

1

PePePePerformance Comparison of 5 AES Candidatesrformance Comparison of 5 AES Candidatesrformance Comparison of 5 AES Candidatesrformance Comparison of 5 AES Candidates
with New Performance Evaluation Toolwith New Performance Evaluation Toolwith New Performance Evaluation Toolwith New Performance Evaluation Tool

Masahiko TAKENAKA, Naoya TORII, Kouichi ITOH, Jun YAJIMA

FUJITSU LABORATORIES LTD.

{takenaka, torii, kito, jyajiama}@flab.fujitsu.co.jp

Abstract. We compared the performance of 5 AES candidates, with a new performance
evaluation tool that we have developed. This tool automatically evaluates the results of a
tune-up implementation without any manual tune-up so that it figures out the lower bounds
of performance on real platforms. With this tool, we evaluated the performance of the 5 AES
candidates on Pentium II, UrtraSPARC and Itanium systems. Rijndael and Twofish
attained the highest performances across all of these platforms, so we consider these two
algorithms as good candidates for AES algorithms from the point of view of performance.

1. Introduction

In this paper, we are comparing the performances of 5 AES candidates [1][2][3][4][5]. For a fair
comparison, each candidate must be implemented as fast as possible on the intended platform. Fast
implementations, however, usually use a heuristic approach, so the resulting performance depends greatly
on the know-how of the implementers. To solve this problem, we have developed a performance
evaluation tool that enables a fair comparison on real platforms, such as Pentium, UltraSPARC, and
Itanium.

A fast implementation has two approaches: one is an improvement of the algorithm, and the other is a
tune-up of the implement code. An improvement of the algorithm realizes higher speed processing by
changing the structure of the algorithm and the instructions. This improvement is difficult to do work
automatically. A tune-up of the implement code enables higher speed processing by choosing the best
instruction order for a platform, a suitable usage of the variables that are dependent on the platform, and
suitable options for a compiler.

In this paper, we are introducing our tool that can automatically evaluate the results of tune-up
implementations without any manual tune-up. In short, our tool can evaluate the lower bounds of the
performance on real platforms for any given algorithm.

Our tool evaluates performance under two conditions to achieve the automatic optimization and
parallelism. The first condition is that the number of registers is to be unrestricted, and the second
condition is that the algorithm should be expressed without branches and loops. We think these conditions
are reasonable because of the following factors. About the first condition, the latest processors have a lot
of registers. As for the second condition, branches and loops are not used for fast implementation of the
symmetric key encryption algorithm.

We evaluated the performance of 5 AES candidates on Pentium II, UltraSPARC, and Itanium system
using our tool. The evaluation values on UltraSPARC are in a range from 80% to 90% of the
measurement. This is a good index as a lower bound on UltraSPARC because it is RISC processor with a
lot of registers. On the other hand, the evaluation values on PentiumII are in a range from 80% to 90% of
the measurement of an implementation in assembly language and 60% to 70% in C language. This is a
good index in assembly language, but not a good index in C language. Pentium II does not have many
registers, so the measurement depends on an efficient usage of registers. We think that our tool can
evaluate performance when registers are handled efficiently. Lastly, we also evaluated the performance on
Itanium, but we cannot measure the performance of Itanium because it is not available to the general
public, and only its architecture has been announced. However, we think our evaluation is good because

2

Itanium has many registers.
In our comparison of 5 AES candidates using these evaluation criteria, Rijndael and Twofish attained

the highest performances in our evaluated platforms. Therefore, we consider these two candidates are
good as AES algorithm from the perspective of performance.

2. Design Policy

The purpose of our tool is to evaluate the lower bounds of performance, that is, the minimum number
of clock cycles for processing an encryption algorithm. Our tool evaluates the number of clock cycles, but
it does not simulate an operation; moreover, our tool does not support automatic optimization for
improvement of the algorithm because such support is technically difficult.

The design of our tool is based on the following four objectives.

2.1. Support of multiple platforms

Our tool can evaluate performance on a variety of platforms using information about both the
platforms and instruction set. That is, our tool can evaluate performance by defining a target platform.

More precisely, the platforms are defined by two types of files. One type of file is a definition of the
number of pipelines provided by a platform. The other type is the definition of the instruction set. The
instruction set should be definition based on the assembly instructions of the platform.

2.2. Tiny programming language

Our tool evaluates the algorithm expressed in the tiny programming language, which requires the
instruction set to be defined beforehand; furthermore, it does not support loops and branches.

Loop and branch operations are not supported for two reasons. First, these operations are not used for
fast implementation of the symmetric key encryption algorithm. Second, these operations cause difficulty
in automatic optimizing and parallel processing.

The tiny programming language enables easy expression of the algorithm by a hierarchical subroutine,
which is expanded like a macro during evaluation.

2.3. Automatic optimization and parallelism

In general, since the output of automatic optimization and parallelism cannot be expected to easily
become an ideal code for use in a the widely used compiler, our tool provides ideally optimization under
two limitations.

One limitation is that loops and branches are not supported (see 2.2). Our tool optimizes neither
branches nor loops, which are thought to be difficult in compiler design.

The second limitation is that the number of registers on a platform is assumed to be unrestricted, which
is a kind of idealized processor. For evaluating the performance, some works have evaluated the ideal
performance of an ideal processor [6][7], but no work has been reported about evaluating the ideal
performance on an actual platform. With this second limitation, our tool can solve the difficult problems
for automatic optimization of register allocation because tune-up implementation are difficult to
accomplish by changing the instruction order when the number of registers is limited in an actual
platform. Furthermore, all state variables can easily be allocated with the registers. Recent platforms, such
as RISC and IA-64, have a lot of registers, so the effect of this idealization is expected to be small, and
our tool is expected to provide a good evaluation. On the other hand, CISC processors, such as Pentiums,
have fewer registers, so any evaluation depends heavily on the coding technique. In other words, the
evaluation will be good when the registers can be used efficiently, satisfying this limitation.

Considering these two limitations, we solved the difficulties of automatic optimization and parallelism
so that automatic optimization and parallelism can be ideally performed with the basic optimization
techniques of compiler design [8].

Ideal optimization and parallelism give algorithms a performance with lower bounds (i.e., minimum

3

clock cycles). All evaluation values with this tool have lower bounds because our tool provides
optimization and parallelism ideally.

2.4. Visualization of evaluation results

This tool includes a simple viewer that shows results of an evaluation. This viewer shows the
optimized instruction order, processing clock speed, and processing pipeline based on the expressed
algorithm. These results can be used as a reference for implementing real code on the platform.

3. Configuration of Evaluation Tool

Figure 1 shows the construction of the evaluation tool. Our tool consists of a platform definition file,
programs in the tiny programming language, an evaluation program, an evaluation results file, and a
viewer program.

3.1. Platform definition files

Platform definition files must be prepared for each platform, and they consist of two types of files:
function definition files, and a pipeline definition file. Function definition files define the instruction set.
The pipeline definition file defines the number of pipelines.

A function definition file is defined for each instruction and contains the following information:

· Instruction name
· Grammar of input/output
· Executable type of pipeline
· Clock cycles and latency

In our tool, the processing of an instruction is not defined because it is not simulated.

Figure 1. Structure of the evaluation tool

P la tfo rm
de fin ition

file s
fo r P entiu m

P la tfo rm
d e fin itio n

file s
fo r S P A R C

P la tfo rm
d e fin itio n

fi le s
fo r Ita n ium

P la tfo rm
de fin ition

file s
fo r xx xx

....

P la tfo rm in fo rm ation
re a din g co m po n e nt

S e lec tion

P ro g ra m s in
tiny

p ro gra m m in g
lan g ua ge

P rog ra m an aly sis
c om p onen t

O p tim iz a tion an d
 P a ra lle lis m c o m p o n ent

E v alua tion
re su lt

V iew e r
P rog ra m

E v alua tion
 P ro g ra m

4

3.2. Programs in tiny programming language
The tiny programming language consists of definitions of a function, routine, and constant.

· Function definition

Functions are defined, such as
(output variable list) = Instruction (input variable list).
All variables used for defining functions are temporary. These variables define the data relationship
among instructions, and their names are ignored when they are converted to the internal data form.

The grammar of input/output follows the same rules as in the function definition files.

· Routine definition

Routines are defined between
#begin ROUINTE_NAME

and
#end ROUTINE_NAME,

including one or more functions.
Routines are expanded as macros to be evaluated as sequential functions when they are converted to

the internal data form.

· Constant definition

Constants are defined as #constant VALUE and processed as an argument of the main routine
during the evaluation.

3.3. Evaluation program

The evaluation program consists of a platform information reading component, program analysis
component and optimize-and-parallelism component.

· Platform information reading component

Platform definition files are stored in a separate directory for each platform. The files are read as a
plug-in when a platform is specified, making the change of a platform easy.

· Program analysis component

This component interprets the algorithm expressed in the tiny programming language and converts it
into a sequential program. The component then combines the sequential program with platform
information, and it generates an internal data form (function tree). Critical path searches are also
processed in this component.

· Optimization and parallelism component.

In this component, the internal data form is scheduled in pipelines using the simplified technique of
Gibbons and Muchanic [8].

A function tree is scheduled from the bottom to the top. This scheduling is effective for suppressing
the number of registers to their minimum.

3.4. Evaluation results file

An evaluation results file contains the output from the optimization and parallelism. The viewer
program displays the contents of this file. The purpose of separating the viewer program and the
evaluation program is to quickly provide the results of an evaluation for display by viewer program. In
other words, processing to evaluate the algorithm requires more time compared to that required by the
viewer program.

5

Figure 2. Viewer program

3.5. Viewer program
Figure 2 shows the viewer program. This program enables a graphic display of the evaluation results

file. The program displays the total number of the clock cycles necessary for the algorithm, and it also
displays a matrix that consists processing clock cycle in the rows and scheduled functions in the columns.
If a function name in the matrix is clicked, information is displayed about the function and the functions
linked to it.

4. Evaluation results

Table 1 lists the 128-bit key encryption performance for 5 AES candidates. These results consists of
evaluation results with our tool

· Gladman’s results [9],
· Lipmaa’s results [10][15],
· Aoki and Lipmaa’s result [14],
· Measured results with Gladman’s source code compiled in our environment, and
· Measured results with Gladman’s source code modified for UltraSPARC.

Table 1. Evaluation results and measured results of 5 AES candidates (clock cycles)

Evaluation Platform Evaluated codes MARS RC6 Rijndael Serpent Twofish

Pentium II Original code 249 205 214 605 261
UltraSPARC Original code 641 1,006 232 821 294

Evaluation
using our

tool
Itanium Original code 326 303 136 602 196

Gladman's C code[9] 376 270 374 992 378 Pentium Pro
/ Pentium II Assembly[14][15] 306 223 237 - 292

Measured
results

(in papers)
UltraSPARC Ported Gladman's C code[10] 840 1,162 334 996 487

Pentium II Gladman's C code 367 263 362 985 371
Ported Gladman's C code 794 1,143 334 1,024 485

Measured
results
(our

environment)

UltraSPARC Modified Gladman's C code 754 1,142 290 1,021 369

6

Note that the evaluation results with our tool include evaluations of only the encryption algorithms part,

and they do not include evaluations of the clock cycles for memory access, such as subroutine calls and
the argument handovers.

On modifying Gladman’s source code for UltraSPARC, we changed the table reference method from
direct addressing to pointer addressing, which is suitable for UltraSPARC.

4.1. UltraSPARC

Table 2 lists the instructions, clock latency, and executable processing unit names that are used in the
evaluation for UltraSPARC [11]. In the evaluation, we presumed that Ultra SPARC has two
integer-processing units (IU) and one load-store unit (LSU).

Table 2. Instructions used in evaluation for UltraSPARC

Execution unit Instruction Clock cycle
SLL, SLLX, SRL, SRLX 1 IU0
UMUL 20

IU0, IU1 ADD, SUB, AND, OR, NOT, XOR 1
LSU LD 2

The evaluation clock cycles were 80% to 90% of the measured clock cycles. We consider these results

are good enough as lower bounds of performance because our tool evaluates neither subroutine calls nor
argument processing.

4.2. Pentium II

Table 3 lists the instructions, clock latency, and executable processing unit names that are used in the
evaluation for Pentium II [12].

Table 3. Instructions used in the evaluation for the PentiumII

Execution unit Instruction Clock cycles
shl, shr, rol, ror, lea 1 port#0
mul 4

port#0, port#1 add, sub, and, or, not, xor 1
port#2 mov(memory read) 3

For the evaluation, we set the number of pipelines for Pentium II based on [12]. Pentium II has two

integer operation units (port#0, #1), one memory read units (port#3), and two memory write units (port #3,
#4). However, we evaluated the pipeline number of Pentium II as 3 because we assumed all data is on the
registers and not in memory; moreover memory write is not used in our tools.

Compared to Gladman's C code, the evaluation clock cycles is about 60% to 70% of the measured
clock cycles. This is because registers of Pentium II are not used efficiently in optimization by any widely
used compiler. Therefore, the assumption of our tool about an unrestricted number of registers is not
satisfied.

On the other hand, compared to the assembly code of Aoki and Lipmaa, the evaluation clock cycles are
about 80% to 90% of the measured clock cycles. Aoki and Lipmaa performed manual tune-up and the
registers are used efficiently. Therefore, the assumption of our tool is satisfied.

4.3. Itanium

Using the instruction set of a platform, our tool can be applied for any platform. Thus, we ware able to
evaluate Itanium, even though it is not available to the public and has only had its architecture announced.

7

Table 4. Instructions used in evaluation for Itanium
Execution unit Instruction Clock cycles

integer- memory (A) add, sub, and, or, not, xor, shladd 1
integer- memory (I) extr, mux, shl, shr, shrp 1

ld 2 integer- memory (M)
getf, setf 1

floating point (F) xmpy 5

Table 4 lists the instructions, clock latency, and executable processing unit names that are used in the
evaluation for Itanium [13].

For this evaluation, we set the number of pipelines based on [13]. Itanium has four integer-memory
units and two floating-point units. Instructions of Itanium consist of 6 types, and 4 types of instructions
are used in this evaluation: integer ALU (A), non-ALU integer (I), memory (M), and floating point (F).
Type (A), (I), and (M) instructions are executed in integer-memory units, and type (F) instructions are
executed in floating-point units.

Itanium has 128 general registers, assuming the unrestricted number of registers is acceptable in this
platform.

The evaluation codes for Itanium are ported from those for Pentium II. As mentioned above, the
evaluation values with our tool depend on the implementation algorithm. Therefore, a higher performance
may be obtained when a suitable algorithm for Itanium is selected.

5. Performance comparison of 5 AES candidates

5.1. MARS, RC6
MARS and RC6 use a lot of multiplication and the rotation shift.
Pentium II has high-speed 32-bit multiplication and rotation shift instructions, so good performance is

obtained. UltraSPARC does not have rotation shift instructions, and it takes especially many clock cycles
to process multiplication instructions, so performance is worse. Itanium has no rotation shift instruction.
Furthermore, multiplication instruction is executed with FPU, and data moves between IU and FPU for
multiplication. Therefore performance is worse than that of Pentium II.

5.2. Rijndael

Rijndael can be implemented by repeating the table look-up and key XORing. Therefore, Pentium II
and UltraSPARC have a lot of memory references, and memory read instructions are critical processing in
both platforms, which have only one pipeline for memory access. Itanium archives the highest
performance because it has four memory access units.

5.3. Serpent

Serpent mainly consists of logical operations.
Pentium II and UltraSPARC have two pipelines that can execute logical operations. Therefore,

performance becomes almost the same in those platforms. Otherwise, the high number of rounds in
Serpent is a cause of the performance decrement.

5.4. Twofish

Twofish consists of different operations, such as table look-up, logical operation, and arithmetic
operation. These instructions are processed in a good balance. Therefore, Twofish achieves good
performance independent of the characteristics of the platforms.

8

6. Conclusion

We have developed a new tool for evaluating the performance of symmetric encryption algorithms.
With information about both a platform and the instruction set, our tool can evaluate the performance on
any processor.

We have compared 5 AES candidates with our tool, and Rijndael and Twofish achieved the highest
performance on UltraSPARC, Pentium II and Itanium. Therefore, we recommend Rijndael and Twofish as
AES algorithms in respect of their performance.

7. Reference

[1] C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M.Matyas, L.
O'Connor, M. Peyravian, D. Safford, and N. Zunic, “MARS - a candidate cipher for AES,” NIST AES
Proposal, Jun 1998.

[2] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 Block Cipher,” NIST AES
Proposal, Jun 1998.

[3] J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” NIST AES Proposal, Jun 1998.
[4] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced Encryption

Standard,” NIST AES Proposal, Jun 1998.
[5] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “Twofish: A 128-Bit Block

Cipher,” NIST AES Proposal, Jun 1998.
[6] J. Nakajima and M. Matsui, “Fast Software Implementations of MISTY (II),” SCIS'98-9.1.B (in

Japanese).
[7] C. Clapp, “Instruction-level Parallelism in AES Candidates,” AES2, 1999.
(http://csrc.nist.gov/encryption/aes/round1/conf2/papers/clapp.pdf)
[8] P. B. Gibonns and S. S. Muchnick, “Efficient instruction scheduling for a pipelined architecture,”

Symposium on Compiler Construction, SIGPLAN Notices, Vol. 21, No.7, pp. 11-16, June 1986.
[9] B. Gladman, “Implementation Experience with AES Candidate Algorithms,” AES2 conference, 1999.

(http://csrc.nist.gov/encryption/aes/round1/conf2/papers/gladman.pdf)
[10] H. Lipmaa, “AES Candidates: A Survey of Implementations,” AES2 conference, 1999.

(http://csrc.nist.gov/encryption/aes/round1/conf2/papers/lipmaa.pdf)
[11] D. L. Weaver and T. Germond, “The SPARC Architecture Manual Version 9,” Prentice-Hall, Inc.,

1994.
[12] Intel, “Intel Architecture Software Developer's Manual”, Intel, 1999

(http://developer.intel.com/design/PentiumII/manuals/)
[13] Intel, “The IA-64 Architecture Software Developer's Manual,” Intel, January 2000.

(http://developer.intel.com/design/ia-64/manuals/index.htm)
[14] K. Aoki and H. Lipmaa, “Fast Implementations of AES Candidates,” AES3 conference preprint, May

2000.
[15] H. Lipmaa, “AES Ciphers: speed.”

(http://home.cyber.ee/helger/aes/table.html)

	Introduction
	Design Policy
	Support of multiple platforms
	Tiny programming language
	Automatic optimization and parallelism
	Visualization of evaluation results

	Configuration of Evaluation Tool
	Platform definition files
	Programs in tiny programming language
	Function definition
	Routine definition
	Constant definition

	Evaluation program
	Platform information reading component
	Program analysis component
	Optimization and parallelism component.

	Evaluation results file
	Viewer program

	Evaluation results
	UltraSPARC
	Pentium II
	Itanium

	Performance comparison of 5 AES candidates
	MARS, RC6
	Rijndael
	Serpent
	Twofish

	Conclusion
	Reference

