
An FPGA Implementation and Performance Evaluation of the AES

Block Cipher Candidate Algorithm Finalists �

AJ Elbirt1, W Yip1, B Chetwynd2, C Paar1

Electrical and Computer Engineering Department

Worcester Polytechnic Institute

100 Institute Road, Worcester, MA 01609, USA

1 Email: faelbirt, waihyip, christofg@ece.wpi.edu
2 Email: spunge@alum.wpi.edu

Abstract

The technical analysis used in determining which of the Advanced Encryption Standard candidates
will be selected as the Advanced Encryption Algorithm includes e�ciency testing of both hardware and
software implementations of candidate algorithms. Reprogrammable devices such as Field Programmable
Gate Arrays (FPGAs) are highly attractive options for hardware implementations of encryption algo-
rithms as they provide cryptographic algorithm agility, physical security, and potentially much higher
performance than software solutions. This contribution investigates the signi�cance of FPGA implemen-
tations of four of the Advanced Encryption Standard candidate algorithm �nalists. Multiple architectural
implementation options are explored for each algorithm. A strong focus is placed on high throughput
implementations, which are required to support security for current and future high bandwidth appli-
cations. The implementations of each algorithm will be compared in an e�ort to determine the most
suitable candidate for hardware implementation within commercially available FPGAs.

Keywords: cryptography, algorithm-agility, FPGA, block cipher, VHDL

1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a Federal Infor-
mation Processing Standard (FIPS) for the Advanced Encryption Standard (AES), specifying an Advanced
Encryption Algorithm to replace the Data Encryption Standard (DES) which expired in 1998 [1]. NIST has
solicited candidate algorithms for inclusion in AES, resulting in �fteen o�cial candidate algorithms of which
�ve have been selected as �nalists. Unlike DES, which was designed speci�cally for hardware implementa-
tions, one of the design criteria for AES candidate algorithms is that they can be e�ciently implemented in
both hardware and software. Thus, NIST has announced that both hardware and software performance mea-
surements will be included in their e�ciency testing. So far, however, virtually all performance comparisons
have been restricted to software implementations on various platforms [2].

The advantages of a software implementation include ease of use, ease of upgrade, portability, and
exibility. However, a software implementation o�ers only limited physical security, especially with respect
to key storage [3] [4]. Conversely, cryptographic algorithms (and their associated keys) that are implemented
in hardware are, by nature, more physically secure as they cannot easily be read or modi�ed by an outside

�This research was supported in part through NSF CAREER award #CCR-9733246.

1

attacker [4]. The downside of traditional (ASIC) hardware implementation are the lack of exibility with
respect to algorithm and parameter switch. A promising alternative for implementation block cipher are
recon�gurable hardware devices such as Field Programmable Gate Arrays (FPGAs). FPGAs are hardware
devices whose function is not �xed and which can be programmed in-system. The potential advantages of
encryption algorithms implemented in FPGAs include:

Algorithm Agility This term refers to the switching of cryptographic algorithms during operation. The
majority of modern security protocols, such as SSL or IPsec, allow for multiple encryption algo-
rithms. The encryption algorithm is negotiated on a per-session basis; e.g., IPsec allows among others
DES, 3DES, Blow�sh, CAST, IDEA, RC4 and RC6 as algorithms, and future extensions are possible.
Whereas algorithm agility is costly with traditional hardware, FPGAs can be reprogrammed on-the-y.

Algorithm Upload It is perceivable that �elded devices are upgraded with a new encryption algorithm
which did not exist (or was not standardized!) at design time. In particular, it is very attractive
for numerous security products to be upgraded for use of AES once the selection process is over.
Assuming there is some kind of (temporary) connection to a network such as the Internet, FPGA-
equipped encryption devices can upload the new con�guration code.

Algorithm Modi�cation There are applications which require modi�cation of a standardized algorithm,
e.g., by using proprietary S-boxes or permutations. Such modi�cations are easily made with recon�g-
urable hardware. Similarly, a standardized algorithm can be swapped with a proprietary one. Also,
modes of operation can be easily changed.

Architecture E�ciency In certain cases, a hardware architecture can be much more more e�cient if it is
designed for a speci�c set of parameters; e.g., constant multiplication (of integers or in Galois �elds)
is far more e�cient than general multiplication. With FPGAs it is possible to design and optimize an
architecture for a speci�c parameter set.

Throughput Although typically slower than an ASIC implementations, FPGA implementations have the
potential of running substantially faster then software implementations.

Cost E�ciency The time and costs for developing an FPGA implementation of a given algorithm are
much lower than for an ASIC implementation. (However, for high-volume applications, ASIC solutions
usually become the more cost-e�cient choice.)

Note that algorithm agility remains an open research issue in regards to speed, physical security, and
the cost associated with current high-end FPGA devices. However, we believe that cost is not a long-
term limiting factor, as will be discussed in Section 3.3. For these reasons, this paper describes a thorough
comparison the AES �nalist algorithms RC6, Rijndael, Serpent, and Two�sh with respect to implementation
on state-of-the-art FPGAs. One aspect that seems to be especially relevant is the investigation of achievable
encryption rates for FPGA-based implementations. We demonstrate that FPGA solutions encrypt at rates
in the Gigabit range for all four algorithms investigated, which is at least one order of magnitude faster than
most reported software implementations [5].

What follows is an investigation of the AES �nalists to determine the nature of their underlying com-
ponents. The characterization of the algorithms' components will lead to a discussion of the hardware
architectures best suited for implementation of the AES �nalists. A performance metric to measure the
hardware cost for the throughput achieved by each algorithm's implementations will be developed and a
target FPGA will be chosen so as to yield implementations that are optimized for high-throughput opera-
tion within the commercially available device. Finally, multiple architecture options of the algorithms within
the targeted FPGA will be discussed and the overall performance of the implementations will be evaluated
versus typical software implementations.

2

2 Previous Work

As opposed to custom hardware or software implementations, little work exists in the area of block cipher
implementations within existing FPGAs. DES, the most common block cipher implementation targeted to
FPGAs, has been shown to operate at speeds of up to 400 Mbit/s [6]. We believe that this performance can
be greatly enhanced using today's technology. These speeds are signi�cantly faster than the best software
implementations of DES [7] [8] [9], which typically have throughputs below 100 Mbit/s, although a 137
Mbit/s implementation has been reported as well [7]. This performance di�erential is an expected result of
DES having been designed in the 1970s with hardware implementations in mind.

Other block ciphers have been implemented in FPGAs with varying degrees of success. A typical exam-
ple is the IDEA block cipher which has been implemented at speeds ranging from 2.8 Mbit/s [10] to 528
Mbit/s [11]. Note that while the 528 Mbit/s throughput was achieved in a fully pipelined architecture, the
implementation required four Xilinx XC4000 FPGAs.

Some FPGA implementation throughputs for the AES candidates have been shown to be far slower
than their software counterparts. Hardware throughputs of about 12 Mbit/s [12] [13] have been achieved for
CAST-256. However, software implementations have resulted in throughputs of 37.8 Mbit/s for CAST-256 on
a 200 MHz PentiumPro PC [5], a factor of three faster than FPGA implementations. When scaled to a more
current 600 MHz PentiumPro PC, it is expected that the same software implementation would outperform
FPGA implementations by an even larger factor. While an FPGA implementation of RC6 achieved data
rates of 37.8 Mbit/s [13], our �ndings indicate that considerably higher data rates are achievable.

When examining the AES �nalists, it is important to note that they do not necessarily exhibit similar
behavior to DES when comparing hardware and software implementations. One reason for this is that the
AES �nalists have been designed with e�cient software implementations in mind. Additionally, software
implementations may be executed on processors operating at frequencies as high as 800 MHz while typical
implementations that target FPGAs reach a maximum clock frequency of 50 MHz.

3 Methodology

3.1 Design Methodology

There are two basic hardware design methodologies currently available: language based (high level) design
and schematic based (low level) design. Language based design relies upon synthesis tools to implement
the desired hardware. While synthesis tools continue to improve, they rarely achieve the most optimized
implementation in terms of both area and speed when compared to a schematic implementation. As a
result, synthesized designs tend to be (slightly) larger and slower than their schematic based counterparts.
Additionally, implementation results can greatly vary depending on the synthesis tool as well as the design
being synthesized, leading to potentially increased variances in the synthesized results when comparing
synthesis tool outputs. This situation is not entirely di�erent from a software implementation of an algorithm
in a high-level language such as C, which is also dependent on coding style and compiler quality. As shown in
[14], schematic based design methodologies are no longer feasible for supporting the increase in architectural
complexity evidenced by modern FPGAs. As a result, a language based design methodology was chosen as
the implementation form for the AES �nalists with VHDL being the speci�c language chosen.

3.2 Implementations | General Considerations

Each AES �nalist was implemented in VHDL using a bottom-up design and test methodology. The same
hardware interface was used for each of the implementations. In an e�ort to achieve the maximum e�ciency
possible, note that key scheduling and decryption were not implemented for each of the AES �nalists. Because
FPGAs may be recon�gured in-system, the FPGA may be con�gured for key scheduling and then later

3

recon�gured for either encryption or decryption. This option is a major advantage of FPGAs implementations
over classical ASIC implementations. Round keys for encryption are loaded from the external key bus and
are stored in internal registers and all keys must be loaded before encryption may begin. Key loading is
disabled until encryption is completed. Each implementation was simulated for functional correctness using
the test vectors provided in the AES submission package [15] [16] [17] [18]. After verifying the functionality of
the implementations, the VHDL code was synthesized, placed and routed, and re-simulated with annotated
timing using the same test vectors, verifying that the implementations were successful.

3.3 Selection of a Target FPGA

When examining the AES �nalists for hardware implementation within an FPGA, a number of key aspects
emerge. First, it is obvious that the implementation will require a large amount of I/O pins to fully support
the 128-bit data stream at high speeds where bus multiplexing is not an option. It is desirable to decouple
the 128-bit input and output data streams to allow for a fully pipelined architecture. Since the round keys
cannot change during the encryption process, they may be loaded via a separate key input bus prior to the
start of encryption. Additionally, to implement a fully pipelined architecture requires 128-bit wide pipeline
stages, resulting in the need for a register-rich architecture to achieve a fast, synchronous implementation.
Moreover, it is desirable to have as many register bits as possible per each of the FPGA's con�gurable units to
allow for a regular layout of design elements as well as to minimize the routing required between con�gurable
units. Finally, it is critical that fast carry-chaining be provided between the FPGA's con�gurable units to
maximize the performance of AES �nalists that utilize arithmetic operations [13] [12].

In addition to architectural requirements, scalability and cost must be considered. We believe that the
chosen FPGA should be the best chip available, capable of providing the largest amount of hardware resources
as well as being highly exible so as to yield optimal performance. Unfortunately, the cost associated with
current high-end FPGAs is relatively high (several hundred US dollars per device). However, it is important
to note that the FPGA market has historically evolved at an extremely rapid pace, with larger and faster
devices being released to industry at a constant rate. This evolution has resulted in FPGA cost-curves that
decrease sharply over relatively short periods of time. Hence, selecting a high-end device provides the closest
model for the typical FPGA that will be available over the expected lifespan of AES.

Based on the aforementioned considerations, the Xilinx Virtex XCV1000BG560-4 FPGA was chosen as
the target device. The XCV1000 has 128K bits of embedded RAM divided among thirty-two RAM blocks
that are separate from the main body of the FPGA. The 560-pin ball grid array package provides 512 usable
I/O pins. The XCV1000 is comprised of a 64 � 96 array of look-up-table based Con�gurable Logic Blocks
(CLBs), each of which acts as a 4-bit element comprised of two 2-bit slices for a total of 12288 CLB slices
[19]. This type of con�guration results in a highly exible architecture that will accommodate the round
functions' use of wide operand functions. Note that the XCV1000 also appears to be a good representative
for a modern FPGA and that devices from other vendors are not fundamentally di�erent. It is thus hoped
that our results carry over, within limits, to other devices.

3.4 Design Tools

FPGA Express by Synopsys, Inc. and Synplify by Synplicity, Inc. were used to synthesize the VHDL imple-
mentations of the AES �nalists. As this study places a strong focus on high throughput implementations,
the synthesis tools were set to optimize for speed. As will be discussed in Section 6, the resultant implemen-
tations exhibit the best possible throughputs with the associated cost being an increase in the area required
in the FPGA for each of the implementations. Similarly, if the synthesis tools were set to optimize for area,
the resultant implementations would exhibit reduced area requirements at the cost of decreased throughput.

XACTstep 2.1i by Xilinx, Inc. was used to place and route the synthesized implementations. For the
sub-pipelined architectures, a 40 MHz timing constraint was used in both the synthesis and place-and-
route processes as it resulted in signi�cantly higher system clock frequencies. However, the 40 MHz timing

4

constraint was found to have little a�ect on the other architecture types, resulting in nearly identical system
clock frequencies to those achieved without the timing constraint.

Finally, Speedwave by Viewlogic Systems, Inc. and Active-HDLTM by ALDEC, Inc. were used to perform
behavioral and timing simulations for the implementations of the AES �nalists. The simulations veri�ed
both the functionality and the ability to operate at the designated clock frequencies for the implementations.

4 Architecture Options and the AES Finalists

Before attempting to implement the AES �nalists in hardware, it is important to understand the nature of
each algorithm as well as the hardware architectures most suited for their implementation. What follows
is an investigation into the key components of the AES �nalists. Based on this breakdown, a discussion is
presented on the hardware architectures most suited for implementation of the AES �nalists.

4.1 Core Operations of the AES Finalist Algorithms

Algorithm XOR Mod 232 Mod 232 Fixed Variable Mod 232 GF(28) LUT
Add Subtract Shift Rotate Multiply Multiply

MARS � � � � � � �

RC6 � � � � �

Rijndael � � � �

Serpent � � �

Two�sh � � � � �

Table 1: AES �nalists core operations [20]

Modern FPGAs have a structure comprised of a two-dimensional array of con�gurable function units
interconnected via horizontal and vertical routing channels. Con�gurable function units are typically com-
prised of look-up-tables and ip-ops. Look-up-tables may be con�gured as either combinational logic or
memory elements. Additionally, many modern FPGAs provide variable-size SRAM blocks that may be used
as either memory elements or look-up-tables [21].

In terms of complexity, the operations detailed in Table 1 that require the most hardware resources as well
as computation time are the modulo 232 multiplication and the variable rotation operations [20]. Implement-
ing wide multipliers in hardware is an inherently di�cult task that requires signi�cant hardware resources.
Additionally, algorithms that employ large variable rotations require a moderate amount of multiplexing
hardware if carefully designed (see Section 5.1 for further discussion). S-Boxes may be implemented in either
combinatorial logic or embedded RAM| the advantages of each of these options are discussed in Section 4.2.
Fast operations such as bit-wise XOR, modulo 232 addition and subtraction, and �xed value shifting are con-
structed from simple hardware elements. Additionally, the Galois �eld multiplications required in Rijndael
and Two�sh can also be implemented very e�ciently in hardware as they are multiplications by a constant.
Galois �eld constant multiplication requires far less resources than general multiplications [22].

Based on our evaluation of the AES �nalists, the MARS algorithm appeared to be the most resource
intensive based on its use of large S-Boxes, and modulo 232 multiplication. As a result, it was conjectured
that the MARS algorithm would exhibit lesser performance when compared to the other AES �nalists. Due
to this evaluation and a lack of development resources, the MARS algorithm was omitted from this study.

4.2 Hardware Architectures

The AES �nalists are all comprised of a basic looping structure (some form of either Feistel or substitution-
permutation network) whereby data is iteratively passed through a round function. Based on this looping

5

structure, the following architecture options were investigated so as to yield optimized implementations:

� Iterative Looping

� Loop Unrolling

� Partial Pipelining

� Partial Pipelining with Sub-Pipelining

Iterative looping over a cipher's round structure is an e�ective method for minimizing the hardware
required when implementing an iterative architecture. When only one round is implemented, an n-round
cipher must iterate n times to perform an encryption. This approach has a low register-to-register delay but
a requires a large number of clock cycles to perform an encryption. This approach also minimizes in general
the hardware required for round function implementation but can be costly with respect to the hardware
required for round key and S-Box multiplexing. Iterative looping is a subset of loop unrolling in that only
one round is unrolled whereas a loop unrolling architecture allows for the unrolling of multiple rounds, up to
the total number of rounds required by the cipher. As opposed to an iterative looping architecture, a loop
unrolling architecture where all n rounds are unrolled and implemented as a single combinatorial logic block
maximizes the hardware required for round function implementation while the hardware required for round
key and S-Box multiplexing is completely eliminated. However, while this approach minimizes the number
of clock cycles required to perform an encryption, it maximizes the worst case register-to-register delay for
the system, resulting in an extremely slow system clock.

A partially pipelined architecture o�ers the advantage of high throughput rates by increasing the number
of blocks of data that are being simultaneously operated upon. This is achieved by replicating the round
function hardware and registering the intermediate data between rounds. Moreover, in the case of a full-
length pipeline (a speci�c form of a partial pipeline), the system will output a 128-bit block of ciphertext
at each clock cycle once the latency of the pipeline has been met. However, an architecture of this form
requires signi�cantly more hardware resources as compared to a loop unrolling architecture. In a partially
pipelined architecture, each round is implemented as the pipeline's atomic unit and are separated by the
registers that form the actual pipeline. However, many of the AES �nalists cannot be implemented using
a full-length pipeline due to the large size of their associated round function and S-Boxes, both of which
must be replicated n times for an n-round cipher. As such, these algorithms must be implemented as partial
pipelines. Additionally, a pipelined architecture can be fully exploited only in modes of operations which
do not require feedback of the encrypted data, such as Electronic Code-Book or Counter Mode [3, Section
9.9]. When operating in feedback modes such as Ciphertext Feedback Mode, the ciphertext of one block
must be available before the next block can be encrypted. As a result, multiple blocks of plaintext cannot
be encrypted in a pipelined fashion when operating in feedback modes. For the remainder of our discussion,
feedback mode will be abbreviated as FB and non-feedback mode will be abbreviated as NFB.

Sub-pipelining a (partially) pipelined architecture is advantageous when the round function of the
pipelined architecture is complex, resulting in a large delay between pipeline stages. By adding sub-pipeline
stages, the atomic function of each pipeline stage is sub-divided into smaller functional blocks. This results
in a decrease in the pipeline's delay between stages. However, each sub-division of the atomic function
increases the number of clock cycles required to perform an encryption by a factor equal to the number of
sub-divisions. At the same time, the number of blocks of data that may be operated upon in NFB mode
is increased by a factor equal to the number of sub-divisions. Therefore, for this technique to be e�ective,
the worst case delay between stages will be decreased by a factor of m where m is the number of added
sub-divisions. However, if the atomic function of the partially pipelined architecture has a small stage de-
lay, sub-dividing the stage will achieve no signi�cant decrease in the worst case stage delay. In this case,
sub-pipelining would result in no signi�cant increase in the system's clock frequency but would increase the
logic resources and clock cycles required to perform an encryption, resulting in reduced throughput.

6

Many FPGAs provide embedded RAM which may be used to replace the round key and S-Box multi-
plexing hardware. By storing the keys within the RAM blocks, the appropriate key may be addressed based
on the current round. However, due to the limited number of RAM blocks, as well as their restricted bit
width, this methodology is not feasible for architectures with many pipeline stages or unrolled loops. Those
architectures require more RAM blocks than are typically available. Additionally, the switching time for the
RAM is more than a factor of three longer than that of a standard CLB slice element, resulting in the RAM
element having a lesser speed-up e�ect on the overall implementation. Therefore, the use of embedded RAM
is not considered for this study to maintain consistency between architectural implementations.

5 Architectural Implementation Analysis

For each of the AES �nalists, the four architecture options described in Section 4.2 were implemented in
VHDL using a bottom-up design and test methodology. The same hardware interface was used for each of the
implementations. Round keys are stored in internal registers and all keys must be loaded before encryption
may begin. Key loading is disabled until encryption is completed. These implementations yielded a great
deal of knowledge in regards to the FPGA suitability of each AES �nalist. What follows is a discussion of
the knowledge gained regarding each algorithm when implemented using the four architecture types.

5.1 Architectural Implementation Analysis | RC6

When implementing the RC6 algorithm, it was �rst determined that the RC6 modulo 232 multiplication was
the dominant element of the round function in terms of required logic resources. Each RC6 round requires
two copies of the modulo 232 multiplier. However, it was found that the RC6 round function does not
require a general modulo 232 multiplier. The RC6 multipliers implement the function A(2A + 1) which may
be implemented as 2A2 + A. Therefore, the multiplication operation was replaced with an array squarer
with summed partial products, requiring fewer hardware resources and resulting in a faster implementation.
The remaining components of the RC6 round function | �xed and variable shifting, bit-wise XOR, and
modulo 232 addition | were found to be simple in structure, resulting in these elements of the round
function requiring few hardware resources. While variable shifting operations have the potential to require
considerable hardware resources, the 5-bit variable shifting required by the RC6 round function required
few hardware resources. Instead of implementing a 32-to-1 multiplexor for each of the thirty-two rotation
output bits (controlled by the �ve shifting bits), a �ve-level multiplexing approach was used. The variable
rotation is broken into �ve stages, each of which is controlled by one of the �ve shifting bits. For each
rotation output bit of a given stage, a 2-to-1 multiplexor controlled by the stage's shifting bit is used. This
implementation requires a total of 160 2-to-1 multiplexors as opposed to the thirty-two 32-to-1 multiplexors
required for a one-stage implementation. However, using 2-to-1 multiplexors to form the �ve-stage barrel-
shifter results in an overall implementation that is smaller and faster when compared to the one-stage
barrel-shifter implementation as described in [18, Section 3.4]. Finally, it was found that the synthesis tools
could not minimize the overall size of a RC6 round su�ciently to allow for a fully unrolled or fully pipelined
implementation of the entire twenty rounds of the algorithm within the target FPGA.

As discussed in Section 4.2, implementing a single round of the RC6 algorithm provides the greatest
area-optimized solution. Further loop unrolling provided only minor throughput increases as the decrease in
the number of cycles per encrypted block was o�set by the rapidly decreasing system clock frequency. 2-stage
partial pipelining was found to yield the highest throughput when operating in FB mode, outperforming the
single round iterative looping implementation by achieving a signi�cantly higher system clock frequency.

When operating in NFB mode, a partially pipelined architecture with two additional sub-pipeline stages
was found to o�er the advantage of extremely high throughput rates once the latency of the pipeline was
met, with the 10-stage partial pipeline implementation displaying the best throughput and results. Based
on the delay analysis of the partial pipeline implementations, it was determined that nearly two thirds of

7

the round function's associated delay was attributed to the modulo 232 multiplier. Therefore, two additional
pipeline sub-stages were implemented so as to subdivide the multiplier into smaller blocks, resulting in a
total of three pipeline stages per round function. As a result, an increase by a factor of more than 2.5 was
seen in the system's clock frequency, resulting in a similar increase in throughput when operating in NFB
mode. Further sub-pipelining was not implemented as this would require sub-dividing the adders used to
sum the partial products (a non-trivial task) to balance the delay between sub-pipeline stages.

5.2 Architectural Implementation Analysis | Rijndael

When implementing the Rijndael algorithm, it was �rst determined that the Rijndael S-Boxes were the
dominant element of the round function in terms of required logic resources. Each Rijndael round requires
sixteen copies of the S-Boxes, each of which is an 8-bit to 8-bit look-up-table, requiring signi�cant hardware
resources. However, the remaining components of the Rijndael round function | byte swapping, constant
Galois �eld multiplication, and key addition | were found to be simple in structure, resulting in these
elements of the round function requiring few hardware resources. Additionally, it was found that the synthesis
tools could not minimize the overall size of a Rijndael round su�ciently to allow for a fully unrolled or fully
pipelined implementation of the entire ten rounds of the algorithm within the target FPGA.

Surprisingly, a one round partially pipelined implementation with one sub-pipeline stage provided the
most area-optimized solution. As compared to a one-stage implementation with no sub-pipelining, the
addition of a sub-pipeline stage a�orded the synthesis tool greater exibility in its optimizations, resulting in
a more area e�cient implementation. While 2-stage loop unrolling was found to yield the highest throughput
when operating in FB mode, the measured throughput was within 10% of the single stage implementation.
Due to the probabilistic nature of the place-and-route algorithms, one can expect a variance in performance
based on di�erences in the starting point of the process. When performing this process multiple times, known
as multi-pass place-and-route, it is likely that the single round implementation would achieve a throughput
similar to that of the 2-stage loop unrolled implementation.

When operating in NFB mode, partial pipelining was found to o�er the advantage of extremely high
throughput rates once the pipeline latency was met, with the 5-stage partial pipeline implementation display-
ing the best throughput results. While Rijndael cannot be implemented using a fully pipelined architecture
due to the large size of the round function, signi�cant throughput increases were seen as compared to the
loop unrolling architecture.

Sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline sub-stage
within the Rijndael round function. Based on the delay analysis of the partial pipeline implementations,
it was determined that nearly half of the round function's associated delay was attributed to the S-Box
substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the S-Boxes
from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in the system's
clock frequency, resulting in a similar increase in throughput when operating in NFB mode. Further sub-
pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial task) to balance
the delay between sub-pipeline stages.

5.3 Architectural Implementation Analysis | Serpent

When implementing the Serpent algorithm, it was �rst determined that since the Serpent S-Boxes are
relatively small (4-bit to 4-bit), it is possible to implement them using combinational logic as opposed to
memory elements. Additionally, the S-Boxes map extremely well to the Xilinx CLB slice, which is comprised
of 4-bit look-up-tables, allowing one S-Box to be implemented in a total of two CLB slices, yielding a compact
implementation which minimizes routing between CLB slices. Finally, the components of the Serpent round
function | key masking, S-Box substitution, and linear transformation | were found to be simple in
structure, resulting in the round function requiring few hardware resources.

8

Implementing a single round of the Serpent algorithm provides the greatest area-optimized solution.
However, a signi�cant performance improvement was achieved by performing 8-round loop unrolling, remov-
ing the need for S-Box multiplexing hardware as one copy of each possible S-Box grouping is now included
within one of the eight rounds. This amount of loop unrolling achieved a signi�cant performance increase
with little increase in hardware resources due to the compact nature of the Serpent round function. As ex-
pected, unrolling thirty-two rounds of the Serpent algorithm resulted in a lesser performance when compared
to the eight round implementation. Implementing the thirty-two rounds of the algorithm in combinatorial
logic severely hampered the overall clock frequency of the system, overriding the performance increase caused
by the removal of the multiplexing hardware required to switch between keys.

When operating in NFB mode, a full-length pipelined architecture was found to o�er the advantage of
extremely high throughput rates once the latency of the pipeline was met, outperforming smaller partially
pipelined implementations. In the fully pipelined architecture, all of the elements of a given round function
are implemented as combinatorial logic. Other AES �nalists cannot be implemented using a fully pipelined
architecture due to the larger round functions. However, due to the small size of the Serpent S-Boxes (4-bit
look-up-tables), the cost of S-Box replication is minimal in terms of the required hardware.

Finally, sub-pipelining of the partially pipelined architectures was determined to yield no throughput
increase. Because the round function components are all simple in structure, there is little performance to
be gained by subdividing them with registers in an attempt to reduce the delay between stages. As a result,
the increase in the system's clock frequency would not outweigh the increase in the number of clock cycles
required to perform an encryption, resulting in a performance degradation.

5.4 Architectural Implementation Analysis | Two�sh

When implementing the Two�sh algorithm, it was �rst determined that the synthesis tools were unable
to minimize the Two�sh S-Boxes to the extent of other AES �nalist algorithms due to the S-Boxes being
key-dependent. Therefore, the overall size of a Two�sh round was too large to allow for a fully unrolled
or fully pipelined implementation of the algorithm within the target FPGA. Moreover, the key-dependent
S-Boxes were found to require nearly half of the delay associated with the Two�sh round function.

As expected, implementing a single round of the Two�sh algorithm provides the greatest area-optimized
solution in terms of total CLB slices required for the implementation. Additional loop unrolling provided
minor throughput increases as the decrease in the number of cycles per encrypted block was o�set by the
rapidly decreasing system clock frequency. However, single stage partial pipelining with one sub-pipeline
stage was found to yield the best throughput and when operating in feedback mode. With a small increases
in the required hardware resources, the sub-pipelined architecture was able to reach a signi�cantly faster
system clock frequency as compared to the loop unrolling and partial pipeline implementations.

When operating in NFB mode, a partially pipelined architecture was found to o�er the advantage of
extremely high throughput rates once the latency of the pipeline was met, with the 8-stage partial pipeline
implementation displaying the best throughput results. While Two�sh cannot be implemented using a fully
pipelined architecture due to the large size of the round function, signi�cant throughput increases were seen
as compared to the loop unrolling architecture.

Finally, sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline
sub-stage within the Two�sh round function. Based on the delay analysis of the partial pipeline implemen-
tations, it was determined that nearly half of the round function's associated delay was attributed to the
S-Box substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the
S-Boxes from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in
the system's clock frequency, resulting in a similar increase in throughput when operating in NFB mode.
Further sub-pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial
task) to balance the delay between sub-pipeline stages.

9

6 Performance Evaluation

Tables 2 and 3 detail the throughput measurements for the implementations of the three architecture types
for each of the AES �nalists for both NFB and FB mode. The architecture types | loop unrolling (LU),
full or partial pipelining (PP), and partial pipelining with sub-pipelining (SP) | are listed along with the
number of stages and (if necessary) sub-pipeline stages in the associated implementation; e.g., LU-4 implies
a loop unrolling architecture with four rounds, while SP-2-1 implies a partially pipelined architecture with
two stages and one sub-pipeline stage per pipeline stage. As a result, the SP-2-1 architecture implements
two rounds of the given cipher with a total of two stages per round. Throughput is calculated as:

Throughput := (128 Bits * Clock Frequency)=(Cycles Per Encrypted Block)

Note that the implementation of a one stage partial pipeline architecture, an iterative looping architecture,
and a one round loop unrolled architecture are all equivalent and are therefore not listed separately. Also
note that the computed throughput for implementations that employ any form of hardware pipelining (as
discussed in Section 4) are made assuming that the pipeline latency has been met.

The number of CLBs required as well as the maximum operating frequency for each implementation
was obtained from the Xilinx report �les. Note that the Xilinx tools assume the absolute worst possible
operating conditions | highest possible operating temperature, lowest possible supply voltage, and worst-
case fabrication tolerance for the speed grade of the FPGA [23]. As a result, it is common for actual
implementations to achieve slightly better performance results than those speci�ed in the Xilinx report �les.

While this study focuses on high throughput implementations, the hardware resources required to achieve
this throughput is also a critical parameter. No established metric exists to measure the hardware resource
costs associated with the measured throughput of an FPGA implementation. Two area measurements of
FPGA utilization are readily apparent | logic gates and CLB slices. It is important to note that the logic
gate count does not yield a true measure of actual FPGA utilization. Hardware resources within CLB slices
may not be fully utilized by the place-and-route software so as to relieve routing congestion. This results in
an increase in the number of CLB slices without a corresponding increase in logic gates. To achieve a more
accurate measure of chip utilization, CLB slice count was chosen as the most reliable area measurement.
Therefore, to measure the hardware resource cost associated with an implementation's resultant throughput,
the Throughput Per Slice (TPS) metric is used. We de�ned TPS as:

TPS := (Encryption Rate)=(# CLB Slices Used)

Therefore, the optimal implementation will display the highest throughput and have the largest TPS. Note
that the TPS metric behaves inversely to the classical time-area (TA) product.

When comparing implementations using the TPS and throughput metrics, it is required that the archi-
tectures are implemented on the same FPGA. Di�erent FPGAs within the same family yield di�erent timing
results as a function of available logic and routing resources, both of which change based on the die size
of the FPGA. Additionally, it is impossible to legitimately compare FPGAs from separate families as each
family of FPGAs has a unique architecture which greatly a�ects the measured throughput and TPS. Finally,
it is critical to note that throughput (and therefore TPS) may not scale linearly based on the number of
rounds implemented for the three architecture types detailed in Section 4.1. As a result, it is imperative that
multiple implementations be examined for each architecture type, varying the round count to determine the
optimal number of rounds per implementation.

10

Clock Frequency Cycles per Throughput
Algorithm Architecture Slices (MHz) Block (Mbit/s)

RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 97.4
RC6 PP-2 3189 19.8 10 253.0
RC6 PP-4 4411 12.3 5 315.5
RC6 PP-5 4848 12.1 4 386.7
RC6 PP-10 7412 13.3 2 848.1
RC6 SP-1-1 2967 26.2 20 167.6
RC6 SP-2-1 3709 26.4 10 337.8
RC6 SP-4-1 5229 24.6 5 629.8
RC6 SP-5-1 5842 25.8 4 825.2
RC6 SP-10-1 8999 26.6 2 1704.6
RC6 SP-1-2 3134 39.1 20 250.0
RC6 SP-2-2 4062 38.9 10 497.4
RC6 SP-4-2 5908 31.3 5 802.3
RC6 SP-5-2 6415 33.3 4 1067.0
RC6 SP-10-2 10856 37.5 2 2397.9

Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 237.4
Rijndael PP-2 5281 23.5 5.5 545.9
Rijndael PP-5 10533 20.0 2.2 1165.8
Rijndael SP-1-1 3061 40.4 10.5 491.9
Rijndael SP-2-1 4871 38.9 5.25 949.1
Rijndael SP-5-1 10992 31.8 2.1 1937.9

Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 2.4 1 312.3
Serpent PP-8 6849 30.4 4 971.8
Serpent PP-32 9004 38.0 1 4860.2

Two�sh LU-1 2666 13.0 16 104.2
Two�sh LU-2 3392 7.1 8 113.6
Two�sh LU-4 4665 3.3 4 106.8
Two�sh LU-8 6990 1.7 2 108.1
Two�sh PP-2 3519 11.9 8 190.4
Two�sh PP-4 5044 11.5 4 369.3
Two�sh PP-8 7817 10.8 2 689.5
Two�sh SP-1-1 3053 29.9 16 239.2
Two�sh SP-2-1 3869 28.6 8 457.1
Two�sh SP-4-1 5870 27.3 4 872.3
Two�sh SP-8-1 9345 24.8 2 1585.3

Table 2: AES �nalist performance evaluation | non-feedback mode

11

Clock Frequency Cycles per Throughput
Algorithm Architecture Slices (MHz) Block (Mbit/s)

RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 97.4
RC6 PP-2 3189 19.8 20 126.5
RC6 PP-4 4411 12.3 20 78.9
RC6 PP-5 4848 12.1 20 77.3
RC6 PP-10 7412 13.3 20 84.8
RC6 SP-1-1 2967 26.2 40 83.8
RC6 SP-2-1 3709 26.4 40 84.5
RC6 SP-4-1 5229 24.6 40 78.7
RC6 SP-5-1 5842 25.8 40 82.5
RC6 SP-10-1 8999 26.6 40 85.2
RC6 SP-1-2 3134 39.1 60 83.3
RC6 SP-2-2 4062 38.9 60 82.9
RC6 SP-4-2 5908 31.3 60 66.9
RC6 SP-5-2 6415 33.3 60 71.1
RC6 SP-10-2 10856 37.5 60 79.9

Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 237.4
Rijndael PP-2 5281 23.5 11 273.0
Rijndael PP-5 10533 20.0 11 233.2
Rijndael SP-1-1 3061 40.4 21 246.0
Rijndael SP-2-1 4871 38.9 21 237.3
Rijndael SP-5-1 10992 31.8 21 193.8

Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 2.4 1 312.3
Serpent PP-8 6849 30.4 32 121.5
Serpent PP-32 9004 38.0 32 151.9

Two�sh LU-1 2666 13.0 16 104.2
Two�sh LU-2 3392 7.1 8 113.6
Two�sh LU-4 4665 3.3 4 106.8
Two�sh LU-8 6990 1.7 2 108.1
Two�sh PP-2 3519 11.9 16 95.2
Two�sh PP-4 5044 11.5 16 92.3
Two�sh PP-8 7817 10.8 16 86.2
Two�sh SP-1-1 3053 29.9 32 119.6
Two�sh SP-2-1 3869 28.6 32 114.3
Two�sh SP-4-1 5870 27.3 32 109.0
Two�sh SP-8-1 9345 24.8 32 99.1

Table 3: AES �nalist performance evaluation | feedback mode

12

Alg. Arch. Throughput (Gbit/s) Slices TPS
RC6 SP-10-2 2.40 10856 220881

Rijndael SP-5-1 1.94 10992 176297
Serpent PP-32 4.86 9004 539778
Two�sh SP-8-1 1.59 9345 169639

Table 4: AES �nalist performance evaluation | non-feedback mode speed-optimized implementations

0

2

4

6

RC6 Rijndael Serpent Twofish

G
 b

it/
s

Figure 1: Best throughput | non-feedback mode

Alg. Arch. Throughput (Mbit/s) Slices TPS
RC6 PP-2 126.5 3189 39662

Rijndael LU-2 300.1 5302 56605
Serpent LU-8 444.2 7964 55771
Two�sh SP-1-1 119.6 3053 39169

Table 5: AES �nalist performance evaluation | feedback mode speed-optimized implementations

0
100
200
300
400
500

RC6 Rijndael Serpent Twofish

M
 b

it/
s

Figure 2: Best throughput | feedback mode

Tables 4 and 5 detail the optimal implementations of the AES �nalists in both FB and NFB modes.
Additionally, TPS is also shown for each of the implementations. It is critical to note that for the purposes
of this study, the optimal implementation for an AES �nalist is de�ned to yield the highest throughput. As
previously discussed, the synthesis tools were set to optimize for speed to guarantee that the highest throughputs
would be achieved for each implementation. However, should an optimal implementation be de�ned based on
either TPS or area, the implementation results shown in Tables 2 and 3 (and, as a result, those shown in
tables 4 and 5 as well) are no longer representative of the best possible implementations for the architectures
studied. To achieve a true representation that de�nes optimality based on either TPS or area, synthesis must
be performed with the tools set to optimize for area. While an area-e�ciency analysis of the AES �nalists
warrants investigation, it is beyond the scope of this study.

Based on the data shown in Tables 4 and 5, the Serpent algorithm clearly outperforms the other AES
�nalists in both modes of operation. As compared to its nearest competitor, Serpent exhibits a throughput
increase of a factor 2.2 in NFB mode and a factor 1.5 in FB mode. Interestingly, RC6, Rijndael, and Two�sh

13

all exhibit similar performance results in NFB mode. However, Rijndael exhibits signi�cantly improved
performance in FB mode as compared to RC6 and Two�sh, although it is still 50% slower than Serpent.

One of the main �ndings of our investigation, namely that Serpent appears to be especially well suited
for an FPGA implementation from a performance perspective, seems especially interesting considering that
Serpent is clearly not the fastest algorithm with respect to most software comparisons [5]. Another major
result of our study is that all four algorithms considered easily achieve Gigabit encryption rates with standard
commercially available FPGAs. The algorithms are at least one order of magnitude faster than the best
reported software realizations. These speed-ups are essentially achieved by parallelization (pipelining and
sub-pipelining) of the loop structure and by wide operand processing (e.g., processing of 128 bits in once
clock cycle), both of which are not feasible on current processors. We would like to stress that the pipelined
architectures cannot be used to their maximum ability for modes of operation which require feedback (CFB,
OFB, etc.) However we believe that for many applications which require high encryption rates, non-feedback
modes (or modi�ed feedback modes such as interleaved CFB [3, Section 9.12]) will be the modes of choice.
Note that the Counter Mode grew out of the need for high speed encryption of ATM networks which required
parallelization of the encryption algorithm.

7 Conclusions

The importance of the Advanced Encryption Standard and the signi�cance of high throughput implemen-
tations of the AES �nalists has been examined. A design methodology was established which in turn led to
the architectural requirements for a target FPGA. The core operations of the AES �nalists were identi�ed
and multiple architecture options were discussed. The implementation of each architecture option for each
of the AES �nalists was analyzed to determine their suitability for hardware implementation. Based on the
implementation results, the best speed-optimized implementations were identi�ed for each AES �nalist in
both non-feedback and feedback modes. Upon comparison, it was determined that the Serpent algorithm
yielded the best performance in both modes, where best performance was de�ned strictly as the highest
throughput. The Serpent algorithm outperforms its nearest competitor by a factor of 2.2 in non-feedback
mode and by a factor of 1.5 in feedback mode.

8 Acknowledgement

We would like to thank Pawel Chodowiec and Kris Gaj from George Mason University for their helpful
discussion and the VHDL code modules that were provided to assist in the implementation of some of
the AES �nalists. We would also like to thank Alan Martello from the University of Pittsburgh for his
public-domain VHDL code module that was used in implementation of the AES �nalists.

References

[1] D. Stinson, Cryptography, Theory and Practice. Boca Raton, FL: CRC Press, 1995.

[2] National Institute of Standards and Technology (NIST), Second Advanced Encryption Standard (AES)
Conference, (Rome, Italy), March 1999.

[3] B. Schneier, Applied Cryptography. John Wiley & Sons Inc., 2nd ed., 1995.

[4] R. Doud, \Hardware Crypto Solutions Boost VPN," EETimes, pp. 57{64, April 1999.

[5] B. Gladman, \Implementation Experience with AES Candidate Algorithms," in Proceedings: Second
AES Candidate Conference (AES2), (Rome, Italy), March 1999.

14

[6] J. Kaps and C. Paar, \Fast DES Implementations for FPGAs and its Application to a Universal Key-
Search Machine," in 5th Annual Workshop on Selected Areas in Cryptography (SAC '98) (S. Tavares and
H. Meijer, eds.), vol. LNCS 1556, (Queen's University, Kingston, Ontario, Canada), Springer-Verlag,
August 1998.

[7] E. Biham, \A Fast New DES Implementation in Software," in Fast Software Encryption. 4th Interna-
tional Workshop, FSE'97 Proceedings, (Berlin), pp. 260{272, Springer-Verlag, 1997. Lecture Notes in
Computer Science Volume 1267.

[8] A. P�tzmann and R. Assman, \More E�cient Software Implementations of (Generalized) DES," Com-
puters & Security, vol. 12, no. 5, pp. 477{500, 1993.

[9] J. Hughes, \Implementation of NBS/DES Encryption Algorithm in Software," in Colloquium on Tech-
niques and Implications of Digital Privacy and Authentication Systems, 1981.

[10] D. Runje and M. Kovac, \Universal Strong Encryption FPGA Core Implementation," in Proceedings of
Design, Automation, and Test in Europe, (Paris, France), pp. 923{924, February 1998.

[11] O. Mencer, M. Morf, and M. Flynn, \Hardware Software Tri-Design of Encryption for Mobile Commu-
nication Units," in Proceedings of International Conference on Acoustics, Speech, and Signal Processing,
(Seattle, WA), May 1998.

[12] A. Elbirt, \An FPGA Implementation and Performance Evaluation of the CAST-256 Block Cipher,"
Technical Report, Cryptography and Information Security Group, Electrical and Computer Engineering
Department, Worcester Polytechnic Institute, Worcester, MA, May 1999.

[13] M. Riaz and H. Heys, \The FPGA Implementation of RC6 and CAST-256 Encryption Algorithms," in
accepted for CCECE'99, (Edmonton, Alberta, Canada), 1999.

[14] C. Phillips and K. Hodor, \Breaking the 10k FPGA Barrier Calls For an ASIC-Like Design Style,"
Integrated System Design, 1996.

[15] R. Anderson, E. Biham, and L. Knudsen, \Serpent: A Proposal for the Advanced Encryption Standard,"
in First Advanced Encryption Standard (AES) Conference, (Ventura, CA), 1998.

[16] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall, \Two�sh: A 128-Bit Block Cipher," in
First Advanced Encryption Standard (AES) Conference, (Ventura, CA), 1998.

[17] J. Daemen and V. Rijmen, \AES Proposal: Rijndael," in First Advanced Encryption Standard (AES)
Conference, (Ventura, CA), 1998.

[18] R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, \The RC6TM Block Cipher," in First Advanced En-
cryption Standard (AES) Conference, (Ventura, CA), 1998.

[19] Xilinx Inc., Virtex 2.5V Field Programmable Gate Arrays, 1998.

[20] B. Chetwynd, \Universal Block Cipher Module: Towards a Generalized Architectures for Block Ci-
phers," Master's thesis, Worcester Polytechnic Institute, Worcester, MA, November 1999.

[21] S. Brown and J. Rose, \FPGA and CPLD Architectures: A Tutorial," in IEEE Design & Test of
Computers, vol. 13, no. 2, pp. 42{57, 1996.

[22] C. Paar, \Optimized Arithmetic for Reed-Solomon Encoders," in 1997 IEEE International Symposium
on Information Theory, (Ulm, Germany), p. 250, June 29 { July 4 1997.

[23] P. Alfke, \Xilinx M1 Timing Parameters." electronic mail personal correspondance, December 1999.

15

