How well Are High-End DSPs Suited for the AES Algorithms?

AES Algorithms on the TMS320C6x DSP

Presentation at the AES 3 Conference April 13, 2000

Thomas Wollinger Jorge Guajardo Christof Paar Min Wang

Cryptography and Information Security (CRIS) Group Texas Instrument Inc. Electrical & Computer Engineering Department 12203 S.W. Freeway, MS 722 Worcester Polytechnic Institute Worcester, MA, USA Stafford, TX, USA http://ece.wpi.edu/Research/crypt

Acknowledgments

Special thanks for his support of our work related to crypto algorithms on TI DSPs go to:

• William Cammack

Overview

- Motivation
- Methodology
- Results
- Conclusion

Why DSPs ?

The main application of DSPs are embedded systems:

•	Wireless devices {	 Wireless phones Wireless PDAs Wireless laptops etc.
•	Broadcast services	 Fay-TV Voice-over IP etc.

- Consumer electronic devices
- Modems
- ...

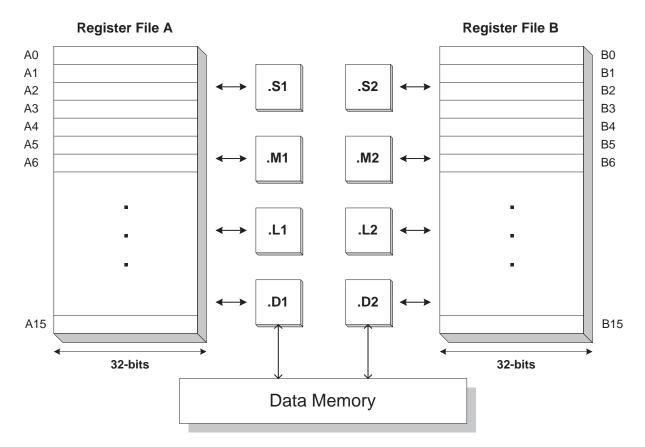
Remark: Major increase of embedded applications is predicted

Why Crypto on DSPs ?

Many embedded applications need security:

- Many DSP applications are wireless

 → unsecure channel (easy eavesdropping + message alteration)
- eCommerce and payment schemes are security sensitive
- Embedded multimedia/broadcast application need copy protection and/or access control
- Many embedded applications will need IPsec capabilities


DSPs Features

In comparison to common general purpose processors (Intel, Motorola etc.) DSPs provide:

- Fast arithmetic
- Special instruction for signal processing application
- Real-time capabilities
- Relatively lower power
- Relatively lower price
- ...

The TMS320C62x DSP

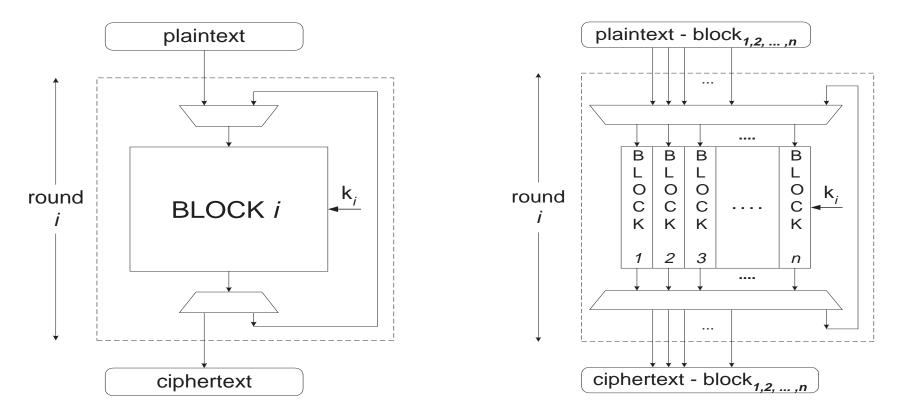
High-end DSP in the current market:

- 1600 million instructions per second (MIPS)
- Clock rate 200 MHz
- 32 \times 32-bit word registers
- 8 functional units

What did we do?

- Implementation of the 5 AES algorithms on the C62x
- C & Linear Assembly implementation
- Implementation of various modes of operation
- Optimized for speed
- RC6 results on (brand new) C64x

Methodology


- 1st step: Compiling C-code with TI C compiler with the highest level of optimization
- 2nd step: Restructure and rewrite the C-code
- 3rd step: Rewriting the encryption and decryption function in *linear Assembly*

for example: $add \ a, b, c$

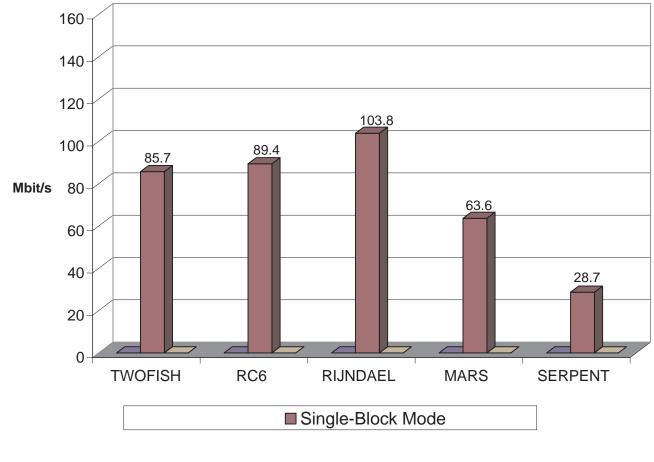
4th step: Implementation of a second version of code in which data blocks are processed in parallel

Single-Block Mode vs. Multi-Block Mode

Single-block mode (CFB, OFB etc.)

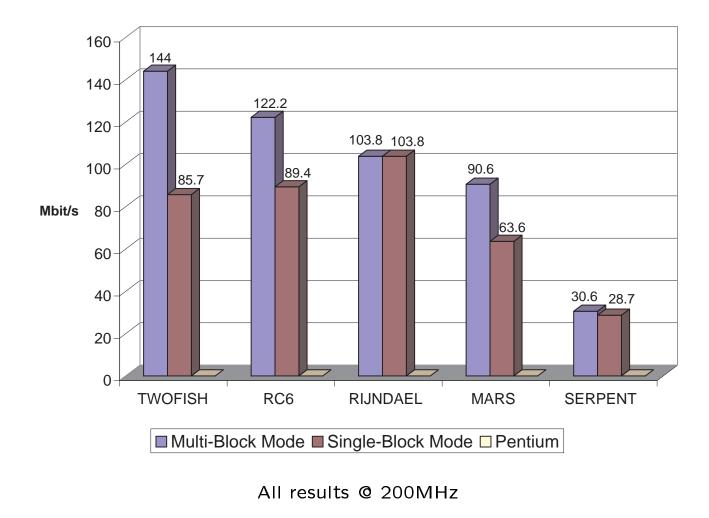
Multi-block mode

(ECB, Counter Mode)

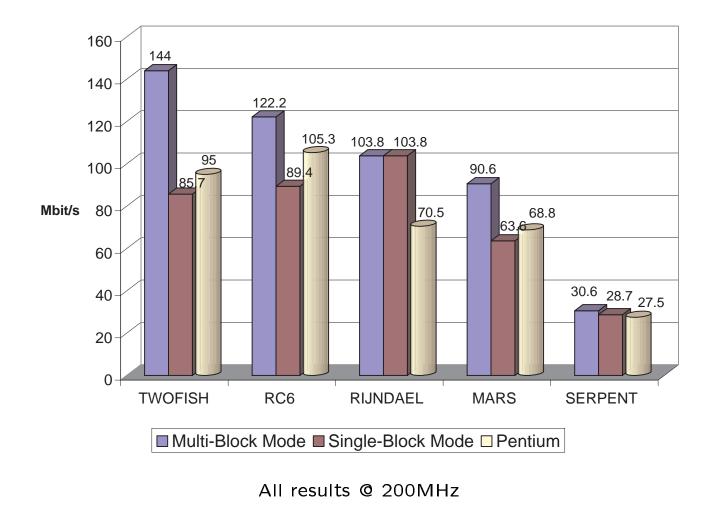

Results

Π			DSP DSP				DSP		
		multi-block		single-block		Pentium-Pro	multi-block		
		mode		mode		@ 200MHz	mode/Pentium		
		@ 200MHz		@ 200MHz					
		cycles	Mbit/sec	cycles	Mbit/sec	Mbit/sec			
T wofish	encr.	184	139.1	308	83.1	95.0	1.5		
	decr.	172	148.8	290	88.3	95.0	1.6		
RC6	encr.	200†	128.0	292	87.7	97.8	1.3		
	decr.	220 [†]	116.4	281	91.1	112.8	1.03		
Rijndael	encr.	228 [‡]	112.3	228 [‡]	112.3	70.5	1.6		
	decr.	269 [‡]	95.2	269‡	95.2	70.5	1.4		
Mars	encr.	285	89.8	406	63.1	69.4	1.3		
	decr.	280	91.4	400	64.0	68.1	1.3		
Serpent	encr.	772	33.2	871*	29.4	26.8	1.2		
	decr.	917*	27.9	917*	27.9	28.2	1.0		
RC6 on the C64x									
RC6	encr.	155	165.2	277	92.4	97.8	1.7		
	decr.	154	166.2	278	92.1	112.8	1.5		

C implementation using the compiler version 4.0 unless otherwise indicated

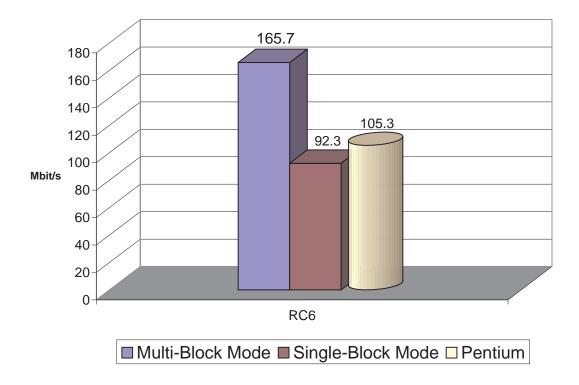

- * C implementation using compiler version 3.0
- [†] Linear assembly implementation using compiler version 3.0
- ‡ Linear assembly implementation using compiler version 4.0 alpha

Results



All results @ 200MHz

Results: Multi-Block Mode



C64x DSP

- 8 functional units
- 64 \times 32-bit registers
- up to 8800MIPS
- up to 1.1 GHz
- extented instruction set (e.g. rotation)

Results: RC6 on the C64x

All results @ 200MHz

Conclusions

- All algorithms in multi-block mode reached a higher speed than Pentium implementation with identical clockrate
- Throughput increase for some functions by over 50% on the 'C6201 compared with Pentium
- Highest speeds is single-block mode on the 'C62x:
 - Rijndael encryption 112.3 Mbit/sec
 - Rijndael decryption 95.2 Mbit/sec
- Highest speeds in multi-block mode on the 'C62x:
 - Twofish encryption 139.1 Mbit/sec
 - Twofish decryption 148.8 Mbit/sec
- Mean RC6 throughput on the C64x 165.7 Mbit/sec

 \rightarrow State-of-the-art DSPs are well suited for the architecture of the AES finalists.