
Session 6:

"AES Issues" Panel

AES and Future Resiliency: More Thoughts And Questions
By Don B. Johnson
djohnson@certicom.com
March 10, 2000

Introduction

In a paper submitted previously, the author argued that a new AES
evaluation criterion of future resiliency be added, defined as the
ability to respond to the uncertain future and that this criterion could
best be met by NIST selecting multiple disparate AES winners. This
paper continues that discussion by providing more rationale. It also
asks some questions and explores possible outcomes of the AES
process.

Summary From Previous Paper

The author’s previous paper closed with this summary:
“NIST should carefully examine the various classification schemes
that have been made and endeavor to choose the AES second round
finalist candidates considering that it is a worthwhile goal to try to
ensure that differing design approaches are included. This is
because of reasons of future resiliency, extending cryptographic
knowledge, Super AES, crypto toolbox philosophy, possible patent
complications, target diffusion, avoidance of artificial tiebreakers,
recognition of the problem being multidimensional with imperfect
information, and the constraints of other standards organizations.
That is, in selecting the handful of AES second round finalists,
disparity of design approaches is to be desired over conformity.”

For further explanation of these rationales, see the paper at the NIST
AES website at www.nist.gov/aes. These rationales continue to be
valid in the discussion regarding whether there should be multiple
AES winners or not.

NIST is to be congratulated for their selection of AES finalists as they
do represent a disparate selection from among the submitted AES
candidates. Furthermore, the inventors of each finalist algorithm
represent a significant portion of the skills in the cryptographic
community. As the AES winner(s) must give a royalty-free license (if
the algorithm is patented), perhaps the main rationale to participate in

the AES process is the recognition one receives, with the winner(s)
getting major “bragging rights.” Another way to look at the NIST AES
finalist selection is that NIST has put “five cats in a bag” to see who
survives as each submitting group is highly motivated to find chinks in
the armor of the other AES finalist algorithms. Better to find out now
rather than later.

I) Additional Rationale for Multiple Algorithms

Space Probe Scenario

A reason to consider multiple winners is that sometimes one needs to
use hardware for performance reasons, but the hardware is difficult or
impossible to change once deployed. Consider a commercial space
probe [JC]. Once it arrives at its destination, it must be essentially
self-sufficient. Calling it back is out of the question. However,
backup circuitry is a normal part of its design and this flexibility could
be extended to include a backup symmetric cryptographic algorithm.
As these types of projects might take years or decades, such an
algorithm backup is simply prudent.

AES Selection Time

Another factor that should be considered by NIST is the amount of
time that was taken by the AES process. If a sole AES winner were
to prove unfortunate for some reason, then it could take many years
to determine a substitute. It has been said that three months is
considered an Internet year. The time needed to do another AES
process may not meet the requirements of the market.

Infrastructure Overoptimization

As we saw with the deployment of DES, the selection of one
algorithm by NIST meant that best-practices resulted in the use of
that one algorithm. For much of the life of DES, there was no
pressing need for vendors to try to design systems to support multiple
symmetric cryptographic algorithms, DES was it. With DES the only
choice, this simplified things for a vendor. However, we see today
that this simplification resulted in a deployed infrastructure where
there are concerns that some portions are now vulnerable to a
determined attack.

Einstein is reputed to have said, “One should try to make things as
simple as possible, but no simpler.” Even the selection by NIST of as
few as two winners will mean that vendors will need to design in
flexibility of algorithm choice in some products and provide for the
possibility of algorithm replacement in others, rather than
overoptimize as was done in the case of DES.

NIST as AES Architect

NIST is overseeing the AES process. As such, NIST is the architect
of the AES process, that is, it is creating the AES design architecture.
There are two fundamental responsibilities of an architect, as follows:
1) Specify enough detail to allow others to proceed.
2) Know what not to specify to allow creativity and flexibility in

others.

In this AES architect role, NIST should follow the general principle of
“If in doubt, don’t.” NIST/NSA can and should make “apparent
health” statements on the security of the AES finalists. NIST can and
should make decisions about which AES finalist algorithms are
suitable for government use, using whatever additional criteria (if any)
besides security that NIST deems appropriate. This is ALL that NIST
should try to do. NIST should resist the temptation to try to solve
potential challenges resulting from the existence of multiple
algorithms, such as the need to negotiate algorithms or the need for a
vendor or market segment to select the most appropriate algorithm.

NIST or the Marketplace?

Asking NIST to select a sole AES winner means that one believes
this decision is appropriate for top-down decision-making, as in a
command economy or an army. A top-down methodology is
appropriate when any decision is better than no decision (e.g., traffic
lights) or when a decision must be made quickly (e.g., a battle).
However, simply as a matter of information flow, all the relevant
information cannot be expected to be available to the responsible top-
level decisionmaker. The marketplace (bottom-up decision-making)
has been shown to be much more responsive and adaptable than a
command economy. This is because each economic entity or group
of entities makes decisions based on its own information and needs.

So one question that NIST needs to ask itself is does it see the AES
process (that is, the development of commercially-appropriate
symmetric cipher or ciphers) as needing a top-down decision to be
made or does it believe that the marketplace is the most appropriate
place for this decision to be made. The marketplace has a way of
determining what is appropriate; if there is truly one finalist that is
superior in many ways, it does not need NIST’s selection of it as the
winner to emerge as the winner in the marketplace. However, there
is a real concern that NIST could make a suboptimal choice due to
insufficient information. In this case, “hands off” is the wisest course
of action.

NIST needs to resist the temptation to make a decision in an area
beyond their (or anyone’s) competence. The round 2 discussion
issues asking questions about how to assess speed versus security
margin, need for low-end flexibility, and hardware versus software
performance indicate that NIST recognizes its lack of certainty in
these areas. This is fundamentally because there are no obviously
single correct answers to these questions. Different applications may
require different answers to these questions. NIST should make a
virtue of its (really, everyone’s) ignorance and not attempt to decide
these unanswerable questions one way or the other, but let others
make each decision that is most appropriate for them.

Bias?

It may not be politically correct to say so, but NIST should understand
that any counsel given it might be biased; this might be especially
true of counsel from submitters of algorithms. This is not necessarily
a bad thing, the submitters of the AES finalists have very high
cryptographic skills and it is certain that the submitters made their
decisions after thinking long and hard about the problem. It is just
that each submitter naturally thinks their beliefs are correct.

For example, it would be no surprise that a designer of a very flexible
algorithm might think that flexibility is an important AES criterion.
That is likely one of the reasons the submitted algorithm was made
flexible in the first place, so that it would have an advantage when
compared with other AES candidates.

The point is that if NIST were to announce they are seeking a single
winner then this (in turn) results in a ranking of finalists, just as
identifying any other AES criterion as critically important would also
potentially rank the finalists. However, note that if an algorithm is
truly more flexible than another, it still stands a greater chance of
being used in the “marketplace” selection process mentioned above.
That is, any advantages of an algorithm remain advantages; by
selecting multiple winners and relying on the marketplace, NIST is not
required to try to determine which advantages are more important
than others.

II) Some Questions

Quantum Computers

One big question regarding the future is whether or not quantum
computers are feasible and if they are, what effect they will have on
cryptography. An arbitrary bitsize quantum computer (assuming it
can be built) allows a square root attack on a symmetric cipher. The
possibility of this provides some justification for the larger AES
keysizes; a 256-bit symmetric cipher would take 2**128 quantum
operations to exhaust the key space.

However, an interesting question is whether there is some limit in
practice to the number of bits of a quantum computer. Many
researchers suspect this is the case, that quantum decoherence will
prove insurmountable for some number of quantum bits.

In terms of AES this question becomes: if one can only build an x-bit
quantum computer, how much does this help in attacking each AES
finalist? As all block ciphers are composed of smaller chunks, how
might these chunks interact with a quantum computer? This
possibility can be termed a partial quantum attack. And of course, an
adversary could construct many quantum computers to run the attack
in parallel, assuming this would help. So the question is: “How does
a parallel partial quantum computer affect the ability to attack the
AES finalists?”

As an example, DES is composed of a 56-bit key. A 56-bit quantum
computer should be able to attack the DES. However, the DES
design is such that each of the sixteen rounds uses a 48-bit key. This

suggests the possibility that a 48-bit quantum computer might
somehow be able to be used to successfully attack the DES. The
question of how the AES finalists stack up in relation to parallel partial
quantum computers is a critical question to be answered. NIST
should step up to this analysis if it is not forthcoming from the
research community. No final AES decision should be made without
some exploration of the expected effects of this possibility.

Random Cipher

It is clear that a random cipher for a certain blocksize is the
unrealizable ideal. This is a cipher that selects a random choice for
the output block for each input block, the key providing an index into
a set of random selections. There is no structure that is able to be
attacked by an adversary. The best attack is key exhaustion, which
is the goal of any symmetric cipher. It is also clear that such a ideal
block cipher is totally impractical as the space needed is totally
infeasible. However, one would like any particular block cipher to
“appear” to be ideal to an adversary. That is, even though the
structure is known to an adversary, this structure does not allow any
shortcuts to be made. A critical question is whether a AES finalist
appears “random.” There are many established randomness tests.
Any deviation from random is a cause for concern.

Another related important question is at what point do degenerate
forms of a finalist not appear random. For example, a finalist may
have 20 rounds. It is important to know if the output after 4 rounds
appears random or if it takes 8 or even 16 rounds. This is important
as it gives an indication of the margin of safety built into the cipher. It
is obvious that a round of cipher A cannot be considered equivalent
to a round of cipher B but this type of analysis allows one to at least
map some internals of one algorithm to another for comparison
purposes.

Knowing what to do with this analysis is more problematical.
Regardless, this is an important data point. If I know that cipher A is
essentially as fast as cipher B, but that cipher A results in random-
appearing output after 5 of 16 rounds and cipher B results in random-
appearing output after 8 of 12 rounds, then cipher A may be the more
conservative choice in some sense. But NIST should be wary of this
analysis, one can simply add more rounds at a performance cost.

Should a cipher be rewarded (or penalized) for minimizing overhead?
Should a cipher be rewarded (or penalized) if it has “more” rounds?
This means that (apparent) security and performance are very closely
tied together.

Combined Attacks

In the real world, the adversary is able to combine the effects of
various attacks. Even if each attack results in only a relatively small
advantage that is not relevant when considered by itself, a
combination of attacks may accumulate to result in a feasible attack.
For this reason, any discovered theoretical advantage for an
adversary attacking an AES finalist (no matter how apparently small)
is a concern.

III) Thoughts on the AES Finalists

Following are some thoughts on the AES finalists. It should be
recognized that these ideas are tentative and subject to improvement
and correction. Of course, the detection of any security flaw in a
finalist would have a major impact. Each finalist algorithm can be
seen as a statement by the designers regarding not only one way to
solve the various tradeoffs of the AES puzzle, but also as how the
designers see the future. It is hoped that these thoughts on the
finalists are used by NIST in the spirit in which they are given, as food
for thought.

MARS

MARS was designed with some thought to try to avoid potential future
attacks, especially in its heterogeneous structure, a keyed-core
surrounded by unkeyed forwards- and backwards-mixing functions.
The unkeyed mixing functions cost time and space, but their inclusion
seemed prudent to the designers and worth the cost. The core
“mixing” function uses addition, multiplication, fixed and data-
dependent rotations, and an S-Box (straightforward substitution
cipher). The designers responded to criticism to improve the
performance of MARS by using the “tweak” allowed by NIST.

From a perspective on the future, the designers of MARS believed
the best way to handle uncertainty was to use many different
techniques using a cost/benefit analysis. The MARS design is the

most different of the Feistel cipher finalists. Another way to look at
MARS is that IBM is a large organization which had many people with
good ideas trying to get them incorporated into the IBM submission.
This can be seen in the number of authors of the MARS paper.

From a perspective of future resiliency, the inventors of MARS
thought that a heterogeneous structure was important.

RC6

RC6 was built from a heritage of RC5 and was designed to be fast
and simple to describe. The core ideas of RC6 came from RC5,
which was designed by one person, as such it represents a unity of
design approach. In many scenarios, RC6 is the fastest AES finalist.
The pseudocode for RC6 is very straightforward with basic operations
defined on 32-bit words; the RC6 pseudocode is the shortest of all
finalists. It uses addition, multiplication, data-dependent rotations and
substitution to do the cryptographic “mixing.” RC6 can be seen as an
example of building a performance-optimized cipher on the idea of
data-dependent rotations. The challenge for the designers of RC6 is
to show that their design is not too simple. For example, comparing
RC6 to MARS, MARS adds more complexity to its specification to try
to provide more mixing.

Indeed, the “Correlations in RC6” paper by Knudsen and Meier
(available at www.nist.gov/aes) indicate that reduced rounds of RC6
do not appear random. The observation by Saarinen in the NIST
RC6 forum on finding “almost equivalent” keys in RC6 suggests other
possible concerns. These ideas hint that RC6 may be on the edge of
security.

From a future resiliency perspective, the designers of RC6 believed
that parameterization was paramount. In this way, if a certain
number of rounds was found to be weak, this number could be
adjusted upwards.

Rijndael

Rijndael does not use a Feistel structure, rather it uses a matrix
structure where the cryptographic mixing involves byte substitution,
row shifting and column multiplication. Rijndael has the most

different structure when compared with the other AES finalists. It can
be implemented using byte operations and is therefore very flexible.

From a future resiliency perspective, the designers of Rijndael were
willing to go in new directions and wanted high flexibility in
implementation.

Serpent

Serpent is a conservative design and deliberately tries to build on the
vast amount of information relating to DES. Serpent is also the
slowest of the five AES finalists on most platforms. Being the
slowest, the challenge for the designers of Serpent is to try to show
how the other finalist algorithms cut corners in ways that Serpent did
not (that is, the additional performance cost should be justified). For
example, suppose that NIST gave all five AES finalists “certificates of
apparent security,” it is not clear what symmetric algorithm niche
would best be filled by use of Serpent, as opposed to one of the other
finalists. Of course, a specific implementation might find that Serpent
is the fastest method, if the instructions it uses are fast and the
instructions that other methods use are slow.

The designer’s of Serpent have presented an “equivalent rounds”
analysis of the AES candidates and tried to show how Serpent uses
more rounds than might be thought needed as a safety margin. Yet
the designers did not officially change the specification of Serpent
(even though they knew that there were many other faster AES
candidates) so they must believe they have good reasons for
designing it as they did. Serpent and RC6 appear to have opposite
design philosophies in this area of tradeoff between security margin
and performance.

From a future resiliency perspective, the designers of Serpent
decided to use more rounds and affect performance to try to achieve
a higher security margin of safety. This means Serpent may have
some performance concerns, at least when compared with the
alternatives.

Twofish

Twofish is a byte-oriented Feistel cipher with great flexibility of
implementation, allowing a wide range of time/space tradeoffs. Many
research reports have been written on various aspects of Twofish,
which give confidence in its security. There was also a cost/benefit
analysis done by the designers to decide which operations to use.

From a future resiliency perspective, Twofish’s goals were security
and implementation flexibility.

IV) Possible Outcomes
Does NIST want the fastest cipher? ... the cipher with the largest
safety margin? ... the cipher with the most flexibility? ... the cipher
with the most disparate instructions? ... the most Feistel-like cipher?
... the cipher with the most disparate design? Single or multiple
winners? ... some other criteria? The point is that different answers
to each question can lead to a different ordering of the AES finalists.
Furthermore, any selection by NIST indicates in a backwards fashion
which criteria they decided was more important than others. As one
example, comparing MARS and Serpent, are more rounds or different
rounds the better way to address having a sufficient safety margin?
As another example, comparing MARS and RC6, are many different
ideas or unity of design the better way to design a cipher?

The problem for NIST is not that there are no answers, it is that there
are too many rational answers. Barring a security flaw, any of the
AES finalists could be justified as being the sole winner simply by
NIST adopting the corresponding design philosophy behind the
winner as its own. NIST should resist any temptation to do this.
Rather, as each submission has a different design philosophy, NIST
should accept the implication that there was no obvious single all-
around best solution. NIST should accept this implicit “higher-level”
statement from the submitters and agree with them (as a group) that
there is no single all-around best answer.

Strictly speaking, NIST’s AES mandate is to select a winner or
winners that is/are suitable for use by the US Federal government to
protect sensitive non-classified data. Following the historical pattern
of DES, it is also expected that NIST/NSA will issue a statement that
the winner(s) is/are suitable for the intended purpose. Historically, it

was this endorsement that gave confidence to other groups, such as
the American Bankers Association, to also endorse DES, which in
turn led to DES becoming the most-deployed commercial
cryptographic algorithm.

Now, some 25 years after DES, we see the endorsement by NIST of
3 families of asymmetric cryptographic algorithms in the revision of
FIPS 186; namely, those based on the difficulty of integer
factorization, the normal discrete logarithm, and the elliptic curve
discrete logarithm. This allows the advantages of each method to
determine the way asymmetric cryptography rolls out in the future.
That is, NIST recognizes that there are multiple answers to the
asymmetric cryptography question.

This author hopes that similar rationale will prevail among the NIST
AES selection team regarding the symmetric cryptography question.
While this author believes that the best outcome of the AES process
is a handful of winners which lets the marketplace determine each
algorithm’s niche, it is realized that not all others share this opinion.

Ranking?

NIST should realize its decision is not restricted between having one
AES winner and having multiple winners, it could also decide to have
a ranking among multiple winners. As an example, NIST might
specify that algorithm A is the primary winner and algorithm B is the
backup. In this example, an implementation would be expected to
either implement algorithm A (if resources are constrained) or both
algorithms A and B (if resources are available). This seems much
preferable to declaring a single AES winner, although inferior to
selecting multiple co-equal winners.

Multiple Endorsement?

Another alternative is that regardless whether one or multiple winners
(ranked or not) are selected by NIST for use by the US Federal
government, NIST/NSA could issue health statements that certain
finalists meet their intended security goals. This would at least allow
other standards bodies to negotiate with increased confidence for the
rights to an endorsed algorithm, if that algorithm better met their
needs. For example, NIST might say that algorithm A wins (for US

Federal government use), but also issue a NIST/NSA report that
algorithms A, B, and C meet their intended security goals.

Just to be clear on this point, if all five AES finalists have no known
security weaknesses, then all five finalists should be giving a
“certificate of health” regardless of the decision regarding the number
or specific selection of AES winner(s) for approval for US Federal
government use.

Acknowledgements
The author wishes to thank Certicom for providing the environment in

which to write this paper.

Reference
[JC] Jerry Coffin in a post on sci.crypt on AES mentioned that
satellites were an example where hardware was infeasible to change
once deployed and saw this as a reason to have multiple winners.

Biography

Don B. Johnson is Director of Cryptographic Standards for Certicom,
is a member of Certicom Research, and sits on the Advisory Board of
the Standards for Efficient Cryptography Group (SECG). He
participates in ISO SC27, ANSI X9, IEEE P1363 and other standards
bodies. He has over 40 patents and patent applications in the area of
cryptography. He was the editor of the X9.62 Elliptic Curve Digital
Signature Algorithm (ECDSA) standard.

The Effects of Multiple Algorithms in the
Advanced Encryption Standard

Ian Harvey, nCipher Corporation Ltd, 4th January 2000

Abstract
This paper presents a discussion of the issues relating to the selection of encryption
algorithms in practical situations. An AES standard which recommends multiple
algorithms in a variety of ways is discussed, and it is shown that this can present an
overall advantage.

Introduction
The Advanced Encryption Standard aims to become the first choice for most situations
requiring a block cipher. To do this it has to satisfy a wide variety of requirements for -
amongst other things - security, performance, and resource constraints.

Each of the current five candidate algorithms for AES satisfies a different balance of
these constraints; the ‘best’ algorithm depends on circumstances, which are impossible
to know beforehand. Furthermore, one of the principal requirements - that of security
of the algorithm - cannot easily be measured; subjective judgements therefore must be
made (based, for instance, on notions of ‘safety margin’ or ‘conservative design’) which
may prove to be inaccurate or irrelevant in years to come.

In the absence of a precise definition of what constitutes the ‘best’ algorithm, or
accurate means even to measure this, any choice of algorithm is somewhat arbitrary. In
security terms this seems needlessly risky, and it has been suggested that avoiding the
need for a single final algorithm would have advantages.

In the sections below, we discuss the factors which affect algorithm choice, and then
examine the effect on these of an AES which offers multiple algorithms.

Factors in algorithm choice
Many factors may be involved in the selection of an algorithm. In most cases, one single
factor is overwhelmingly the most important, and often some are of little or no
importance.

Aside from performance issues, which are discussed later, criteria for algorithm
selection include:

• Security against theoretical attacks

The reputation of an algorithm is frequently a major factor in its selection, both in
terms of the design of the algorithm, and the extent to which it has been studied for
cryptanalysis. A theoretical attack does not have to become practical before the cipher
is rendered commercially unusable (for instance, liability insurance on a system using it
may become void).

It is to be expected that no candidate with a known theoretical weakness will be given
final recommendation within AES. Furthermore, the effect of the AES ‘brand name’ will

be to concentrate research into the selected algorithms; this will (all being well)
improve their reputation as time passes.

• Security of implementations

Some of the most practicable attacks of recent years have been directed against
particular implementations of algorithms, rather than their theoretical definitions. These
include timing attacks, power-analysis attacks, and fault-induction attacks.

In general, defending against these attacks is done when the implementation is
designed, using a range of proprietary techniques. Some algorithms may have features
which make them particularly difficult to defend, but it is generally not possible simply
to define a ‘good’ feature set. Selection of an algorithm to resist implementation attacks
can often only be done when the threat model has been decided, and little generalised
guidance can be given.

• Cost of implementation

The effort required to correctly implement a given algorithm is frequently a major
issue. For software implementations, the factors which affect this include:
- availability of reference implementations in a given language
- ease of understanding and adapting the reference implementation
- complexity of any optimisations required for optimum performance, and
- the ease and completeness of correctness testing.

 For hardware implementation, important factors are:
- the complexity of the cipher
- the clarity of the cipher’s given description
- availability of test vectors sufficient to give complete coverage.

Many developers will want to choose AES on the grounds of easy access to good
reference material.

• Architectural implications

The precise functional ‘shape’ of an algorithm will have an impact on the way systems
and protocols are designed to accommodate the algorithm. The block size and key size
are the principal parameters, and fortunately all AES candidates are required to be
compatible here.

However, additional parameters or features offered by particular algorithms - variable
number of rounds, keys of other than standard length - may create additional
complexities. Where it is not possible to adapt existing protocols to deal with these
parameters, behaviour is often implied. This can be a major cause of interoperability
problems - something which must not be allowed to bedevil the AES.

• Legal issues

Patent, copyright, and export-control issues affect no area of computing more than
cryptography. Commercial developers will accept some licensing costs, but only up to a
point - many of the potentially superior alternatives to DES (e.g. IDEA or RC5) have
not been deployed widely, mainly for cost reasons. Free software developers are often
unable to accept any restrictions on algorithm use.

One of the goals of the AES process is to produce a cipher which can be deployed
universally, and a leading reason for choosing it will be freedom from legal
impediments.

Performance issues
Every situation has its own unique performance criteria, which are invariably a trade-off
between system requirements and speed, given ‘enough’ security. There are three main
categories:

• Best ideal-case speed

The highest bit rate is required, irrespective of implementation complexity. The
platform for deployment can be chosen (or at least unsuitable ones eliminated).
Typically this means an algorithm which does well when hand-optimised in assembler
for a modern processor, or can use parallelism in a large ASIC.

This type of performance is required by high-end hardware manufacturers, software
developers who choose to target few platforms, and users who can choose platforms
for best performance.

• Best worst-case speed

An acceptable bit rate is required, on a wide variety of platforms, or on a relatively
non-standard platform. There should be no platforms on which speed is significantly
lower than an alternative algorithm.

This type of performance is required by software developers who target a broad range
of platforms, and is often associated with good speed available from a portable C
implementation. It is also of significance to manufacturers (of e.g. embedded systems)
whose choice of platform determined by other factors and cryptography is a secondary
consideration.

• Minimum implementation size

Bit rate is not important, but constraints are placed on the resources required: gate
count, code size or table size.

This type of performance is required by manufacturers of embedded systems for mass
deployment, where unit hardware cost is critical. However, this group typically has
much less need of interoperability outside the embedded application. The main reason
to choose AES in this case will be the brand-name security.

It should be noted that performance and available resources will increase dramatically
over time, but resistance to attacks will decrease. A standard intended for the long
term should favour security over performance or resource requirements.

Approaches towards multiple algorithms
An Advanced Encryption Standard may be proposed which recommends more than
one algorithm. There are a number of ways in which this might be done.

Multiple algorithms may be made optional; they must however be specified in such a
way that any conforming AES implementation can interoperate with any other.

In some situations, both encryption and decryption can be controlled by one party, but
in others they are controlled by separate parties and the choice of algorithm must be a
mutually acceptable one. Any two such implementations must therefore share an
algorithm, and the AES recommendations must guarantee this. The following
approaches will be suggested:

A. All AES implementations must include all algorithms.

B. All AES implementations must include one primary algorithm, and a choice of
secondary algorithms (possibly also ranked in order). Implementations will include
secondary algorithms if it is to their advantage.

C. Given a set of N algorithms, an AES implementation must include at least
N/2+1 algorithms from that set - this ensures any two implementations have at least
one algorithm in common. Implementations will choose the subset of algorithms that
best fulfils their requirements.

Theoretical Security / Implementation Security
Properly managed, multiple algorithm choice should enhance security. Should one
algorithm fall to cryptanalysis, a second choice will already be available to provide
backup. Also, given a choice, an developer will be able to pick the algorithm which best
resists implementation attacks in the available technology.

Improperly managed, multiple algorithm choice will detract from security. If the choice
of algorithm can be subverted in a given protocol, an attacker will be able to pick the
easiest target.

Approach A is the most robust; two communicating parties can negotiate the
‘strongest’ algorithm and it will be used. Should an algorithm be broken, it is simply
removed and the next best is selected.

Approach B allows implementers to choose to implement the secondary algorithms if
they require a fallback. If secondary algorithms are broken first, all systems can revert to
the primary algorithm, but if this is broken, some systems may not have an alternative.
This scheme is therefore as resilient as approach A, except where systems omit the
secondary algorithms due to cost considerations. In this approach, it would be prudent
to choose a primary algorithm with a good security ‘safety margin’.

Approach C, would in theory allow implementers to implement their choice of the
‘strongest’ algorithms, and two communicating parties would agree on at least one they
considered secure. However, should any algorithm subsequently be broken, some
combinations of communicating parties will be left unable to communicate. Also, this
relies on the implementers holding opinions about algorithm security, which is contrary
to the spirit of a security standard.

In practice, this makes approach C less secure than a single-algorithm selection.

The beneficial effect of an Advanced Encryption Standard concentrating cryptanalytic
efforts will be diluted if too many algorithms are chosen. Approach B will present a
primary target for research, and is best in this regard.

Cost of implementation
Any approach that mandates more than one algorithm to be implemented will raise
the development costs proportionally. Approach A particularly, and to a lesser extent
C, have the most impact. Where development costs are the overriding concern,
approach B is as good as a single-algorithm selection.

The cost of implementation can be reduced dramatically, however, given good
reference materials to accompany the standard. It is to be hoped that the various
software implementations made available during the selection process will also be
available to accompany the standard itself. This will strongly reduce the cost of
producing a correct implementation.

It may be necessary to rewrite the descriptions of one or more algorithms to use a
consistent set of terminology - particularly, for instance, with respect to bit-numbering
and byte-ordering conventions.

Architectural implications
Multiple algorithms, and the process required to select one, will undoubtedly add to
the architectural changes required for the new standard. In many situations, where a
negotiation of cipher suite is already part of the protocol, this will have minimal
additional impact.

Approaches A and B allow the selection to be made fixed, but approach C
necessitates some form of negotiation, and this may be impossible in some
circumstances.

The issue of additional algorithm parameters needs careful consideration. The table
below gives some potential variation in parameters for each of the current AES
candidates:

Cipher Variations
MARS Key size 4-39 32-bit words
RC6 Word size w , no. of rounds r, key size 0-255 bytes
Rijndael Block length of 128, 192 or 256 bits
Serpent Key size 0..256 bits
Twofish Key size 0..32 bytes

All block ciphers can accommodate a 128-bit block, and 128, 192 and 256-bit keys as
per the AES requirements, but beyond this the functionality differs substantially. In fact
no two candidates have exactly the same set of allowed keys. It is poor software
engineering practice to expose this to the user of the cipher; any variant in algorithm
should exactly match the functional interface of the other, including rejecting the same
set of invalid keys.

Similarly, if any variations in the number of rounds is proposed to allow a
speed/security trade-off to be chosen by the user, it is poor design to let the user

choose the number of rounds directly. Apart from the dangerous possibility of a
round-by-round attack, it requires the user to know ‘good’ and ‘bad’ values for each
algorithm. An acceptable solution would be to allow, say, three security levels -
‘minimum’, ‘medium’, and ‘maximum’, which is translated to a number of rounds
appropriate to the algorithm in use.

Any AES which recommends more than one algorithm must address these issues, to
remove ambiguity and promote interoperability.

Legal Issues
Clearly, multiple algorithms may increase the legal complications for a developer. In an
ideal case, any algorithm offered as an option in the final AES will be free for use
without restriction. As a minimum, sufficient algorithms should be available to
construct a conforming implementation, without any patent or similar restriction.

Approach A requires all algorithms to have no restrictions; approach C requires the
majority to have no restrictions, and approach B requires the primary algorithm alone
to have no restrictions.

Performance - ideal case
Multiple algorithms give the best opportunity to maximise absolute speed, especially as
evolving technology changes the balance between operations in different algorithms.

Approach A is good for this; the communicating parties will negotiate the fastest
algorithm, and this is guaranteed to be available.

Approach B has some merit; the primary algorithm may not be the fastest on the
chosen platform, but the implementer can add the secondary algorithms if they
improve speed. In the ideal case, both communicating parties will do this and speed is
maximised.

Approach C also allows implementers to choose the subset of algorithms which are
most efficient on the chosen platform. Two communicating parties should then be able
to pick their mutually fastest choice.

Performance - best worst-case
This benefits greatly from a choice of algorithms. Most worst-cases will be a particular
feature of an algorithm which behaves poorly on a particular platform, and often any
alternative will help.

The same strategy for choosing algorithms can be adopted as in the ‘ideal case’
scenario, with similar results. The worst case in Approach B is when the primary
algorithm has poor performance on a given platform, and one of the communicating
parties does not support any secondary algorithms. This is still an improvement,
however, because it will only occur in those few cases where there is an overwhelming
need for cost saving.

Minimum size requirements
This is impeded by the requirement for multiple algorithms; any standard which
mandates more than one to be implemented will severely impact costs for low-end
system developers.

To a certain extent this can be mitigated where two algorithms share common large
functional blocks, or memory requirements which can be overlaid. To demonstrate
this, the table below summarises the major functional requirements for each AES
candidate. For comparison, triple-DES is also listed.

The table sizes given are ‘minimum’ requirements, with a 128-bit key, and will not be
for the most efficient possible implementation; the RAM size given does not include
that required for working purposes. The ROM size may be misleading as it does not
include code size, which is in some cases traded off against lookup table size.

Candidate ALU Operations Table size (bytes)
logic
/
fixed
shift

add/s
ub

data-
dep
shift

GF
(2p)
ops

mult ROM
(S-boxes, etc.)

RAM
(key schedule,
etc.)

MARS X X X X 2048 160
RC6 X X X X none 176
Rijndael X X 512 16
Serpent X 128 32
Twofish X X X 64 24
Triple-DES X 256 24

So it can be seen, for instance, that adding RC6 to a chip designed to implement
MARS would have relatively little impact, but adding it to one optimised for Rijndael
might be difficult.

Approach A is the worst of all worlds for minimum-size implementations. Approach C
is better (only the smallest algorithms should be selected) but would still be typically
double the best-case cost. Approach B allows very resource-limited implementations
to implement solely the primary algorithm, and is as good as the single-algorithm case.

Summary of results
The effect of the various possibilities for a multiple-algorithm standard can be
summarised in the table below, where “++” indicates the most positive impact, “0”
indicates no impact compared to a single-algorithm standard, and “--“ is the most
negative impact.

Category A B C Notes
Security ++ + -- 1
Impl. Cost -- 0 - 2
Architecture - - -- 2
Legal issues -- 0 - 2
Best-case speed ++ ++ ++
Worst-case speed ++ + ++
Minimum size -- 0 -

Notes:

1. Based on the ability of the standard to continue given failure of a cipher.
2. Can be mitigated by a good standardisation process.

Conclusions
A number of approaches to specifying multiple algorithms have been presented. This
suggests that approach B - to specify a required ‘primary’ algorithm and one or more
optional ‘secondary’ algorithms - has advantages over other approaches, and allows
potential speed and security improvements over a single algorithm selection.

This approach means that outright performance can be eliminated from the criteria for
primary algorithm selection - this can be left for the secondary algorithm. Security (or
in practice, safety margin and conservative design) should be the primary algorithm’s
main requirement, followed by a modest resource requirement for minimum-size
implementations.

Similarly, resource requirements can be ignored when making the secondary algorithm
selection; implementers seeking a lowest-cost solution can simply omit these. An
algorithm more aggressively optimised for performance is ideal here.

Provided that the legal and functional differences between the algorithms are mitigated
by a well-written standard, there is no reason that this approach should not offer the
best of all worlds.

Session 7:

"ASIC Evaluations /

Individual Algorithm Testing"

1. Introduction

 This report describes our evaluation results
of implementing hardware of the AES
finalists, concentrating on 128-bit key
version, using Mitsubishi Electric’s 0.35
micron CMOS ASIC design library. Our goal
is to estimate the “critical path length” of
data encryption /decryption logic and key
setup time of key scheduling logic for each
algorithm, which corresponds to the fastest
possible encryption speed in feedback modes
of operation such as CBC etc. To achieve this,
we wrote fully loop-unrolled codes in Verilog-
HDL language without introducing pipeline
structure that blocks the feedback.

 We first tried to investigate the evaluation
environments to be used in NSA, especially
the hardware design library, since NSA is
expected to join the Round Two hardware
analysis as has been shown in the NIST AES
homepage [NIST (1998)]. However, after
communicating NIST and MOSIS, we found
that the library is an internal 0.5 micron
standard cell library that is not available
outside NSA, and a non-proprietary version
of the library has not been developed. We
therefore decided to analyze the AES finalists
using Mitsubishi Electric’s CMOS ASIC
design library, whose information is publicly
available in [MITSUBISHI (1997)].

 Our simulation results show that Rjindael is
the fastest as expected and it is even faster
than DES, and Serpent is the next. Twofish,
Mars and RC6 are slower than Triple-DES.
We should note that since we used a general

ECA (embedded cell array) library without
applying special performance optimization
techniques, these algorithms that heavily use
arithmetic operations could be much faster if
we introduce more expensive semi- or full-
custom designs. However our analysis also
indicates that even such designs are not
expected to give a significant impact to
change the ranking of the critical path
length.

2. The AES Finalists

NIST announced the five AES finalists, in
August 1999. This section briefly summarizes
these algorithms, mainly data encryption
operations, from hardware viewpoint.

2.1 Mars
 Mars supports 128-bit blocks and a variable
key size from 128 bits to 448 bits. It is
designed to take advantage of the powerful
operations supported on today's computers
[Burwick et. al. (1999)].
 The encryption part of Mars, which is
composed of four kinds of round functions, is
performed as follows. We have also listed
major components that have an impact in
hardware performance.

-The initial key addition
 4 additions mod 232.
-The unkeyed forward mixing (8 rounds)
 2 additions mod 232, and 4 look-up tables
 with 8bit-input/32bit-output.
-The keyed forward transformation (8 rounds)
 6 additions and 2 multiplications mod 232,
 and 4 data-dependent rotations.
-The keyed backwards transformation (8 rounds)

Hardware Evaluation of the AES Finalists
Tetsuya ICHIKAWA* Tomomi KASUYA** Mitsuru MATSUI**

* Kamakura Office, Mitsubishi Electric Engineering Company Limited
ichikawa@harriet.mee-unet.ocn.ne.jp

** Information Technology R&D Center, Mitsubishi Electric Corporation
kasuya@iss.isl.melco.co.jp, matsui@iss.isl.melco.co.jp

 6 additions and 2 multiplications mod 232,
 and 4 data-dependent rotations.
-The unkeyed backwards mixing (8 rounds)

2 subtractions mod 232, and 4 look-up
tables with 8bit-input/32bit-output.

-The final key addition
 4 subtractions mod 232.

 It seems that the heavy use of arithmetic
operations, especially multiplications and
additions mod 232, makes hardware slower
and larger unless they are specially designed
in a transistor level.

2.2 RC6
 RC6 has three variable parameters, i.e., the
number of rounds, the data block size, and
the key size up to 2040 bits. The proposed
version in AES has 20 rounds with a total of 4
additions (subtractions) mod 232 before and after
the round functions [Rivest (1998)], [RSA (1998)].
The major hardware components in the round
function are as follows:

 2 additions and 2 multiplications mod 232,
 2 data-dependent rotations.

 These operations are well supported and fast
on modern microprocessors, but expensive in
hardware, especially multiplications and
additions mod 232, make hardware slower and
larger unless they are specially designed in a
transistor level.

2.3 Rijndael
 Rijndael also has a variable block length and
a variable key length. The block length and
the key length can be independently specified
to 128, 192 or 256 bits. The proposed number
of rounds in AES is 10, 12 and 14 when the
key length is 128 bits, 192 bits and 256 bits,
respectively [J.Daemen and V.Rijmen (1998)].
 The round function of Rijndael in 128-bit
blocks is composed of four distinct invertible
transformations as follows:

-The ByteSub transformation
 16 lookup tables with 8bit-input/output.
-The ShiftRow transformation
 no hardware operations.
-The MixColumn transformation
 logical AND and XOR operations.
-The AddRoundKey transformation

 logical XOR operations.

 Before the first round, the AddRoundKey
transformation is also performed, and in the
final round, the MixColumn transformation is
omitted.
 The basic components of Rijndael are logical
operations and lookup tables; the latter is
actually a composite function of an inversion
over GF(28) with an affine mapping. Hence
the structure of Rijndael is expected to be
suitable for hardware implementation.

2.4 Serpent
 Serpent has a 32-round SP-network
structure with initial and final permutations,
whose round function consists of 32 lookup
tables with 4-bit input/output, logical and
rotate shifts, and XOR operations [Anderson,
Biham and Knudsen (1998)], [Biham (1997)].
 These components are suitable for hardware
implementation; particularly the small table
size is expected to make hardware
sufficiently small and fast.

2.5 Twofish
 Twofish has a 16-round Feistel-like structure
with an additional whitening of the input and
output that consists of XOR operations. The
major hardware components of the round
function are as follows:

 n lookup tables with 8-bit input/ output,
 4 additions mod 232,
 logical AND and XOR operations,

 The lookup tables can be also generated from
another smaller 8 lookup tables with 4-bit
input/output, and n is 12, 16 or 20 when the
key length is 128, 192 and 256, respectively.
 Twofish is not using particularly heavy
operations in hardware, but its critical path
is not short because, for instance, the number
of cascaded 8x8 lookup tables is 48, where
that for Rijndael is 10 when the key length is
128 [B.Schneier et. al. (1998)].

3. Design Policy

 Our purpose is to evaluate the fastest
possible encryption speed of the AES finalists
using the existing hardware library under

fair conditions. To achieve this and also to
complete the analysis in our limited time
scale and resources, we designed the 128-bit
key version for each candidate on the basis of
the following criteria and conditions:

1. We fully unrolled the loop in the
encryption and decryption logic and the
key scheduling logic to achieve the fastest

possible speed (throughput). In practice,
the loop structure is commonly used in
order to reduce hardware size, but
generally makes the hardware slower
because additional setup -time and hold-
time is required for the loop registers,
which is usually not negligible. Note that
we therefore did not take a special effort to
reduce hardware size.

2. We assume that all subkey bits are stored
in subkey registers before an encryption
operation begins. Also we have inserted
another 128-bit resister to hold a block of
ciphertext as shown in Figure 3.1, where
we define the critical encryption and
decryption path as the time required for all
output bits of the encryption and
decryption logic to reach the output
registers under the fixed (sub)key value.

3. We did not introduce pipeline architecture;
i.e., we did not insert any additional

intermediate registers in the encryption
and decryption logic. This is because the
pipeline architecture makes the ECB mode
faster but also blocks feedback modes of
operations such as CBC. In other words,
our hardware model encrypts one block
plaintext data in one cycle.

4. We did not use a special optimization

technique to design lookup tables in
hardware. This means that the
performance of the lookup tables heavily
depends on optimization capability of the
logic synthesis tool. In practice, as will be
shown in the next section, the output of the
synthesis tool seems to have reasonably
optimized the lookup tables (not very slow).

5. Our design environment is as follows:

 language: Verilog-HDL
 simulator: Verilog-XL
 design library: Mitsubishi 0.35micron
 CMOS ASIC Library
 logic synthesis: Synopsys Design Compiler
 version 1998.08

 For arithmetic operations such as additions,
subtractions and multiplications, we used
faster ones in the library of Synopsys Design
Ware Basic Library [Synopsys (1998)].
 Also, we adopted the WORST case hardware

E n cr y p t i on
a n d

Decry p t i on
log ic

Ou tpu t
r e g i s t e r s

K e y E x p a n s i on

log ic

Su
b

K
ey

 r
eg

is
te

rs

c iph e r t e x t / p l a i n t e x t

p l a i n t e x t / c iph e r t e x t

K e y s e t u p t i m e

C
ri

tic
al

 p
at

h

K e y

Figure 3.1 The hardware structure

conditions for evaluation. The worst case
speed is a guaranteed speed of a given circuit,
which is commonly used in real products. We
think that the TYPICAL case evaluation is
too optimistic to apply to a real ASIC
hardware.

4. Evaluation Results

 The results of our hardware evaluation of the
five finalists are presented in Table 4.1. The
fastest algorithm in terms of the critical path
between plaintext and ciphertext is Rijndael,
which is an only algorithm faster than DES.
The second fastest algorithm is Serpent,
which is twice faster than triple-DES but still
much slower than Rijndael (approximately
half). The speed of Twofish is almost the
same as that of triple-DES, but Mars and
RC6 are further slower; Rijndael is
approximately ten times faster than RC6.

 On the other hand, for the key setup time,
Twofish is fastest, consuming only 5% of the
critical path of its encryption procedure. Note
however that the key setup time of DES and
Triple-DES is almost nothing in hardware.
Rijndael and Serpent have approximately
85%, while the key scheduling logic of Mars
and RC6 is more than three times slower
than their encryption.

 Figures 4.1 and 4.2 show more detailed
breakdowns of hardware components on the
critical path of each algorithm, where the
horizontal line of Figure 4.2 is normalized to
show proportion of each component .

 Mars has 16 multiplications, 26 additions/
subtractions, 15 lookup tables (specifically 11
S0’s and 4 S1’s) and 9 data-dependent
rotations on its critical path, where all
arithmetic operations are taken on mod 232.
As shown in the figures, the multiplications
occupy 63% of the critical path, 13% for
additions/subtractions, and 9% for the lookup
tables.

 RC6 has 20 multiplications, 21 additions and
20 data-dependent rotations on its critical
path, where all arithmetic operations are also
taken on mod 232 As shown in the figures, the
multiplications occupy 77% of the critical

path, 13% for additions/subtractions, and 8%
for the data dependent rotations.

 The critical path of Rijndael is not in the
encryption but in the decryption procedure
since the InvMixColumn function, which is
an inverse of the MixColumn function, is a bit
slower than the MixColumn function due to
more complex constant values. On the critical
path, a total of 10 InvByteSub functions
(table lookups) occupy 48% of the entire
decryption time, and a total of 9
InvMixColumn functions have 43%.

 It is easy to see that the critical path of
Serpent has 32 lookup tables and 31 linear
transformations (XOR’s and shifts). Our
analysis shows that the linear
transformations of Serpent are more
expensive than its lookup tables; the former
is 36% while the latter is 45%. In a logical
sense, the lookup tables and the linear
transformations must exhaust the critical
path; however Figure 4.2 exhibits other
factors that occupy a total of 19%. This is
mainly because the design compiler has
automatically inserted driver gates in order
to supply sufficient fan-out counts, which
reflects the fact that an output bit of a lookup
table of Serpent has many “branches” that
reach many different lookup tables in the
next round. This is part of design criteria of
Serpent.

 It is also easily seen that the critical path of
Twofish have 48 lookup tables --- specifically
16 q0’s and 32 q1’s, which is not a trivial fact
---, 16 MDS’s (linear transformations) and 32
additions mod 232. The dominant part is the
lookup tables, which occupy 53%, but also
time for additions is not negligible (28%).

5. Discussions and
Conclusions

 The performance of Mars and RC6 heavily
depends on the speed of the multiplication
circuits mod 232. Our evaluation results show
that the average time for the multiplication is
around 23ns, which is six to eight times
slower than the addition circuit mod 232,
which takes around 3ns.

 This also shows that by using highly
optimized multiplication circuits in a
transistor level, these algorithms are
expected to be much faster. For this topic, see
[Hagi (1998)] for instance. Now as an example,
let us assume, in Mars and RC6, the 32-bit
multiplication can work at the same speed as
the 32-bit addition. We see that still the
critical path of (the modified) Mars and RC6
is approximately 250 and 200ns, respectively.
Also, we should notice that a full-custom
solution is generally process-dependent and
hence is not an inexpensive solution in
practice.

 Another speeding-up possibility is to
optimize a lookup table. The average time for
one lookup table for each algorithm is 3.2ns
for Rijndael (8x8), 1.5ns for Serpent (4x4),
3.5ns for Twofish (8x8) and 3.5ns for Mars
(8x32), respectively. Twofish will be most
rewarded for the efforts of optimizing the
lookup tables. However, the optimization will
not lead to a significant impact to affect the
ranking of the five finalists.

 In this paper, we did not take efforts to
reduce the size (area) of each algorithm since
we adopted a full loop unrolling in order to
evaluate the fastest possible encryption
speed. Appendices 1 and 2 show the
information of the size of each algorithm with
the detailed breakdowns, which we will not
discuss here. How to reduce the gate size is
another practical topic to be pursued.

References
[NIST (1998)]:

http://csrc.nist.gov/encryption/aes/aes_home.ht
m
[MITSUBISHI (1997)]:

Mitsubishi Electric America, Inc.,
“0.35um CMOS ASIC DATA BOOK ”, 1997.

[Burwick et.al. (1999)]:
http://www.research.ibm.com/security/Mars.ht

ml
 See also

http://csrc.nist.gov/encryption/aes/round2/AES
Algs/MARS/mars-int.pdf

[Rivest (1998)]:
R. L. Rivest, M. J. B. Robshaw, R. Sidney, and

Y. L. Yin, “The RC6 Block Cipher,” 1998.
[RSA(1998)]:

http://www.rsasecurity.com/rsalabs/aes/index.h
tml

[J.Daemen and V.Rijmen (1998)]:
J. Daemen and V. Rijmen, “AES Proposal:
Rijndael,” Document vers on 2, Date: 03/09/99.
http://www.esat.kuleuven.ac.be/~rijmen/rijnda
el

[Biham (1997)]:
E Biham, “A Fast New DES Implementation in
Software", in Fast Software Encryption - 4th
International Workshop, FSE '97, Springer
LNCS v 1267,pp 260-271.

[Anderson, Biham and Knudsen (1998)]:
R. Anderson, E. Biham and L. R. Knudsen,
“Serpent: A Proposal for the Advanced
Encryption Standard,” 1998.
http://www.cl.cam.ac.uk/~rja14/serpent.html

[B.Schneier et. al. (1998)]:
B. Schneier, J. Kelsey, D. Whiting, D. Wagner,
C. Hall, and N. Fergusen, “Twofish: A 128-Bit
Block Cipher,” June 15, 1998.
http://www.counterpane.com/twofish.ps.zip

[Synopsys (1998)]:
Synopsys Inc. ,“Design Ware Foundation Quick
Reference Guide ”, Aug.1998.

[Hagi (1998)]:
Y.Hagihara, et. al., ”A 2.7ns 0.25um CMOS
54x54b Multiplier”, ISSCC Digest of Tech.
Papers, pp296-297, Feb.1998.

F i g u r e 4 .1 C r i t i ca l P a t h o f t h e F i n a l i s t s (1)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

R C 6

M A R S

T w o f i s h

S e r p e n t

R i jn d a e l

[n s]

m u l

a d d , s u b

r o t a t i o n

s b o x

l i n e a r t r a n s .

o th e r s

F i g u r e 4 .2 C r i t i ca l P a t h o f t h e F i n a l i s t s (2)

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

R C 6

M A R S

T w o f i s h

S e r p e n t

R i j n d a e l

m u l

a d d ,s u b

r o t a t i o n

s b o x

l i n e a r t r a n s .

o t h e r s

Table4.1 Hardware evaluation results

Encryption &
Decryption

Key Schedule Total

DES 42,204 12,201 54,405 - 55.11 1161.31
Triple-DES 124,888 23,207 148,147 - 157.09 407.4

MARS 690,654 2,245,096 2,935,754 1740.99 567.49 225.55
RC6 741,641 901,382 1,643,037 2112.26 627.57 203.96

Rijndael 518,508 93,708 612,834 57.39 65.64 1950.03
Serpent 298,533 205,096 503,770 114.07 137.4 931.58
Twofish 200,165 231,682 431,857 16.38 324.8 394.08

Throughput
[Mbps]

Algorithm name
area [Gate]

Key setup
time[ns]

Critical-
path[ns]

Appendix 1: Area Size of the Finalists(1)

0 500 1000 1500 2000 2500 3000 3500

RC6

MARS

Twofish

Serpent

Rijndael

[Kgate]

mul

add,sub

rotation

sbox

linear trans.

others

Appendix 2: area size of the Finalists(2)

0% 20% 40% 60% 80% 100%

RC6

MARS

Twofish

Serpent

Rijndael

mul
add,sub
rotation
sbox
linear trans.
others

1

Hardware Performance Simulations of Round 2 Advanced
Encryption Standard Algorithms

Bryan Weeks, Mark Bean, Tom Rozylowicz, Chris Ficke

National Security Agency

1 Abstract
The National Security Agency (NSA) is providing hardware simulation support and performance measurements to
aid NIST in their selection of the AES algorithm. Although much of the Round 1 analysis focused on software,
much more attention will be directed towards hardware implementation issues in the Round 2 analysis. As NIST has
stated, a common set of assumptions will be essential in comparing the hardware efficiency of the finalists. This
paper presents a technical overview of the methods and approaches used to analyze the Round 2 candidate
algorithms (MARS, RC6, RIJNDAEL, SERPENT and TWOFISH) in CMOS-based hardware. Both design
procedures and architectures will be presented to provide an overview of each of the algorithms and the methods
used. To cover a wide range of potential hardware applications, two distinct architectures will be targeted for
comparison, specifically a medium speed, small area iterated version and a high speed, large area pipelined version.
The standard design approach will consist of creating hardware models using VHDL and an underlying library of
cryptographic components to completely describe each algorithm. Once generated, the model can be verified for
correctness through simulation and comparison to test vectors, and synthesized to a common CMOS hardware
library for performance analysis. Hardware performance data will be collected for a variety of design constraints for
each of the algorithms to ensure a wide range of measured data. A summary report of the findings will be presented
to demonstrate algorithm performance across a wide range of metrics, such as speed, area, and throughput. This
report will provide a common baseline of information, which will enable NIST and the community to compare the
hardware performance of the algorithms relative to one another.

2 Introduction
The National Security Agency (NSA) agreed to provide technical support to the National Institute of Standards and
Technology (NIST) in the form of an analysis of the hardware performance of the Round 2 Advanced Encryption
Standard (AES) algorithm submissions. This analysis consisted of the design, coding, simulation and synthesis of
the five algorithms using the procedure outlined below. Throughout this evaluation, NSA has taken care to assure
that best design practices were used and that all algorithms received equal treatment. No attempt was made to
optimize any particular design, but care was taken to find the best configuration for each algorithm. Cross-validation
measures during design and simulation were used to overcome the subjective effects of the design process and to
ensure that all designs receive the same amount of attention. The results of this analysis should provide an accurate
measure of the hardware performance of each algorithm relative to the others. Undoubtedly more optimized (and
hence better performing) implementations of these algorithms can be designed, so the individual score of any
particular algorithm is not very valuable outside the context of this environment. The point of this analysis is to
provide a controlled setting in which a meaningful comparison can be made.

Based on a mathematical description of the Round 2 algorithms, and C code reference models when necessary for
clarification, NSA designers fully described each of the algorithm submissions in a hardware modeling language. A
review by a team of design engineers followed the initial design stage to reduce the effects of coding style on
performance. Using commercially available analysis, simulation and synthesis tools, NSA design engineers have
performed simulations to produce performance estimates based on each of the hardware models. In order to provide
a wider perspective on the performance of the algorithms, two different architectures or applications were simulated
for each algorithm: an iterative version to provide a medium speed operation at minimal area/transistor count, and a
pipelined version to provide optimum speed operation, but at the cost of a larger area. This report is a summary of
the performance of the Round 2 AES candidate algorithms, and will compare and contrast the results of the analysis.

2

3 Hardware Design Background

3.1 Design Guidelines
For this analysis effort, one of the main goals was to provide an unbiased comparison of the algorithms in hardware,
specifically in Application Specific Integrated Circuits (ASICs). To that end, the overhead found in typical hardware
implementations, such as a robust user-interface, was minimized to reduce the impact on the overall performance of
the algorithms. The user-interface is the Input/Output (I/O) connections and logic needed to take the plaintext and
key and present them to the algorithm, and take the output ciphertext and present it off the chip. All inputs and
control signals were registered in a common interface in order to provide uniformity across all of the algorithms,
with fixed setup and hold times identical for all algorithms. A wide variety of architectures could be used to
implement a given algorithm. In order to restrict all possible choices and yet capture valuable data points, two
fundamental architectures were chosen: iterative and pipelined. All algorithms were designed in each architecture
style. There are several variations on these approaches, including multiple copies of an iterative implementation for
parallel processing, a partially pipelined implementation, or a combination of these hybrids (multiple copies of a
partially pipelined implementation). The approach chosen will depend on the needs of the system, but these
variations will likely result in performance within the ranges given by the iterative and fully pipelined
implementations. However, these optimizations were beyond the scope of this study.

3.1.1 Target Applications

3.1.2 Iterative Architecture
The iterated approach to implementing the algorithm focuses on providing a medium to low speed version of the
algorithm, with efforts placed on limiting the physical size of the hardware. In this instance of the algorithm, one
step is performed per clock period, with the output of the previous step being used as the input to the next step. Data
is only placed on the output after the required number of algorithm rounds has been completed.

3.1.3 Pipelined Architecture
The pipelined approach to implementing an algorithm centers on providing the highest throughput to the design,
sacrificing area to obtain the level of performance needed. In the case of pipelining, all of the steps in computing the
algorithm are cascaded into a single design, with each stage feeding the next stage. The latency remains the same as
in the iterated case, but the throughput is increased significantly as new data is placed on the output on every clock
cycle. Pipelining has been shown to be an effective method of dramatically increasing the throughput capabilities of
a given algorithm. However, it comes at the expense of limiting the number of cryptographic modes that can be
supported at the maximum throughput rate. For example, since the latency of an encryption cycle remains the same
as an iterative case, there is no throughput advantage when using feedback modes such as Cipher Block Chaining
(CBC). High performance applications, such as high speed network encryption, will require the increase in
throughput, and as a result, often focus on a non-feedback mode of operation such as counter mode to obtain
performance.1

3.2 Parameter Description
There are many design parameters that can be reported for each design implementation. Some parameters will have
much more significance in a given application or environment than others. This evaluation reports on these
parameters as a method of comparison among the five algorithms, and does not claim that any single parameter has
been fully optimized. The following is a description of the parameters being reported. Some have a direct impact or
relation to performance metrics (e.g. throughput) and some are simply a function of the algorithm itself (e.g., I/O
requirements). Algorithm performance in each of the evaluation categories will be documented for each algorithm
submission.

3.2.1 Area
As an estimate based on an available MOSIS library, the results of the synthesis area reporting will consist of pre-
layout area estimates of the algorithm. Although potentially different from a post-layout estimate, the area reported

3

by Synopsys will provide a relative comparison of each of the algorithm submissions. Generally, the two varieties of
architectures-– iterative and pipeline -– will be on the extremes of area with the iterative being the smallest, and the
pipelined being the largest.

3.2.2 Throughput
In most cases, throughput is directly proportional to area; as area decreases, throughput decreases. As with area, the
iterative and pipelined architectures will report the extremes of throughput. Iterative architectures will have much
lower throughput rates since there is a minimum amount of hardware, and it is re-used on multiple clock cycles of
execution. Thus, the throughput is limited by the amount of hardware reuse. More specifically, it is limited by the
number of rounds in a codebook algorithm. On the other hand, a pipelined architecture dedicates hardware for
performing all calculations in any given clock cycle. This maximizes throughput by allowing data to be written and
read from the device on every clock. In this case, throughput is a function of the worst-case delay in any one given
stage of the algorithm. Throughput will be reported for both iterative and pipelined architectures.

3.2.3 Transistor Count
Transistor count is a more specific measure than area and is often more useful. While transistor count is somewhat
dependent on the design library being used, it is a useful method of comparing the algorithms since they were
compiled using the same library. In addition, the transistor count will be a more useful figure than area when
estimating programmable logic implementations since these devices typically report the number of useable gates
(which is also directly related to transistor count). Based on the synthesized netlist (from Synopsys), an additional
report describing the number of transistors required to implement the algorithm will be provided.

3.2.4 Input/Outputs (I/O) Required
With the goal of consistency among algorithms, the I/O was fixed identically for all algorithms. However, since this
parameter is highly useful to hardware designs, it will still be reported.

3.2.5 Key Setup Time
The key setup time refers to the amount of time required before subkey expansion is ready to execute. Some
algorithms use the user-supplied key directly in the subkey expansion thereby reducing the key setup time to zero.
Others require some pre-calculation or translation of the key prior to subkey expansion steps. Key setup times will
be examined to assess the overhead of each algorithm in establishing a usable key.

3.2.6 Algorithm Setup Time
Similar to key setup time, the algorithm setup time reports the minimum amount of time before an algorithm is
ready to process data. Time to create look-up tables, etc. will fall in this category. None of the evaluated algorithms
contained an algorithm setup time greater than zero.

3.2.7 Time to Encrypt One Block
This paramter will address minimum latency times for each of the algorithm submissions. The time to encrypt one
block, measured in nanoseconds, is a function of two parameters: the worst-case path delay between any two
registers, and the number of rounds in the algorithm.

3.2.8 Time to Decrypt One Block
As above, this parameter will address minimum latency times for each of the algorithm submissions. Decryption
does not always require identical processing as encryption. Therefore, the time required to decrypt one block is
reported.

3.2.9 Time to Switch Keys
Originally, this parameter was included as a measure to encompass both key setup time and algorithm setup time
overhead. However, since none of the evaluated algorithms contained an algorithm setup time, this parameter is
identical to key setup time. Therefore, it will not be reported further in this document.

4

4 Methodology

4.1 Standard Design Flow
The design process followed a common methodology used by ASIC designers. The process started with the
documentation supplied by the algorithm authors and was completed with a gate-level schematic, which included
the performance metrics data. A complete ASIC development would require physical layout and fabrication. These
steps were beyond the scope of this effort. However, the performance metrics data obtained here closely matches
that which would be found from actual fabrication and testing. Previous efforts using these tools have correlated
estimated performance from the schematic to the actual testing. Figure 1 shows the steps in the design flow.

Algorithm
Specification

VHDL
Model

Functional
Simulation

Synthesis Data Extraction

Figure 1 Standard Design Flow

4.1.1 VHDL code generation
VHSIC Hardware Description Language (VHDL)
VHDL modeling is analogous to programming simulations in C code and follows much of the same syntax.
However, unlike a behavioral description of the algorithm, VHDL (IEEE 1076) specifies how the algorithm will be
implemented in hardware. Using this hardware language, NSA designers fully described the hardware necessary to
implement each of the algorithm submissions. Performance metrics, such as speed, area, etc. (see below) can be
estimated from the hardware description using available analysis and computer aided design (CAD) tools.
There are different styles in which to code VHDL models, offering various levels of abstraction. For this evaluation,
the designers used the register transfer logic (RTL) coding style. For this style, the placement of registers and
corresponding logic between registers is chosen by the designer and is determined at the VHDL code level. There
are many different methods for identifying an optimized placement of registers. Ideally, there would be an equal
amount of logic delay between registers for all stages of the design. However, in order to simplify the design cycle
and to be consistent among all algorithms, the designers chose a common placement of registers, even if this
placement is not fully optimized. Specifically, the output of each “round” (as defined by the algorithm authors) is
registered for both a key schedule round and an algorithm round.

4.1.2 Simulation and Verification
NSA followed the design phase with a functional VHDL simulation of the designs using the Synopsys VHDL
System Simulator (VSS) to verify the correct operation of the algorithm. The test vectors submitted to NIST for each
algorithm were applied to assure that the design was working as intended. Specifically, the Variable Key and
Variable Text tests were performed for each algorithm implementation and mode (e.g., iterative encrypt, pipelined
decrypt, etc.). The modeled algorithm output was also compared with the C code model supplied to provide an
added assurance that the simulation was operating as expected.

4.1.3 Code review
NSA had one or more engineers design the VHDL for each algorithm submitted. Initial hardware designs were
straightforward implementations of the core algorithm. Following completion of each initial design, an informal
group of engineers met to review and provide feedback for the design. Improvements and alternatives to the initial
design were examined to determine potential benefits from differing architecture approaches (area compression,
pipelining, etc.). Variants of the design that improve the performance of the algorithm were then programmed for
comparison.

5

4.1.4 Synthesis
Gate-level synthesis of the algorithm utilized the Synopsys Design Compiler to produce a functionally equivalent
schematic in hardware. A MOSIS-specific technology library was used to generate a gate-level schematic of the
design and provide more accurate area and timing estimates, as if the design were to be implemented in an
integrated circuit (IC). The MOSIS library is based on a publicly available fabrication facility’s model of a specific
CMOS process, thus giving real performance metrics for an available ASIC line. The VHDL model can be re-
targeted to any supported hardware or field programmable gate array (FPGA) design libraries.

The synthesis process can generate a wide range of implementations depending on the constraints provided to the
synthesis tool. For example, one implementation may minimize area while another may minimize delay time. In
hardware synthesis, the two fundamental parameters are time and area. These parameters are directly related. As
delay time decreases, area increases. Timing and area curves that further illustrate this point are shown in subsequent
sections. The constraints provided for each algorithm synthesis routine were maintained consistently. Therefore,
differences among algorithm synthesis results will be a function of the logic required (algorithm specific) and the
synthesis tool’s ability to meet the given constraints.

4.1.5 Documentation
In addition to a summary report containing performance data, both design notebooks and VHDL documentation will
be provided to NIST for evaluation. The design notebooks will contain reporting information for all of the hardware
data that was collected, with all algorithms, designs, and architectures represented. The VHDL models and their
testbenches (for simulation verification) will also be included.

4.2 Synthesis Analysis

4.2.1 Function Characterization
Although the hardware design of the algorithms followed a top-down approach, the synthesis portion of the analysis
proceeded from the bottom of the design up through the hierarchy. In order to obtain an accurate picture of the
performance of the sub-blocks and functions in this type of analysis, a sweep was performed on each of the
functional blocks to graphically depict performance versus design constraints. Specifically, the timing constraints,
such as output delay and clock frequency, of each of the blocks were varied to observe the performance output of the
block. The results of the sweep make up the characterization for that particular block. All subsequent blocks of the
hierarchy will be analyzed using these methods.

4.2.2 Cryptographic Library
With characterization curves for each of the sub-blocks complete, five speed grade implementations were selected to
cover the performance range of the block. A variety of key performance points were selected to reflect requirements
for both high speed and small area. Figure 2 shows typical timing and area curves following a sweep of maximum
delay time constraints. These curves allow design engineers to select specific implementations of a given function.
Specifically, five implementations, or speed grades, were chosen for each function. In this example, the five selected
implementations are noted in the figure, and they represent one minimum time delay, one minimum area, and three
other points that have desired characteristics such as large area savings for a small increase in delay time.

6

D E S IG N W A R E _ F U N C T T im in g & A r e a C h a r a c t e r i s t i c

0

2

4

6

8

1 0

1 2

1 4

1 6

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

T i m in g C o n s t r a i n t (n s)

A
ct

ua
l T

im
in

g
(n

s)

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

A
ct

ua
l A

re
a

(s
q.

 u
m

)

T im in g D a t a
A r e a D a ta

s 1 s 5s 2
s 3 s 4

Figure 2 Sample Function Sweep
The five implementations were selected only for the functions of each of the algorithms, and then assembled into a
cryptographic library. Each library contained implementations of all the functions required to build the given
algorithms.

4.2.3 Block Level Characterization
Continuing with the bottom up approach, the higher level blocks underwent the same performance sweep as
described for the function level. The design constraints were varied across the entire range of the block to fully
describe the performance curve of the block. At each iteration of the synthesis process, components (e.g., functions)
were selected from the cryptographic library based on the required speed and performance. Performance curves at
the block level encompassed components of several different speed grades depending on design constraints. At the
top level, the characterization curve reflected the performance of the entire design across a wide range of design
constraints.

5 General Architecture Approach

5.1 Top Level Architecture
The design of each algorithm started with a common top level architecture that is well suited for virtually any
codebook algorithm. The generalized top level architecture consists of an Interface, an Algorithm block, a Key
Schedule block and a Controller. Figure 3 shows a block diagram of the architecture.

7

Done

Interface

Controller

Algorithm

Expanded
Key

Control
Signals

Control
Signals

Chip Boundary
Ciphertext

Plaintext Key

Key
Schedule

Figure 3 Top Level Architecture

The Interface serves to register all data inputs. This is consistent with the hardware design methodology of placing
registers at the chip boundary, thus minimizing strict setup-and-hold timing requirements. In some cases, the
interface also provides minimum functionality, such as padding keys when appropriate. The Key Schedule performs
the generation of subkeys to be used in by the Algorithm block. This includes any required key setup as well as the
expansion itself. The Algorithm performs the actual encryption or decryption of data provided from the Interface
using the subkeys from the Key Schedule. For iterative implementations, the Algorithm and Key Schedule blocks
implement a single round with internal feedback datapaths; whereas the pipelined implementations expand these
sections to include as many implementations of a round as required by the particular algorithm. Finally, the
Controller provides any necessary control signals for maintaining proper synchronization among the various blocks.

6 Algorithm Evaluation
For each of the algorithms, a description of how it was architected for both the pipelined and iterated cases is given.
Any nuances of how the rounds were simulated and the key schedule implemented are also given along with specific
examples of approaches to reduce redundancy or streamline the design. Each algorithm section then provides block
level results of timing constraints versus both chip area and timing in both the iterative and pipelined cases. A table
of performance parameters is then provided for four different key sizes, 128 bit key, 192 bit key, 256 bit key, and a
hybrid that combines all three key sizes in one key schedule that can be controlled for any particular key size. In
some cases, the combined three-in-one key schedule must make compromises to achieve the greater degree of
flexibility. Each of the performance parameters is described in more detail in Section 7, along with comparisons
across the five algorithms.

Following the architecture for each of the algorithms, each section will provide a summary of the results of the
hardware analysis for the individual algorithm. In an effort to save space, the timing and area graphs will be
presented for only the combined case which contains all three key sizes in one implementation. Both pipelined and
iterated cases will be covered. However, the complete report and design workbooks will contain graphs for all key
sizes and contains a much more complete data set. The corresponding tables will capture key performance data
points for all key size implementations. *

* Note: At time of publication, not all information was available for every parameter and for every algorithm. Due to
some unforeseen difficulties in the amount of time for simulation, some information on area, transistor count and
key setup times was not available. This was especially true for simulating the larger blocks in the pipelined cases
and for the various key sizes. In addition, certain information for MARS and RC6 was being finalized at time of
publication, so is not included in this version. Incomplete data in the following sections are indicated with asterisks.

8

Complete data for the performance curves and tables of key parameters will be provided on the NIST web site and at
the conference.

6.1 MARS

6.1.1 Architecture
The MARS algorithm requires several different types of rounds2. Specifically, there are unkeyed forward mixing,
keyed forward transformation, keyed backwards transformation and unkeyed backwards mixing rounds, as well as
pre-addition and post-subtraction. The mixture of keyed and unkeyed rounds resulted in the requirement for
complex control and data flow operations between the Key Schedule and Algorithm blocks. Specifically, a complex
control situation results from the fact that subkeys are required immediately for the pre-addition stage, whereas the
next subkeys are not required until the eight unkeyed forward mixing rounds are completed. This architecture
presented some unique timing and data synchronization issues.

6.1.1.1 Pipelined Key Schedule
As with all pipelined implementations, the subkey from each round must be registered. However, for MARS, the
subkeys are not utilized on consecutive clock cycles. Therefore, additional pipelined storage is necessary. The
updated key schedule of MARS following AES Round 1 allowed for separating the 40 subkeys into groups of 10.
The VHDL model takes advantage of this operation by adding pipelined storage for groups of 10 subkeys, only as
long as necessary, rather than creating pipelined storage for all 40 subkeys. This reduced the total number of
registers required. Additionally, the pipelined registers are controlled by a latch signal rather than updating on every
clock. Again, this reduced the number of registers by removing redundancy.

6.1.1.2 Pipelined Algorithm
Relative to the intricacies of the key schedule, the pipelined algorithm implementation is straightforward. It consists
of six different types of rounds, each one with its own registered output: one key addition, eight unkeyed forward
mixings, eight keyed forward transformations, eight keyed backwards transformations, eight unkeyed backwards
mixings and one key subtraction. This makes a total of 34 rounds to complete the algorithm.

6.1.1.3 Iterative Key Schedule
The MARS algorithm key schedule generates 10 subkeys at a time. Therefore, the traditional iterative methodology
of a single round implementation for generating a single subkey (or set of subkeys as required by a single algorithm
round) did not apply. Instead, a single round implementation per 10 subkeys was generated resulting in a key
expansion round iterated four times for one encryption cycle. This presents some additional logic overhead for
iterative applications in that a “round” generates 10 subkeys simultaneously rather than the exact amount needed by
the algorithm at a given stage. (In the case of MARS, two 32-bit subkeys are required per keyed round in the
cryptographic core.) In addition to the subkey expansion overhead, there is a storage overhead for the remaining
subkeys. Also, decryption requires a full expansion of subkeys prior to beginning data processing. Therefore, the full
set of 40 subkeys is stored in registers.

6.1.1.4 Iterative A lgorithm
The iterative algorithm is consistent with the pipelined algorithm in its relative simplicity when compared to the key
schedule. There is a single register for all rounds. The input to the register depends on the round number. For
example, the input for the first round of encryption is the key addition round result; for the second round it is the
unkeyed forward mixing round result and so on.

Subkeys are presented to the algorithm block as an array of all 40 subkeys. This differs from other iterative
algorithm implementations that present only one subkey at a time. The rationale for this design was to eliminate
duplicate logic in both the Key Schedule block and Algorithm block. Due to the timing gaps in the application of
subkeys and the fact that all 40 subkeys are generated prior to decryption processing, it was considered
advantageous to allow a 40 element bus to connect the two blocks.

9

6.1.2 MARS Top Level Results

6.1.2.1 Timing and Area

MARS Iterative Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Fi
gure 4

MARS Pipelined Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 5

10

6.1.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * * * *
Key Setup Time Encrypt (ns) * * * *
Key Setup Time Decrypt (ns) * * * *
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) * * * *
Time to Decrypt One Block(ns) * * * *

Parameter
Iterative 3in1 Pipelined 3in1

Table 1 MARS Summary

6.2 RC6

6.2.1 Architecture
The following provides a high level description of the major blocks in the RC6 algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook3.

6.2.1.1 Pipelined Key Schedule
The RC6 key schedule is pipelined using a slightly different method than the other algorithms. Since a significant
number of computations for the key schedule are required before any expanded keys are generated, the architecture
takes advantage of the run-up by performing the expansion at the start of the pipeline. Only a single copy of the
expansion hardware is required, but additional registering is needed to maintain the keys on a time dependent basis,
discarding keys from previous stages (i.e., the keys have already been used). Keys are then passed from register to
register to follow the data in the pipeline.

6.2.1.2 Pipelined Algorithm
The algorithm “unrolls” the stages of the algorithm into a pipeline, following the algorithm description for function
ordering and naming conventions. Combination functions are used to perform cases where distinct operations need
to be performed in encrypt and decrypt. For example, the pre-add will contain both addition and subtraction to
accommodate both cases. A similar condition exists in the algorithm round function, with slightly different functions
needed for encrypt and decrypt. However, synthesis optimization can take advantage of common operations, such as
the multiply, to reduce the total number of operators needed.

6.2.1.3 Iterative Key Schedule
The iterative key schedule is designed to perform a single round of expansion per clock. Expanded keys are fed to
the algorithm block after the controller initiates a start signal. However, the key setup has been designed to compute
single or multiple steps of the run-up in a single clock, depending on the performance needed by the rest of the
system. A load cryptovariable (i.e., load key) signal from the controller will initiate the key setup. Once complete,
the expansion can be started.

6.2.1.4 Iterative A lgorithm
The RC6 iterative algorithm closely reflects the pipelined version. The same round instance is called repeatedly to
process input data. The encrypt and decrypt are symmetrical with respect to operations performed in a similar
manner (e.g., pre-add, round, post-add), so the same block can be called without additional overhead.

11

6.2.2 RC6 Top Level Results

6.2.2.1 Timing and Area

RC6 Iterative Performance Curve

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 6

RC6 Pipelined Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 7

12

6.2.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * * 1192.00 2171.00
Key Setup Time Encrypt (ns) * * * *
Key Setup Time Decrypt (ns) * * * *
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) * * 1179.2 2146.8
Time to Decrypt One Block(ns) * * 1179.2 2146.8

Parameter
Iterative 3in1 Pipelined 3in1

Table 2 RC6 Summary

6.3 RIJNDAEL

6.3.1 Architecture
The following provides a high level description of the major blocks in the RIJNDAEL algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook4.

6.3.1.1 Pipelined Key Schedule
The RIJNDAEL key schedule is based on a sliding window approach as described in the algorithm specification.
Multiple key sizes are based on the n-1 element and the n-k element (32 bit word organized), where k is 4,6, or 8,
depending on key size. The key expansion is a linear combination of the elements, so a similar function can be used
on the decrypt function to “unexpand” the keys in a reverse direction. Such an approach allows for an increase in the
key agility without sacrificing significant amounts of area to store all of the expanded keys.
The encryption expansion can start immediately, with the first words of the initial key being used as expanded key.
The setup time for this case is zero. During the decryption, the key is expanded to the last key, stored, and then the
pipeline is run to create the previous expanded key until the last decrypt key is generated, which is the initial key.
Keys are generated at a rate of four 32 bit words per round, regardless of key size, to keep up with the requirements
of the algorithm block. Additional registers are used to maintain sufficient previous keys to generate the next four
words of expanded key.
Keys are pulled from the bank of registers which make up the sliding window. S-Boxes are re-used, without a
performance penalty, to minimize the size impact of having additional S-Boxes.

6.3.1.2 Pipelined Algorithm
The RIJNDAEL algorithm pipeline consists of a sequential mapping of the steps of the algorithm to registered
stages in hardware. Each stage reflects a single round of the algorithm. The primary advantage to pipelining in this
manner is the significant increase in throughput. RIJNDAEL was architected such that both the encrypt and decrypt
functions could be performed with the same pipeline. This approach needed a static pipeline that could perform both
functions, so the algorithm round functions contained in the package will serve a dual role by providing cases for
encrypt and decrypt within the same function. The pipeline structure reflects changes in direction, such as requiring
a pre-add on the encryption (first round) versus decryption requiring a post-add on the last round.

6.3.1.3 Iterative Key Schedule
The iterative version of the key schedule focuses on reducing the area of the key expansion, so only a single copy of
the expansion is maintained. For encryption, as in the pipelined case, the expansion starts immediately, with no key
setup required. The keys are expanded every round, producing the four 32 bit words of key required. As each new
key is created and stored, the old key is overwritten.
In the case of decryption, the algorithm requires a setup time to effectively run the algorithm to the last key. This
serves as the starting point for all decryptions using that key. This value will also be stored so it can be referenced on
each new decryption to eliminate key setup for every new decryption.

13

6.3.1.4 Iterative A lgorithm
The algorithm block uses the same functionality as described in the pipeline but does not re-use some of the
combination functions used to construct the pipeline. Instead, the function calls are made explicitly, depending on
encryption/decryption to provide the widest possible range of hardware re-use. The function calls in the encrypt and
decrypt directions are not symmetrical. The algorithm processes the state data on each round, performing only one
step of the algorithm per round.

6.3.2 RIJNDAEL Top Level Results

6.3.2.1 Timing and Area

RIJNDAEL Iterative Performance Curve

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 8

RIJNDAEL Pipelined Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 9

14

6.3.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) 37034346.00 81661400.00 * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 371.06 519.48 4060.00 5163.00
Key Setup Time Encrypt (ns) 0.00 0.00 0.00 0.00
Key Setup Time Decrypt (ns) 246.4 344.96 0 277.92
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 493.8 346.36 247.4 346.36

Parameter
Iterative 3in1 Pipelined 3in1

Table 3 RIJNDAEL Summary

6.4 SERPENT

6.4.1 Architecture
The following provides a high level description of the major blocks in the SERPENT algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook5.

6.4.1.1 Pipelined Key Schedule
The SERPENT algorithm implements a simple expansion function for the key scheduling. The exclusive-or based
function allows for quick computation and does not require key setup in the encrypt direction. Pipelining is
maximized as this approach utilizes a sliding window approach, where only a small number of previous expanded
keys are needed to compute the next sub-keys. However, for decryption, a key setup time is required to compute the
starting point for the key expansion, which is the last set of W registers. The decrypt pipeline computes the previous
set of W registers based on the current set, as the exclusive-or based expansion can be reversed easily. To save
storage in this design, the keys are computed at each stage, with the decrypt case requiring a block of logic at the
beginning to find the last subkeys.
The SERPENT pipelined key schedule provides two successive keys to each round of the algorithm on expansion.
The algorithm will select the correct key based on the current encryption/decryption mode. The additional key
allows for the rounds that require two keys to operate.

6.4.1.2 Pipelined Algorithm
The pipelined SERPENT algorithm block contains a structural model of the unraveled rounds of the algorithm. Four
distinct functions are needed to implement both the encrypt and decrypt operations. The core algorithm round
functions are the same for 30 rounds of the algorithm, with an internal mux/demux to select the encrypt or decrypt
mode. The first two rounds of encrypt and last two rounds of decrypt distinguish the cases where the pipeline is re-
routed. The encrypt will bypass the two special rounds of the decrypt while the decrypt will bypass the two special
rounds of encrypt. The latency will remain the same as no extra rounds are added. The pipeline will select and re-
route based on the current mode of encryption or decryption.

6.4.1.3 Iterative Key Schedule
The SERPENT iterative key schedule uses a single copy of the expansion function to generate the sub-keys, one at a
time. Area can be significantly reduced using the same hardware repeatedly. Additional key setup will be required in
the decrypt direction to allow for the run-up to the last key of the expansion.

6.4.1.4 Iterative A lgorithm
The iterative algorithm uses the same functions as the pipeline, with the same round instance referenced repeatedly
to perform the main processing of the algorithm. The special case rounds are selected by the state machine within
the iterative block to determine encrypt/decrypt direction, and consequently, which pre/post add functions to
perform.

15

6.4.2 SERPENT Top Level Results

6.4.2.1 Timing and Area

SERPENT Iterative Performance Curve

0

5

10

15

20

25

30

35

40

45

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 10

SERPENT Pipelined Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 11

16

6.4.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * 202.33 5298.01 8030.11
Key Setup Time Encrypt (ns) 19.77 * 6.74 11.76
Key Setup Time Decrypt (ns) 672.18 * 212.55 365.58
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 632.64 * 510.08 773.12
Time to Decrypt One Block(ns) 632.64 * 510.08 773.12

Parameter
Iterative 3in1 Pipelined 3in1

Table 4 SERPENT Summary

6.5 TWOFISH
The following provides a high level description of the major blocks in the TWOFISH algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook6.

6.5.1 Architecture
A useful property of the TWOFISH architecture was the relatively large amount of re-use of design blocks. Both the
Key Schedule and Algorithm utilized many of the same functions. While this does not result directly in a direct
increase in performance, since key expansion and encryption are performed in parallel, it does simplify the hardware
coding process. As stated, common coding techniques and processes were used for developing each algorithm
design resulting in areas available for improvement in a more highly optimized design. In the case of TWOFISH, a
smaller design could be created by taking advantage of the function re-use. However, as with most hardware trade-
offs, this area optimization would come at the expense of performance and complex control mechanisms.
Another feature of TWOFISH is the lack of initial key runup prior to subkey expansion. In addition, the key
schedule is not a feed-forward design. Each round of key schedule is independent of the previous round. This unique
characteristic allowed for a Key Schedule that does not require a setup time for either encryption or decryption.
In the TWOFISH algorithm, the first step of encryption is a pre-whiten function, In hardware, this is simply an
exclusive-OR. The pre-whiten step is performed during the same clock cycle as the first subkey expansion which
generates the pre-whiten subkey. This was possible because the XOR function did not create a critical path concern
since the main algorithm rounds incorporate an integer addition that is more complex. The result was the ability to
load data and key in the same clock cycle, thereby reducing the overall time for encryption by one clock cycle.

6.5.1.1 Pipelined Key Schedule
In order to allow for either encryption or decryption, both pre-add and post-add subkeys are generated during the
first pipeline stage. The post-add key is buffered through a pipelined delay until needed in the final processing step.
Also, since one of the input parameters is the round number which is fixed for a given pipelined round there is an
optimization or pre-calculation in each pipelined round.

6.5.1.2 Pipelined Algorithm
The algorithm is an efficient unrolling of stages because encryption and decryption are nearly identical. In addition,
the symmetry allows for similar processing in both the encrypt and decrypt directions.

6.5.1.3 Iterative Key Schedule
As in the pipelined key schedule, the iterative design requires buffering of the post-add subkey until it is needed in
the final processing step. However, this buffering is not required to be implemented in pipelined stages. The key
schedule round is generalized such that the round number is not a fixed constant as in the pipelined case. This does
not allow synthesis optimization of each round, but does save area since only one hardware block is instantiated.

6.5.1.4 Iterative A lgorithm
The differences between encryption and decryption are minor such that the additional hardware to support either
process in a single round adds minimal area.

17

6.5.2 TWOFISH Top Level Results

6.5.2.1 Timing and Area

TWOFISH Iterative Performance Curve

0

20

40

60

80

100

120

140

160

180

200

80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

21
5

23
0

24
5

26
0

27
5

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 12

TWOFISH Pipelined Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 13

18

6.5.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) 91686840 158300076 * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 38.29 79.00 * 1445.55
Key Setup Time Encrypt (ns) 0 0 0 0
Key Setup Time Decrypt (ns) 0 0 0 0
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1620.18 3342.6 1593.9 *
Time to Decrypt One Block(ns) 1620.18 3342.6 1593.9 *

Parameter
Iterative 3in1 Pipelined 3in1

Table 5 TWOFISH Summary

7 Performance Results
A table summarizing the results and performance metrics is given below for algorithm comparison. These
comparison values are given only for the combined key size implementation, which implements a selectable 128 bit,
192 bit, and 256 bit key in the same implementation.

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) * * * * *
Transistor Count * * * * *
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) * 519 * 202 79
Key Setup Time (ns) * * * * *
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) * 494 * 633 1620
Time to Decrypt One Block(ns) * 494 * 633 1620

Algorithm
Parameter

Table 6 Iterated Summary

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) * * * * *
Transistor Count * * * * *
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) * 5163 2171 8030 1445
Key Setup Time (ns) * * * * *
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) * 247 1179 510 1594
Time to Decrypt One Block(ns) * 247 1179 510 1594

Algorithm
Parameter

Table 7 Pipelined Summary

8 Summary
This paper has presented an overview of the methods and architectures used for the AES hardware comparison. The
primary characteristics used for design tradeoffs in hardware engineering are area and timing. As such, each
algorithm was examined from the standpoint of minimum area (iterative architecture) and maximum throughput

19

(pipelined architecture). Further, statistics and data based on area and timing were emphasized and illustrated for
each algorithm.
The results (in Section 7) show vital parameters for both the iterative and pipelined architectures of each algorithm
that can be used to evaluate relative performance. The designs were not optimized for any one parameter, but rather
they serve as a good testbench scoring of all the algorithms relative to one another, given the same commonly used
hardware design practices and procedures. Key performance data points to highlight are minimum transistor count
and maximum throughput. *
It should be emphasized that any data point based on a single parameter (e.g. transistor count or throughput) is a
relatively narrow view of the algorithm’s overall performance or rating. For this reason, there was no attempt to rank
algorithms in order. Rather, it is left to the cryptographic community to establish a consensus of the most important
parameters – in combination or alone – and to draw appropriate conclusions from the data provided herein.

* Note: Because incomplete information was available at publication time, additional results will be updated and
provided to the community through NIST as the parameter information is filled in for all algorithms.

9 Acknowledgements
 The authors would like to thank others at NSA for providing support to this project and in editing this report,
namely Mr. Jeff Ingle. The authors also appreciate the opportunity NIST gave in encouraging this analysis, since
they feel that high performance implementations for high-speed networks are an important aspect of the AES
competition.

10 References

1 W. Semancik, L. Mercer, T. Hoehn, G. Rowe, M. Smith-Luther, R. Agee, D. Fowlkes, and J. Ingle , “Cell Level
Encryption for ATM Networks and Some Results from Initial Testing,” , DoD Fiber Optics Conference, March
1994.

2 C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M. Matyas, L. O’Connor, M.
Peyravian, D. Safford and N. Zunic, “Mars – a candidate cipher for AES,” First Advanced Encryption Standard
(AES) Conference, Ventura, CA, 1998.

3 R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6TM Block Cipher,” First Advanced Encryption Standard
(AES) Conference, Ventura, CA, 1998.

4 J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” First Advanced Encryption Standard (AES) Conference,
Ventura, CA, 1998.

5 R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced Encryption Standard,” First
Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

6 B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall, “Twofish: A 128-Bit Block Cipher,” First Advanced
Encryption Standard (AES) Conference, Ventura, CA, 1998.

1

High-Speed MARS Hardware

Akashi Satoh†, Nobuyuki Ooba†, Kohji Takano†, Edward D’Avignon††
†IBM research, Tokyo Research Laboratory, IBM Japan Ltd., 1623-14, Shimotsuruma,

 Yamato-shi, Kanagawa 242-8502, Japan
{akashi, ooba, chano}@jp.ibm.com

††IBM Corporation, Poughkeepsie, NY 12601, USA
davignon@us.ibm.com

March 15, 2000

Abstract. High-speed MARS encryption/decryption hardware was developed using a 0.18µm IBM CMOS

technology. In order to boost performance, a special adder and multiplier was designed by optimizing the adder

block structure and interconnections between adder cells using signal delay profiles. A description of the

hardware including block diagrams and data flow diagrams is presented. One of the most critical portions of

the design is the special adder and multiplier. The design philosophy and tradeoffs used in these pieces are

discussed. Finally, performance and size estimates are presented along with the rationale behind them. The

design achieves 677Mbit/s data rate for encryption when using cipher block chaining and 1.28Gbit/s for

decryption and other encryption modes in 13.8Kgates + 2.25Kbyte SRAM.

1. Introduction

MARS [1] is a symmetric-key block cipher, supporting 128-bit blocks and a variable key size. It is designed to

take advantage of the powerful operations supported by today’s computers, resulting in a much improved

security/performance tradeoff over existing ciphers. We developed high-speed MARS hardware for use when

additional performance or security is required over a software implementation. Since MARS uses 32-bit

multiplications and additions in conjunction with S-box lookups, it is essential for MARS hardware to have a

high-speed multiplier and adder. The key to realizing high-speed arithmetic circuits is to first break one operation

into parallel sub-operation blocks, then precisely adjust and control the number of signal delays from each block.

We developed an automatic circuit generation program, which optimizes the parallel block structure and the

wiring interconnection by using the signal delay profiles. A high-speed adder with the combination of carry-skip

[2] and carry-select [3] techniques designed for an RSA encryption LSI [4] was implemented in the final stage of

the multiplier. These arithmetic circuits boost the speed of MARS hardware while maintaining compact silicon

area.

In this paper, we first show the data path level design of the MARS hardware with an overview of the MARS

algorithm and how encryption and decryption are performed. Next, we discuss the techniques that apply to the

adders and multipliers to realize the high-speed MARS computation. Finally, we give estimated performance

results and the size of the MARS hardware.

2. MARS Algorithm and Hardware Architecture

2.1. Hardware Block Diagram

We designed the MARS hardware entirely from the gate level to the chip level, so that it is ready for chip

fabrication. Figure 1 shows the block diagram of the hardware. It has a chip external bus, which consists of a

32-bit data bus, a 10-bit address bus, four control signals, and a clock, to interface with external logic, such as a

CPU. Through the bus, the external logic will read and write message data and the key. The hardware has a

forward/backward mixer, a cryptographic core for MARS encryption/decryption, and a key expander for key setup.

During those operations, two S-boxes and key storage are accessed. Each S-box is a 32-bit × 256-word SRAM.

The key storage is a 32-bit × 64-word SRAM.

2

Chip interface and
controller

Forward/backward
mixer

Cryptographic core

Key expander Key storage

S-box 0

S-box 1

32bit

32bit 2×
128bit

128bit

32bit

Data

MARS Hardware

Address
Control
Clock

32bit

Figure 1. Block diagram of MARS hardware.

2.2. Encryption Procedure

The MARS encryption procedure has three phases: 8-round “forward mixing,” 16-round “cryptographic core,”

and 8-round “backward mixing,” as shown in Figure 2. Figure 3 shows the type-3 Feistel network structure of

MARS. A 128-bit plain text block is divided into four 32-bit data words M0, M1, M2, M3, and encrypted as four

words D0, D1, D2 and D3. In the figure, ⊕ denotes XOR, “<<<n” and “>>>n” denote n-bit cyclic left and right

rotations, respectively. The lower 32 bits of the results of addition, subtraction and multiplication are used; the

higher bits are discarded. MARS uses S-box (32-bit × 512-word table) lookups in the key setup, encryption, and

decryption procedures. The S-box is composed of two 256-entry tables S0 (the first 256 words) and S1 (the last

256 words), used in the forward and backward mixing phases. The decryption procedure is the inverse of the

encryption operation, and all circuits shown in this paper are used for both procedures by switching selectors in the

data paths.

* S is the concatenation
 of S0 and S1

Cryptographic Core

For i = 0 to 15 do {
R = ((D0<<<13) × K2i+5) <<< 10

M = (D0 + K2i+4) <<< (low 5 bits of (R>>>5))
L = (S[low 9bits of M] ⊕ (R>>>5) ⊕ R) <<< (low 5bits of R)

1 = D1 + L (if i < 8) ⊕ R (if i ≥ 8)
D2 = D2 + M
D3 = D3 ⊕ R (if i < 8) + L (if i ≥ 8)
(D0, D1, D2, D3) = (D1, D2, D3, D0<<<13)

}

D

(D0, D1, D2, D3) = (M0, M1, M2, M3) + (K0, K1, K2, K3)
For i = 0 to 7 do {

1 = (D1 ⊕ S0[1st byte of D0]) + S1[2nd byte of D0]
D2 = D2 + S0[3rd byte of D0]
D3 = D3 ⊕ S1[4th byte of D0]

0 = D0 + D1 (if i = 1,5) + D3 (if i = 0,4)
 (D0, D1, D2, D3) = (D1, D2, D3, D0)}

D

D

Forward Mixing

For i = 0 to 7 do {

0 = D -0 D1 (if i = 3,7) - D3 (if i = 2,6)

1 = D1 ⊕ S1[1st byte of D0]
D2 = D2- S0[4th byte of D0]
D3 = (D3 - S1[3rd byte of D0]) ⊕ S0[2nd byte of D0]
(D0, D1, D2, D3) = (D1, D2, D3, D0<<<24)

}
(D0, D1, D2, D3) = (D0, D1, D2, D3) - (K36, K37, K38, K 39)

D
D

Backward Mixing

M0 M1 M2 M3

D0 D1 D2 D3

Four 32-bit words

Figure 2. MARS encryption procedure.

3

L

M

R

E-func
<<<13

L

M

R

E-func
<<<13

M0 M1 M2 M3

b0

24>>>

b1

b2

b3

b0

<<<24

b1

b2

b3 S0
S1
S0
S1

S0
S1

S0
S1

K0 K1 K2 K3

K36 K37 K38 K39

D0 D1 D2 D3

8-round forward mixing

8-round backward mixing

8-round cryptographic core
backward transformation

8-round cryptographic core
forward transformation

XOR

ADD

K

S
L

M

R

E-func

IN odd

Keven

MUL

data-dependent rotation

S S-box

9

5 5

SUB

<<<13

<<<5 <<<5

<<<

<<<

<<<

Figure 3. Type-3 Feistel network structure.

0

+

+

S1

S0

>>>24 or 0

+ +

D

+

+

0

+

+ ADD/SUB

XOR

- - - -

-

0

<<<24 or 0 +
0

S0[0]

S0[2]

S1[1]

S1[0]

0
S0[3]

S0[0]: S0[1st byte of D[0]]
S1[2]: S1[3rd byte of D[0]]

S1[3]

S1[2]
0

S0[1]

Swap

FK

F

B

FK
BK

FK
BK

FK
BK

F

B
F,B

F
B
FK,BK F,FK,BK

F,FK,BK

BK

F
B

F
B

F1,5
B3,7
F0,4
B2,6
F,B

0 D1 D2 D3

K0 K1 K2K3

K36 K37 K38 K39

Figure 4. Forward / backward mixing data paths.

Figure 4 shows the circuit block diagram of the forward and backward mixing data paths. This circuit is also

shared by the encryption and decryption procedures. Switching the selectors changes the order of the operations.

The S-boxes, S0 and S1, are implemented by three-port SRAMs, one port for the write and two ports for the read

operations. The thick lines show the critical path for the backward mixing process, which contains subtraction,

S-box, subtraction, and XOR operations in order. Two sets of key registers K0-3 and K36-39 are dedicated to this

mixing operation, and eight key words are copied from the 32-bit × 40-word expanded keys stored in SRAM “K”.

4

This circuit block is used 9 times in the forward mixing mode, then one cycle is required to add the sub-keys K0-3 to

the data D0-3, and then 8 times in the rounds of mixing operation. The backward mixing operation takes 9 cycles.

Figure 5 is the block diagram of the cryptographic core (Feistel network) data path. The thick lines specify the

critical path. It consists of a multiplier, two XORs, a conditional rotator, an adder and a selector. The S-box read

operation is executed in parallel with the multiplication, so that the memory access time does not affect the critical

path. The S-box shares the SRAM used for the forward and backward phases shown in Figure 4. The

cryptographic core operation uses this circuit in the 8-round keyed forward transformation followed by the 8-round

keyed backward transformation. The cryptographic core requires 16 cycles for each 128-bit block encryption.

*

+

ADD

XOR

E-Func

5

S
<<<5

+
<<<

<<<5

+

<<<

K

5

9

RL M

MUL*

+

+
+

+

<<<13

2:12:1

2:1 2:1

FFB B

FBF B

even

odd

+

D0

D1 D2 D3

<<<13

Figure 5. Cryptographic core data path.

The cryptographic core and the forward/backward mixer can operate simultaneously on separate 128-bit blocks

when four-port (one for write and three for read) SRAM is used as the S-box. A 128-bit bus connection can swap

data between these two circuits without additional cycles. If we share the circuits of Figure 4 with forward and

backward mixing operations to save hardware resources, 18 cycles are required for one set of encryption

procedures. A timing chart for this case, which is suitable for electronic codebook (ECB) encryption mode and all

decryption modes, is given in Figure 6 (a). The data throughput of this architecture is 128 bits / 18 cycles. For

cipher block chaining (CBC) encryption mode, the encrypted data D in the previous cycle is required before

starting the current encryption of block M. In this case, the mixing phases cannot be pipelined with the

cryptographic core. CBC operations require 34 cycles, with the throughput becoming 128 bits / 34 cycles. The

timing chart for cipher block chaining encryption mode is shown in Figure 6 (b).

Fwd-Mix

 Bkwd-Mix

Fwd-Mix

Crypto-Core Crypto-Core

 Bkwd-Mix

Fwd-Mix

 Bkwd-Mix

9CLKs CLKs9

CLKs18

M

D

M M

D D

CLKs16

Fwd-Mix

Crypto-Core

 Bkwd-Mix

Crypto-Core

Fwd-Mix

 Bkwd-Mix

CLKs34

D

M M

D9CLKs CLKs 9CLKs16

(a) Piplined Operation

(b) Non-Piplined Operation

Crypto-Core

Figure 6. Timing chart of MARS encryption.

5

2.3. Key Expansion

The key expansion procedure, shown in Figure 7, expands the user-supplied key array, k0, …, kn-1, into a 40-word

internal key array, K0, …, K39. The range of n is from 4 to 14 32 bit words, that is, MARS supports user key

lengths from 128 bits to 448 bits. In the figure, bit-wise OR and AND are denoted by ∨ and ∧, respectively. The

block diagram of the key expander data paths is shown in Figure 8. The major components of the key expansion

circuit are a barrel rotator, two registers, an adder, and multiplexers. The key storage “K” is implemented using a

three-port SRAM. It is capable of one write and two read operations in parallel. We designed the key expander

with a small number of latches in order to keep it small in size. The temporary storage T, which is used during the

key expansion procedure, is implemented in the SRAM. For this reason, the key storage has 64 entries of 32 bits

data. Key expansion takes 752 to 848 cycles depending on the value of the key.

} } }

Initialization

k0 1 n-1

K0 1 39

(T0, ..., Tn-1) = (k 0, ..., kn-1)
Tn = n
(Tn+1, ..., T14) = (0, ..., 0)

For j = 0 to 3 do{

Linear Key-Word Expansion

For i = 0 to 14 do {

}

Repeat 4 times {
For i = 0 to 14 do {

For i = 0 to 9 do {

 K10j+i = T4i mod 15

Ti = T ⊕ ((Ti-7 mod 15 i-2 mod 15) <<< 3) (4i+j)i T⊕ ⊕

T = (Ti + S[low 9 bits of Ti-1 mod 15]) <<< 9i

k k

 S-box Based Stirring of Key-Words

}

Modifying Multiplication Key-Words

B = {0xa4a8d57b; 0x5b5d193b; 0xc8a8309b; 0x73f9a978}
For i = 5 to 35 step 2 do {

j = LSB of Ki

M = 0

jth bit of M = 1
if jth bit of w belongs to a sequence of 10 consecutive
0’s or 1’s, and equals to (j-1)th and (j+1)th bit of w

r = least five bits of Ki-1
p = Bj <<< r
K i = w (p M)

}

For j = 2 to 30 do {

}

K K

T0 1 14T T

K0 1 39 K K

⊕ ∧

w = K i "0...011"∨

Figure 7. Key expansion procedure.

+

ADD

XOR

+
4i+j

5:1

K

S

+

+265

<<<3 +

+ Reg

<<<

3∨ +

∧

W

M

<<<9+

2:1

Figure 8. Key expander data path.

6

3. High-Speed Adder and Multiplier

3.1. High-Speed Adder

In this section, we first explain the design of a high-speed adder employing a combination of carry-skip [2] and

carry-select [3] techniques used in the RSA encryption LSI [4]. This adder is used in the E-function and in the last

stage of the multiplier. It is one of the most critical parts affecting MARS hardware performance.

Figure 9 shows the basic structure of the adder. It consists of ripple-carry adder blocks where each successive

block is one bit longer than the block immediately below along with a carry-skip path jumping over each adder

block. The delays in the ripple-carry adders and the carry-skip path are well balanced so that every carry

propagates from the LSB to the MSB without waiting for the results from the other blocks. To simplify the figure,

a full adder cell FA is used in the first bit of each adder block. It can be replaced by a half adder cell in the actual

implementation.

FA

FA

FA

FA

FA

FA

FA

FA

FA

P1

0 1 0 1 0 1

G1

1y

2y

3y

4y

5y

6y

7y

8y

0x 1x

2x

3x

4x

5x

6x

7x

8x

0z 1z

2z

3z

4z

5z

6z

7z

8z

9z
2G

1C

2C
2P

3G

3P

Block 1 Block 3Block 2

��

ix
iy

iz

ig

1+ig

ip

1+ip

jC

FA

C0 0 1

0y

Block 0

9y
9
8

x

10z

3C

P0

G0

Image of Carry Propagation
LSB

MSB

Full Adder Cell

Figure 9. High-speed adder.

If two or more bits of xi, yi and gi are ‘1’ in the i-th full-adder cell, carry gi+1 = 1 is generated and fed to the next cell.

The cell never generates a carry if both xi and yi are ‘0’, regardless of the input gi. If gi+1 = 0, either xi or yi is ‘0’ and

the other is ‘1’, it will generate a carry if carry Cj = 1 comes up from the lower ripple-carry adder block j-1. For

example, when (x3, x4, x5) = (1, 1, 1) and (y3, y4, y5) = (0, 0, 0), block 2 does not generate carries g4, g5, g6 (= G2).

However, if the carry C2 = 1 reached the block, the carry output C3 immediately becomes ‘1.’ This means that the

carry Cj can skip over the blocks one after another by pre-calculating a condition between xi and yi in each adder

block j. The condition is defined by

 XOR.iswhere,1

⊕=⊕= ∏i iij yxP

By making the adder block size bigger toward the MSB side, the propagation time of Pj and Cj are equalized, and

therefore the total delay time is minimized. Output zi initially holds a sum as if the block carry Cj is 0, and is

inverted by the XOR gate if Cj = 1 comes up later.

3.2. High-Speed Multiplier

A standard n-bit × n-bit multiplier gives a 2n-bit result by repeatedly summing up the n-bit partial product rows.

The multiplier used in MARS is not required to calculate the higher half of the result, as shown in Figure 10, so it

is faster and smaller than standard multipliers. The high-speed techniques described in this section, however, can

be applied to any multiplier. Figure 11 shows a Wallace tree [5], which is an adder cell array commonly used in a

multiplier to reduce the number of partial product rows. The tree takes three rows and produces one carry row and

7

one sum row, so the full adder cell, FA, is called “3:2 compressor.” This reduction is repeated until there are only

two partial product rows, which are added together with a high-speed carry-propagation adder. Several tree

architectures, which use 4:2, 6:2 and 9:2 compressors, were proposed [6][7] to optimize the critical path of this tree,

but these compressors basically consist of 3:2 compressors. Booth encoding [8] is widely used to reduce the

number of partial products, but it is a kind of 4:2 compression technique and does not change the tree structure.

Oklobdzija et al [9] suggested that not all inputs and outputs from a compressor contribute equally to the delay, and

the difference in using 4:2 and higher order compressors is not in the structure of the compressor but in the way

they are interconnected.

Multiplicator

Multiplicant

Partial Products

Result

(a) Normal Multiplier (b) MARS Multiplier

Figure 10. Partial products in MARS multiplier (n = 8).

In Figure 11, the input signals x and y of the full adder FA pass through two XORs to the output s, but the input ci

goes through only one XOR gate. The full-adder FA and half-adder HA located at the later stage of the tree are

shaded in the figure. The delay profile of the tree is shown with the same shading. Here, all the XOR, NAND and

AND gates are assumed to have the same propagation delay. The two signals fed into the adder at the bit-5

location come from the third-stage half adders marked with ‘*,’ but the right signal arrives earlier than the left one.

In addition, the propagation delay from an input to an output varies with the types of gate and input pin locations.

For example, AND usually operates faster than XOR, and NAND is faster than AND. For that reason, we

developed an optimal Wallace tree generation program in consideration of six delay propagation paths of a full

adder (combination of the three inputs to two outputs) and four paths of a half adder, based on a 0.18µm IBM

CMOS standard cell library.

FAFA

HA

FA

FA

HA

HAFA

FA

FA

HA

FA

FA

FA

FA

FA

FA

FA

FA

HA

FA

HA

FA

x y ic

sco

HA

x y

sco

Partial
Product
Inputs

Carry-Propagation Adder
01234567

Delay Profile of
Wallace Tree

01234567

2

4
Gate
Delay

Bit Location

6

1

3

5

7

Wallace Tree
Adder Array

1st

2nd

3rd

3rd

4th

4th

Full Adder Cell Half Adder Cell

* *

Figure 11. MARS multiplier using Wallace tree and its delay profile (n = 8).

8

Since the delay of the final carry-propagation adder is an addendum to the Wallace tree delay, the adder should

have the optimized carry-propagation path for the tree delay profile. At the same time, we should consider the

adder structure to determine the tree interconnection. Figure 12 shows the carry-propagation path in high-speed

adders with equal and non-equal input signal arrival profiles. Both adders are identical to the one shown in Figure

9. The adder exhibits the best performance for the equal input profile (a). In case (b), the carry skipping over the

adder blocks, though carry generator CGEN, has to wait until the carries propagates from the ripple-carry adder

blocks. This is due to the slow input signals. In other words, an adder which is faster than the input delay slope is

not needed. A simple ripple-carry adder can run fast enough in this case. The input signals at bit 4, 8 and 9 arrive

very quickly, but these fast inputs also waste time waiting for the carry propagation from the next adder cells. To

optimize performance of the multiplier, we have to make the positive delay slope gentle, and make the top of the

hill as low as possible in the Wallace tree. This is achieved by optimizing the connection between the full adder

and half adder gates according to their pin-to-pin internal delay profiles.

HA HA

FA FA

CG
1

0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

(a) Equal arrival time

(b) Non-equal arrival time

2
FA

CG
3

HA

FA

FA

CG
4

FA
1

3

2

1 1

2

3

4

0 0 00

0 1 2 3 4 5 6 7 8 9

0

0

HA

FA

CG
1

1

3
2

2

HA

FA

3

1

FA

CG
6

4

5

4

7

5

6

HA

FA

FA

CG
10

FA
8

9

7

7

4 4

5

11

Delay

Bit

FA
1

FA
0 Input Delay Profile

FA

CG

HA

Carry Generator

Full Adder

Half Adder

Figure 12. Carry propagation in high-speed adder on equal and non-equal input signal arrival profiles.

0 1 2 3 4 5 6 7 8 9

FA

FA

HA

FA

FA

FA

HAHA HA

FA

1 1 2 3

Ripple Carry Carry Skip

0 1 2 3 4 5 6 7 8 9

FA

FA

FA

FA

FA

HAHA

FA

FA

FA

2 33

Ripple Carry Carry Skip

5

(a) (b)

Input Delay Profile Input Delay Profile

CG

CG

CG

CG CG

CG

Figure 13. Adder selection over input delay profile.

Figure 13 shows an example adder structure with a positive delay slope profile. From bits 0 to 2, the slope is

steeper than one FA delay, so a ripple carry adder is chosen for this part. A carry skip adder with bit blocks 1-1-2-3

is used after bit 3, in example (a). The operation of one half adder HA with a carry generator CGEN is identical to

that of one full adder FA, so they are replaced in example (b) to simplify the structure.

9

In Figures 12 and 13, the input delay time in each bit location is defined by a multiple of one adder cell delay, thus

it is not difficult to optimize the adder structure. Actually, as shown in Figure 14(a), there is slack time between the

input signals C and P into CGEN at the 9th bit. In case (a), C is generated earlier than P, and waits for the arrival of

P at CGEN. When we move the location of CGEN one bit left (to bit 8) so that the carry C does not waste time, the

signal P has to wait instead. It is not clear which choice is better until the final adder cell is placed, and we have to

choose the right combination of bit locations where CGENs are placed. In case (a), the output signal delay from the

CGEN is longer than that of case (b), but the carry C reaches a higher bit. We should keep the slope of the carry path

over the adder blocks as gentle as possible. Therefore, the Wallace tree generator should employ a structure that

has smaller value of delay/bit shown as the slope of triangles in the figure. If the structures (a) and (b) have the

same slope, then we chose the former because it has higher probability to have fewer CGEN cells.

FA

FA

HA
HA

FA

FA
FA

HA
HA

HA

(a)

(b)

C

P

C

P

FA FA

HAHA HA

C

P

FA

FA

HAHA

FA

C

P

bit

delay

FA

FA

HA
HA

FA

C

P

FA
FA

HA
HA

HA

C

P

<Example>

<Example>

5 6 7 8 9 5 6 7 8 95 6 7 8 9

5 6 7 8 9 5 6 7 8 95 6 7 8 9

bit

delay

bit

delay
slack

slack
CG

CG

CG

CG

CG

CG

CG

CG

CG

CGCG

CG

Figure 14. Carry propagation block design.

Figure 15 shows the actual delay profile of the MARS multiplier using 0.18µm IBM copper CMOS technology

under nominal (VDD=1.8V, Temp=25°C and Leff=0.11µm) and worst case (VDD=1.65V, Temp=125°C and

Leff=0.14µm) conditions. The output delay from the Wallace tree has an almost perfect gentle positive slope. The

delay line that looks like a saw blade shows the ripple carry adder blocks. The carry skips over them smoothly. As

a result, using the techniques described in this chapter realize a 2.32ns (nominal) to 3.41ns (worst) operation for the

32-bit MARS multiplier with a compact size of 3.2Kgates.

�

���

�

���

�

���

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Bit Location

D
el

ay
 T

im
e

(n
s)

Carry Skip

Adder Block

Wallace Tree

(a) Nominal Case

�

���

�

���

�

���

�

���

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Bit Location

D
el

ay
 T

im
e

(n
s)

Carry Skip

Adder Block

Wallace Tree

(b) Worst Case

Figure 15. Actual delay profile of the MARS multiplier.

10

4. Performance Evaluation

We designed MARS hardware including an external interface, the control logic, and the calculation core. All the

design files are written in VHDL 93. We synthesized the design using a 0.18µm IBM copper CMOS standard cell

technology and evaluated its performance and size.

Table 1 shows the gate size of the logic where one gate is the size of a 2-input NAND. The memory area for the

key register and S-box is shown in Table 2. We get data throughputs of 128bits / 34cycles for CBC encryption and

128bits / 18cycles for all decryption and other encryption modes, assuming a four-port SRAM implementation.

However, the area of a four-port SRAM becomes larger than that of the logic part. If we do not need the high data

rate, the area can be greatly reduced by using fewer-port SRAMs and a mask ROM. A two-port SRAM (one for

read and one for write) for the key register halves the memory area while adding only one additional cycle for one

128-byte block encryption process. If the S-box is implemented with a single-port memory or a ROM, the cycles

for the forward/backward mixing increase to 34, then the throughput of all encryption and decryption modes

becomes 128 bits / 50 cycles.

The critical path delays in the forward/backward mixer and the cryptographic core under nominal and worst case

conditions are shown in Figure 16. The longer delay of the cryptographic core, 5.57ns, determines the operation

frequency of 180MHz (= 1 / 5.57ns) (122MHz worst case). As a result, we get a maximum data throughput of

677Mbit/s (459Mbits/s worst case) for CBC encryption and 1.28Gbit/s (867Mbits/s worst case) for other modes.

All decryption modes achieve maximum throughput of 1.28Gbit/s (867Mbits/s worst case). The throughput and

gate sizes for other memory implementations are summarized in Table 3.

Table 1. Logic area

Circuit Block Gate Size

Key Expansion 2.2K
Enc/Dec Controller 4.5K
Enc/Dec Data path 6.1K
Interface + Memory Controller 1.0K
Total 13.8K

Table 2. Memory area

Function Type Gate Size

3-port SRAM 6.8K Key Register
(256bytes) 2-prot SRAM 4.8K

4-port SRAM 46.2K
3-port SRAM 30.8K
1-port SRAM 15.4K

S-box
(2Kbytes)

ROM 6.3K

Table 3. Performance of each implementation

Memory Type Throughput

CBC Encryption
Other Encryption and
All Decryption Modes Key S-box

Total Gate Size
(Mem+Logic)

Nominal Case Worst Case Nominal Case Worst Case

3-port 4-port 66.8K 677Mbit/s (34cycles) 459Mbit/s 1.28Gbit/s (18cycles) 867Mbit/s
3-port 3-port 51.4K 677Mbit/s (34cycles) 459Mbit/s 677Mbit/s (34cycles) 459Mbit/s
3-port 1-port 36.0K 460Mbit/s (50cycles) 312Mbit/s 460Mbit/s (50cycles) 312Mbit/s
2-port 1-port 34.0K 451Mbit/s (51cycles) 306Mbit/s 451Mbit/s (51cycles) 306Mbit/s
2-port ROM* 24.9K 263Mbit/s (51cycles) 263Mbit/s 263Mbit/s (51cycles) 263Mbit/s

* 105MHz operation limited by ROM performance

11

selector+latch
1.70

adder1
1.10

S-box
1.22

adder2
1.29

selector+latch
 1.16

adder1
1.10

rotator
0.99

multiplyer
2.32

(a) Forward/Backword Mixer

Total
5.31ns

Total
5.57ns

2.501.62 1.801.90

1.62 1.453.41

Total
7.61ns

Total
8.18ns

1.70

(Worst Case)

(Nominal Case)

(Worst Case)

(Nominal Case)

(b) Cryptographic Core

Figure 16. Critical path delay.

The technology chosen for the above estimations is a low cost copper CMOS technology several generations

behind the state of the art CMOS technology. As such the performance cannot be directly compared with that of

software running on today’s high performance microprocessors. If built using a newer CMOS technology the

performance can be expected to improve by approximately 60%.

5. Conclusion

We designed MARS hardware and estimated its size and performance. Since the MARS algorithm uses 32-bit

additions and multiplications, its performance is highly dependent on the hardware design of the adder and

multiplier. We designed multipliers and adders, which fully take into account the carry propagation delay. This

work demonstrates that MARS can be implemented efficiently in hardware, both in terms of area and performance.

We believe the design point chosen is a reasonable tradeoff of area vs. performance. We do not claim that this is

the highest performance MARS design possible. Other tradeoffs may yield faster hardware implementations.

Considering the size and performance in both hardware and software along with the very high security, we believe

MARS is well suited to serve as the Advanced Encryption Standard algorithm.

Acknowledgement

The authors are grateful to Ms. Carolynn Burwick, Dr. Don Coppersmith, Dr. Mike Matyas, Mr. Hideto Niijima,

and Mr. Nev Zunic for their reviews and comments. We also would like to thank Mrs. Akemi Ogura for

supporting us generously with CAD tool operation.

References

[1] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M. Matyas, L. O’Connor, M.

Peyravian, D. Safford and N. Zunic: “MARS – a candidate cipher for AES,”

http://csrc.nist.gov/encryption/aes/round2/AESAlgs /MARS/mars.pdf, Aug. 1999.

[2] M. Lehman and N. Burla: “Skip Techniques for High-Speed Carry Propagation in Binary Arithmetic Units,”

IRE Trans. Elec. Comput., vol. EC-10, pp. 691-698, Dec. 1961.

[3] O. J. Bedrij: “Carry-Select Adder,” IRE Trans. Elec. Comput., vol. EC-11, pp. 340-346, June 1962.

[4] A. Satoh, Y. Kobayashi, H. Niijima, N. Ooba, S. Munetoh, and S. Sone: “A High-Speed Small RSA

Encryption LSI with Low Power Dissipation,” LNCS 1396, pp. 174-187, 1997.

[5] C. S. Wallace: “Suggestion for a Fast Multiplier,” IEEE Trans. Computers, vol. 13, no. 2, pp.14-17, Feb.

1964.

[6] A. Weinberger: “4:2 Carry Save Adder Module,” IBM Technical Disclosure Bulletin, vol. 23, Jan. 1981.

12

[7] P. Song and G. De Michelli: “Circuit and Architecture Trade-Offs for High Speed Multiplication,” IEEE J.

Solid State Circuits, vol. 26, no. 9, Sept. 1991.

[8] A. D. Booth: “A Signed Binary Multiplication Technique,” Quarterly J. Mechanical Applications in Math,

vol. 4, part 2, pp. 236-240, 1951.

[9] V. G. Oklobdzija, D. Villeger and S. S. Liu: “A Method for Speed Optimized Partial Product Reduction and

Generation of Fast Parallel Multipliers Using an Algorithmic Approach,” IEEE Trans. on Comp., vol. 35, no.

3, pp. 294-305, Mar. 1996.

Speeding up Serpent

Dag Arne Osvik �

March 15, 2000

Abstract

We present a method for �nding e�cient instruction sequences for the

Serpent S-boxes. Current implementations need many registers to store
temporary variables, yet the common x86 processors only have 8 registers,
of which even fewer are available for computations. The instructions are

also destructive, replacing one input with the output. Alternative versions
of the S-box instructions are presented, requiring only 5 registers and also
utilizing parallelism. Speedup of C language implementations of 24% is

shown on the Pentium Pro Processor, and 42% on the Pentium, both
compared to the previously fastest known implementation of Serpent.

1 Introduction

The main aspect of the �nalists for the Advanced Encryption Standard is the
security level they provide, especially against already known attack methods.
Another aspect is the encryption speed they allow in di�erent applications.
The goal of this work has been to �nd ways to improve the execution speed of
the Serpent algorithm on the x86 processors, including use of two-way parallel
execution.

Serpent[1], being an SP-network (it consists of substitutions and permuta-
tions), has two major parts; the S-boxes and the linear transformation. The
latter has a simple structure, and is well suited for manual optimization. The
S-boxes are 16-element permutations, and are performed in a bit parallel (also
known as bitslice) style by simple boolean operations.

2 The problem

The x86 processors, which can be found in nearly every personal computer, have
some clearly distinguishing features when compared to more modern architec-
tures. One of these is the small number of registers, only 8. Another is the
instruction set, where almost all instructions always modify one of their input
registers.

�University of Bergen, Department of Informatics, N-5020 Bergen, Norway. Email address:

osvik@ii.uib.no

1

3 Previous work

Other e�orts on optimizing Serpent have centered on the more purely mathe-
matical problem of lowering the number of boolean operations needed to express
the S-boxes [2]. Thus those essential properties of the x86 processors have been
ignored. The result is a high so-called 'register pressure', meaning compilers
have to put temporary variables in memory, issuing load and store instructions
in addition to the actual computation. The compiler also gets the job of copying
values when needed. One note is appropriate here, though; lowering the number
of operations is a much better approach for RISC processors than it is for x86,
as RISC instructions don't have to destroy an input value, and those processors
typically have 32 registers, making register pressure a non-issue. A comparison
of my results to those others (on x86) is given in a later section.

4 Our approach

One possible approach to solving a computational problem is to consider all
possible computations, ordered by their length. Searching to the depth needed
to �nd complete solutions in the case of Serpent S-boxes is infeasible using this
simple approach, so we need substantial improvements.

4.1 Serpent S-boxes

The Serpent S-boxes are 16-element permutations, implying that they belong
to a somewhat special subset of functions in fZ16 ! Z16g. Now, every number
from 0 to 15 can be represented by a 4-digit binary number, so these functions
map 4 input bits to 4 output bits. They can also be split into 4 functions
mapping 4 input bits to 1 output bit, just like any 4-bit number may be split
into 4 separate bits. Now recall that any function can be uniquely speci�ed by
telling its output value for every allowed input value. In the case of 4-to-1 bit
functions this is simply a list of 16 binary digits, given some ordering of the
input values.

4.2 Finding solutions

We need some way to transform any 4 input bits into the corresponding 4 output
bits using only those instructions available in the x86 instruction set, and in a
bit parallel way. We'll use S2 as an example:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S2(x) 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

Now rewrite x and S2(x) in binary:

2

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

S2;3 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0
S2;2 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
S2;1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
S2;0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0

Each column in this table contains the bits of some value for x, as well as
the bits of the corresponding S2(x). The set of all columns contains all possible
values for x. The number of columns is thus determined by the number of
possible inputs, and is not related to the word length of any processor.

If we �nd a way of combining the xi rows by boolean operations so that we
get the S2;i rows, then applying those operations to the bits of an input value x

is equivalent to looking up S2(x). To see how this is actually done, we will look
at the execution of an instruction sequence for S2.

The x86 instructions usable for the S-boxes are these:

Instruction E�ect C expression

and a, b a := a � b a &= b
or a,b a := a+ b a |= b
xor a,b a := a� b a �= b
not a a := a� 1 a = �a
mov a, b a := b a = b

Suppose we have 5 registers, named r0; : : : ; r4, available for our computa-
tions, and 4 of them initially contain our 4 input bits (ri contains xi, 0 � i � 3).
As r4 is not an input register, we just ignore its previous contents. Thus we
have this initial state:

r4
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The instruction sequence found by the search program (with two-way par-
allelism shown) is this:

3

mov r4, r0 and r0, r2
xor r0, r3 xor r2, r1
xor r2, r0 or r3, r4
xor r3, r1 xor r4, r2
mov r1, r3 or r3, r4
xor r3, r0 and r0, r1
xor r4, r0 xor r1, r3
xor r1, r4 not r4

Executing the �rst line of instructions makes the modi�cations r4 := r0;
r0 := r0 � r2, giving us this new state:

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Next, we perform r0 := r0 � r3; r2 := r2 � r1.

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

Now things get more interesting. Notice the values in the r2 row after
r2 := r2 � r0; r3 := r3 + r4.

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

r2 is now the same as S2;0, one of our wanted output bits.
Executing the next three lines of instruction pairs, we reach this state:

r4 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1
r3 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
r2 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0
r0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

Now r3 is the same as S2;1. The next two lines complete the work:

4

r4 = S2;3 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0
r3 = S2;1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
r2 = S2;0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 = S2;2 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
r0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

Thus we have a way of applying the function S2, using only boolean oper-
ations with 1-bit input values. Now remember that the columns were initially
just a list of possible input values. So the operations performed are actually
independent of the number and contents of the columns. So we may now e.g.
extend our table to 32 columns and allow any contents in each of the columns.
Then, when the operations are performed, they perform S2 32 times in parallel.
This is exactly what we do on a processor with 32-bit registers.

The search for such solutions basically tries all possible instruction sequences
of a given length, looking for rows equal to those of the S-box wanted. Shorter
sequences are generally preferred, so we start with a small length, progressing to
longer ones when no solution is found. To search for sequences capable of parallel
execution, like the one above, we require that an instruction not read the output
of an earlier instruction on the same line. It may write to an input register of
an earlier instruction, though, as that will in no way a�ect the outcome of the
other instruction.

4.3 Optimizations

Below are short descriptions of the most important optimizations of the search
algorithm. Almost all of these avoid removing solutions without keeping an
equivalent solution.

� Recursion stops when the register contents can no longer generate a per-
mutation.

� When two instruction sequences are identi�ed as being equivalent, we
remove one of them from the search.

� No instruction other than mov may make a register contain a copy of the
value in another register.

� Unread registers may not be written to by the mov instruction.

� Negated registers (those last modi�ed by a not instruction) are marked as
such, and may not again be negated until they have been read.

� Lookahead functions e�ciently calculate a set containing all values reach-
able in one or two cycles.

� The search is narrowed by requiring an increasing number of result values
in the registers as the search goes deeper. This constraint is important for
deep searches, but its most strict variant (increasing the required number

5

as soon as there is at least one sequence that reached it) often drops better
solutions, and should be relaxed by postponing the requirement by one or
two cycles.

� The instructions are limited to using only 5 registers.

First experiences using the search program with 7 registers available showed
most solutions using 6 of those, while others only used 5 registers. Further
testing always provided solutions using 5 registers whenever a 6 register solution
was found. Given the reduced complexity of the search, and the advantages of
having the S-boxes do all their computations in only 5 registers, I chose to limit
the search accordingly.

5 Results

The S-box functions chosen from the search results have the properties shown
in the table. Cycle count is for running these on processors like the Pentium,
with two integer execution units running in parallel.

Function Instructions Cycles Registers

S0 18 9 5
S1 18 10 5
S2 16 8 5
S3 19 10 5
S4 20 10 5
S5 19 10 5
S6 18 10 5
S7 20 11 5

S�1
0

19 11 5

S�1
1

19 11 5

S�1
2

19 10 5

S�1
3

18 10 5

S�1
4

20 11 5

S�1
5

19 10 5

S�1
6

17 9 5

S�1
7

19 10 5

The low register pressure of these functions makes their compiled code com-
pletely free from loads and stores. So we only load input data and round keys,
and store the result. Except for the round key loads, no memory operations are
issued during encryption. This is completely di�erent from the S-boxes used in
the AES submission package[1], as well as those found by Gladman and Simp-
son [2], which depend heavily on memory for storage during encryption. Also,
the memory footprint of the encryption routines themselves is much reduced; a
fully inlined encryption requires less than 4 kilobytes.

6

6 Optimized implementations

Due to the problem of making C compilers schedule instructions properly for
the Pentium, the S-box instructions were also incorporated into assembly rou-
tines for Serpent encryption and decryption. The result was then manually
tuned for this processor (which may make it slower on other processors). The
implementation was made with these constraints:

� The stack pointer register is reserved for its normal use.

� Make the routines suitable as plug-in replacements for the C routines in
the AES submittal of Serpent, allowing easy testing.

� One register contains a pointer to the round key table.

Keeping the stack and key table pointers, instead of using them as general
purpose registers, allows multiple simultaneous use of the routines, such as in
multithreaded environments.

A new set of four round keys is loaded 33 times during an encryption or
decryption. Reserving a register to point to the key table avoids having to
reload the pointer every time. The ideal solution for performance is to put the
round keys on the stack or in a �xed location, as that would free up the key
pointer (round keys would be fetched using the stack pointer). But, since the
pointer to the round key table is a parameter to the routines we replace, it is
needed.

Given these limitations, we still have those �ve registers needed for the S-
boxes, plus one free for whatever use we might have for it, like early loading
of a round key. This gives the opportunity to exploit the parallelism of the
Pentium nearly to its full extent, thus usually executing two instructions per
cycle (some instructions can only execute one at a time). The bene�t of one
more free register, as could be gained by �xing the location of round keys, will
thus be minimal.

7 Performance comparison

Speed testing was done on these computers:

Processor Clock speed RAM size OS

486 SX 33 MHz 20 MB Linux 2.0
Pentium 100 MHz 64 MB Linux 2.0

(Dual) Celeron 333 MHz 256 MB Linux 2.2

The following tables give a comparison of the di�erent implementations of
Serpent on these computers. My speed �gures in Mbit/s are scaled to given
clock speeds, assuming all memory operations are performed in level 1 caches.
In the case of Pentium Pro, I compare against the best of Gladman's most

7

recent numbers. On the others, numbers are compared to those reported by
Granboulan [3], using Gladman's code.

� 486 DX/2-50

Encryption Decryption
Implementation Mbit/s cycles Mbit/s cycles
Gladman's code 0.48 12900

Osvik 3.8 1650 3.8 1660

� Pentium 90

Encryption Decryption
Implementation Mbit/s cycles Mbit/s cycles

AES submission 7.17 1605 5.88 1956
Gladman's code 8.56 1290

Osvik 12.7 907 12.7 905
Osvik, asm 14.4 800

� Pentium Pro 200

Encryption Decryption Key setup
Implementation Mbit/s cycles Mbit/s cycles cycles

AES submission 21.8 1170 20.6 1301
Gladman 27.0 945 26.9 951 1290
Osvik 33.7 759 33.2 770 1106

The compiler used to compile both my own and the AES submission C
code is PentiumGCC version 2.95.2. For my own code, I used the options
�-O -mpentium -fPIC -fomit-frame-pointer� on Pentium and �-O2 -mpentium
-fPIC -fomit-frame-pointer� on PPro. For the AES submission code I used �-O
-mpentium�. Other optimization settings I tried reduced the speed achieved.
All times are measured including parameter passing, function call and return
from the function. Timings on the 486 are not nearly as accurate as the others,
as it does not have a cycle counter.

Note: the �gures quoted above are for Gladman's results in C using a static
array of round keys which frees up an extra register. This only allows multiple
concurrent encryptions when they all use the same key. His C++ code, which
does not have this limitation, shows a 3% performance reduction.

8 Future directions

� My implementations may be further tuned - actually, I expected the Pen-
tium assembly implementation to come close to 735 cycles for encryption.

8

While trying to manually optimize the encryption, I found the Pentium
to be very touchy regarding tight dependencies involving rotation instruc-
tions. Given the Pentium processor's slowdown when executing such in-
struction sequences, 735 cycles seems to be unreachable. Still, faster S-
boxes might exist, as my search has not been exhaustive.

� The key setup function can generate the encryption code with round keys
embedded directly in the instructions, thus removing the load instructions
and saving upto 66 cycles on the Pentium. This will increase key setup
time, though.

� 3-way parallelism on x86 (AMD Athlon). This only requires a (theoret-
ically) simple extension of my current search program. The curious can
quite easily verify that S�1

6
and S�1

7
both can execute in 7 cycles with up to

3 instructions/cycle, as opposed to 9 and 10 cycles on Pentium/.../Pentium
III.

� Hardware implementations have a natural emphasis on parallelism. Pre-
liminary results in this area look extremely promising; given 3-input nand
and nor gates, and (at most) 2-input versions of other gates, all S-boxes
can be performed with a gate depth of only 3. Combined with a depth of
4 for the linear transformation and 1 for key mixing, this indicates that
several Gb/s should be possible in CBC mode with common technology.
If we can also add 3-input (n)xor, the gate depth of one round is reduced
to no more than 5.

� The instruction sets of RISC processors may be viewed as a set of gates
from which we can build wide S-box functions. Their lack of 3-input
logical operations raises the maximum gate depth needed to 4. That is,
given enough parallelism on a RISC (or EPIC) chip, all S-boxes have
solutions requiring no more than 4 cycles to execute. This hardware-style
RISC optimization will be further investigated in the near future.

9 Acknowledgements

I would like to thank my supervisor, Lars R. Knudsen, for proposing this project,
and for his advice and criticisms regarding this article.

My parents and some of my friends and fellow students have been helpful
in various ways. Most of the search and timing tests where performed on Odd
Egil Nerland's computers. Gisle Sælensminde has made an Ada implementa-
tion using my S-box functions, and in the process he made a Python script
automating inlining of the encryption functions. This was necessary to avoid
stressing the GCC register allocator with these rather intricate S-boxes. My C
and assembly implementions were also made using slightly modi�ed versions of
his script, saving much work and time.

9

References

[1] RJ Anderson, E Biham, LR Knudsen, �Serpent: A Proposal for the Ad-
vanced Encryption Standard�

[2] BR Gladman:
http://www.btinternet.com/�brian.gladman/cryptography_technology/

[3] L Granboulan:
http://www.dmi.ens.fr/�granboul/recherche/AES/timings.html

[4] Intel Corporation, �Intel Architecture Optimization Manual�, Order Number
242816-003, 1997.

Appendix

Below are all the S-box functions selected from the search results. The functions
expect their input values to be in r0 .. r3, ordered from least to most signi�cant
bit. The contents of r4 are ignored. Output values are given in the registers
listed at the bottom of each table, again ordered from least to most signi�cant
bit.

S0 S�1
0

r3 �= r0 r4 = r1 r2 =� r2 r4 = r1
r1 &= r3 r4 �= r2 r1 |= r0 r4 =� r4
r1 �= r0 r0 |= r3 r1 �= r2 r2 |= r4
r0 �= r4 r4 �= r3 r1 �= r3 r0 �= r4
r3 �= r2 r2 |= r1 r2 �= r0 r0 &= r3
r2 �= r4 r4 =� r4 r4 �= r0 r0 |= r1
r4 |= r1 r1 �= r3 r0 �= r2 r3 �= r4
r1 �= r4 r3 |= r0 r2 �= r1 r3 �= r0
r1 �= r3 r4 �= r3 r3 �= r1

r2 &= r3
r4 �= r2

r1, r4, r2, r0 r0, r4, r1, r3

10

S1 S�1
1

r0 =� r0 r2 =� r2 r4 = r1 r1 �= r3
r4 = r0 r0 &= r1 r3 &= r1 r4 �= r2
r2 �= r0 r0 |= r3 r3 �= r0 r0 |= r1
r3 �= r2 r1 �= r0 r2 �= r3 r0 �= r4
r0 �= r4 r4 |= r1 r0 |= r2 r1 �= r3
r1 �= r3 r2 |= r0 r0 �= r1 r1 |= r3
r2 &= r4 r0 �= r1 r1 �= r0 r4 =� r4
r1 &= r2 r4 �= r1 r1 |= r0
r1 �= r0 r0 &= r2 r1 �= r0
r0 �= r4 r1 |= r4

r3 �= r1
r2, r0, r3, r1 r4, r0, r3, r2

S2 S�1
2

r4 = r0 r0 &= r2 r2 �= r3 r3 �= r0
r0 �= r3 r2 �= r1 r4 = r3 r3 &= r2
r2 �= r0 r3 |= r4 r3 �= r1 r1 |= r2
r3 �= r1 r4 �= r2 r1 �= r4 r4 &= r3
r1 = r3 r3 |= r4 r2 �= r3 r4 &= r0
r3 �= r0 r0 &= r1 r4 �= r2 r2 &= r1
r4 �= r0 r1 �= r3 r2 |= r0 r3 =� r3
r1 �= r4 r4 =� r4 r2 �= r3 r0 �= r3

r0 &= r1 r3 �= r4
r3 �= r0

r2, r3, r1, r4 r1, r4, r2, r3

S3 S�1
3

r4 = r0 r0 |= r3 r4 = r2 r2 �= r1
r3 �= r1 r1 &= r4 r0 �= r2 r4 &= r2
r4 �= r2 r2 �= r3 r4 �= r0 r0 &= r1
r3 &= r0 r4 |= r1 r1 �= r3 r3 |= r4
r3 �= r4 r0 �= r1 r2 �= r3 r0 �= r3
r4 &= r0 r1 �= r3 r1 �= r4 r3 &= r2
r4 �= r2 r1 |= r0 r3 �= r1 r1 �= r0
r1 �= r2 r0 �= r3 r1 |= r2 r0 �= r3
r2 = r1 r1 |= r3 r1 �= r4
r1 �= r0 r0 �= r1

r1, r2, r3, r4 r2, r1, r3, r0

11

S4 S�1
4

r1 �= r3 r3 =� r3 r4 = r2 r2 &= r3
r2 �= r3 r3 �= r0 r2 �= r1 r1 |= r3
r4 = r1 r1 &= r3 r1 &= r0 r4 �= r2
r1 �= r2 r4 �= r3 r4 �= r1 r1 &= r2
r0 �= r4 r2 &= r4 r0 =� r0 r3 �= r4
r2 �= r0 r0 &= r1 r1 �= r3 r3 &= r0
r3 �= r0 r4 |= r1 r3 �= r2 r0 �= r1
r4 �= r0 r0 |= r3 r2 &= r0 r3 �= r0
r0 �= r2 r2 &= r3 r2 �= r4
r0 =� r0 r4 �= r2 r2 |= r3 r3 �= r0

r2 �= r1
r1, r4, r0, r3 r0, r3, r2, r4

S5 S�1
5

r0 �= r1 r1 �= r3 r1 =� r1 r4 = r3
r3 =� r3 r4 = r1 r2 �= r1 r3 |= r0
r1 &= r0 r2 �= r3 r3 �= r2 r2 |= r1
r1 �= r2 r2 |= r4 r2 &= r0 r4 �= r3
r4 �= r3 r3 &= r1 r2 �= r4 r4 |= r0
r3 �= r0 r4 �= r1 r4 �= r1 r1 &= r2
r4 �= r2 r2 �= r0 r1 �= r3 r4 �= r2
r0 &= r3 r2 =� r2 r3 &= r4 r4 �= r1
r0 �= r4 r4 |= r3 r3 �= r4 r4 =� r4
r2 �= r4 r3 �= r0

r1, r3, r0, r2 r1, r4, r3, r2

S6 S�1
6

r2 =� r2 r4 = r3 r0 �= r2 r4 = r2
r3 &= r0 r0 �= r4 r2 &= r0 r4 �= r3
r3 �= r2 r2 |= r4 r2 =� r2 r3 �= r1
r1 �= r3 r2 �= r0 r2 �= r3 r4 |= r0
r0 |= r1 r2 �= r1 r0 �= r2 r3 �= r4
r4 �= r0 r0 |= r3 r4 �= r1 r1 &= r3
r0 �= r2 r4 �= r3 r1 �= r0 r0 �= r3
r4 �= r0 r3 =� r3 r0 |= r2 r3 �= r1
r2 &= r4 r4 �= r0
r2 �= r3

r0, r1, r4, r2 r1, r2, r4, r3

12

S7 S�1
7

r4 = r1 r1 |= r2 r4 = r2 r2 �= r0
r1 �= r3 r4 �= r2 r0 &= r3 r4 |= r3
r2 �= r1 r3 |= r4 r2 =� r2 r3 �= r1
r3 &= r0 r4 �= r2 r1 |= r0 r0 �= r2
r3 �= r1 r1 |= r4 r2 &= r4 r3 &= r4
r1 �= r0 r0 |= r4 r1 �= r2 r2 �= r0
r0 �= r2 r1 �= r4 r0 |= r2 r4 �= r1
r2 �= r1 r1 &= r0 r0 �= r3 r3 �= r4
r1 �= r4 r2 =� r2 r4 |= r0 r3 �= r2
r2 |= r0 r4 �= r2
r4 �= r2

r4, r3, r1, r0 r3, r0, r1, r4

13

Session 8:

"Algorithm Submitter Presentations"

Submitter Statements

IBM Comments

Third AES Conference
April 13, 2000

Don Coppersmith, Rosario Gennaro, Shai Halevi, Charanjit Jutla,
Stephen M. Matyas Jr., Mohammad Peyravian, David Safford, Nevenko Zunic

Introduction:

All five of the AES finalist candidates are solid ciphers, with no known weaknesses. It seems likely that any
of the candidates would make a good standard. In this short paper, we summarize some qualitative and
objective comments on the finalists, and make recommendations for final selection.

General Comments on the Candidates

 MARS

MARS has one of the widest security margins, both in terms of number of rounds, and in
terms of diversity (as its security relies on a combination of several different "strong
operations" and on a heterogeneous structure). MARS is the only candidate with a
heterogeneous structure, which was a deliberate design feature to help resist unknown
attacks. Also, the design of the round function in MARS lends itself to analysis. In
particular, a nearly complete characterization is known for the differential behavior of the
round function, and independent analysis has been published.

At the same time, MARS is also a very fast cipher. In fact, in some of the measurements,
MARS posted the fastest C and Java benchmarks. In Gladman's C benchmarks, MARS
average performance across all key sizes was second only to RC6.

One concern raised about MARS was that it was hard to implement on memory constrained
environments. In response to this criticism, the key schedule was tweaked prior to round 2,
significantly reducing memory requirements.

Another criticism raised about MARS concerned its complexity. We feel that this was partly
due to our extremely detailed presentation and analysis of the algorithm. We subsequently
released a simplified description including simplified pseudocode which fits on a single page,
(which is included later in this paper). In addition, using implementation lines as a
complexity measurement, MARS is less complex than Twofish, Rijndael, and Serpent.

 RC6

RC6 has a simple, elegant round function, and it is the fastest cipher in speed tests. A
possible concern about RC6 is that its round function may be "too simple". Specifically, the
combination of multiplications and rotation, although providing some excellent properties, is

1

a "single point of failure" in RC6 (as it does not use S−boxes). Also, RC6 seems to have the
lowest security margin of the candidates in terms of number of rounds.

 Rijndael

Rijndael is a fast cipher, which is very flexible for implementation. It is important to note
that its speed on 256 bit keys is lower than MARS or Twofish.

Rijndael has a round function which is hard to analyze, and a key schedule that makes it
easier to mount power attacks. Also, the fact that the round function can be expressed as only
a few simple algebraic operations makes one wary of potential algebraic attacks against it.

The structure of Rijndael and Square is new, and not fully understood. In "The Block
Cipher Square", Daemen, Knudsen, and Rijmen presented an attack unique to the Square
structure, which caused them to increase the number of rounds. The existence of attacks
unique to Square call into question Rijndael's long term resistance.

Rijndael's mode with only 10 rounds has a relatively low security margin.

 Serpent

Serpent has very wide security margins in terms of number of rounds, and very strong
mixing. On the down side, it is quite slow, and it also has a key schedule that makes power
attacks easier to mount. As there are other candidates with good security margins, and much
faster performance, we feel that Serpent is too slow.

 Twofish

Twofish is a flexible cipher in terms of implementation tradeoffs, and it is also one of the
fastest ciphers (except for its key−schedule). It has good security margins, and reasonable
complexity.

A concern about Twofish is that it is very hard to analyze its security. Its round function was
engineered to provide flexibility, rather than to facilitate analysis. Indeed, although a lot of
effort has already been invested in its analysis, it is safe to say that the exact properties of the
round function are not very well understood. Moreover, the reliance on key dependent
S−boxes which are not generated pseudorandomly, makes the analysis even harder.

Another drawback of the key dependent S−boxes is that they are inherently more costly. In
Twofish this extra cost can be shifted between the key−setup and the cipher, but nonetheless
it is always there. Finally, the key schedule of Twofish makes power attacks easier, since the
entire key can be deduced from only the initial whitening key.

2

Complexity/Size of the Candidates

As mentioned earlier, MARS is actually not a complex algorithm. One way to measure complexity is to
count lines needed to implement the cipher. Here are some measurements of Gladman's C code
implementations, which can be used to compare complexity:

 Cipher Lines LOC Statements

 RC6 116 71 86
 MARS 424 298 249
 Twofish 496 346 224
 Rijndael 449 282 212
 Serpent 623 479 620

(Lines counts the lines in the implementation, including comments and blanks; LOC (lines of code) counts
only lines with statements, and statements counts the number of C statements.) As expected, RC6 is
significantly simpler. Surprisingly, Serpent is significantly more complex to implement. MARS, Twofish,
and Rijndael fall in the middle, with comparable complexity. In addition, to show the conceptual simplicity
of MARS, here is the entire pseudocode for MARS encryption in 30 lines, (counting comments and blank
lines).

// Forward Mixing
(A,B,C,D) = (A,B,C,D) + (K0,K1,K2,K3)
For i = 0 to 7 {
 B = (B ^ S0[A]) + S1[A>>>8]
 C = C + S0[A>>>16]
 D = D ^ S1[A>>>24]
 A = (A>>>24) + B(if i=1,5) + D(if i=0,4)
 (A,B,C,D) = (B,C,D,A)
}

// Keyed Transformation and E−Function
For i = 0 to 15 {
 R = ((A<<<13) * K[2i+5]) <<< 10
 M = (A + K[2i+4]) <<< (low 5 bits of (R>>>5))
 L = (S[M] ^ (R>>>5) ^ R) <<< (low 5 bits of R)
 B = B + L(if i<8) ^ R(if i>=8)
 C = C + M
 D = D ^R(if i<8) + L(if i>=8)
 (A,B,C,D) = (B,C,D,A<<<13)
}

// Backward Mixing
For i = 0 to 7 {
 A = A − B(if i=3,7) − D(if i=2,6)
 B = B ^ S1[A]
 C = C − S0[A<<<8]
 D = (D − S1[A<<<16]) ^ S0[A<<<24]
 (A,B,C,D) = (B,C,D,A<<<24)
}
(A,B,C,D) = (A,B,C,D) − (K36,K37,K38,K39)

3

Performance, Complexity, and Relative Security Margin

In this section we have collected and summarized some measurements of performance, and complexity, and
estimates of security margin. For performance, we use Gladman's C code results [1]. Note that Rijndael's
performance varies based on key size. While other papers have analyzed the candidates on other platforms,
only performance on the NIST selected reference platform has received adequate analysis and review, so we
use those numbers here.

As a simple complexity measurement, we count lines in Gladman's C implementations [2]. As these have all
been written by the same person to the same API, with the same style, the line counts indicate relative
complexity. For security margin, we use Biham's analysis [3] of rounds divided by minimum secure rounds,
to get a ratio, in which large numbers represent higher (better) margins.

 Cipher Speed(Mb/sec) Setup(Clocks) Lines Security Margin

 RC6 94.2 1875 116 1.0
 Mars 69.4 2134 424 1.6
 Twofish 68.8 8493−15616 496 1.6
 Rijndael 50.5−70.3 207−1983 449 1.3−1.8
 Serpent 26.7 1296 623 1.9

In this table, we have highlighted values that are less competitive compared to the other candidates. This
table makes clear the tradeoffs between speed and margins. RC6 is fastest, with the lowest margin. Serpent is
slowest with the highest margin. The Serpent code is surprisingly more complex than the others, while RC6
is, as expected, the simplest code, with the others comparable between the extremes.

Recommendation Summary

RC6 is an elegant, fast, and well analyzed cipher, and would normally be considered the obvious best
candidate, but for a standard that is supposed to last twenty years, its security margin is perhaps a bit too
close to the edge. If only one candidate is chosen, RC6 is perhaps a bit risky.

Of the other ciphers, Serpent is too slow. Rijndael's structure is new and less well understood, and it has a
slight disadvantage in performance with large keys. The security of Twofish is difficult to analyze, given its
key dependent S−box, and it has a slight disadvantage in key setup performance. Since MARS has well
understood and analyzed components, has a solid security margin, is fast, and does not have the large key or
key setup performance problems, it is the best choice.

Should two candidates be selected, we feel that RC6 would be the obvious second choice, since the risk from
its low margin would be much less of an issue, given the existence of the other cipher to fall back on. Its
simplicity and tiny size make it very easy to add as a second cipher to any implementation.

References:

1. http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/ index.html
2. http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/aes.r2.algs.zip
3. http://www.cs.technion.ac.il/~biham/Reports/aes−comparing−revised.ps.gz

4

http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/ index.html
http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/ index.html
http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/aes.r2.algs.zip
http://www.cs.technion.ac.il/~biham/Reports/aes-comparing-revised.ps.gz

RC6 as the AES

Ronald L. Rivest1, M.J.B. Robshaw2, and Yiqun Lisa Yin3

1 M.I.T. Laboratory for Computer Science, 545 Technology Square,

Cambridge, MA 02139, USA. rivest@mit.edu
2 88 Hadyn Pk. Rd., London, W12 9AG, UK. mrobshaw@supanet.com

3 NTT Multimedia Communications Laboratories, 250 Cambridge Ave.,

Palo Alto, CA 94306, USA. yiqun@nttmcl.com

Introduction

After more than a year of design and nearly two years of scrutiny, the process
to choose the Advanced Encryption Standard is drawing to a close. We are
now left with �ve designs that would each be a good choice as the �nal AES.
These �ve ciphers have radically di�erent design philosophies and they have very
di�erent security and performance properties. No one cipher sticks out as being
the natural choice in all respects.

During the design of RC6 our pragmatic aim was to satisfy as many goals
as possible while keeping the cipher simple. Only by keeping a cipher simple
can one achieve a well-understood level of security, good performance, and a
versatility of design that makes the cipher highly adaptable to future demands.

We believe that we have been successful in this approach and developments
over the last two years have only served to strengthen our views. We believe that
RC6 would make an excellent choice as the �nal AES.

Security through simplicity

Despite the talk of \margins for security" and \fair" or \minimal" round as-
sessments, the most important measure of the likely security of a cipher is quite
simply the amount of scrutiny it has received. Yet it is not clear how much
attention the di�erent ciphers have received. Cryptanalysts have full-time jobs
teaching in a university or working on a range of unrelated industry projects.
Very few, if any, will have looked at more than two �nalists in any depth, let
alone all �ve.

A simple cipher is one that is easily described and readily remembered. It will,
as a direct result, be analyzed and scrutinized widely [2, 4, 5, 8, 11]. Not only will
it receive the greatest quantity of analysis - it will also receive the most accurate
analysis. During the design of RC6 we performed what we believe to be one of
the most accurate assessments of the security of any of the AES �nalists [4]. RC6
is not so complicated that approximating models have to be introduced (as with
MARS [3] and Two�sh [17]). Instead we were able to get a remarkably accurate
view of the strength o�ered by RC6 using direct analysis4. In this way we were

4 Since it is easy to de�ne simpli�ed and small block-size variants of RC6, the crypt-

analyst can perform far more extensive analysis and experimentation.

able to make a careful decision on how many rounds RC6 should have so that
we delivered good performance once our security goals had been attained. In the
case of some �nalists new attacks have improved on the work of the designers.
Yet it is a vindication of our approach that when other techniques are applied,
as was done by Knudsen and Meier [11] (and also Baudron et al. [2]), they give
surprisingly similar results to those provided by our own analysis. This isn't a
\small margin for security". Rather it is a carefully assessed, and remarkably
accurate margin for security.

As well as being earned, some faith in a cipher can be inherited. The time for
assessment of the �nalists throughout the AES process has been a little less than
two years. By building on the knowledge of earlier ciphers we gain insight into
the security of a new cipher. Clearly RC6 was designed in the light of experience
gained with perhaps the most studied modern cipher, RC5 [14]. And not only
with regards to the structure of the round function. We decided to choose a key
schedule for RC6 that was identical to that for RC5. No other AES �nalist uses
a key schedule that has been open to public analysis for nearly six years. Given
the problems some �nalists have in the key schedule, either with key separation
in the case of Two�sh [12] or with related-key attacks in the case of Rijndael [7],
this is a very important attribute.

The AES e�ort is so important that we should not be relying on crude and
subjective metrics for our decisions. The process of subtracting some arbitrary
number of rounds from the number of proposed rounds - arbitrary numbers that
might in one case be taken from the designers documentation and in another
from direct independent analysis - can be a misleading way of comparing the
AES �nalists. To quote [18]: \These comparisons are fundamentally awed, be-
cause they unfairly bene�t algorithms that have been cryptanalyzed the least."
Instead, the true security of a cipher depends on

{ the amount of cryptanalytic scrutiny received,
{ the accuracy of existing cryptanalysis,
{ the ease with which verifying experiments can be conducted on a cipher,
{ the amount of earlier cryptanalytic analytic work that can be used in the
assessment of the cipher, and,

{ the accuracy of the designers initial estimates.

We believe that on all counts RC6 is most suited to be chosen as the AES.

Performance through simplicity

Most of today's high-end computing base is deployed in PC's either in the work-
place or at home, and these are 32-bit machines. Here RC6 typically o�ers ex-
emplary performance. Some restricted devices that are currently quite widely
deployed are 8-bit based. These might include a relatively insigni�cant fraction
of mobile devices, but would most likely be smart cards. However, when we
couple the needs of greater processing power with the inevitable drop in prices
of 32-bit processors, it is very clear that the mobile computing device market,

including smart card applications, will inevitably shift to a 32-bit oriented pro-
cessor base. This trend may take a few years to come to fruition, but its results
are likely to be with us for the 20 or 30 years that might be required for the
AES.

With regards to very cheap smart-cards with old 8-bit processors, it has
already been observed [9] that such very cheap smart-cards are vulnerable to
system attacks and are inherently insecure. Such insecurities would apply to any
of the AES �nalists. As a result we should be careful that we do not place too
much weight on the performance of a cipher in an environment that is both
insecure now and obsolete (perhaps even non-existent) in a few years time. Nev-
ertheless such processors are currently deployed and the AES may well be desired
in such applications. The �rst question we should ask is whether performance is
an important issue in such situations? What applications are going to be used
on such cheap 8-bit smart cards? Certainly they won't require bulk encryption
- at most a few blocks of data will be processed. So, the performance of any of
the �ve AES �nalists is going to be adequate.

On a separate issue it is repeatedly claimed (almost to the point of folklore
and most surprisingly in [18]) that an implementation of RC6 requires at least
176 bytes of RAM. Yet Keating [10] has already shown that this is not the case
and that RC6 can be implemented in around 120 bytes of RAM. So we can
conclude that all the AES �nalists can be implemented, and can be expected to
o�er adequate performance, on cheap (insecure) low-end smart cards.

Looking to future architectures, �ne-grained estimates today of performance
on future architectures really don't seem to be terribly useful. Technology evolves
in unpredictable ways (for instance the growing signi�cance of DSPs) and it
seems likely that technology will evolve to best support whichever of the AES
�nalists is chosen. Instead, experience in the area of 32-bit processors shows that
there is nothing intrinsically unsuitable about any of the �ve �nalists for future
architectures and future designs can be expected to devote signi�cant support
to providing the best possible performance from the �nal AES.

We provide some additional observations.

{ Hand-optimized assembly code will o�er the best algorithm performance on
any processor. Yet often, developers will use portable code in a higher-level
language and compile it for the environment of use. Under such circum-
stances the simplicity of a cipher is very important since it allows a compiler
to produce well-optimized code. This means that good performance can be
achieved without time-consuming and costly hand optimizations or lengthy
code that tries to choose among a dozen di�erent optimization strategies.

{ The simplicity of a cipher is most acutely reected in the Java performance
of a cipher. This is in terms of code-size, performance, and potentially most
critically, the amount of dynamic RAM used during the encryption process.
With the increased importance of the Internet and its extension to mobile
devices, the performance of the �nalist in Java could well be vital. While
there may well be many small processors in the coming years [18] many of
them will in fact be Java-based, for instance in set-top boxes.

{ One possible future trend is the growth of the market [13] for DSPs and/or
microprocessors with DSP capability. RC6 not only performs very well on
processors of this type [19], but gains its impressive performance without
look-up tables which provide additional burdens on memory requirements.

We believe that excellent performance of RC6 on 32-bit processors, the close
convergence in performance between simple compiled code and hand-optimized
assembly, and outstanding performance in Java and in DSP environments, all
make RC6 ideally suited to be chosen as the AES.

Versatility through simplicity

One of the early stated aims of the AES process was that the �nal cipher be
\simple and versatile". For RC6 these were design goals.

RC6 is fully parameterized; the number of encryption rounds, the size of the
encryption key (not just the three must-support values of 128, 192, and 256 bits),
and the block-size can all be easily and readily changed. This kind of exibility
is an integral design feature. For most of the other �nalists it is not at all clear
how a change to the block size, or the use of an extremely long encryption key,
would be accommodated.

These could be important considerations. For some applications, a developer
may wish to call on a 64-bit block cipher perhaps as a drop-in replacement
to DES. With RC6 as the AES, such a variant is readily described. At the
other extreme, it is possible that in the near future a 256-bit hash value will be
preferred. The most natural way to do this when using an AES candidate as the
basis for a hash function would be to change the block-size.

As another example of the exibility of RC6, the key schedule allows for
very long keys (for example up to 1024 bits) to be used without a compromise
to performance. This is not that important for encryption, but it does provide
extraordinary improvements to the performance of the Davies-Meyer hashing
mode [16]; potentially to the point of providing hashing performance comparable
to that o�ered by dedicated hash functions.

Simplicity and versatility go hand-in-hand. Once again, we believe that RC6
would be the most suited �nalist to become the AES.

Conclusions

The three most important attributes of the �nal AES are security, performance,
and versatility. With RC6 we achieve all three goals. RC6 is so simple that the
full details of the cipher can be recalled at will. Through simplicity we have
developed a truly versatile cipher. We have also developed a cipher that o�ers
exceptional performance, and gives the best all-round suitability in Java with
all the implications this holds for future applications. Most importantly, though,
existing analysis on RC6 is not only by far the most extensive of any of the
�nalists, it is also the most accurate and the most detailed.

For these reasons we believe that RC6 is ideally suited to be the �nal AES.

References

1. R. Anderson, E. Biham, and L.R. Knudsen. Serpent: A Proposal for the Advanced

Encryption Standard.

2. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux, P. Nguyen, F.

Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern and S. Vaudenay. Report

on the AES candidates. In Proceedings of The Second AES Candidate Conference,

pages 53{67. March 22-23, 1999.

3. C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi, C. Jutla, S.

Matyas, L. O'Conner, M. Peyravian, D. Sa�ord, and N. Zunic. MARS - a candi-

date cipher for AES. June 10, 1998.

4. S. Contini, R.L. Rivest, M.J.B. Robshaw, and Y.L. Yin. The security of RC6.

Available from www.rsasecurity.com/rsalabs/aes/.

5. S. Contini, R.L. Rivest, M.J.B. Robshaw, and Y.L. Yin. Improved analysis of some

simpli�ed variants of RC6. In L. Knudsen, editor, Fast Software Encryption, Lec-

ture Notes in Computer Science Volume 1626, pages 1-15, Springer-Verlag, 1999.

6. J. Daemen and V. Rijmen. AES Proposal: Rijndael. June 11, 1998.

7. N. Ferguson, J. Kelsey, B. Schneier, M. Stay, D. Wagner, and D. Whiting. Im-

proved cryptanalysis of Rijndael. Preprint.

8. H. Gilbert, H. Handschuh, A. Joux, and S. Vaudenay. A statistical attack on RC6.

Preprint.

9. S. Halevi. Suggested \tweaks" for the MARS cipher. Submitted to NIST at the

end of Round 1 evaluation. Available via csrc.nist.gov.

10. G. Keating. Performance analysis of AES candidates on the 6805 CPU core. In

Proceedings of The Second AES Candidate Conference, pages 109{114. March 22-

23, 1999. Available from www.ozemail.com.au/ geoffk/aes-6805.

11. L.R. Knudsen and W. Meier. Correlations in RC6. Preprint.

12. F. Mirza and S. Murphy. An observation on the key schedule of Two�sh. Proceed-

ings of the Second AES Candidate Conference, pages 151-154.

13. O. Port. Chips for the post-PC era. Business Week, Annual Special Issue, page 96,

March 27, 2000.

14. R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Soft-

ware Encryption, Lecture Notes in Computer Science Volume 1008, pages 86-96,

Springer-Verlag, 1995. Available from theory.lcs.mit.edu:80/~rivest/.

15. R.L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. The RC6 Block Cipher.

v1.1, August 20, 1998. Available from www.rsasecurity.com/rsalabs/aes/

16. M.J.B. Robshaw. Hashing with the AES �nalists. Preprint.

17. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. Two�sh:

A 128-bit Block Cipher. 15 June, 1998.

18. B. Schneier and D. Whiting. A performance comparison of the �ve AES �nalists.

Preprint.

19. T. Wollinger, M. Wang, J. Guajardo, and C. Paar. How well are high-end DSPs

suited for the AES algorithms? Preprint.

This article was processed using the LATEX macro package with LLNCS style

���� ������ 	

����� ������ Rijndael for AESRijndael for AESRijndael for AESRijndael for AES
�

��
��� ���	
�
��

����� ��	
�	

 ���� �/�

Rijndael for AES

Joan Daemen, Proton World, daemen.j@protonworld.com
Vincent Rijmen, KULeuven, vincent.rijmen@esat.kuleuven.ac.be

1. Introduction
In this document we give a short overview of the reasons why Rijndael should be selected as
the AES. We have divided our arguments into four categories:

• Security: Rijndael has the same objective security level as the other finalists, and
can easily be implemented in a secure way.

• Efficiency: Rijndael has a large "performance margin" compared to the other
candidates.

• Design philosophy: The clear design has many advantages: easy implementable
on a wide range of platforms, easy to get confidence in the claimed security level, ...

• Extensions: Rijndael is easily extendable to other key and block lengths.

Finally, we discuss the issue of multiple AES algorithms.

2. Security

2.1 Objectively demonstrable security

Until now, for none of the 5 AES finalists, an attack has been published that demonstrates a
weakness inherent in the design. Hence, from a cryptanalytical point of view, all 5 ciphers are
equivalent.

2.2 Suitability for secure implementation

In software, Rijndael can be implemented using the operations bitwise XOR, table-lookup and
8-bit shifts. Serpent requires no table-lookups but more general shifts and rotations and bitwise
boolean operations.

Twofish additionally requires 32-bit addition and both MARS and RC6 even require 32-bit
multiplication and shifts over data-dependent off-sets. The presence of these operations
makes the latter three algorithms harder to implement in a secure way on smart cards
[DaRi99].

2.3 Adding rounds

For all well-designed block cipher, the complexity of published cryptanalytic attacks increases
with the number of rounds in the cipher. This has already been taken into account in the
Rijndael design: the increasing number of rounds for increasing key lengths assures a growing
security marging against cryptanalytic attacks.

In fact, the number of rounds is a parameter that can be increased further, without a need for
any additional specifications. In applications where the confidence in Rijndael’s security
doesn’t match the importance of the confidentiality/integrity, or in the hypothetical case that an
effective attack on Rijndael would be published, a Rijndael version with an increased number
of rounds can be used.

���� ������ 	

����� ������ Rijndael for AESRijndael for AESRijndael for AESRijndael for AES
�

��
��� ���	
�
��

����� ��	
�	

 ���� �/�

3. Relative efficiency
The relative efficiency of the different finalists can be shown by comparing optimal
implementations on several platforms. Given the fact that the different design teams have
taken different security margins, the question rises how to compare the algorithms on equal
footing. One approach is to determine a minimum number of rounds that has to be used in
order to resist currently known attacks, and to add some rounds extra [Bi99]. Unfortunately,
not all ciphers have been subjected to the same amount of study. Furthermore, there is no
consensus on how many rounds one should add to get an adequate security margin. For
instance, how should the added security of an extra round of a (generalised) Feistel cipher be
compared with a round of an S-P-network ?

On the other hand, the performance of all the algorithms has been evaluated on many
different platforms, and all algorithms got their fair share of attention. Therefore we propose to
compare the other AES finalists to Rijndael variants with an adapted number of rounds, such
that both algorithms execute in the same time. In Table 1 we list for each AES finalist the
number of Rijndael rounds (including the implied round key generation) that can be executed
in the same time. Nominally, Rijndael has 10 rounds (for 128-bit keys).

We consider the following platforms:

• Pentium II/Pro: representative processor for PCs today;

• Motorola 6805: representative processor for smart cards today.

Moreover, we give numbers for different amounts of data treated with the same key:

• many blocks: indicative if the same key is used for a considerable amount of data
(say at least some Kbytes).

• 4 blocks: indicative if AES is used to secure a small amount of data. In most
financial transactions the amount of data that is subject to a MAC is indeed below 64
bytes. This includes electronic purse, debit/credit and ticketing transactions that will
be used in timing-critical applications such as public transport and toll-road payment
automation.

• 1 block: relevant if AES is used as the compression function of a hash function, for
PIN code encipherment/decipherment or for session/instance key derivation (in
smart card, terminal and/or Host security module) typical for payment systems.

Processor # blocks source DES*** MARS RC6 Serpent Twofish

Pentium II/Pro many [Li00] - 13 9 38 12*

4 [Co99] - 28 15 33 27

1 [Co99] - 46 22 36 25

Motorola 6805** many [Ke99] 30 30 28 110 23

4 [Ke99] 32 52 45 107 23

1 [Ke99] 37 114 91 100 22

Table 1 Number of rounds in Rijndael, given the same number of cycles

���� ������ 	

����� ������ Rijndael for AESRijndael for AESRijndael for AESRijndael for AES
�

��
��� ���	
�
��

����� ��	
�	

 ���� �/�

* The Twofish design team measures the performance of Twofish with code that has the used key
compiled into the executable. We use the code by Aoki and Lipmaa, slightly slower than the self-
modifying (!) code by the Twofish team.

** For Twofish, only the results of the designers are available. For MARS and RC6 we use the
implementations for smartcards with massive RAM available. For Rijndael, we average cipher and
inverse cipher speed.

*** For DES, the number of blocks is doubled as the block length is only 64 bits

4. Design philosophy
In the Rijndael design, we have tried to keep everything as simple as possible. Complexity has
been added only when necessary to thwart attacks. One example is the key schedule, that is
very simple and efficient compared to that of other AES finalists.

Other “simplicity” properties include:

• Symmetry in the round transformation and across the rounds,

• Orthogonality of components,

• Absence of arithmetic operations.

These properties lead to a number of advantages that are treated in the following sections.

MARS and Twofish, on the contrary, have both a very complex round function, with many
different operations. According to the documentation given by the respective design teams this
is partly due to the fact that during the design, whenever complexity could be added ‘at no
additional cost', it was added. ‘At no additional cost' should be understood as `no additional
cost on the Pentium Pro'. On other ‘unknown' platforms [Cl99], these extra operations could be
cheaply available, or not.

Serpent introduced asymmetry across the rounds by adopting 8 different S-boxes and
asymmetry in the round transformation by having shift (instead of cyclic shift) operations. RC6
has a reasonably symmetrical design. However, it still mixes XOR and arithmetic addication
operations and it uses 32-bit multiplication.

Another important advantage of Rijndael is that it was designed right from the start to support
128 bit block lengths. Twofish and RC6 on the other hand, are obviously upgrades from their
64-bit predecessors, respectively Blowfish and RC5, and this shows in the design.

4.1 Symmetry

There is only a single S-box, since until now, no advantage has been demonstrated for the use
of different S-boxes (as in Serpent, Twofish and MARS). This S-box is applied in parallel to all
state bytes. Similarly, the linear transformation and the round key addition treat all state bytes
in the same way and have rotational symmetry. The round function is the same for the
complete cipher execution (unlike Serpent and MARS) as the differences in the round keys are
considered to introduce sufficient asymmetry. This gives Rijndael the following advantages:

• Parallelism: among the finalists, Rijndael is by far the best suited to be implemented on
processors with a parallel architecture[Cl99], that is expected to be the architecture of the
future (Merced, McKinley, …). Moreover, a dedicated hardware implementation in which the
Rijndael round is fully hardwired can give very high speed thanks to its short critical
path[DaRi98].

Joan Daemen &

Vincent Rijmen ��������
�� ����������
�� ����������
�� ����������
�� ��
�

��
��� ���	
�
��

����� ��	
�	

 ���� �/�

• Compactness: the single S-box and the simplicity of the linear transformation allow to code
Rijndael in a small number of bytes, relevant on smart cards. Moreover, a minimal dedicated
hardware implementation of Rijndael can be built by hardwiring a single S-box and a single
4-byte to 1-byte linear transform[DaRi98].

• Absence of arithmetic operations: the description of Rijndael does not make any (hidden)
assumptions on the coding of integers as a sequence of bits. One of the advantages of this
is that Rijndael is immune for so-called big endian/little endian confusion and conversion
problems.

4.2 Orthogonality of the components

In Rijndael, the round function is composed of a number of components each with their own
contribution: S-boxes for non-linearity, round key XORing for key dependence and asymmetry,
byte transposition for inter-word diffusion and an MDS transform for intra-word inter-byte
diffusion. This design feature allows to get more easily a view on the security of the algorithm.

We have provable lower bounds for linear and differential probabilities based on the
interaction of these components. These proofs make use of only a few macroscopic properties
of the components and leave a lot of freedom on how these properties are actually attained.
The advantage of this modular approach is that components may be replaced without affecting
these lower bounds as long as the macroscopic properties hold. For example, in the
hypothetical case that an attack would be launched that makes use of some specific property
of the current S-box, it could be replaced by another one without affecting the lower bounds.

For the other AES finalists, the interaction between the different components is intricate and
much harder to analyse and the act of replacing a single component turns a lot of the analysis
performed obsolete.

4.3 Confidence

As a consequence of its clarity of design and good performance results, Rijndael attracted by
far the most attention from cryptanalysts outside the design team. Although the other finalists
seem to have been analyzed quite thoroughly by their own designers, history has shown that
`friendly' cryptanalysis is not as effective. A number of attacks on reduced versions has been
published. We can conclude that Rijndael has a sufficient security margin, and do so with a
high level of confidence.

5. Extensions
Rijndael is the only AES finalist that supports other block lengths than 128 bits, namely 192
bits and 256 bits. Moreover, extensions are defined for all combination of block lengths and
key lengths between 128 and 256 bits in steps of 32 bits [DaRi98].

The added value of the longer block lenghts is that the cipher can be used as the compression
function of a collision-resistant iterated hash function. Note that a length of 128 bits was
considered to be insufficient for SHA-1.

6. Multiple algorithms
The technical reasons for having multiple algorithms for the AES would be the fact that a
single algorithm cannot be efficiently and securely implemented on all target platforms, or to
have a backup in case the primary algorithm has been broken.

���� ������ 	

����� ������ ��������
�� ����������
�� ����������
�� ����������
�� ��
�

��
��� ���	
�
��

����� ��	
�	

 ���� �/�

If Rijndael is chosen as the AES, there is no need for an alternative algorithm for the first
reason as Rijndael is very efficient on all target platforms. Of course, if MARS or RC6 would be
chosen, smart card application developers will see their performance and RAM availability go
down and will tend to stick to good old Triple-DES if no alternative AES is available.

In practice, “having a backup in case the primary algorithm is broken” is a very expensive and
cumbersome undertaking. It implies coding, testing and integrating both the primary and the
backup algorithms in all products and applications where this backup is really taken seriously.
If Rijndael is chosen as AES, the “backup” could be a Rijndael version with the number of
rounds doubled. In this respect it is worth while to consider the actual risk. For the current
standard DES, the most practical attack to date is exhaustive key search, an attack that was
already known before its publication. The more sophisticated attacks, such as linear and
differential cryptanalysis are very interesting and have learnt us a lot on how to design ciphers,
but are no threat in the real world. The design teams of the AES finalist algorithms know their
literature and have all used the experience obtained from analysing DES, FEAL, IDEA, … to
build their ciphers. Hence, although new attacks may always be found, we think it is unlikely
that they will be a security threat in real-world applications, whatever choice is made among
the finalists.

7. References
[Bi99] E. Biham, "A note on comparing the AES candidates", AES 2.

[BAK98] E. Biham et al., “Serpent, a proposal for the Advanced Encryption Standard”, AES 1.

[Cl99] C. Clapp, “Instruction-level parallelism in AES candidates”, AES 2.

[Co99] B. Schneier et al., “Performance comparison of the AES submissions”, AES 2.

[DaRi98] J. Daemen and V. Rijmen, “Rijndael”, AES 1. Updated version from
http://www.esat.kuleuven.ac.be/˜rijmen/rijndael

[DaRi99] J. Daemen and V. Rijmen, “Resistance against implementation attacks: a
comparative study of the AES proposals”, AES 2.

[Ke99] G. Keating, “Performance analysis of AES candidates on the 6805 CPU core”, AES 2.
Updated version from http://www.ozemail.com.au/~geoffk/aes-6805/ .

[IBM98] C. Burwick et al., “Mars - a candidate cipher for AES”, AES 1.

[RC98] R. Rivest et al., “The RC6TM block cipher”, AES 1.

[Co99] B. Schneier et al., “Twofish, a block encryption algorithm”, AES 1.

[Li00] H. Lipmaa, AES cipher performance cross-table, available at
http://home.cyber.ee/helger

The Case for Serpent

Ross Anderson, Eli Biham and Lars Knudsen

24th March 2000

Summary

Serpent should be chosen because it is the most secure of the AES finalists. Not
only does it have ample safety margin, but its simple structure enables us to
be sure that none of the currently known attacks will work. It is also simple to
check that an implementation is correct. Although Serpent is not as fast as the
other finalists on the 200 MHz Pentium machine used for round 1 benchmarking,
this disadvantage largely disappears when we consider the likely platforms and
applications of the 21st century. In hardware, for example, Serpent has easily
the best performance, while on IA64 it’s second.

1 Security

The most important requirement is stated succinctly in the AES announce-
ment [7]: ‘The security provided by an algorithm is the most important factor in
the evaluation.’

From the day in September 1997 when we started designing Serpent, we asked
ourselves what protection requirements we were trying to meet. We concluded
that AES needed to last for a useful service lifetime plus a human lifetime after
that. That means at least a century. So we like the AES motto of a ‘crypto
algorithm for the twenty-first century’. Also, if Moore’s Law runs out sometime
this century, then the AES might never be replaced. So the selectors should
consider how their choice will look in the twenty-second century and beyond.

1.1 Advances in mathematics

An algorithm may break if someone comes up with a powerful new theory. We
do not believe that the history of cryptanalysis is over. Although we have no real
idea what the next hundred (or five hundred) years of mathematics will bring,
there are three things we can do to future-proof a design.

First, a block cipher should be simple and easy to analyse. The DES algorithm
had such a complex description that until the late 1980’s no-one appears to have
tried seriously to attack it. When they did, differential [5] and then linear [9]
attacks were found – both of which can now be explained to bright students in
a single 50-minute lecture.

Second, a block cipher should have more rounds than are needed to block
today’s attacks. Improvements in cryptanalysis usually increase the number of
rounds required.

Third, a block cipher should use only well understood primitives. S-boxes
and SP-networks have been around for over a quarter of a century, so it is less
likely that surprising new attacks will be found on them.

Serpent was designed with all these considerations firmly in mind.

1.2 Engineering issues

Moore’s Law may be the most obvious interaction between crypto security and
engineering. But assurance is at least as important. If Moore’s law continues,
then 128-bit keys will be vulnerable in about a century; but many systems fail
right now because of design and implementation errors.

Complicated algorithms are hard to implement correctly, and it is harder still
to prove implementations to be correct. Serpent’s simple design makes verifica-
tion easier. It is so simple that it can be optimised in high level languages such
and C and Ada. So a developer can avoid many of the errors that creep into
assembly language routines.

Many secure systems are also vulnerable because of poor random number
generators, memory remanence or other engineering failures (e.g., [3]). These
risks provide an even more compelling argument for 256-bit keys than either
Moore’s Law or quantum computers. It would be nice if implementation failures
became less common over time, but experience suggests the contrary. As systems
get more complex, there are more things to go wrong.

1.3 Public confidence

Ciphers can also be damaged through erosion of public confidence.
Recall the effect which the invention of differential and then linear cryptanal-

ysis had on the standing of DES. Neither of these attacks is practical: there are
no DES applications known to us where an opponent might get hold of 240 texts.
Indeed, a prudent designer would normally never use any key for a 64-bit block
cipher to encipher more than 232 texts. Yet despite the discoverers’ strenuous
efforts to keep the story straight, differential and linear attacks became trans-
lated in the public mind to ‘DES has been broken’. It’s imprudent to expect
the public to distinguish between practical attacks and ‘certificational’ attacks
– attacks which require infeasibly large amounts of data or effort.

We have often been asked why, given that Serpent is secure today with at
most 16 rounds, we do not allow 16 rounds – at least for 128-bit keys. The an-
swer is this. Having experienced what happened to DES, we are concerned that,
in perhaps 50 years’ time, advances in mathematics will lead to a certificational
attack on 16-round Serpent. As the other AES finalists have no more margin
of safety than 16-round Serpent, they run a similar risk. (That is why we be-
lieve that they should have more rounds, rather than Serpent having less.) We
think such an attack on Serpent is unlikely. But ‘unlikely’ isn’t enough; the AES
algorithm should have the highest achievable level of design assurance.

So we believe that the Advanced Encryption Standard should be 32-round
Serpent with 256-bit keys. If people want to use less than 256 bits, or less than

2

32 rounds, then they should do so only with good reason, and understand that
the two issues are orthogonal. The threats against 128-bit 32-round Serpent and
16-round 256-bit Serpent are different.

2 Performance

Many superficial analyses of the AES finalists have concluded that Serpent is
half the speed of the other candidates, because we used twice as many rounds
as we needed to. This is not accurate.

The three most important aspects of performance are hardware complex-
ity, software speed and memory cost. We have already discussed memory usage
extensively in [2]; this is the critical parameter for embedded and smartcard
applications. Serpent does extremely well here. We will spend the rest of this
section discussing hardware and software.

First, Serpent is the best of the AES finalists in hardware – even with the
full 32 rounds. An independent team produced implementations for the Xilinx
XCV1000 FPGA of RC6, Rijndael, Serpent and Twofish1. Serpent was the only
finalist for which a fully pipelined implementation could be fitted into a single
chip. Serpent was also by far the fastest, achieving a throughput of 5.04 Gbit/sec,
versus 2.40 Gbit/sec for RC6, 1.94 Gbit/sec for Rijndael and 1.71 Gbit/sec for
Twofish [6]. An NSA study of ASIC costs predicts 8.03 Gbit/sec for Serpent
versus 5.163 for Rijndael, 2.171 for RC6 and 1.445 for Twofish [12].

Second, several AES finalists are heavily optimised for encrypting very large
files on the Pentium II. But in most applications, key agility matters more, and
this isn’t likely to change any time soon.

Gigabit networks already demand encryption of ATM cell streams. This often
won’t be done in the end systems, as people rely increasingly on boundary control
devices such as firewalls or guards to create virtual private networks. This is likely
to mean changing the key every three blocks.

In low cost embedded systems, key changes are already common. In [2] we de-
scribed a typical fielded electronic purse system where each transaction involved
ten key set-ups and fourteen block cipher operations.

So we believe that most real applications will have one key change every 1–5
encryptions, and suggest for simplicity’s sake that the benchmark should be the
one natural in ATM networks, namely the average cost of one key change plus
three block cipher operations. On this benchmark, Serpent does not badly across
a wide range of platforms, especially the IA-64 architecture which will almost
certainly be the standard for the next generation of PCs. According to engineers
from Hewlett Packard, the relevant figures are [13]:

MARS RC6 Rijndael Serpent Twofish Serpent is:
IA64 2965 3051 504 2269 2991 2nd
PA-RISC 3409 2686 666 2415 3453 2nd

1 Although this team did not implement MARS, there seems no reason to suppose
that MARS would do any better than RC6

3

The above figures are the average clock cycle costs, over encryption and
decryption, of one key setup plus three block cipher operations. Even on Pentium,
using this benchmark, Serpent is the third fastest algorithm when one combines
the published cycle count figures from Gladman [8] and Osvik [11], and fourth
fastest combining Worley et al [13] and Osvik. It’s second and third respectively
with Osvik’s latest figures (2531 cycles on a K7). We hope to have stable and
comparable figures by the May 15th deadline. NIST’s results also show Serpent
doing well on Ultrasparc II [4] (though unfortunately without clock cycle counts).

One of the main things to emerge from the extensive testing of round 2
finalists is that some algorithms achieve high throughput at the cost of slow
key setup, while others are reasonably key agile. We believe that very many
application designers will prefer the latter.

Another point is that some algorithms achieve high software throughput at
the cost of high hardware complexity. We believe that the AES should have a
simple hardware implementation.

We are not trying to claim that Serpent is the fastest algorithm. Speed was
not the primary goal of the AES competition, and we designed Serpent according
to the specification from NIST. What we do say is that Serpent’s security was
not bought at an unacceptable price in speed.

3 Miscellaneous

Much has been written recently about power analysis. One of us is currently
doing an implementation of all five finalists on an 8051-based smartcard with
no specific power analysis defences. As the bulk of the work is being done by
students, full results aren’t expected until the end of the academic year. But
from what’s known so far, we don’t expect that any one finalist will be much
superior to any other: just that the attack techniques will differ.

The likely solution to power analysis is hardware engineering, and a strong
contender is dual-rail logic in which the current drawn is independent of the
data. One of us is involved in such a project [10]. Dual-rail design is easier where
one only has to worry about the simple logical operations used in Serpent, rather
than operations with carry, and especially multiplications. So choosing Serpent
as the AES will make the smartcard designer’s job easier.

Finally, the claim that Serpent’s whole key schedule has to be worked out
in advance for decryption is incorrect. It is not necessary to apply the S-boxes
during the forward computation.

4 Conclusion

Serpent should be chosen as the Advanced Encryption Standard. It’s the fastest
algorithm in hardware, and the second fastest in software on the IA-64 archi-
tecture. Above all, Serpent should be chosen because it’s the most secure of the
candidates.

4

References

1. RJ Anderson, E Biham, LR Knudsen, “Serpent: A Proposal for the Advanced
Encryption Standard’, submitted to NIST as an AES candidate. A short version
of the paper appeared at the AES conference, August 1998; both papers are
available at http://www.cl.cam.ac.uk/~rja14/serpent.html

2. RJ Anderson, E Biham, LR Knudsen, “Serpent and Smartcards” in Cardis 98,
Springer Verlag (2000) pp 257–264; also available at http://www.cl.cam.ac.

uk/~rja14/serpent.html

3. RJ Anderson, MG Kuhn, “Low Cost Attacks on Tamper Resistant Devices”
in Security Protocols – Proceedings of the 5th International Workshop (1997)
Springer LNCS vol 1361 pp 125–136

4. LE Bassham III, “Efficiency Testing of ANSI C implementations of Round 2
Candidate Algorithms for the Advanced Encryption Standard”, to appear in
the proceedings of the 3rd AES Candidate Conference

5. E Biham, A Shamir, ‘Differential Cryptanalysis of the Data Encryption Stan-
dard’ (Springer 1993)

6. AJ Elbirt, W Yip, B Chetwynd, C Paar, “An FPGA-Based Performance Eval-
uation of the AES Block Cipher Candidate Algorithm Finalists”, to appear in
the proceedings of the 3rd AES Candidate Conference

7. “Announcing Request for Candidate Algorithm Nominations for the Advanced
Encryption Standard (AES)”, in Federal Register September 12, 1997 (Volume
62, Number 177), pp 48051–48058

8. B Gladman, “Implementation Experience with AES Candidate Algorithms”,
in Proceedings of the 2nd AES Candidate Conference (NIST, 1999) pp 7–14

9. M Matsui, “Linear Cryptanalysis Method for DES Cipher”, in Advances in
Cryptology — Eurocrypt 93, Springer LNCS v 765 pp 386–397

10. SW Moore, RJ Anderson, MG Kuhn, “Improving Smartcard Security using
Self-timed Circuit Technology”, Fourth ACiD-WG Workshop, Grenoble, ISBN
2-913329-44-6, 2000

11. DA Osvik, “Speeding Up Serpent”, to appear in the proceedings of the 3rd
AES Candidate Conference

12. B Weeks, M Bean, T Rozylowicz, C Ficke, “Hardware Performance Simula-
tions of Round 2 Advanced Encryption Standard Algorithms”, to appear in
the proceedings of the 3rd AES Candidate Conference

13. J Worley, B Worley, T Christian, C Worley, “AES Finalists on PA-RISC and
IA64: Implementations and Performance”, to appear in the proceedings of the
3rd AES Candidate Conference

5

Comments on Two�sh as an AES Candidate

Bruce Schneier� John Kelseyy Doug Whitingz David Wagnerx Niels Ferguson{

March 24, 2000

1 Introduction

In 1996, the National Institute of Standards and Technology initiated a program to choose an Advanced
Encryption Standard (AES) to replace DES. Four years later, NIST is about to choose that standard. We,
the authors of the Two�sh algorithm, would like to express our continued support for Two�sh.

2 Two�sh

Two�sh is our submission to the AES process. Since �rst proposing the algorithm in 1998, we have continued
to perform extensive analysis of the cipher: both cryptanalysis and performance analysis. We believe that
Two�sh is the best AES candidate of the �ve �nalist algorithms.

Security: Two�sh was designed primarily with security in mind. To date the Two�sh round function has
proven to be the strongest round function of any of the �nalists, with the best known attack being on 6
rounds of Two�sh compared to at least 9 rounds for any of the other �nalists.

Performance: Two�sh is routinely one of the fastest AES candidates; it was designed to have good perfor-
mance on a variety of hardware and software platforms, instead of being optimized for a single platform.
Although Two�sh is not the easiest algorithm to implement or optimise, it is amongst the fastest algorithms
on virtually every platform when properly implemented.

Flexibility: Two�sh is unique in its implementation exibility. The algorithm can be optimized for bulk
encryption, key agility, low gate count, high gate count, or any combination of factors. All of these imple-
mentations are completely interoperable.

More interesting than these individual measures is the security/performance ratio of Two�sh. Looking at
the �ve algorithms in this manner|normalizing to the largest number of rounds cryptanalyzed is a good
metric|Two�sh far surpasses the other four �nalists.

3 Discussion

The AES process has worked even better than expected. Today we have �ve good algorithms, and any of
the designs would make a good AES standard. (We would recommend increasing the number of rounds for
RC6 from 20 to 32, and the number of rounds in Rijndael from 10/12/14 to 18, to get at least a 2x security

�Counterpane Internet Security, Inc., 3031 TischWay, 100 Plaza East, San Jose, CA 95128, USA; schneier@counterpane.com.
yCounterpane Internet Security, Inc. kelsey@counterpane.com.
zHi/fn, Inc., 5973 Avenida Encinas Suite 110, Carlsbad, CA 92008, USA; dwhiting@hifn.com.
xUniversity of California Berkeley, Soda Hall, Berkeley, CA 94720, USA; daw@cs.berkeley.edu.
{Counterpane Internet Security, Inc. niels@counterpane.com.

1

margin|number of rounds greater than the maximum number of rounds that can be cryptanalyzed|as
recommended by Lars Knudsen.)

Two of the �nalists, MARS and RC6, are not well-suited certain applications, most notably small-memory
implementations (e.g., smart cards) and highly key-agile systems (e.g., IPsec). Any one of the other three
algorithms|Rijndael (with the extra rounds), Serpent, or Two�sh would make an excellent standard.

Of the �ve �nalists, Two�sh has the best speed/security-margin tradeo�, as well as the most exibility.
With security and speed being the most important criteria (certainly the most talked-about), we believe
that Two�sh is the best single �nalist.

4 More Information

More information on Two�sh can be found on the Two�sh Web site, at http://www.counterpane.com/

twofish.html.

2

NOTES

