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Abstract. Block ciphers are usually made from one general scheme in
which we plug round functions. For analyzing the security, it is impor-
tant to study the intrinsic security provided by the general scheme from
a randomness viewpoint: we study the minimal number of known plain-
texts required to break it when the round functions are replaced by ideal
random functions.

This approach provides comparisons between several generalized Feis-
tel schemes, and other ones. In particular, we compare the randomness
provided by the schemes which are used by the AES candidates.

1 Introduction

From the attacker viewpoint, a block cipher which is used by a given
user can be considered as an instance of a random permutation over
a message block space: since he only knows how the secret key has
been chosen he only has a probabilistic information (in a Shannon
sense) on the key and the permutation. In this setting security can
be formalized by pseudorandomness: if there is no way to distinguish
the block cipher from an ideal random permutation, then we cannot
attack it. Pseudorandomness more precisely means that no oracle
circuit with polynomially many oracle gates can distinguish between
the encryption function and a truly random permutation.
A block cipher is usually made from an outer oracle circuit that

we call “scheme” (for instance the circuit of the Feistel scheme [4])
in which we plug inner oracles that we call “primitives” like round
functions, S-boxes, and so on. Sometimes an attack succeeds in “by-
passing” some of the primitives by using intrinsic weaknesses of the
scheme. For instance, differential cryptanalysis [1] can investigate
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differentials in which some S-boxes play no role at all. This mo-
tivates the analysis of this paper: we consider ideal models of the
block ciphers by replacing the primitives by truly random functions
and study the pseudorandomness provided by the scheme.
In this paper we investigate the randomness of several schemes

used in many block ciphers. The target schemes are the Feistel
scheme, variants of the Feistel scheme (the CAST256-like Feistel
scheme, the MARS-like Feistel scheme, and the RC6-like Feistel
scheme), and the Square-like scheme used in Square, Rijndael
and Crypton.
The pseudorandomness of some general schemes were discussed

in previous papers e.g. [6, 16]. In this paper we show how we can
reach these kind of results and extensions in a easier and systematic
way by using decorrelation theory introduced in [9, 10, 12–14].
In order to compare the schemes we study the threshold number

of rounds for having randomness, the theoretical minimal number
of secure rounds against attacks which are limited to two chosen
plaintexts or ciphertexts (which plays a crucial role in the security
against differential and linear cryptanalysis), and the practical min-
imal number of secure rounds when we use an efficient decorrelation
module (as in DFC [5]) for primitives.

2 Decorrelation Theory and Randomness of
Iterated Ciphers

2.1 Definitions and Basic Properties

The goal of decorrelation theory is to provide some kinds of for-
mal proof of security on block ciphers. This section describes the
essential definitions and lemmas in decorrelation theory to prove the
randomness of iterated ciphers.

Definition 1 (d-wise distribution matrix). Given a random func-
tion F from a set M1 to a set M2 and an integer d, we define the
“d-wise distribution matrix” of F as the followingMd

1×Md
2-matrix.

[F ]d(x1,...,xd),(y1,...,yd) = Pr[F (x1) = y1, . . . , F (xd) = yd],

where xi ∈M1 and yi ∈M2 for i = 1, . . . , d



Definition 2 (d-wise decorrelation bias). Given a random func-
tion F from a setM1 to a set M2, an integer d, and a distance D
over the matrix space RM

d
1×Md

2 , we define the “d-wise decorrelation
bias of function F” as being the distance

DecFdD(F ) = D([F ]
d, [F ∗]d)

where F ∗ is a uniformly distributed random function from M1 to
M2. Similarly, for M1 = M2, if C is a random permutation over
M1 we define the “d-wise decorrelation bias of permutation C” as
being the distance

DecPdD(C) = D([C]
d, [C∗]d)

where C∗ is a uniformly distributed random permutation overM1.

In [9], the infinity-associated matrix norm |||.|||∞ was consid-
ered. This facilitated the proof of the security against non-adaptive
iterated attacks. The following matrix norms ||.||a and ||.||s are dedi-
cated to adaptive chosen plaintext attacks and chosen plaintext and
ciphertext attacks, respectively. The former corresponds to pseudo-
randomness and the latter corresponds to super-pseudorandomness.

Definition 3 (||.||a norm). LetM1 andM2 be two sets, and d be

an integer, For a matrix A ∈ RMd
1×Md

2 we define

||A||a = max
x1

∑
y1

max
x2

∑
y2

· · ·max
xd

∑
yd

|A(x1,...,xd),(y1,...,yd)|.

Definition 4 (||.||s norm). Similarly, we define the ||.||s norm by

||A||s = max
(
max
x1

∑
y1

||πx1,y1(A)||s,maxy1
∑
x1

||πx1,y1(A)||s
)
,

where the norm of a matrix reduced to one entry is its absolute value
and πx1,y1(A) denotes the matrix in R

Md−1
1 ×Md−1

2 such that

(πx1,y1(A))(x2,...,xd),(y2,...,yd) = A(x2,...,xd),(y2,...,yd).



Given two random functions F and G from M1 to M2 we call
“distinguisher between F and G” any oracle Turing machine AO
which can sendM1-element queries to the oracle O and receiveM2-
element responses, and which finally outputs 0 or 1. In particular the
Turing machine can be probabilistic. In the following, the number of
queries to the oracle will be limited to d. The distributions of F and
G induces a distribution of AF and AG, thus we can compute the
probability that these probabilistic Turing machines output 1. The
advantage for distinguishing F from G is

AdvA(F,G) = Pr[AF = 1]− Pr[AG = 1].

We consider the class Clda of adaptive distinguishers limited to d
queries. Similarly, when F and G are permutations, we also consider
the extension Clds of distinguishers limited to d queries but who can
query either the function F/G or its inverse F−1/G−1. For any class
of distinguishers Cl we will denote

BestAdv
Cl

(F,G) = max
A∈Cl
AdvA(F,G).

Lemma 5 (Equivalence with the best advantage). For any
random functions F and G we have

||[F ]d − [G]d||a = 2 · BestAdv
Clda

(F,G),

and when F and G are permutations we also have

||[F ]d − [G]d||s = 2 · BestAdv
Clds

(F,G).

Lemma 6 (Multiplicativity). For any f and g, denote by f ◦ g
their composition. For any independent random functions F1, . . . , Fr
we have

DecFd(F1 ◦ · · · ◦ Fr) ≤ DecFd(F1) · · ·DecFd(Fr).
For any independent random permutations C1, . . . , Cr we have

DecPd(C1 ◦ · · · ◦ Cr) ≤ DecPd(C1) · · ·DecPd(Cr).



There are some known functions with quite small decorrelation
biases called decorrelation modules [11]. Here is an example of decor-
relation module called the NUT-IV decorrelation module.

Lemma 7 (NUT-IV Decorrelation Module [14]). For an in-
jection r from {0, 1}m to GF(q) and a surjection π from GF(q) to
{0, 1}m, it was shown that the random function F defined on {0, 1}m
by

F (x) = π(r(K0) + r(K1)x+ . . .+ r(Kd−1)xd−1)

for (K0, . . . , Kd−1) uniformly distributed in {0, 1}dm provides a quite
good decorrelation. Namely,

DecFd||.||a(F ) ≤ 2(qd.2−md − 1).

For better efficiency in implementations, we will only consider prime
integers q in this paper. We can refer to Noilhan [8] for implementa-
tion issues.

2.2 Basic Tools

The randomness of a cipher constructed using random primitives
such as decorrelation modules can be proven using decorrelation the-
ory. In order to deduce an upper bound on the decorrelation bias of
the cipher from an upper bound on the decorrelation bias of these
primitives, we use the following lemma.

Lemma 8 (Reduction to the randomness of ideal construc-
tions [14]). Let d be an integer, F1, . . . , Fr be r independent random
function oracles, and C1, . . . , Cs, D1, . . . , Dt be s+t independent ran-
dom permutation oracles. We let ΩF1,...,Fr,C1,...,Cs,D1,...,Dt be an oracle
which can access to the previous oracles and from each query x de-
fines an output G(x). We assume that Ω is such that the number of
queries to Fi and Cj is limited to some integer ai and bj respectively,
and the number of queries to Dk or D

−1
k is limited to ck in total for

any i = 1, . . . , r, j = 1, . . . , s and k = 1, . . . , t. We let F ∗i (resp. C
∗
j ,

D∗k) be independent uniformly distributed random functions (resp.
permutations) on the same range as Fi (resp. Cj, Dk) and we let G

∗



the function defined by ΩF
∗
1 ,...,F

∗
r ,C

∗
1 ,...,C

∗
s ,D

∗
1 ,...,D

∗
t . We have

DecFd||.||a(G)≤
r∑
i=1

DecFaid||.||a(Fi) +
s∑
j=1

DecP
bjd

||.||a(Cj)

+
t∑
k=1

DecPckd||.||s(Dk) + DecF
d
||.||a(G

∗).

In addition, if the Ω construction defines a permutation G, assuming
that computing G−1 leads to the same ai, bj and ck limits, we have

DecFd||.||s(G)≤
r∑
i=1

DecFaid||.||a(Fi) +
s∑
j=1

DecP
bjd

||.||a(Cj)

+
t∑
k=1

DecPckd||.||s(Dk) + DecF
d
||.||s(G

∗).

Lemma 9 ([15]). Let d be an integer. Let F be a random function
from a set M1 to a set M2. We let X be the subset of Md

1 of all
(x1, . . . , xd) with pairwise different entries. We let F

∗ be a uniformly
distributed random function from M1 to M2. We know that for all
x ∈ X and y ∈ Md

2 the value [F
∗]dx,y is a constant p0 = (#M2)

−d.
We assume there exists a subset Y ⊆Md

2 and two positive real values
ε1 and ε2 such that

– (#Y)p0 ≥ 1− ε1
– ∀x ∈ X ∀y ∈ Y [F ]dx,y ≥ p0(1− ε2).
Then we have DecFd||.||a(F ) ≤ 2ε1 + 2ε2.
This lemma intuitively means that if [F ]dx,y is close to [F

∗]dx,y for all x
and almost all y, then the decorrelation bias of F is small. We have
a twin lemma for the ||.||s norm. Here, since we can query y as well,
the approximation must hold for all x and y.

Lemma 10 ([15]). Let d be an integer. Let C be a random permu-
tation on a setM. We let X be the subset ofMd of all (x1, . . . , xd)
with pairwise different entries. We let F ∗ be a uniformly distributed
random function onM. We let C∗ be a uniformly distributed random
permutation onM. We have
– if [C]dx,y ≥ [C∗]dx,y(1− ε) for all x and y in X
then DecPd||.||s(F ) ≤ 2ε



– if [C]dx,y ≥ [F ∗]dx,y(1− ε) for all x and y in X
then DecPd||.||s(F ) ≤ 2ε+ 2d2(#M)−1.

2.3 Examples

First this section studies how many rounds are required for Luby-
Rackoff’s randomness assuming round functions to be random ones.
This is related to the “lack of randomness” provided by the upper
level design. The required numbers of rounds for the Feistel scheme
and some generalized Feistel schemes are shown in [16, Section 3.2].
Hereafter we use the following notations. In denotes the set of all

n-bit strings, {0, 1}n. Hn denotes the set of all In 7→ In functions and
Pn denotes the set of all such permutations. By x ∈R X we mean
that x is drawn randomly and uniformly from a finite set X.

Lemma 11 (Luby-Rackoff 1986 [6]). Let F ∗1 , F
∗
2 , F

∗
3 , F

∗
4 be four

independent random functions on {0, 1}m2 with uniform distribution.
We have

DecFd||.||a(Ψ (F
∗
1 , F

∗
2 , F

∗
3 ))≤ 2d2 · 2−

m
2

DecPd||.||a(Ψ (F
∗
1 , F

∗
2 , F

∗
3 ))≤ 2d2 · 2−

m
2

DecPd||.||s(Ψ (F
∗
1 , F

∗
2 , F

∗
3 , F

∗
4 ))≤ 2d2 · 2−

m
2

Here Ψ (F1, . . . , Fr) is the notation introduced by Luby and Rackoff
in order to denote a Feistel scheme where the i-th round function is
Fi.

This lemma can be formally proven by using Lemma 9 and 10. From
Lemma 6 and 8 this is generalized for a permutation on {0, 1}m
consisting of r rounds of Feistel transformations:

DecPd||.||a(Ψ (F1, . . . , Fr))≤
(
2d2 · 2−m2 + 3max

i
DecFd||.||a(Fi)

)b r3c

DecPd||.||s(Ψ (F1, . . . , Fr))≤
(
2d2 · 2−m2 + 4max

i
DecFd||.||a(Fi)

)b r4c

for any independent functions F1, . . . , Fr ∈ Hm
2
. This leads to the

following conclusions about the regular Feistel scheme withm = 128.



– The threshold number of rounds for having a security result
is 3 for pseudorandomness and 4 for super-pseudorandomness,
when d� 232.

– The theoretical minimal number of secure rounds for hav-
ing decorrelation bias of 2−m is 3m

m
2
−1−2 log2 d for pseudorandomness

and 4m
m
2
−1−2 log2 d for super-pseudorandomness, when d� 232. This

leads to 9 and 12 rounds, respectively, for d = 2.
– When using the NUT-IV decorrelation module with d = 2 in
each round (as for instance Peanut98 [9] or DFC), the minimal
number of rounds for having decorrelation bias of 2−m is 9 for
the ||.||a norm and 12 for the ||.||s norm (we use q = 264 + 13 as
in the NUT-IV decorrelation module).

Here we used an arbitrary threshold of 2−m for the decorrelation bias
which will be used in order to compare different schemes. Since 2−m

leads to a security connected with exhaustive search on m bits, we
believe it is a relevant objective criterion for comparing schemes. We
also focused on d = 2 which leads to security against differential and
linear cryptanalysis.

3 Several Cases

3.1 CAST256-like Feistel Scheme

CAST-256 is an AES candidate based on a generalized Feistel scheme
which was called “Type-1 transformation” by Zheng-Matsumoto-
Imai [16] and denoted by Ψ1. Formally, we define Ψ1 ∈ Hm as
Ψ1()(x) = x and

Ψ1(f1, . . . , fr)(x1, . . . , xk) =

Ψ1(f2, . . . , fr)(f1(x1) + x2, x3, x4, . . . , xk, x1)

for any primitive set f1, . . . , fr ∈ Hm
k
. Here k is the number of

branches and r is the number of rounds.

Lemma 12 (Zheng-Matsumoto-Imai 1989 [16]). For indepen-
dent uniformly distributed random functions F ∗1 , . . . , F

∗
3k−2 ∈R Hm

k

and an integer d, we have

DecPd||.||a(Ψ1(F
∗
1 , . . . , F

∗
2k−1)) ≤ 2(k − 1)d2 · 2−

m
k

DecPd||.||s(Ψ1(F
∗
1 , . . . , F

∗
3k−2)) ≤ 2(k − 1)d2 · 2−

m
k



f i

Fig. 1. CAST256-like Feistel Scheme

Proof (sketch). We use Lemma 9 for evaluating DecFd||.||a.
For Ψ1 we let Y be the set of all y = (y1, . . . , yd) where yi =

(y1i , . . . , y
k
i ) such that y

j
i 6= yji′ for j > 1 and i < i′. We get ε1 =

(k−1)d(d−1)
2
2−

m
k . We then consider the event in which the first entry

after the (k−1)th round takes pairwise different values for x1, . . . , xd.
Upper bounding the probability when this event occurs we get ε2 =
(k − 1)d(d−1)

2
2−

m
k . Thus DecFd||.||a(F ) ≤ 2(k − 1)d(d− 1)2−

m
k .

Here, ε2 is evaluated as the number of unexpected equalities be-
tween two outputs from a single circuit of depth k− 1 with k inputs
and internal F ∗j and additions times the probability it occurs, which
is at most the depth k − 1 times 2−mk .
Now to get DecP from DecF, from DecFd||.||a(C

∗) ≤ d(d− 1)2−m
and the triangular inequality we have

DecPd||.||a(F ) ≤ DecFd||.||a(F )+DecPd||.||a(F ∗) ≤ DecFd||.||a(F )+ d22−m.

We then notice that the obtained upper bound for DecFd||.||a can be
written DecFd||.||a(F ) ≤ Ad(d − 1)2−

m
k for some A ≥ 2. For d ≤

A2m−
m
k we thus obtain DecPd||.||a(F ) ≤ Ad22−

m
k . For larger d, this

bound is greater than A32m(2−
3
k) which is greater than 8 since m ≥

k ≥ 2. Since DecPd||.||a(F ) is always less than 2, the bound is thus
still valid.
For DecP||.||s, we add k−1 more rounds and we study the proba-

bility that we turn into Y if we invert them on y1, . . . , yd. The result
comes from Lemma 10. ut
Thus the required number of rounds for CAST256-like scheme is

proven to be 2k−1, where k is the number of branches. That is, the
required numbers of rounds for the Feistel scheme and CAST256-like
scheme are 3 and 7, respectively.
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Fig. 2. MARS-like Feistel Scheme

This leads to the following conclusions about the CAST256-like
scheme with k = 4 branches and m = 128.

– The threshold number of rounds is 7 for pseudorandomness
and 10 for super-pseudorandomness, when d� 216.

– For d = 2, the theoretical minimal number of secure rounds
is 35 for pseudorandomness and 50 for super-pseudorandomness.

– For d = 2 and the NUT-IV decorrelation module with q = 232 +
15, the minimal number of rounds is 42 for the ||.||a norm and 50
for the ||.||s norm.

3.2 MARS-like Feistel Scheme

Similarly, we define MARS-like generalized Feistel scheme denoted
by Ψ ′1 ∈ Hm as Ψ ′1()(x) = x and

Ψ ′1(f1, . . . , fr)(x1, . . . , xk) =
Ψ ′1(f2, . . . , fr)(f

2
1 (x1) + x2, f

3
1 (x1) + x3, . . . , f

k
1 (x1) + xk, x1)

where fi = (f
2
i , . . . , f

k
i ), f

2
i , . . . , f

k
i ∈ Hm

k
.

Lemma 13. For independent uniformly distributed random func-
tions F j∗i ∈R Hm

k
for i = 1, . . . , 2k and j = 2, . . . , k and an integer

d, we have

DecPd||.||a(Ψ
′
1(F

∗
1 , . . . , F

∗
k+1))≤ 2d2 · 2−

m
k

DecPd||.||s(Ψ
′
1(F

∗
1 , . . . , F

∗
2k))≤ 2d2 · 2−

m
k

Proof (sketch). Using Lemma 9 we let Y be the set of all (y1, . . . , yd)
such that yki 6= ykj for i 6= j. We get ε1 = d(d−1)

2
2−

m
k . We focus on the

event that the first output after k rounds leads to no collision. We
get ε2 =

d(d−1)
2
2−

m
k .

For DecPd||.||s we use the same event. ut
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Fig. 3. RC6-like Feistel Scheme

This leads to the following conclusions about the MARS-like
scheme with k = 4 branches and m = 128.

– The threshold number of rounds is 5 for pseudorandomness
and 8 for super-pseudorandomness, when d� 216.

– For d = 2, the theoretical minimal number of secure rounds
is 25 for pseudorandomness and 40 for super-pseudorandomness.

– For d = 2 and the NUT-IV decorrelation module with q = 232 +
15, the minimal number of rounds is 25 for the ||.||a norm and 40
for the ||.||s norm.

3.3 RC6-like Feistel Scheme

The RC6 block cipher is designed to be secure by mixing operations
that are efficiently implemented on most modern processors: ad-
dition/subtraction, exclusive-or, multiplication, and rotation rather
than by using a general scheme with pseudorandom primitives. How-
ever, the structure of RC6 can be regarded as a generalized Feistel
scheme, which is similar to “Type-2 transformation” called by Zheng-
Matsumoto-Imai [16] assuming that primitives are independent ran-
dom functions. Formally, as the RC6-like Feistel scheme Ψ2 ∈ Hm is
defined for k even and r a multiple of k

2
, by Ψ2()(x) = x and

Ψ2(f1, . . . , fr)(x1, . . . , xk) =

Ψ2(f2, . . . , fr)(x2, f
2
1 (x4) + x3, . . . , xk−2, f

k
2
1 (xk) + xk−1, xk, f

1
1 (x2) + x1),

where fi = (f
1
i , . . . , f

k
2
i ), f

1
i , . . . , f

k
2
i ∈ Hm

k
.

Lemma 14. For independent uniformly distributed random func-
tions F ∗1 , . . . , F

∗
k2 ∈R Hm

k
and an integer d, we have

DecPd||.||a(Ψ2(F
∗
1 , . . . , F

∗
k
2
(k+1)
))≤ k

2

2
d2 · 2−mk



DecPd||.||s(Ψ2(F
∗
1 , . . . , F

∗
k2))≤

k2

2
d2 · 2−mk

Proof (sketch). Similarly, we use Lemma 9 for evaluating DecPd||.||a.
For Ψ2 we let Y be the set of all y such that yji 6= yji′ for odd j and
i < i′. We get ε1 = k

2
× d(d−1)

2
2−

m
k . We consider the event in which all

even entries after the (k− 1)th round takes pairwise different values
for x1, . . . , xd. We get ε2 =

k
2
(k−1)× d(d−1)

2
2−

m
k . Thus DecFd||.||a(F ) ≤

k2

2
d(d − 1)2−mk . For DecPd||.||s, we add k − 1 more rounds and study
the probability that we turn into Y if we invert them on y1, . . . , yd.
The result comes from Lemma 10. ut
This leads to the following conclusions about the RC6-like scheme

with k = 4 branches and m = 128.

– The threshold number of rounds is 5 for pseudorandomness
and 8 for super-pseudorandomness, when d� 216.

– For d = 2, the theoretical minimal number of secure rounds
is 25 for pseudorandomness and 40 for super-pseudorandomness.

– For d = 2 and the NUT-IV decorrelation module with q = 232 +
15, the minimal number of rounds is 25 for the ||.||a norm and 40
for the ||.||s norm.

3.4 Square-like Scheme

In this paper we discuss only the Rijndael scheme. The pseudoran-
domness of other Square-like schemes will be described in the full
paper. Let us formalize the Rijndael scheme on k2 values by

Σ(f1, . . . , fr)(x1, . . . , xk2) =

Σ(f2, . . . , fr)(MixCol(ShiftRow(f
1
1 (x1), . . . , f

k2

1 (xk2))))

where fi = (f
1
i , . . . , f

k2

i ), [[f
1
i , . . . , f

k2

i ∈ H m

k2
, the ShiftRow transfor-

mation is a fixed linear transformation on the rows of a k×k matrix
which consists in mixing them, and the MixCol transformation is a
fixed linear transformation on the columns [3].

Lemma 15. For independent uniformly distributed random func-
tions F ∗1 , . . . , F

∗
5 and an integer d, we have

DecPd||.||a(Σ(F
∗
1 , . . . , F

∗
3 ))≤ 2k2d2 · 2−

m

k2

DecPd||.||s(Σ(F
∗
1 , . . . , F

∗
5 ))≤ 2k2d2 · 2−

m

k2



Table 1. Comparison of randomness of several schemes (when d = 2, k = 4, m = 128)

Scheme Feistel CAST256-like MARS-like RC6-like Rijndael
Threshold number
of rounds for p.r. 3 7 5 5 3

Threshold number
of rounds for s.p.r. 4 10 8 8 5

Theoretical min. number
of secure rounds for p.r. 9 35 25 25 384

Theoretical min. number
of secure rounds for s.p.r. 12 50 40 40 640

Example Twofish, CAST-256 MARS RC6 Rijndael
DFC, E2

Note: “p.r.” and “s.p.r.” mean pseudorandomness and super-pseudorandomness, re-
spectively.

Thus achieving decorrelation to the order d ≥ 1
k
√
2
2
m

2k2 does not seem

possible with this design. (For m = 128 and k = 4, this is d = 2
√
2.)

Proof (sketch). We use Lemma 9 for evaluating DecPd||.||a. We letY be the set of all y = (y1, . . . , yd) which take different values on
all positions. We have ε1 = k

2 d(d−1)
2
2−

m

k2 . We consider the event that
after two rounds we obtain different values on all positions. Provided
that the MixCol transformation has good diffusion properties we
obtain ε2 = k

2 d(d−1)
2
2−

m

k2 . ut
This leads to the following conclusions about the Rijndael scheme

with k2 = 42 branches and m = 128.

– The threshold number of rounds is 3 for pseudorandomness
and 5 for super-pseudorandomness, when d� 3.

– For d = 2, the theoretical minimal number of secure rounds
is 384 for pseudorandomness and 640 for super-pseudorandomness.

– For d = 2 and the NUT-IV decorrelation module with q = 28+1,
the minimal number of rounds is∞ for the ||.||a norm and∞ for
the ||.||s norm.

4 Conclusion

We studied randomness provided by several schemes used for block
ciphers. We focused on the schemes for AES candidates, in particular
(see Table 1). The result on randomness provided by each scheme is a



good measure for the security from a randomness viewpoint but the
readers should take care that it doesn’t show the actual security of
the ciphers which adopt the scheme. To study the intrinsic security
provided by the general scheme, we decomposed the ciphers into the
general scheme and internal primitives, ignoring some components
which we considered do not affect its randomness. We also assumed
that internal primitives are ideal random ones.
The results in Table 1 show that the Feistel scheme is the best

in that the required number of rounds for pseudorandomness and
super-pseudorandomness is the smallest. However, in comparing the
randomness among several schemes we should take account of the
computational cost of random primitives. For example, for the Feis-
tel scheme we assume the random functions on {0, 1}64, and for
the CAST256-like, MARS-like, and RC6-like schemes, we assume
the random functions on {0, 1}32, whose computational cost is much
cheaper than the former. Under the same assumption of the compu-
tational cost of random functions on {0, 1}32, the MARS-like scheme
is the best.
In our result we notice that the schemes which use random prim-

itives with a smaller input/output sizes are less secure, which is not
surprising because the randomness bias is larger in these cases. We
should interpret these conclusions with great care. Indeed, our re-
sults do not mean that Rijndale or Serpent1 is not secure, or less
secure than regular Feistel schemes. They rather mean that the lat-
ter can benefit from stronger security arguments: we can prove that
an efficient attack against — say Twofish — must use an unexpected
property of the round function, whereas an attack against Serpent
may hold for any set of (random) S-boxes.

1 A preliminary study suggested that the Serpent scheme requires too many rounds
for randomness, because the size of primitives is too small (4 bits). The details are
discussed in the full paper.
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