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1. Introduction

The evaluation criteria for the Advanced Encryption Standard (AES) Round2 candidate
algorithms, as specified in the “Request for Comments” [1], includes computational efficiency,
among other criteria.  Specifically, the “Call For AES Candidate Algorithms” [2] required both
Reference ANSI1 C code and Optimized ANSI C code, as well as Java2 code.  Additionally, a
“reference” hardware and software platform was specified for testing.  NIST performed testing
on this reference platform, as well as several others.  Candidate algorithms were tested for
computational efficiency using the Optimized ANSI C source code provided by the submitters.

This paper describes the testing methodology used in ANSI C efficiency testing, along with
observations regarding the resulting measurements.  The results of the measurements are
included followed by conclusions regarding which algorithms have the most consistent
performance across different platforms.  Some knowledge regarding compilation and processor
architectures is useful in understanding how the data was derived.  However, the raw data in the
document may be useful without necessarily understanding the derivation.

The testing described in this paper is similar to that done in Round 1.  The testing has obviously
been restricted to the five Round 2 candidates.  Additionally, Timing Tests for the Pentium based
platforms has been omitted in favor of Cycle Count testing (see Section 3).

2. Scope

Performance measurements were taken on multiple platforms.  These measurements were
analyzed to determine the general rankings of the candidate algorithms with respect to one
another.  NIST is not interested in the absolute value of the performance measurement, but in the
relative value of one algorithm’s speed when compared with the rest.  From an efficiency point
of view, NIST does not intend to rank one algorithm as “better” because it is relatively faster

                                                       
1 ANSI – American National Standards Institute
2 Certain commercial products are identified in this paper.  In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that
material identified is necessarily the best for the purpose.



than another algorithm by 0.5%.  However, if one algorithm was faster than another algorithm by
50%, then that would be considered a significant difference.  NIST is interested in finding the
consistent “top performers” on the test platforms by analyzing the performance data for the
algorithms and observing natural breaks.

3. Methodology

In the “Call for AES Candidate Algorithms” [2], NIST cited a specific hardware and software
platform as the “NIST Analysis Platform” (referred to in this document as the “reference
platform”) for testing candidate algorithms.  This platform consists of an IBM-compatible PC
with an Intel Pentium Pro Processor, 200 MHz-clock speed, 64MB RAM, running
Microsoft Windows 95, and the ANSI C compiler in the Borland C++ Development Suite
5.0.  Performance measurements were taken on this platform and a large number of additional
hardware and software platform combinations.  The platforms tested are detailed in Table 1.

Performance measurements were conducted in two different ways.  The first performance test
method determines the amount of time required to perform cryptographic operations (e.g., how
many bits of data can be encrypted in a second, or how many keys can be setup in a second).
This type of test is referred to as a “Timing Test” in this document.  The second performance
testing method counts the number of clock cycles required to perform cryptographic operations
(e.g., how many cycles are consumed in encrypting a block of data, or how many cycles are
consumed in setting up a key).  This type of test is referred to as a “Cycle Count Test” in this
document.  The Timing Tests utilized the clock() timing mechanism in the ANSI C library to
calculate the processor time consumed in the execution of the API call and underlying
cryptographic operation under test (i.e., makeKey(), blockEncrypt(), and
blockDecrypt()).  The time consumed to perform a particular operation was then used to
calculate the bits/second or keys/second speed measure.  The Cycle Count Tests counted the

Table 1: System Platforms (Hardware/Software) and
Compilers Used in Efficiency Testing

Processor/Hardware Operating System Compiler
Borland C++ 5.01 (cycles)Windows95

Visual C++ 6.0 (cycles)

200MHz Pentium Pro Processor,
64MB RAM

Linux GCC 2.8.1 (timing)
Borland C++ 5.01 (cycles)450MHz Pentium II Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles)
Borland C++ 5.01 (cycles)600MHz Pentium III Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles)
GCC 2.8.1Sun: 300MHz UltraSPARC-II w/

2MB Cache, 128 MB RAM
Solaris 2.7 (a 64 bit
operating system) Sun Workshop Compiler C 4.2

GCC 2.8.1Sun: 2*360MHz UltraSPARC-II w/
4MB Cache, 256 MB RAM

Solaris 2.7
Sun Workshop Compiler C 4.2
GCC 2.8.1Silicon Graphics: 2*300MHz

R12000 w/ 4MB Cache, 512 MB
RAM

IRIX64 6.5.4 (a 64 bit
operating system)

MIPSpro C Compiler 7.30



actual clock cycles consumed in performing the operation under test (for more information on
counting clock cycles see [3]).  Because cycle counting utilizes assembly language code in the
testing program, interrupts could be turned off during testing3.  This results in a very accurate
measure of the performance of the API calls and the underlying cryptographic operations.
Additionally, cycle counting eliminates the variability of the processor speed.  The same number
of clock cycles are required to perform an operation on a 300 MHz Pentium II processor as on a
450 MHz Pentium II processor; there are simply more clock cycles in a second on a 450 MHz-
based system.  Cycle counting could only be performed on the Intel processor based systems.
This is the only processor used by NIST during Round 2 testing that provides access to a true
cycle counting mechanism.

3.1 Cycle Counting Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:
• The number of cycles needed to setup a key for encryption;
• The number of cycles needed to encrypt block(s) of data;
• The number of cycles needed to setup a key for decryption; and,
• The number of cycles needed to decrypt block(s) of data.

These values were measured by placing the CPUID and RDTSC assembly language instructions
around the NIST API.  These instructions were called twice before the cryptographic operation
to “flush” the instruction cache (see [3, §3.1]).  Additionally, the CLI and STI instructions were
used to disable interrupts before testing and enable after testing.  This eliminates extraneous
interrupts that would skew results. The test program generates 1000 sets of cycle count
information as described above for each key size. The values in each category are then sorted,
and the median value is determined.  A standard deviation is calculated for each test category.

Finally, the average of all values that fall within three standard deviations of the median is
determined.  This value is the reported average time to perform the specific operation (encrypt,
decrypt, or key setup) for a particular key size.  Values in this test program are calculated around
                                                       
3 Interrupts occur, for example, when the operating system needs to perform some action unrelated to the process
that is running.  If an interrupt were to occur during cycle count testing, the time spent performing the operating
system activity would be included in the time spent on the cryptographic operation.  This would lead to inflated and
erroneous values for the cycles necessary to perform the cryptographic operation.

makeKey();
cipherInit();
for (r=0; r<1000; r++) {

cli; /* Clear Interrupt Flag  */
cpuid; /* Clears instruction cache  */
rdtsc; /* Read Time Stamp Counter  */
save counter;
blockEncrypt(); /*  Perform operation being timed  */
cpuid;
rdtsc; /* Read Time Stamp Counter  */
subtract counter;
save counter
sti; /* Set Interrupt Flag  */
}



the NIST API calls.  Results for the Cycle Counting Program can be found in Section 5.1.
Pseudo code for the generation of cycle counting information for the blockEncrypt()
operation is included in Figure 1.

The Cycle Counting Program was run several times with different lengths of data for encryption
and decryption to determine if size had any effect on the blockEncrypt() and
blockDecrypt() speeds.

3.2 Timing Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:
• The time to setup 10,000 keys for encryption;
• The time to encrypt 8192 blocks of data (8192 blocks*128 bits/block=1048576

bits=1Mbit);
• The time to setup 10,000 keys for decryption; and,
• The time to decrypt 8192 blocks of data (8192 blocks*128 bits/block=1048576

bits=1Mbit).

Analysis of this data was performed in the same way as the cycle count program listed above in
Section 3.1 (calculation of standard deviation, median, etc.)  Results for the Timing Program can
be found in Section 5.2.  Pseudo code for the generation of timing information for the
blockEncrypt() operation is included in Figure 2.

3.2 Compiler Options

PC

On the three PCs used during testing, all algorithms were compiled using the same compiler
options. Those options and their effect are:

• Borland:
Ø -Oi Expand common intrinsic functions
Ø –6 Generate Pentium Pro instructions
Ø –v Source level debugging (does not effect speed)
Ø –A Use only ANSI keywords
Ø –a4 Align on 4 bytes
Ø –O2 Generate fastest possible code

makeKey();
cipherInit();
for(r=0; r<1000; r++){

(Start Timer)
blockEncrypt(8192 blocks);
(Stop Timer)
}

Fig. 2: Pseudo code for Time Testing for blockEncrypt()



• Visual C:
Ø /G6 Pentium Pro instructions
Ø /Ox Best optimization for speed

• Linux/GCC:
Ø -O3 Best optimization for speed

The Borland programs were compiled on the 200 MHz Pentium Pro Reference machine.  The
Visual C and DJGPP programs were compiled on the 450 MHz Pentium II machine.  The Linux
operating system was installed on a Jaz drive attached to the 200 MHz Pentium Pro Reference
machine.  Compilations for GCC under Linux were performed on this machine.

Sun

All algorithms were compiled using the same compiler options.  Those options and their effect
are:

• GCC: -O3 Best optimization for speed
• Workshop: -xO5 Best optimization for speed

The compilations for the Sun systems were performed on the 300 MHz UltraSPARC II system.

SGI

All algorithms were compiled using the same compiler option.  That option and its result is:
• GCC: -O3 Best optimization for speed
• MIPSpro: -O3 Best optimization for speed

The Twofish algorithm compiles on the SGI using the MIPSpro compiler, but results in a Bus
Error and a core dump when the blockEncrypt() and blockDecrypt() functions are
invoked.  This appears to be a problem with how the compiler is handling byte alignment in the
optimized code.

4. Observations

Some of the algorithms use flags to determine which compiler is used.  By checking which
compiler is used, an algorithm may substitute commands that direct the compiler to insert code to
make use of instructions available on the CPU.  The most common example of this is the use of
the ROTL and ROTR instructions to perform left and right logical rotations, respectively.  Using
the machine instruction to perform these rotations results in code which is two cycles faster than
performing the equivalent sequence of using a pair of shifts and an OR operation.  This can
provide a performance enhancement on various compilers that other algorithms do not enjoy
because they do not perform this type of compiler dependent compilation.  The Borland compiler
does not make use of the machine instructions of ROTL and ROTR.  The Visual C compiler can
make use of the machine instructions by using the routines _rotl() and _rotr() to perform
the rotation.



The blockEncrypt() and blockDecrypt() times improved as the numbers of blocks
passed to the algorithm at the same time increased, because the API overhead is averaged over
more blocks, and more data is available in the cache.  The larger amounts of data are still
encrypted and decrypted in ECB mode; however, in operational use, Cipher-Block Chaining
(CBC) mode would likely be used.  Efficiency testing was not performed in CBC mode because
this would add another layer of data processing that has no real impact on the performance of the
algorithm, i.e., pre- and post-processing the data before calling the algorithms’ internal ciphering
routines.  In addition, there may be performance characteristics from one algorithm to another,
based on whether data is treated as two 64-bit blocks or four 32-bit blocks, but this effect
depends on the processor characteristics.

5. Results

5.1 Cycle Count Tables

The values4 in Ekey, Dkey, Enc, and Dec are all in clock cycles.  These values refer to:

• Ekey - The number of cycles needed to setup a 128-bit key for encryption;
• Dkey - The number of cycles needed to setup a 128-bit key for decryption;
• Enc - The number of cycles per block needed to encrypt n blocks of data; and,
• Dec - The number of cycles per block needed to decrypt n blocks of data.

Note: the data encrypted and decrypted in the cycle count measurements was random (as
opposed to using all zero data blocks).

Cycles – Borland C++ 5.01 – 200 MHz Pentium Pro, 64MB RAM, Windows95

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6815 6814 1097 1049 944 921 937 913 938 914 957 933
MARS-192 7001 7001 1094 1059 947 921 938 913 937 918 956 935
MARS-256 7222 7222 1081 1058 944 926 938 913 939 914 958 932
RC6-128 5171 5170 950 911 630 576 610 556 614 558 629 582
RC6-192 5254 5265 950 914 636 578 609 555 614 558 629 582
RC6-256 5330 5331 949 914 630 576 610 556 614 558 629 582
RIJNDAEL-128 2208 2870 826 836 690 690 685 686 682 681 704 714
RIJNDAEL-192 2972 3786 958 961 823 815 815 808 820 811 850 835
RIJNDAEL-256 3691 4684 1106 1137 982 996 939 946 939 947 961 968
SERPENT-128 12324 12291 3569 3273 3429 3158 3422 3155 3422 3163 3436 3178
SERPENT-192 14389 14398 3574 3301 3429 3159 3420 3147 3424 3165 3438 3176
SERPENT-256 16639 16644 3570 3214 3429 3074 3420 3064 3425 3163 3438 3175
TWOFISH-128 13544 13372 1052 1009 725 681 706 660 708 662 727 687
TWOFISH-192 15707 15544 1052 993 722 675 706 660 708 663 728 686
TWOFISH-256 21344 21181 1049 996 723 679 704 660 708 661 729 682

                                                       
4 The relative uncertainty for values in all tables is ≤ 1%.



Cycles – Visual C 6.0 – 200 MHz Pentium Pro, 64MB RAM, Windows95

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4964 4964 837 754 687 598 681 593 684 595 718 629
MARS-192 4996 4996 821 737 686 601 680 593 683 596 719 629
MARS-256 5185 5185 823 743 689 601 680 593 682 595 720 629
RC6-128 2293 2294 640 627 351 351 340 332 343 334 382 355
RC6-192 2401 2402 640 627 352 351 340 332 343 334 382 355
RC6-256 2512 2513 642 629 352 351 343 332 343 334 382 355
RIJNDAEL-128 1278 1764 1277 1308 1138 1133 1125 1136 1134 1135 1149 1124
RIJNDAEL-192 2002 2566 1512 1574 1368 1362 1358 1365 1361 1372 1388 1365
RIJNDAEL-256 2591 3257 1732 1798 1604 1596 1591 1599 1596 1601 1614 1588
SERPENT-128 7092 7104 1439 1293 1298 1135 1286 1129 1285 1128 1326 1165
SERPENT-192 9048 9035 1455 1294 1295 1135 1285 1126 1285 1126 1326 1168
SERPENT-256 10861 10850 1454 1275 1292 1135 1285 1127 1286 1128 1326 1166
TWOFISH-128 9950 9790 1264 1024 965 725 947 707 950 711 967 740
TWOFISH-192 13298 13136 1265 1020 966 728 947 707 949 721 965 753
TWOFISH-256 18555 18394 1278 1016 965 726 947 707 950 710 966 743

Cycles – Borland C++ 5.01 – 450 MHz Pentium II, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6837 6837 1105 1082 947 924 939 913 941 920 986 963
MARS-192 7040 7038 1105 1092 949 919 939 913 937 921 985 961
MARS-256 7249 7249 1105 1082 949 922 936 914 941 921 992 966
RC6-128 5186 5183 984 944 631 578 610 556 617 560 651 598
RC6-192 5279 5279 984 943 631 577 609 555 617 560 651 598
RC6-256 5363 5364 984 944 631 578 609 555 617 560 651 598
RIJNDAEL-128 2254 2912 845 844 689 699 681 692 696 697 777 783
RIJNDAEL-192 2994 3778 983 993 818 814 811 807 826 820 892 896
RIJNDAEL-256 3722 4668 1099 1125 948 958 938 948 954 952 1021 1027
SERPENT-128 11767 11671 3108 2702 2855 2496 2842 2480 2847 2488 2868 2523
SERPENT-192 13872 13852 3108 2705 2856 2478 2842 2465 2847 2467 2868 2505
SERPENT-256 16073 15978 3108 2710 2857 2500 2842 2488 2847 2500 2868 2528
TWOFISH-128 12907 12816 1063 1034 726 677 702 657 708 662 755 708
TWOFISH-192 15311 15219 1061 1031 726 680 704 658 706 665 753 712
TWOFISH-256 20706 20645 1061 1018 727 679 703 657 708 663 754 713



Cycles – Visual C 6.0  - 450 MHz Pentium II, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4937 4938 825 734 669 582 658 571 669 583 715 628
MARS-192 4999 4999 825 734 669 578 658 572 667 582 716 629
MARS-256 5175 5175 825 734 668 582 658 572 667 583 716 628
RC6-128 2283 2284 638 622 339 327 321 310 330 320 379 354
RC6-192 2408 2409 638 622 339 327 321 310 330 320 379 354
RC6-256 2519 2520 638 622 339 327 321 310 330 320 379 354
RIJNDAEL-128 1292 1722 987 987 810 801 808 789 826 796 894 866
RIJNDAEL-192 2014 2553 1152 1135 987 969 983 957 1005 972 1079 1039
RIJNDAEL-256 2594 3241 1329 1311 1161 1135 1158 1124 1173 1132 1238 1202
SERPENT-128 6947 6935 1423 1262 1273 1116 1263 1107 1281 1122 1320 1162
SERPENT-192 8857 8857 1423 1280 1274 1117 1263 1107 1281 1122 1320 1162
SERPENT-256 10666 10683 1423 1256 1274 1117 1263 1108 1281 1122 1320 1162
TWOFISH-128 9266 9249 1126 952 802 636 782 615 800 628 831 669
TWOFISH-192 12707 12627 1130 952 802 634 782 616 795 622 832 673
TWOFISH-256 17942 17863 1126 955 802 635 782 616 795 622 832 672

Cycles – Borland C++ 5.01 – 600 MHz Pentium III, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6833 6833 1143 1120 951 924 938 913 947 921 976 959
MARS-192 7017 7017 1171 1131 951 926 938 914 940 917 980 959
MARS-256 7245 7245 1143 1120 950 927 939 913 943 918 978 959
RC6-128 5189 5186 1022 982 633 580 610 555 620 567 642 637
RC6-192 5272 5271 1022 982 633 580 610 556 620 567 642 637
RC6-256 5362 5363 1026 982 633 580 609 556 620 567 642 637
RIJNDAEL-128 2213 2862 908 890 692 694 681 681 700 687 757 747
RIJNDAEL-192 2981 3776 1031 1047 820 809 809 799 818 813 883 873
RIJNDAEL-256 3727 4672 1152 1140 959 950 935 937 947 944 1002 996
SERPENT-128 11850 11849 3161 2743 2859 2497 2842 2490 2855 2468 2870 2516
SERPENT-192 13937 13916 3164 2739 2861 2484 2841 2467 2856 2495 2870 2536
SERPENT-256 16133 16114 3165 2737 2859 2500 2841 2485 2849 2483 2869 2536
TWOFISH-128 12938 12861 1085 1057 724 682 704 658 712 667 763 718
TWOFISH-192 15347 15298 1085 1078 727 680 704 659 713 668 764 716
TWOFISH-256 20760 20689 1085 1053 729 681 704 658 718 664 764 713



Cycles – Visual C 6.0  - 600 MHz Pentium III, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4934 4936 860 769 668 581 656 569 683 585 708 617
MARS-192 4997 4997 860 769 668 578 656 569 682 585 709 618
MARS-256 5171 5171 860 769 669 581 656 569 682 586 709 617
RC6-128 2278 2279 672 657 339 327 318 307 325 318 366 346
RC6-192 2403 2404 672 657 339 327 319 307 325 318 366 346
RC6-256 2514 2515 672 657 339 327 319 307 325 318 366 346
RIJNDAEL-128 1289 1724 1007 1006 811 802 805 784 824 794 880 848
RIJNDAEL-192 2000 2553 1188 1169 987 966 981 955 1003 971 1069 1023
RIJNDAEL-256 2591 3255 1365 1347 1160 1138 1155 1121 1171 1131 1227 1187
SERPENT-128 6944 6933 1458 1315 1273 1113 1261 1104 1281 1120 1309 1150
SERPENT-192 8853 8853 1459 1297 1273 1116 1260 1102 1281 1123 1309 1151
SERPENT-256 10668 10668 1459 1315 1273 1115 1262 1103 1281 1120 1309 1150
TWOFISH-128 9263 9241 1161 987 802 635 780 613 797 625 828 664
TWOFISH-192 12722 12632 1165 987 802 633 779 613 791 619 828 666
TWOFISH-256 17954 17876 1161 990 802 635 780 613 792 622 828 665

5.2 Timing Tables

Values in the tables are as follow:

• Ekey (time to make a key for encryption) is in Keys/sec;
• Encrypt (time to encrypt) is in Kbits/sec;
• Dkey (time to make a key for decryption) are in Keys/sec; and,
• Decrypt (time to decrypt) is in Kbits/sec.



GCC 2.8.1 - 200 MHz Pentium Pro, 64MB RAM, Linux

Ekey Encrypt Dkey Decrypt
Mars-128 46729.0 39035.8 46511.6 37135.9
Mars-192 44444.4 39035.8 44642.9 37135.9
Mars-256 42918.5 38855.1 43103.4 37135.9
RC6-128 59523.8 37300.9 58823.5 52454.4
RC6-192 57142.9 37300.9 57803.5 52454.4
RC6-256 56818.2 37300.9 57142.9 52454.4
Rijndael-128 128205.1 42602.6 106383.0 41754.7
Rijndael-192 88495.6 36175.4 74074.1 35562.3
Rijndael-256 74074.1 31551.5 62500.0 30969.4
Serpent-128 16891.9 13052.4 16920.5 16328.2
Serpent-192 13123.4 13052.4 13140.6 16328.2
Serpent-256 10559.7 13052.4 10582.0 16328.2
Twofish-128 14471.8 20671.7 14450.9 22261.8
Twofish-192 11086.5 20671.7 11025.4 22261.8
Twofish-256 8305.6 20671.7 8291.9 22261.8

SGI 300 MHz R12000 w/4MB Cache, 512 MB RAM

GCC 2.8.1 MIPSpro C Compiler Version 7.30
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 60975.6 63581.1 60975.6 66608.8 78125.0 67683.1 78125.0 71124.6
Mars-192 59171.6 63581.1 59523.8 67141.6 76923.1 67683.1 76923.1 70526.9
Mars-256 57803.5 63581.1 57803.5 66608.8 75188.0 67683.1 75188.0 70526.9
RC6-128 147058.8 86522.7 147058.8 98737.7 166666.7 80699.1 166666.7 87424.0
RC6-192 142857.1 86522.7 142857.1 98737.7 161290.3 80699.1 161290.3 87424.0
RC6-256 138888.9 86522.7 138888.9 98737.7 156250.0 80699.1 156250.0 87424.0
Rijndael-128 212766.0 58282.7 161290.3 58282.7 212766.0 74271.7 153846.2 79930.5
Rijndael-192 163934.4 49080.1 125000.0 49368.8 142857.1 63103.0 109890.1 68233.4
Rijndael-256 142857.1 42387.4 108695.7 42819.9 121951.2 54498.1 93457.9 58690.2
Serpent-128 47393.4 42174.4 47393.4 46113.8 57471.3 42819.9 57471.3 45612.5
Serpent-192 37878.8 41963.5 38022.8 46113.8 44247.8 42602.6 44247.8 45612.5
Serpent-256 31250.0 41963.5 31250.0 46113.8 35461.0 42602.6 35461.0 45612.5
Twofish-128 31055.9 59947.9 31055.9 63581.1 41493.8 N/A 41841.0 N/A
Twofish-192 23255.8 60379.2 23310.0 64066.4 32786.9 N/A 33112.6 N/A
Twofish-256 16420.4 59947.9 16447.4 63581.1 22321.4 N/A 22522.5 N/A



Sun 300 MHz UltraSPARC-II w/ 2MB Cache, 128 MB RAM

GCC 2.95 Sun Workshop Compiler 4.2
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 48780.5 29867.3 48543.7 29242.9 52356.0 30081.4 53475.9 29973.9
Mars-192 47393.4 29867.3 46948.4 29141.3 52356.0 30081.4 52083.3 30081.4
Mars-256 46082.9 29867.3 45662.1 29242.9 51020.4 29973.9 51282.1 30081.4
RC6-128 111111.1 20981.8 113636.4 20981.8 111111.1 20470.0 N/A 20420.2
RC6-192 108695.7 20981.8 108695.7 20981.8 101010.1 20520.1 N/A 20470.0
RC6-256 105263.2 20981.8 106383.0 20981.8 N/A 20520.1 98039.2 20470.0
Rijndael-128 172413.8 45612.5 131578.9 38498.6 166666.7 49368.8 117647.1 50864.9
Rijndael-192 140845.1 37805.0 106383.0 32033.2 128205.1 41963.5 85470.1 43261.4
Rijndael-256 117647.1 33042.1 90090.1 27517.1 108695.7 36490.0 73529.4 37467.4
Serpent-128 30120.5 34537.9 30120.5 34969.6 33783.8 32156.0 33898.3 32912.6
Serpent-192 25000.0 34255.9 25000.0 34969.6 27173.9 32033.2 27248.0 32912.6
Serpent-256 21008.4 33841.5 21052.6 34824.5 22421.5 32156.0 22421.5 33042.1
Twofish-128 22321.4 36972.3 22321.4 36020.2 21739.1 41963.5 21739.1 N/A
Twofish-192 16366.6 36972.3 16366.6 36020.2 16447.4 41754.7 16420.4 N/A
Twofish-256 11547.3 37300.9 11560.7 36020.2 12285.0 42174.4 12300.1 N/A

NOTE: The italicized items in the Sun Workshop Compiler table above are corrections to the values found in the
Proceedings of the 3rd AES Candidate Conference.  The original values were incorrect and have been replaced by
N/A (not available).

Sun 2*360 MHz UltraSPARC-II w/ 4MB Cache, 256 MB RAM

GCC 2.95 Sun Workshop Compiler 4.2
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 59523.8 36332.1 59523.8 35562.3 65359.5 36649.4 65359.5 36810.1
Mars-192 57803.5 36175.4 57803.5 35412.3 64102.6 36649.4 64102.6 36810.1
Mars-256 56179.8 36175.4 56179.8 35562.3 62500.0 36649.4 62500.0 36810.1
RC6-128 138888.9 26227.2 138888.9 26227.2 142857.1 25587.5 142857.1 25587.5
RC6-192 133333.3 26227.2 135135.1 26227.2 136986.3 25587.5 138888.9 25587.5
RC6-256 129870.1 26227.2 129870.1 26227.2 131578.9 24978.3 131578.9 24978.3
Rijndael-128 217391.3 55215.2 161290.3 47958.3 200000.0 59522.7 142857.1 61260.6
Rijndael-192 172413.8 46886.6 129870.1 39965.3 158730.2 50864.9 107526.9 52454.4
Rijndael-256 142857.1 40940.0 109890.1 34396.3 133333.3 44405.8 88495.6 45612.5
Serpent-128 36101.1 41963.5 36231.9 42819.9 42372.9 39035.8 42372.9 39965.3
Serpent-192 30303.0 41963.5 30303.0 42819.9 34013.6 39035.8 34013.6 39965.3
Serpent-256 25641.0 41963.5 25641.0 42819.9 28328.6 39035.8 28328.6 39965.3
Twofish-128 27322.4 45122.1 27248.0 43039.5 26738.0 53118.4 26738.0 51489.0
Twofish-192 20080.3 44880.8 20080.3 43039.5 20120.7 53456.7 20120.7 51489.0
Twofish-256 14184.4 44880.8 14164.3 43261.4 15015.0 53456.7 15037.6 51806.8



6. Conclusions

6.1 PC

Due to the testing mechanisms used in obtaining data, the most reliable and accurate values
obtained for performance measurement of the candidate algorithms are the cycle counting
measurements on the PC.  Additionally, cycle count values for encryption and decryption were
obtained for various data block lengths.  These values provide interesting results.  For the most
part, once the data length was greater than one block (128 bits), the encryption and decryption
speeds were consistent within each algorithm.  For this reason, NIST focused on the message
block length of 128 blocks (2046 bytes), which is a typical size for an electronic mail message.
The fastest algorithm for key setup on the PC platform is Rijndael for all compiler and PC
hardware/software configurations, followed closely by RC6 and then Mars.  Serpent and Twofish
are considerably slower than the other algorithms for key setup time.  Encryption speed had more
variability across compiler and hardware/software platforms.  RC6 tends to fall near the top of
PC encryption speed followed by Mars, Twofish, and Rijndael.  Serpent is consistently at the
bottom of the list for encryption speed.

Brian Gladman [4] has performed similar efficiency experiments, the results of which are
available on a web page he maintains.  The tests that Gladman conducted used code that he
developed independently from the submitters’ code.  Gladman’s results are similar to those listed
above.  Gladman’s results for key setup time have the algorithms in basically the same order.
The exception being the fact that Serpent’s key setup time was greatly improved and ahead of
Mars.  Again, for encryption speed, Gladman’s results coincide with the ordering of the
algorithms listed above.

6.2 Sun

The UltraSPARC CPU found in the Sun systems on which testing was performed did not allow
access to a cycle count mechanism.  Performance numbers on these systems are based on the
Timing Test Program.  Two different compilers were used on the Sun.  The data from both these
compilers yielded similar results.  The fastest algorithms with respect to encryption speed are
Rijndael and Twofish, followed by Serpent and Mars, and finally by RC6.  However, with
respect to key setup Rijndael and RC6 are the fastest followed by Mars which is separated by a
wide margin.  Serpent and Twofish are last after another wide margin.

Helger Lipmaa reports very similar results on an UltraSPARC-II platform [5].  Lipmaa’s table
only reports encryption speed. The most noticeable difference is that on his table, the value for
the encryption speed of RC6 is closer to those for Mars and Serpent.

6.3 SGI

The SGI system provides another 64-bit processor running the same version of the GCC
compiler used for the Sun testing described in Section 6.2.  Additionally, the MIPSpro compiler
provided another configuration for comparison.  The results for these compilers place RC6 as the
fastest algorithm for encryption by a wide margin, followed by Mars, Twofish, Rijndael and



Serpent.  For key setup, RC6 and Rijndael are the fastest, followed by Mars, Serpent, and
Twofish, which are separated by a wide margin.

6.4 Overall Performance

The consistent top performers across all platforms with respect to key setup are Rijndael and
RC6.  Serpent and Twofish are usually significantly poorer performers; however, Gladman
reports a much better value for Serpent key setup, placing Serpent ahead of Mars.  Encryption
speed values tend to vary much more depending on the platform being analyzed.  Rijndael, Mars,
and Twofish have the most even encryption performance across platforms – not always the
fastest, but never near the bottom of the pack.  RC6, on the other hand, was the slowest on the
Sun systems but the fastest on the SGI and very nearly the fastest on the PC.  Serpent is typically
the slowest or towards the bottom of the list on encryption speed across platforms.

7. References

[1] “Request for Comments on the Finalist (Round 2) Candidate Algorithms for the Advanced
Encryption Standard (AES),” Federal Register, Volume 64, Number 178, pp. 50058-50061, Sept.
15, 1999.

[2] “Announcing Request for Candidate Algorithm Nominations for the Advanced Encryption
Standard (AES),” Federal Register, Volume 62, Number 177, pp. 48051-48058, Sept. 12, 1997.

[3] “Using the RDTSC Instruction for performance monitoring,”
http://developer.intel.com/drg/pentiumII/appnotes/RDTSCPM1.HTM, Intel Corporation, 1997.

[4] Brian Gladman, “AES Second Round Implementation Experience,”
http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/index.htm, March
1999.

[5] Helger Lipmaa, “AES Ciphers: Speed,” http://home.cyber.ee/helger/aes/table.html, 1999.

Sun, Solaris, Java, Sun WorkShop Compiler C, and Sun WorkShop Professional C are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the United States and other countries.

Silicon Graphics and IRIX are trademarks or registered trademarks of Silicon Graphics, Inc.

R12000 is a registered trademark of MIPS Technologies, Inc.


