
An FPGA Implementation and Performance Evaluation of the

AES Block Cipher Candidate Algorithm Finalists

AJ Elbirt W Yip B Chetwynd C Paar

Cryptography and Information Security (CRIS) Group

Electrical and Computer Engineering Department

Worcester Polytechnic Institute

Worcester, MA, USA

http://ece.wpi.edu/Research/crypt



Presentation Overview

�Motivation

�Methodology

� Hardware Architectures

� Implementation Analysis

� Performance Evaluation

� Conclusions



Motivation

�Goal: E�cient Implementation of the AES Candidate

Algorithm Finalists in Recon�gurable Hardware

�Question: Why Recon�gurable Hardware?

{ Algorithm Agility

{ Algorithm Upload

{ Algorithm Modi�cation

{ Architecture E�ciency

{ Throughput

{ Cost E�ciency



Field Programmable Gate Arrays

�Reprogrammable hardware

� Typically SRAM based! must be programmed on power-up

� Typically programmed via serial bit-stream

� Typically comprised of routing resources, look-up-tables, and

ip-ops



Target Device Selection

� Target Technology Requirements:

{ Large I/O capability to support the 128-bit data stream

{ Register-rich architecture to support pipelining

{ High-end device! typical FPGA over the AES lifespan

�Choice: Xilinx Virtex XCV1000BG560-4

{ 512 usable I/O pins

{ 64 x 96 array of 4-bit Con�gurable Logic Blocks (CLBs)

{ Each CLB contains 4 ip-ops! over 25k register bits

{ 128K embedded RAM



Methodology

� Considered RC6, Rijndael, Serpent, and Two�sh

� Implementation of encryption only with 128-bit master key

� Key scheduling assumed to occur externally

{ Sub-keys are stored in internal registers

{ Device may be recon�gured for key scheduling or

decryption

� Bottom-up design and test methodology using VHDL

� Findings are dependent on synthesis and place-and-route tools

� Strong focus on high performance (as opposed to smallest

area or throughput/area)



Hardware Architectures

� Problem: How to achieve a high performance

implementation?

� Solution: Implement multiple architectures to �nd the best

solution

{ Iterative looping

{ Iterative looping with partial loop unrolling

{ Full loop unrolling

{ Pipelining

{ Sub-pipelining



Atomic Operations

Mod Mod Mod GF

232 232 Fix Var 232 (28)

Alg XOR Add Sub Shift Rot Mult Mult LUT

MARS � � � � � � �

RC6 � � � � �

Rijndael � � � �

Serpent � � �

Two�sh � � � � �



Hardware Architectures | Iterative Looping

KEY
REGISTERS

IV

PT

ROUND
FUNCTION

CT

N Iterations



Hardware Architectures | Iterative Looping with Partial Loop

Unrolling
.
.
.

KEY
REGISTERS

IV

PT

ROUND 1

CT

N/K Iterations
ROUND 2

ROUND K



Hardware Architectures | Full Loop Unrolling

KEY
REGISTERS

IV

PT

ROUND 1

CT

1 Iteration
ROUND 2

ROUND N

.

.

.



Hardware Architectures | Pipelining

.

.

.

KEY
REGISTERS

PT

ROUND 1

CT

N/K Iterations

ROUND 2

ROUND K

REGISTER

REGISTER

REGISTER



Hardware Architectures | Sub-Pipelining

.

.

.

KEY
REGISTERS

PT

CT

N/K Iterations

REGISTER

REGISTER

REGISTER

ROUND 1

REGISTER

ROUND 2

REGISTER

ROUND K

REGISTER



Implementation Analysis | RC6

� Important design characteristics

{ Use squarer not multiplier! 2A2 + A vs. A(2A + 1)

{ Variable rotate via 5-level 2-to-1 muxing! smaller and

faster vs. barrel-shifter

�Maximum of 10 out of 20 rounds �t in the target FPGA

� Smallest implementation! 1 Round Iterative Looping

� Best throughput:

{ Non-feedback mode! 10 Round Partial Pipeline with 2

Sub-Pipeline stages

{ Feedback mode! 2 Round Partial Pipeline



Implementation Analysis | Rijndael

� Important design characteristics

{ Large S-Boxes required for each round (16 8-bit to 8-bit

LUTs)

{ Constant GF multiplication maps extremely well to FPGA

technology

�Maximum of 5 out of 10 rounds �t in the target FPGA

� Smallest implementation! 1 Round Partial Pipeline with 1

Sub-Pipeline stage

� Best throughput:

{ Non-feedback mode! 5 Round Partial Pipeline with 1

Sub-Pipeline stage

{ Feedback mode! 2 Round Loop Unrolling



Implementation Analysis | Serpent

� Important design characteristics

{ S-Boxes map extremely well to Xilinx CLB slices

{ All round function operations are extremely simple!

sub-pipelining yields no performance gain

� Di�erent S-Boxes and linear transformation required for

decryption

� Full loop unrolling and pipelining �t in the target FPGA

� Smallest implementation! 1 Round Iterative Looping

� Best throughput:

{ Non-feedback mode! 32 Round Full Pipeline

{ Feedback mode! 8 Round Loop Unrolling



Implementation Analysis | Two�sh

� Important design characteristics

{ Large S-Boxes required for each round (key dependent 8-bit

to 8-bit LUTs)

{ Constant GF multiplication maps extremely well to FPGA

technology

�Maximum of 8 out of 16 rounds �t in the target FPGA

� Smallest implementation! 1 Round Iterative Looping

� Best throughput:

{ Non-feedback mode! 8 Round Partial Pipeline with 1

Sub-Pipeline stage

{ Feedback mode! 1 Round Partial Pipeline with 1

Sub-Pipeline stage



Performance Evaluation

� Throughput Per CLB Slice (TPS) Metric (speed/area)

{ Yields an overall performance-cost value

{ Important to use FPGA slices as opposed to gates for an

accurate measurement of chip utilization

{ All designs implemented on the XCV1000BG560-4



Performance Evaluation | Non-Feedback Mode

Alg. Arch. Throughput (Gbit/s) Slices TPS

RC6 SP-10-2 2.40 10856 220881

Rijndael SP-5-1 1.94 10992 176297

Serpent PP-32 4.86 9004 539778

Two�sh SP-8-1 1.59 9345 169639



Performance Evaluation | Non-Feedback Mode

0

2

4

6

RC6 Rijndael Serpent Twofish

G
 b

it/
s



Performance Evaluation | Feedback Mode

Alg. Arch. Throughput (Mbit/s) Slices TPS

RC6 PP-2 126.5 3189 39662

Rijndael LU-2 300.1 5302 56605

Serpent LU-8 444.2 7964 55771

Two�sh SP-1-1 119.6 3053 39169



Performance Evaluation | Feedback Mode

0
100
200
300
400
500

RC6 Rijndael Serpent Twofish

M
 b

it/
s



Conclusions

�When highest throughput is the optimization parameter:

{ Serpent exhibits by far the best performance in both

feedback and non-feedback modes

{ RC6, Rijndael, and Two�sh exhibit similar results in

non-feedback mode

{ Rijndael outperforms RC6 and Two�sh in feedback mode



Conclusions

� Serpent exhibits superior performance in FPGA

implementations despite lagging in most software comparisons

� All four algorithms easily achieve Gigabit encryption rates in

non-feedback mode via parallelization and wide-operand

processing

� Presented results focus on performance

�Algorithm comparison based on area or

throughput/area requires di�erent methodology

! rerun tools with area optimization, architecture

modi�cation


