison of 5 AES candidates 

5.1. MARS, RC6 
MARS and RC6 use a lot of multiplication and the rotation shift.  
Pentium II has high-speed 32-bit multiplication and rotation shift instructions, so good performance is 

obtained. UltraSPARC does not have rotation shift instructions, and it takes especially many clock cycles 
to process multiplication instructions, so performance is worse. Itanium has no rotation shift instruction. 
Furthermore, multiplication instruction is executed with FPU, and data moves between IU and FPU for 
multiplication. Therefore performance is worse than that of Pentium II.  
 
5.2. Rijndael 

Rijndael can be implemented by repeating the table look-up and key XORing. Therefore, Pentium II 
and UltraSPARC have a lot of memory references, and memory read instructions are critical processing in 
both platforms, which have only one pipeline for memory access. Itanium archives the highest 
performance because it has four memory access units.  
 
5.3. Serpent 

Serpent mainly consists of logical operations.  
Pentium II and UltraSPARC have two pipelines that can execute logical operations. Therefore, 

performance becomes almost the same in those platforms. Otherwise, the high number of rounds in 
Serpent is a cause of the performance decrement. 
 
5.4. Twofish 

Twofish consists of different operations, such as table look-up, logical operation, and arithmetic 
operation. These instructions are processed in a good balance. Therefore, Twofish achieves good 
performance independent of the characteristics of the platforms.  
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6. Conclusion 

We have developed a new tool for evaluating the performance of symmetric encryption algorithms.  
With information about both a platform and the instruction set, our tool can evaluate the performance on 
any processor.  

We have compared 5 AES candidates with our tool, and Rijndael and Twofish achieved the highest 
performance on UltraSPARC, Pentium II and Itanium. Therefore, we recommend Rijndael and Twofish as 
AES algorithms in respect of their performance.  
 
7. Reference 

[1] C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M.Matyas, L. 
O'Connor, M. Peyravian, D. Safford, and N. Zunic, “MARS - a candidate cipher for AES,” NIST AES 
Proposal, Jun 1998. 

[2] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 Block Cipher,” NIST AES 
Proposal, Jun 1998. 

[3] J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” NIST AES Proposal, Jun 1998. 
[4] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced Encryption 

Standard,” NIST AES Proposal, Jun 1998. 
[5] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “Twofish: A 128-Bit Block 

Cipher,” NIST AES Proposal, Jun 1998. 
[6] J. Nakajima and M. Matsui, “Fast Software Implementations of MISTY (II),” SCIS'98-9.1.B (in 

Japanese). 
[7] C. Clapp, “Instruction-level Parallelism in AES Candidates,” AES2, 1999. 
(http://csrc.nist.gov/encryption/aes/round1/conf2/papers/clapp.pdf) 
[8] P. B. Gibonns and S. S. Muchnick, “Efficient instruction scheduling for a pipelined architecture,” 

Symposium on Compiler Construction, SIGPLAN Notices, Vol. 21, No.7, pp. 11-16, June 1986. 
[9] B. Gladman, “Implementation Experience with AES Candidate Algorithms,” AES2 conference, 1999. 

(http://csrc.nist.gov/encryption/aes/round1/conf2/papers/gladman.pdf) 
[10] H. Lipmaa, “AES Candidates: A Survey of Implementations,” AES2 conference, 1999. 

(http://csrc.nist.gov/encryption/aes/round1/conf2/papers/lipmaa.pdf) 
[11] D. L. Weaver and T. Germond, “The SPARC Architecture Manual Version 9,” Prentice-Hall, Inc., 

1994. 
[12] Intel, “Intel Architecture Software Developer's Manual”, Intel, 1999 

(http://developer.intel.com/design/PentiumII/manuals/) 
[13] Intel, “The IA-64 Architecture Software Developer's Manual,” Intel, January 2000. 

(http://developer.intel.com/design/ia-64/manuals/index.htm) 
[14] K. Aoki and H. Lipmaa, “Fast Implementations of AES Candidates,” AES3 conference preprint, May 

2000. 
[15] H. Lipmaa, “AES Ciphers: speed.” 

(http://home.cyber.ee/helger/aes/table.html) 
 


	Introduction
	Design Policy
	Support of multiple platforms
	Tiny programming language
	Automatic optimization and parallelism
	Visualization of evaluation results

	Configuration of Evaluation Tool
	Platform definition files
	Programs in tiny programming language
	Function definition
	Routine definition
	Constant definition

	Evaluation program
	Platform information reading component
	Program analysis component
	Optimization and parallelism component.

	Evaluation results file
	Viewer program

	Evaluation results
	UltraSPARC
	Pentium II
	Itanium

	Performance comparison of 5 AES candidates
	MARS, RC6
	Rijndael
	Serpent
	Twofish

	Conclusion
	Reference

