FIPS 197 (Draft)

Federal Information Processing Standards Publication

Advanced Encryption Standard (AES)

Category: Computer Security

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.197-upd1.ipd

Published November 26, 2001; Updated December 19, 2022

[^0]
Foreword

The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology is the official series of publications relating to standards and guidelines developed under 15 U.S.C. 278 g -3, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

Comments concerning this Federal Information Processing Standard publication are welcomed and should be submitted using the contact information in the "Inquiries and comments" clause of the announcement section.

Charles H. Romine, Director

Information Technology Laboratory

Abstract

In 2000, NIST announced the selection of the Rijndael block cipher family as the winner of the Advanced Encryption Standard (AES) competition. Three members of the Rijndael family are specified in this Standard: AES-128, AES-192, and AES-256.

Keywords: AES; block cipher; confidentiality; cryptography; encryption; Rijndael.

Federal Information
 Processing Standards Publication 197

Published: November 26, 2001

Updated: December 19, 2022

Announcing the

 ADVANCED ENCRYPTION STANDARD (AES)Federal Information Processing Standards Publications (FIPS) are developed by NIST under 15 U.S.C. $278 \mathrm{~g}-3$, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

1. Name of Standard. Advanced Encryption Standard (AES) (FIPS 197).
2. Category of Standard. Computer Security Standard, Cryptography.
3. Explanation. The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt (decipher) digital information.

The AES algorithm is capable of using cryptographic keys of 128,192 , and 256 bits to encrypt and decrypt data in blocks of 128 bits.
4. Approving Authority. Secretary of Commerce.
5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology, Information Technology Laboratory (ITL).
6. Applicability. Federal Information Processing Standards apply to information systems used or operated by federal agencies or by a contractor of an agency or other organization on behalf of an agency. They do not apply to national security systems as defined in 44 U.S.C. 3552.

This Standard may be used by federal agencies to protect information when they have determined that encryption is appropriate, in accordance with applicable Office of Management and Budget and agency policies. Federal agencies may also use alternative methods that NIST has indicated are appropriate for this purpose.

This Standard may be adopted and used by non-federal government organizations.
7. Specifications. Federal Information Processing Standard (FIPS) 197, Advanced Encryption Standard (AES) (affixed).
8. Implementations. The algorithm specified in this Standard may be implemented in software, firmware, hardware, or any combination thereof. The specific implementation may depend on several factors such as the application, the environment, the technology used, etc. The algorithm shall be used in conjunction with a FIPS-approved or NIST- recommended mode of operation. Object Identifiers (OIDs) and any associated parameters for AES used in
these modes are available at the Computer Security Objects Register (CSOR), located at https://csrc.nist.gov/projects/csor.

NIST has developed a validation program to test implementations for conformance to the algorithms in this Standard. Information about the validation program is available at https: //nist.gov/cmvp. Examples for each key size are available at https://csrc.nist.gov/projects/aes.
9. Implementation Schedule. This Standard became effective on May 26, 2002.
10. Patents. Implementations of the algorithm specified in this Standard may be covered by U.S. and foreign patents.
11. Export Control. Certain cryptographic devices and technical data regarding them are subject to federal export controls. Exports of cryptographic modules implementing this Standard and technical data regarding them must comply with all federal laws and regulations and must be licensed by the Bureau of Industry and Security of the U.S. Department of Commerce. Information about export regulations is available at: https://www.bis.doc.gov.
12. Qualifications. NIST will continue to follow developments in the analysis of the AES algorithm. As with its other cryptographic algorithm standards, NIST will formally reevaluate this Standard every five years.

Both this Standard and possible threats reducing the security provided through the use of this Standard will undergo review by NIST as appropriate, taking into account newly available analysis and technology. In addition, the awareness of any breakthrough in technology or any mathematical weakness of the algorithm will cause NIST to reevaluate this Standard and provide necessary revisions.
13. Where to obtain copies. This publication is available by accessing https://csrc.nist.gov/ publications. Other computer security publications are available at the same website.
14. Inquiries and comments. Inquiries and comments about this FIPS may be submitted to cryptopubreviewboard@ nist.gov. The public comment period for this draft FIPS is open through February 13, 2023.
15. How to Cite this Publication. NIST has assigned NIST FIPS 197-upd1 ipd (initial public draft) as the publication identifier for this FIPS, per the NIST Technical Series Publication Identifier Syntax. NIST recommends that it be cited as follows:

National Institute of Standards and Technology (2001) Advanced Encryption Standard (AES). (Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publication (FIPS) NIST FIPS 197-upd1 ipd, updated December 19, 2022. https://doi.org/10.6028/NIST.FIPS.197-upd1.ipd
Federal Information
Processing Standards Publication 197
Specification for the
ADVANCED ENCRYPTION STANDARD (AES)
Table of Contents
1 Introduction 1
2 Definitions 2
2.1 Terms and Acronyms 2
2.2 List of Functions 3
2.3 Algorithm Parameters and Symbols 4
3 Notation and Conventions 5
3.1 Inputs and Outputs 5
3.2 Bytes 5
3.3 Indexing of Byte Sequences 5
3.4 The State 6
3.5 Arrays of Words 7
4 Mathematical Preliminaries 8
4.1 Addition in $\mathbf{G F}\left(\mathbf{2}^{8}\right)$ 8
4.2 Multiplication in $\mathbf{G F}\left(\mathbf{2}^{8}\right)$ 8
4.3 Multiplication of Words by a Fixed Matrix 9
4.4 Multiplicative Inverses in $\mathbf{G F}\left(\mathbf{2}^{\mathbf{8}}\right)$ 10
5 Algorithm Specifications 11
5.1 Cipher() 12
5.1.1 SubBytes() 13
5.1.2 ShiftRows() 14
5.1.3 MixColumns() 15
5.1.4 AddRoundKey() 16
5.2 KEyExpansion() 17
5.3 InvCIPHER() 18
5.3.1 InvShiftRows() 22
5.3.2 InvSubB Ytes() 23
5.3.3 InvMixColumns() 23
5.3.4 Inverse of AddRoundKey() 24
5.3.5 EQINVCIPHER() 24
6 Implementation Considerations 26
6.1 Key Length Requirements 26
6.2 Keying Restrictions 26
6.3 Parameter Extensions 26
6.4 Implementation Suggestions Regarding Various Platforms 26
6.5 Modes of Operation 27
References 28
Appendix A - Key Expansion Examples 29
A. 1 Expansion of a 128-bit Key 29
A. 2 Expansion of a 192-bit Key 30
A. 3 Expansion of a 256-bit Key 32
Appendix B - Cipher Example 34
Appendix C - Example Vectors 36
Appendix D - Change Log (Informative) 37

List of Tables

Table 1 Hexadecimal representation of 4-bit sequences. 5
Table 2 Indices for bytes and bits 6
Table 3 Key-Block-Round Combinations. 11
Table 4 SBOX(): substitution values for the byte xy (in hexadecimal format). 14
Table 5 Round constants. 17
Table 6 InvSBox(): substitution values for the byte xy (in hexadecimal format). 23
List of Figures
Figure 1 State array input and output. 7
Figure 2 Illustration of SUBB YTES(). 13
Figure 3 Illustration of SHiftRows(). 15
Figure 4 Illustration of MixColumns(). 16
Figure 5 Illustration of AddRoundKEy(). 16
Figure 6 KEyExpansion() of AES-128 to generate the words $w[i]$ for $4 \leq i<44$. 19
Figure $7 \quad$ KeyExpansion() of AES-192 to generate the words $w[i]$ for $6 \leq i<52$. 20
Figure 8 KeyExpansion() of AES-256 to generate the words $w[i]$ for $8 \leq i<60$. 21
Figure 9 Illustration of InvSHIFTROWS(). 22
List of Algorithms
Algorithm 1 Pseudocode for CiPher() 12
Algorithm 2 Pseudocode for KEYEXPANSION() 18
Algorithm 3 Pseudocode for InvCiPher() 22
Algorithm 4 Pseudocode for EQInvCIPHER() 24
Algorithm 5 Pseudocode for KEYEXPANSIONEIC() 25

1. Introduction

A block is a sequence of bits of a given, fixed length. A block cipher is a family of permutations of blocks that is parameterized by a sequence of bits called the key.

In 1997, NIST initiated the Advanced Encryption Standard (AES) development effort [1] and called for the public to submit candidate algorithms for block ciphers. Block ciphers are the foundation for many cryptographic services, especially those that provide assurance of the confidentiality of data. In 2000, NIST announced the selection of Rijndael [2, 3] for the AES.

This Standard specifies three instantiations of Rijndael: AES-128, AES-192, and AES-256, where the suffix indicates the bit length of the key. The block size, i.e., the length of the data inputs and outputs, is 128 bits in each case. Rijndael supports additional block sizes and key lengths that are not adopted in this Standard.

This Standard is organized as follows:

- Section 2 defines the terms, acronyms, algorithm parameters, symbols, and functions in this Standard.
- Section 3 describes the notation and conventions for the ordering and indexing of bits, bytes, and words.
- Section 4 explains some mathematical components of the AES specifications: finite field arithmetic and multiplication by a fixed matrix of finite field elements.
- Section 5 specifies AES-128, AES-192, and AES-256.
- Section 6 provides implementation guidelines on key length requirements, keying restrictions, parameter extensions, and implementation suggestions regarding various platforms.
- Appendix A gives examples of the key expansion routines for AES-128, AES-192, and AES-256.
- Appendix B gives a step-by-step example of an invocation of AES-128.
- Appendix C gives a reference to the NIST web site for extensive example vectors for AES-128, AES-192, and AES-256.
- Appendix D summarizes the updates to the original version of this publication.

2. Definitions

2.1 Terms and Acronyms

The following definitions are used in this Standard:
AES
Affine
transformation
Array
Bit
Block
Block cipher
Byte

Equivalent inverse
cipher

Key

Key schedule

Rijndael

Round

Round key

State

S-box

Word

Advanced Encryption Standard.
A transformation consisting of multiplication by a matrix, followed by the addition of a vector.

A fixed-size data structure that stores a collection of elements, where each element is identified by its integer index or indices.
A binary digit: 0 or 1 .
A sequence of bits of a given, fixed length. In this Standard, blocks consist of 128 bits, sometimes represented as arrays of bytes or words.

A family of permutations of blocks that is parameterized by the key.
A sequence of eight bits.
An alternative specification of the Inverse of CIPHER() with a structure similar to that of CIPHER() and with a modified key schedule as input.

The parameter of a block cipher that determines the selection of a permutation from the block cipher family.
The sequence of round keys that are generated from the key by KEyExpansion().
The block cipher that NIST selected as the winner of the AES competition.
A sequence of transformations of the state that is iterated Nr times in the specifications of $\operatorname{Cipher}()$, InvCipher(), and EqInvCipher(). The sequence consists of four transformations, except for one iteration, in which one of the transformations is omitted.
One of the $N r+1$ arrays of four words that are derived from the block cipher key using the key expansion routine; each round key is an input to an instance of AddRoundKEy() in the AES block cipher.
Intermediate result of the AES block cipher that is represented as a two-dimensional array of bytes with four rows and $N b$ columns.

A non-linear substitution table used in SubBytes() and KeyExPANSION() to perform a one-to-one substitution of a byte value.
A group of 32 bits that is treated either as a single entity or as an array of 4 bytes.

2.2 List of Functions

The following functions are specified in this Standard:

AddRoundKey()	The transformation of the state in which a round key is combined with the state.
AES-128()	The block cipher specified in this Standard with 128-bit keys.
AES-192()	The block cipher specified in this Standard with 192-bit keys.
AES-256()	The block cipher specified in this Standard with 256-bit keys.
Cipher()	The transformation of blocks that underlies AES-128, AES-192, and AES-256; the key schedule and the number of rounds are parameters of the transformation.
EQInvCipher()	The inverse of CIPHER() in which $d w$ replaces w as the key schedule parameter.
InvCipher()	The inverse of CIPHER().
InvMixColumns()	The inverse of MixColumns().
InvSBox()	The inverse of SBox().
InvShiftRows()	The inverse of ShiftRows().
InvSubBytes()	The inverse of SUbB Ytes().
KeyExpansion()	The routine that generates the round keys from the key.
KeyExpansionEIC()	The routine that generates the modified round keys for the equivalent inverse cipher.
MixColumns()	The transformation of the state that takes all of the columns of the state and mixes their data (independently of one another) to produce new columns.
RotWord ()	The transformation of words in which the four bytes of the word are permuted cyclically.
SBox()	The transformation of bytes defined by the S-box.
ShiftRows()	The transformation of the state in which the last three rows are cyclically shifted by different offsets.
SubBytes()	The transformation of the state that applies the S-box independently to each byte of the state.
SubWord ()	The transformation of words in which the S-box is applied to each of the four bytes of the word.
xTimes()	The transformation of bytes in which the polynomial representation of the input byte is multiplied by x, modulo $m(x)$, to produce the polynomial representation of the output byte.

2.3 Algorithm Parameters and Symbols

b^{-1}
\tilde{b}
$d w$

GF(2)
$\mathrm{GF}\left(2^{8}\right)$
in
$m(x)$
key
$N b$
$N k$
$N r$
out

Rcon
state
$u[i]$
$u[i . . i+3]$
w

\oplus

-
*

\leftarrow
\{\}

The multiplicative inverse of the element b in $\operatorname{GF}\left(2^{8}\right)$.
The input to the affine transformation in the AES S-box.
Word array for the key schedule that is input to the equivalent inverse cipher.
Finite field with 2 elements.
Finite field with 256 elements.
The data input to CIPHER() or INVCIPHER(), represented as an array of 16 bytes indexed from 0 to 15 .

The modulus specified in this standard for the polynomial representation of bytes as elements of $\operatorname{GF}\left(2^{8}\right)$.
The array of $N k$ words that comprise the key for AES-128, AES192, or AES-256.
The number of columns comprising the state, where each column is a 32 -bit word. For this Standard, $N b=4$.
The number of 32-bit words comprising the key. $N k$ is assigned to 4,6 , and 8 for AES-128, AES-192, and AES-256, respectively. (see Section 6.3).

The number of rounds. $N r$ is assigned to 10,12 , and 14 for AES128, AES-192, and AES-256, respectively.
The data output of CIPHER() or INVCIPHER(), represented as an array of 16 bytes indexed from 0 to 15 .
Word array for the round constant.
The state, represented as a two-dimensional array of 16 bytes, with rows and columns indexed from 0 to 3 .
For a one-dimensional array u of words or bytes, the element in the array that is indexed by a non-negative integer i.
For an array u of words, the sequence $u[i], u[i+1], u[i+2], u[i+3]$.
Word array for the key schedule.
Either the exclusive-OR operation on bits, or the bitwise exclusiveOR operation on bytes or words.
Multiplication in $\operatorname{GF}\left(2^{8}\right)$.
Integer multiplication.
Assignment of a variable in pseudocode.
Delimiters for a byte in hexadecimal or binary notation.

3. Notation and Conventions

3.1 Inputs and Outputs

A bit is a binary digit, i.e., 0 or 1 . A block is a sequence of 128 bits; the data input and output for the AES block ciphers are blocks. Another input to the AES block ciphers, called the key, is a bit sequence that is typically established beforehand and maintained across many invocations of the block cipher. The lengths of the keys for AES-128, AES-192, and AES-256 are 128 bits, 192 bits, and 256 bits, respectively.

3.2 Bytes

The basic processing unit in the AES algorithms is the byte - a sequence of eight bits.
A byte value is denoted by the concatenation of the eight bits between braces, e.g., $\{10100011\}$. When the bits of a byte are denoted by an indexed variable, the convention in this Standard is for the indices to decrease from left to right, i.e., $\left\{b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right\}$.

It is also convenient to denote byte values using hexadecimal notation. The sixteen hexadecimal characters represent sequences of four bits, as listed in Table 1. A byte is represented by an ordered pair of hexadecimal characters, where the left character in the pair represents the four left-most bits, i.e., $b_{7}, b_{6}, b_{5}, b_{4}$, and the right character in the pair represents the four right-most bits, i.e., $b_{3}, b_{2}, b_{1}, b_{0}$. For example, the hexadecimal form of the byte $\{10100011\}$ is $\{\mathrm{a} 3\}$.

Table 1. Hexadecimal representation of 4-bit sequences.

Sequence	0000	0001	0010	0011	0100	0101	0110	0111
Character	0	1	2	3	4	5	6	7
Sequence	1000	1001	1010	1011	1100	1101	1110	1111
Character	8	9	a	b	c	d	e	f

3.3 Indexing of Byte Sequences

In order to unambiguously represent the data and key inputs as sequences of bytes, the following indexing convention is adopted in this Standard: given a sequence of $8 k$ bits

$$
\begin{equation*}
r_{0} r_{1} r_{2} \ldots r_{(8 k-3)} r_{(8 k-2)} r_{(8 k-1)}, \tag{3.1}
\end{equation*}
$$

(for some positive integer k), the bytes a_{j}, for $0 \leq j \leq k-1$, are defined as follows:

$$
\begin{equation*}
a_{j}=\left\{r_{8 j} r_{(8 j+1)} \ldots r_{(8 j+7)}\right\} \tag{3.2}
\end{equation*}
$$

Thus, for example, the data block

$$
\begin{equation*}
r_{0} r_{1} r_{2} \ldots r_{125} r_{126} r_{127} \tag{3.3}
\end{equation*}
$$

is represented by the byte sequence

$$
\begin{equation*}
a_{0} a_{1} a_{2} \ldots a_{13} a_{14} a_{15} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
a_{0}= & \left\{\begin{array}{llll}
r_{0} & r_{1} & \ldots & r_{7}
\end{array}\right\} \\
a_{1} & =\left\{\begin{array}{lllll}
r_{8} & r_{9} & \ldots & r_{15}
\end{array}\right\} ; \tag{3.5}\\
& \vdots \\
a_{15} & =\left\{\begin{array}{lllll}
r_{120} & r_{121} & \ldots & r_{127}
\end{array}\right\} .
\end{align*}
$$

As described in Section 3.2 the bits within any individual byte are indexed in decreasing order from left to right. This ordering is more natural for the finite field arithmetic on bytes that is described in Section 4. The two types of bit indices for byte sequences are illustrated in Table 2.

Table 2. Indices for bytes and bits.

Bit index in sequence	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Byte index	0								1								
Bit index in byte	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	\ldots

3.4 The State

Internally, the algorithms for the AES block ciphers are performed on a two-dimensional (four-by-four) array of bytes called the state. In the state array, denoted by s, each individual byte has two indices: a row index r in the range $0 \leq r<4$ and a column index c in the range $0 \leq c<4$. An individual byte of the state is denoted by either $s_{r, c}$ or $s[r, c]$.

In the specifications for the AES block cipher algorithms in Section 5, the first step is to copy the input array of bytes, in, to the state array s as follows:

$$
\begin{equation*}
s[r, c]=\operatorname{in}[r+4 c] \quad \text { for } 0 \leq r<4 \text { and } 0 \leq c<4 \tag{3.6}
\end{equation*}
$$

A sequence of transformations is then applied to the state array, after which its final value is copied to the output array of bytes out ${ }_{0}$, out ${ }_{1}, \ldots$, out $_{15}$ as follows:

$$
\begin{equation*}
\text { out }[r+4 c]=s[r, c] \quad \text { for } 0 \leq r<4 \text { and } 0 \leq c<4 . \tag{3.7}
\end{equation*}
$$

The correspondence between the indices of the input and output with the indices of the state array is illustrated in Fig. 1.

input bytes				state array					output bytes				
i_{0}	i_{4}	$i^{1} 8$	$i n_{12}$		$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$		out $_{0}$	out $_{4}$	out $_{8}$	out $_{12}$
$i n_{1}$	i_{5}	$i^{\prime} n_{9}$	i_{13}	\rangle	$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$	\rangle	out $_{1}$	out 5	out9	out $_{13}$
$i n_{2}$	in_{6}	i_{10}	in_{14}	7	$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$	7	out $_{2}$	out $_{6}$	out $_{10}$	out $_{14}$
in_{3}	in_{7}	i_{11}	in_{15}		$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$		out $_{3}$	out7	out $_{11}$	out $_{15}$

Figure 1. State array input and output.

3.5 Arrays of Words

A word is a sequence of four bytes; a block consists of four words. The four columns of state array s are interpreted as an array v of four words as follows, in the notation of Fig. 1:

$$
v_{0}=\left(\begin{array}{l}
s_{0,0} \tag{3.8}\\
s_{1,0} \\
s_{2,0} \\
s_{3,0}
\end{array}\right), v_{1}=\left(\begin{array}{l}
s_{0,1} \\
s_{1,1} \\
s_{2,1} \\
s_{3,1}
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
s_{0,2} \\
s_{1,2} \\
s_{2,2} \\
s_{3,2}
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
s_{0,3} \\
s_{1,3} \\
s_{2,3} \\
s_{3,3}
\end{array}\right) .
$$

Thus, the column index c of s becomes the index for v, and the row index r of s becomes the index for the four bytes in each word.

Given a one-dimensional array u of words, $u[i]$ denotes the word that is indexed by i, and the sequence of four words $u[i], u[i+1], u[i+2], u[i+3]$ is denoted by $u[i . . i+3]$.

4. Mathematical Preliminaries

For some transformations of the AES algorithms specified in Sec. 5, each byte in the state array is interpreted as one of the 256 elements of a finite field, also known as a Galois Field, denoted by $\operatorname{GF}\left(2^{8}\right)$. ${ }^{1}$

In order to define addition and multiplication in $\mathrm{GF}\left(2^{8}\right)$, each byte $\left\{b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right\}$ is interpreted as a polynomial, denoted by $b(x)$, as follows:

$$
\begin{equation*}
b(x)=b_{7} x^{7}+b_{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0} . \tag{4.1}
\end{equation*}
$$

For example, $\{01100011\}$ is represented by the polynomial $x^{6}+x^{5}+x+1$.

4.1 Addition in GF($\mathbf{2}^{8}$)

In order to add two elements in the finite field $\operatorname{GF}\left(2^{8}\right)$, the coefficients of the polynomials that represent the elements are added modulo 2, i.e., with the exclusive-OR operation (denoted by \oplus), so that $1 \oplus 1=0,1 \oplus 0=1$, and $0 \oplus 0=0$.

Equivalently, two bytes can be added by applying the exclusive-OR operation to each pair of corresponding bits in the bytes. Thus, the sum of $\left\{a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}\right\}$ and $\left\{b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right\}$ is $\left\{a_{7} \oplus b_{7} \quad a_{6} \oplus b_{6} \quad a_{5} \oplus b_{5} \quad a_{4} \oplus b_{4} \quad a_{3} \oplus b_{3} \quad a_{2} \oplus b_{2} \quad a_{1} \oplus b_{1} \quad a_{0} \oplus b_{0}\right\}$. (In Section 5.1.4, this definition is extended to words.)

For example, the following three representations of addition are equivalent:

$$
\begin{align*}
& \left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=x^{7}+x^{6}+x^{4}+x^{2} \\
& \{01010111\} \oplus\{10000011\}=\{11010100\} \tag{4.2}\\
& \{57\} \oplus\{83\}=\{\mathrm{d} 4\}
\end{align*}
$$

Because the coefficients of the polynomials are reduced modulo 2, the coefficient 1 is equivalent to the coefficient -1 , so addition is equivalent to subtraction. For example, $x^{4}+x^{2}$ represents the same finite field element as $x^{4}-x^{2},-x^{4}+x^{2}$, and $-x^{4}-x^{2}$. Similarly, the sum of any element with itself is the zero element.

4.2 Multiplication in $\operatorname{GF}\left(\mathbf{2}^{8}\right)$

The symbol • denotes multiplication in $\mathrm{GF}\left(2^{8}\right)$. Conceptually, this multiplication is defined on two bytes in two steps: 1) the two polynomials that represent the bytes are multiplied as polynomials, and 2) the resulting polynomial is reduced modulo the following fixed polynomial:

$$
\begin{equation*}
m(x)=x^{8}+x^{4}+x^{3}+x+1 . \tag{4.3}
\end{equation*}
$$

Within both steps, the individual coefficients of the polynomials are reduced modulo 2.

[^1]Thus, if $b(x)$ and $c(x)$ represent bytes b and c, then $b \bullet c$ is represented by the following modular reduction of their product as polynomials:

$$
\begin{equation*}
b(x) c(x) \quad \bmod m(x) \tag{4.4}
\end{equation*}
$$

The modular reduction by $m(x)$ may be applied to intermediate steps in the calculation of $b(x) c(x)$; consequently, it is useful to consider the special case that $c(x)=x$, i.e., $c=\{02\}$. In particular, the product $b \bullet\{02\}$ can be expressed as a function of b, denoted by $\operatorname{XTimES}(b)$, as follows:

$$
\operatorname{xTimes}(b)=\left\{\begin{array}{ll}
\left\{b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} 0\right\} & \text { if } b_{7}=0 \tag{4.5}\\
\left\{b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0} 0\right\}
\end{array} \oplus\{00011011\} \quad \text { if } b_{7}=1\right.
$$

Multiplication by higher powers of x (such as $\{04\},\{08\}$, and $\{10\}$) can be implemented by the repeated application of XTimES(). For example, let $b=\{57\}$:

$$
\begin{align*}
& \{57\} \bullet\{01\}=\{57\} \\
& \{57\} \bullet\{02\}=\operatorname{xTimes}(\{57\})=\{\mathrm{ae}\} \\
& \{57\} \bullet\{04\}=\operatorname{xTimes}(\{\mathrm{ae}\})=\{47\} \\
& \{57\} \bullet\{08\}=\operatorname{xTimes}(\{47\})=\{8 \mathrm{e}\} \\
& \{57\} \bullet\{10\}=\operatorname{xTimes}(\{8 \mathrm{e}\})=\{07\} \tag{4.6}\\
& \{57\} \bullet\{20\}=\operatorname{xTimes}(\{07\})=\{0 \mathrm{e}\} \\
& \{57\} \bullet\{40\}=\operatorname{xTimes}(\{0 \mathrm{e}\})=\{1 \mathrm{c}\} \\
& \{57\} \bullet\{80\}=\operatorname{xTimes}(\{1 \mathrm{c}\})=\{38\} .
\end{align*}
$$

These products facilitate the computation of any multiple of $\{57\}$. For example, because $\{13\}=$ $\{10\} \oplus\{02\} \oplus\{01\}$, it follows that

$$
\begin{align*}
\{57\} \bullet\{13\} & =\{57\} \bullet(\{01\} \oplus\{02\} \oplus\{10\}) \\
& =\{57\} \oplus\{\mathrm{ae}\} \oplus\{07\} \tag{4.7}\\
& =\{\mathrm{fe}\} .
\end{align*}
$$

4.3 Multiplication of Words by a Fixed Matrix

Two transformations - MixColumns() and InvMixColumns() - in the algorithms for the AES block ciphers can be expressed in terms of matrix multiplication. In particular, a distinct fixed matrix is specified for each transformation. For both matrices, each of the sixteen entries of the matrix is a byte of a single specified word, denoted here by $\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$.

Given an input word $\left[b_{0}, b_{1}, b_{2}, b_{3}\right]$ to the transformation, the output word [$d_{0}, d_{1}, d_{2}, d_{3}$] is determined by finite field arithmetic as follows:

$$
\begin{align*}
& d_{0}=\left(a_{0} \bullet b_{0}\right) \oplus\left(a_{3} \bullet b_{1}\right) \oplus\left(a_{2} \bullet b_{2}\right) \oplus\left(a_{1} \bullet b_{3}\right) \\
& d_{1}=\left(a_{1} \bullet b_{0}\right) \oplus\left(a_{0} \bullet b_{1}\right) \oplus\left(a_{3} \bullet b_{2}\right) \oplus\left(a_{2} \bullet b_{3}\right) \tag{4.8}\\
& d_{2}=\left(a_{2} \bullet b_{0}\right) \oplus\left(a_{1} \bullet b_{1}\right) \oplus\left(a_{0} \bullet b_{2}\right) \oplus\left(a_{3} \bullet b_{3}\right) \\
& d_{3}=\left(a_{3} \bullet b_{0}\right) \oplus\left(a_{2} \bullet b_{1}\right) \oplus\left(a_{1} \bullet b_{2}\right) \oplus\left(a_{0} \bullet b_{3}\right) .
\end{align*}
$$

$$
\left[\begin{array}{l}
d_{0} \tag{4.9}\\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

4.4 Multiplicative Inverses in $\operatorname{GF}\left(2^{8}\right)$

For a byte $b \neq\{00\}$, its multiplicative inverse is the unique byte, denoted by b^{-1}, such that

$$
\begin{equation*}
b \bullet b^{-1}=\{01\} . \tag{4.10}
\end{equation*}
$$

The definition of the SUBBYTES() transformation in the specifications of the AES block cipher involves multiplicative inverses in $\mathrm{GF}\left(2^{8}\right)$; they can be calculated as follows:

$$
\begin{equation*}
b^{-1}=b^{254} \tag{4.11}
\end{equation*}
$$

Alternatively, one can apply the extended Euclidean algorithm [5] to $m(x)$ and $b(x)$ (i.e., the polynomial that represents b to find polynomials $a(x)$ and $c(x)$ such that

$$
\begin{equation*}
b(x) a(x)+m(x) c(x)=1 . \tag{4.12}
\end{equation*}
$$

It follows that $a(x)$ is the polynomial that represents b^{-1}.

5. Algorithm Specifications

The general function for executing AES-128, AES-192, or AES-256 is denoted by CIPHER(); its inverse is denoted by INVCIPHER(). ${ }^{2}$

The core of the algorithms for CIPHER() and INVCIPHER() is a sequence of fixed transformations of the state, called a round. Each round requires an additional input called the round key; the round key is a block that is usually represented as a sequence of four words, i.e., 16 bytes.

An expansion routine, denoted by KeyExpansion(), takes the block cipher key as input and generates the round keys as output. In particular, the input to KEyEXPANSION() is represented as an array of words, denoted by key, and the output is an expanded array of words, denoted by w, called the key schedule.

The block ciphers AES-128, AES-192, and AES-256 differ in three respects: 1) the length of the key; 2) the number of rounds, which determines the size of the required key schedule; and 3) the specification of the recursion within KEyEXPANSION(). For each algorithm, the number of rounds is denoted by $N r$, and the number of words of the key is denoted by $N k$. (The number of words in the state is denoted by $N b$ for Rijndael in general; in this Standard, $N b=4$.) The specific values of $N k, N b$, and $N r$ are given in Table 3; no other configurations of Rijndael conform to this Standard.

For implementation issues relating to the key length, block size, and number of rounds, see Section 6.3.

Table 3. Key-Block-Round Combinations.

	Key length		Block size		Number of rounds
	$N k$	(in bits)	$N b$	(in bits)	$N r$
AES-128	4	128	4	128	10
AES-192	6	192	4	128	12
AES-256	8	256	4	128	14

The three inputs to $\operatorname{CIPHER}()$ are: 1) the data input in, which is a block represented as a linear array of 16 bytes; 2) the number of rounds $N r$ for the instance; and 3) the round keys. Thus,

$$
\begin{align*}
& \operatorname{AES}-128(\text { in }, \text { key })=\operatorname{CiPhER}(i n, 10, \operatorname{KEYEXPANSION}(\text { key })) \\
& \operatorname{AES}-192(\text { in }, \text { key })=\operatorname{CIPHER}(\text { in, } 12, \operatorname{KEYEXPANSION}(\text { key })) \tag{5.1}\\
& \operatorname{AES}-256(\text { in }, \text { key })=\operatorname{CIPHER}(\text { in, } 14, \operatorname{KEYEXPANSION~}(\text { key })) .
\end{align*}
$$

The inverse permutations are defined by replacing Cipher() with InvCipher() in Eq. 5.1.

[^2]The specifications of Cipher(), KeyExpansion(), and InvCipher() are given in Sections 5.1, 5.2 , and 5.3 , respectively.

5.1 Cipher()

The rounds in the specification of $\operatorname{CIPHER}()$ are composed of the following four byte-oriented transformations on the state:

- SubBytes() applies a substitution table (S-box) to each byte,
- ShiftRows() shifts rows of the state array by different offsets,
- MixColumns() mixes the data within each column of the state array, and
- AddRoundKey() combines a round key with the state.

The four transformations are specified in Sections 5.1.1-5.1.4. In those specifications, the transformed bit, byte, or block is denoted by appending the symbol ' as a superscript on the original variable, i.e., by $b_{i}^{\prime}, b^{\prime}, s_{i, j}^{\prime}$, or s^{\prime}.
The round keys for $\operatorname{AddRoundKEy}()$ are generated by KeyExpansion(), which is specified in Section 5.2. In particular, the key schedule is represented as an array w of $4 *(N r+1)$ words.

CIPHER() is specified in the pseudocode in Alg. 1.

```
Algorithm 1 Pseudocode for CIPHER()
    procedure CIPHER(in, \(w, N r\) )
        state \(\leftarrow\) in \(\quad \triangleright\) See Sec. 3.4
        state \(\leftarrow \operatorname{AdDRoundKEy}(\) state,\(w[0 . .3]) \quad \triangleright\) See Sec. 5.1.4
        for round from 1 to \(N r-1\) do
            state \(\leftarrow \operatorname{SubByTES}(\) state \() \quad \triangleright\) See Sec.5.1.1
            state \(\leftarrow\) ShiftRows(state) \(\triangleright\) See Sec.5.1.2
            state \(\leftarrow\) MixColumns (state) \(\triangleright\) See Sec. 5.1.3
            state \(\leftarrow \operatorname{ADDROUNDKEY}(\) state,\(w[4 *\) round. \(.4 *\) round +3\(])\)
        end for
        state \(\leftarrow\) SUBBYTES(state)
        state \(\leftarrow \operatorname{SHIFTROWS}(\) state \()\)
        state \(\leftarrow \operatorname{ADDRoundKEY}(\) state,\(w[4 * N r . .4 * N r+3])\)
        return state \(\quad \triangleright\) See Sec.3.4
    end procedure
```

The first step (Line 2) is to copy the input into the state array using the conventions from Sec. 3.4 After an initial round key addition (Line 3), the state array is transformed by Nr applications of the round function (Lines 4-12); the final round (Lines 10-12) differs in that the MixColumns() transformation is omitted. The final state is then returned as the output (Line 13) as described in Section 3.4.

Figure 2 illustrates how $\operatorname{SUBB} \operatorname{ytES}()$ transforms the state.

Figure 2. Illustration of SUBBYTES().

5.1.1 SubBytes()

SubBytes() is an invertible, non-linear transformation of the state in which a substitution table, called an S-box, is applied independently to each byte in the state. The AES S-box is denoted by SBox().

Let b denote a byte that is input byte to $\operatorname{SBOX}()$, and let c denote the constant byte $\{01100011\}$. The output byte $b^{\prime}=\operatorname{SBOX}(b)$ is constructed by composing the following two transformations:

1. Define an intermediate value \tilde{b}, as follows, where b^{-1} is the multiplicative inverse of b, as described in Section 4.4:

$$
\tilde{b}= \begin{cases}\{00\} & \text { if } b=\{00\} \\ b^{-1} & \text { if } b \neq\{00\}\end{cases}
$$

2. Apply the following affine transformation of the bits of \tilde{b} to produce the bits of b^{\prime} :

$$
b_{i}^{\prime}=\tilde{b}_{i} \oplus \tilde{b}_{(i+4) \bmod 8} \oplus \tilde{b}_{(i+5) \bmod 8} \oplus \tilde{b}_{(i+6) \bmod 8} \oplus \tilde{b}_{(i+7) \bmod 8} \oplus c_{i}
$$

The matrix form of Eq. (5.3) is given by Eq. (5.4) below:

$$
\left[\begin{array}{l}
b_{0}^{\prime} \\
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime} \\
b_{5}^{\prime} \\
b_{6}^{\prime} \\
b_{7}^{\prime}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\tilde{b}_{0} \\
\tilde{b}_{1} \\
\tilde{b}_{2} \\
\tilde{b}_{3} \\
\tilde{b}_{4} \\
\tilde{b}_{5} \\
\tilde{b}_{6} \\
\tilde{b}_{7}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right] .
$$

The AES S-box is presented in hexadecimal form in Table 4. For example, if $s_{r, c}=\{53\}$, then

Table 4. SBox(): substitution values for the byte $x y$ (in hexadecimal format).

		Y															
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	e	f
	0	63	7 c	77	7b	f2	6 b	6 f	c 5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7 d	fa	59	47	f0	ad	d 4	a2	af	9 c	a 4	72	c 0
	2	b 7	fd	93	26	36	3 f	f7	C C	34	a 5	e5	f1	71	d8	31	15
	3	04	c 7	23	c 3	18	96	05	9 a	07	12	80	e2	eb	27	b2	75
	4	09	83	2 c	1 a	1b	6 e	5 a	a 0	52	3 b	d6	. 3	29	e3	2 f	84
	5	53	d1	00	ed	20	$\mathrm{fc}^{\text {c }}$	b1	5b	6a	cb	be	39	4 a	4 c	58	cf
	6	d0	ef	aa	fb	43	4 d	33	85	45	f9	02	7 f	50	3 c	$9 \pm$	a 8
X	7	51	a3	40	8 f	92	9d	38	f5	bc	b 6	da	21	10	ff	f3	d2
X	8	cd	0 c	13	ec	5 f	97	44	17	c 4	a 7	$7 e$	3d	64	5d	19	73
	9	60	81	4 f	dc	22	2 a	90	88	46	ee	b 8	14	de	5 e	0.6	db
	a	e0	32	3 a	0 a	49	06	24	5 c	c2	d3	ac	62	91	95	e4	79
	b	e7	C8	37	6d	8 d	d5	4 e	a 9	6 c	56	f4	ea	65	7 a	ae	08
	C	ba	78	25	2 e	1 c	a 6	b 4	c 6	e8	dd	74	1f	4 b	bd	8b	8 a
	d	70	3 e	b 5	66	48	03	f 6	0 e	61	35	57	b 9	86	c1	1 d	9 e
	e	e1	f8	98	11	69	d9	8 e	94	9b	1 e	87	e9	ce	55	28	df
	f	8 c	a1	89	0d	bf	e6	42	68	41	99	2d	0 f	b 0	54	b.b	16

the substitution value would be determined by the intersection of the row with index ' 5 ' and the column with index ' 3 ' in Table 4, i.e., $s_{r, c}^{\prime}=\{$ ed $\}$.

5.1.2 SHIFtRows()

ShiftRows() is a transformation of the state in which the bytes in the last three rows of the state are cyclically shifted. The number of positions by which the bytes are shifted depends on the row index r, as follows:

$$
\begin{equation*}
s_{r, c}^{\prime}=s_{r,(c+r) \bmod 4} \quad \text { for } 0 \leq r<4 \text { and } 0 \leq c<4 \tag{5.5}
\end{equation*}
$$

SHIFTROWS() is illustrated in Figure 3. In that representation of the state, the effect is to move each byte by r positions to the left in the row, cycling the left-most $r-1$ bytes around to the right end of the row; the first row, where $r=0$, is unchanged.

Figure 3. Illustration of ShiftRows().

$$
\begin{equation*}
\left[a_{0}, a_{1}, a_{2}, a_{3}\right]=[\{02\},\{01\},\{01\},\{03\}] . \tag{5.6}
\end{equation*}
$$

Thus,

$$
\left[\begin{array}{l}
s_{0, c}^{\prime} \tag{5.7}\\
s_{1, c}^{\prime} \\
s_{2, c}^{\prime} \\
s_{3, c}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right]\left[\begin{array}{l}
s_{0, c} \\
s_{1, c} \\
s_{2, c} \\
s_{3, c}
\end{array}\right] \quad \text { for } 0 \leq c<4
$$

so that the individual output bytes are defined as follows:

$$
\begin{align*}
s_{0, c}^{\prime} & =\left(\{02\} \bullet s_{0, c}\right) \oplus\left(\{03\} \bullet s_{1, c}\right) \oplus s_{2, c} \oplus s_{3, c} \\
s_{1, c}^{\prime} & =s_{0, c} \oplus\left(\{02\} \bullet s_{1, c}\right) \oplus\left(\{03\} \bullet s_{2, c}\right) \oplus s_{3, c} \\
s_{2, c}^{\prime} & =s_{0, c} \oplus s_{1, c} \oplus\left(\{02\} \bullet s_{2, c}\right) \oplus\left(\{03\} \bullet s_{3, c}\right) \tag{5.8}\\
s_{3, c}^{\prime} & =\left(\{03\} \bullet s_{0, c}\right) \oplus s_{1, c} \oplus s_{2, c} \oplus\left(\{02\} \bullet s_{3, c}\right) .
\end{align*}
$$

Figure 4 illustrates MixColumns().

Figure 4. Illustration of MixColumns().

5.1.4 AddRoundKey()

$\operatorname{ADDROUNDKEY}()$ is a transformation of the state in which a round key is combined with the state by applying the bitwise XOR operation. In particular, each round key consists of four words from the key schedule (described in Section 5.2), each of which is combined with a column of the state as follows:

$$
\begin{equation*}
\left[s_{0, c}^{\prime}, s_{1, c}^{\prime}, s_{2, c}^{\prime}, s_{3, c}^{\prime}\right]=\left[s_{0, c}, s_{1, c}, s_{2, c}, s_{3, c}\right] \oplus\left[w_{(4 * \text { round }+c)}\right] \quad \text { for } 0 \leq c<4 \tag{5.9}
\end{equation*}
$$

where round is a value in the range $0 \leq$ round $\leq N r$, and $w[i]$ is the array of key schedule words described in Section 5.2. In the specification of Cipher(), AddRoundKey() is invoked $N r+1$ times, once when round $=0$, prior to the first application of the round function (see Alg. 1), and once within each of the $N r$ rounds, i.e., when $1 \leq$ round $\leq N r$.

The action of this transformation is illustrated in Fig. 5, where $l=4 *$ round. The byte address within words of the key schedule was described in Sec. 3.1.

Figure 5. Illustration of AddRoundKey().

5.2 KeyExpansion()

KEyEXPANSION () is a routine that is applied to the key to generate $4 *(N r+1)$ words, i.e., four words for each of the $N r+1$ applications of $\operatorname{ADDROUNDKEY}()$ within the specification of CiPHER(), as described in Section 5.1.4. The output of the routine consists of a linear array of words, denoted by $w[i]$, with i in the range $0 \leq i<4 *(N r+1)$.

KeyExpansion() invokes ten fixed words denoted by $R \operatorname{con}[j]$ for $1 \leq j \leq 10$. These ten words are called the round constants. For AES-128, a distinct round constant is called in the generation of each of the ten round keys. For AES-192 and AES-256, the key expansion routine calls the first eight and six of these same constants, respectively. The values of $R \operatorname{con}[j]$ are given in hexadecimal notation in Table 5:

Table 5. Round constants.

j	Rcon $[j]$	j	$R \operatorname{con}[j]$
1	$[01,00,00,00]$	6	$[20,00,00,00]$
2	$[02,00,00,00]$	7	$[40,00,00,00]$
3	$[04,00,00,00]$	8	$[80,00,00,00]$
4	$[08,00,00,00]$	9	$[16,00,00,00]$
5	$[10,00,00,00]$	10	$[36,00,00,00]$

The value of the left-most byte of $\operatorname{Rcon}[j]$ in polynomial form is x^{j-1}. Note that for $j>0$, these bytes may be generated by successively applying XTimes() to the byte represented by x^{j-1}; see Eq. 4.5 .

Two transformations on words are called within KeyExpansion(): RotWord() and Sub$\operatorname{WORD}()$. Given an input word, i.e., a sequence $\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$ of four bytes,

$$
\begin{equation*}
\operatorname{RotWord}\left(\left[a_{0}, a_{1}, a_{2}, a_{3}\right]\right)=\left[a_{1}, a_{2}, a_{3}, a_{0}\right], \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{SuBWORD}\left(\left[a_{0}, \ldots, a_{3}\right]\right)=\left[\operatorname{SBox}\left(a_{0}\right), \operatorname{SBox}\left(a_{1}\right), \operatorname{SBox}\left(a_{2}\right), \operatorname{SBox}\left(a_{3}\right)\right] \tag{5.11}
\end{equation*}
$$

The expansion of the key proceeds according to the pseudocode in Alg. 2. The first $N k$ words of the expanded key are the key itself. Every subsequent word $w[i]$ is generated recursively from the preceding word, $w[i-1]$, and the word $N k$ positions earlier, $w[i-N k]$, as follows:

- If i is a multiple of $N k$, then $w[i]=w[i-N k] \oplus \operatorname{SUBWORD}(\operatorname{RotWORD}(w[i-1])) \oplus$ Rcon $[i / N k]$.
- For AES-256, if $i+4$ is a multiple of 8 , then $w[i]=w[i-N k] \oplus \operatorname{SUBWORD}(w[i-1])$.
- For all other cases, $w[i]=w[i-N k] \oplus w[i-1]$.

```
Algorithm 2 Pseudocode for KEYEXPANSION()
    procedure KEyEXPANSION(key)
        \(i \leftarrow 0\)
        while \(i \leq N k-1\) do
            \(w[i] \leftarrow k e y[4 * i . .4 * i+3]\)
            \(i \leftarrow i+1\)
        end while
        while \(i \leq 4 * N r+3\) do
            tem \(p \leftarrow w[i-1]\)
            if \(i \bmod N k=0\) then
                temp \(\leftarrow \operatorname{SUBWORD}(\operatorname{RotWORD}(\) temp \()) \oplus \operatorname{Rcon}[i / N k]\)
            else if \(N k>6\) and \(i \bmod N k=4\) then
                tem \(p \leftarrow \operatorname{SUBWORD}(\) temp \()\)
            end if
            \(w[i] \leftarrow w[i-N k] \oplus t e m p\)
            \(i \leftarrow i+1\)
        end while
        return \(w\)
    end procedure
```

Figures 6, 7, and 8 illustrate KEYEXPANSION() for AES-128, AES-192, and AES-256.

5.3 InvCIPHER()

To implement InvCIPHER(), the transformations in the specification of CIPHER() (Section 5.1) are inverted and executed in reverse order. The inverted transformations of the state-denoted by InvShiftRows(), InvSubBytes(), InvMixColumns(), and AddRoundKey()—are described in Sections 5.3.1-5.3.4.

InvCipher() is described in the pseudocode in Alg. 3, where the array w denotes the key schedule, as described in Section 5.2.

Figure 6. KeyExpansion() of AES-128 to generate the words $w[i]$ for $4 \leq i<44$.

Figure 7. KEYEXPANSION() of AES-192 to generate the words $w[i]$ for $6 \leq i<52$.

Figure 8. KEyEXPANSION() of AES-256 to generate the words $w[i]$ for $8 \leq i<60$.

```
Algorithm 3 Pseudocode for INVCIPHER()
    procedure INVCIPHER ( \(\mathrm{in}, \mathrm{w}, \mathrm{Nr}\) )
        state \(\leftarrow\) in \(\quad \triangleright\) See Sec.3.4
        state \(\leftarrow \operatorname{AdDRoundKEy}(\) state,\(w[4 * N r .4 * N r+3]) \quad \triangleright\) See Sec. 5.1.4
        for round from \(N r-1\) downto 1 do
                state \(\leftarrow \operatorname{InvShiftRows}(\) state \() \quad \triangleright\) See Sec. 5.3.1
                state \(\leftarrow\) InvSUBB YTES(state) \(\triangleright\) See Sec. 5.3.2
                state \(\leftarrow \operatorname{ADDROUNDKEY}(\) state,\(w[4 *\) round. \(.4 *\) round +3\(])\)
                state \(\leftarrow\) InvMixColumns(state)
                                    \(\triangleright\) See Sec. 5.3.3
        end for
        state \(\leftarrow \operatorname{InvShiftRows}(\) state \()\)
        state \(\leftarrow \operatorname{INVSUBB} \operatorname{yTES}(\) state \()\)
        state \(\leftarrow \operatorname{ADDRoUndKEY}(\) state,\(w[0.3])\)
        return state
    end procedure
```


5.3.1 InvShiftRows()

InvShiftRows() is the inverse of the ShiftRows(): the bytes in the last three rows of the state are cyclically shifted as follows:

$$
\begin{equation*}
s_{r, c}^{\prime}=s_{r,(c-r) \bmod 4} \quad \text { for } 0 \leq r<4 \text { and } 0 \leq c<4 \tag{5.12}
\end{equation*}
$$

InvShiftRows() is illustrated in Figure 9. In that representation of the state, the effect is to move each byte by r positions to the right in the row, cycling the right-most $r-1$ bytes around to the left end of the row; the first row, where $r=0$, is unchanged.

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$

Figure 9. Illustration of InvShift Rows().

5.3.2 InvSubBytes()

InvSubBytes() is the inverse of SubBytes(), in which the inverse of SBox(), denoted by $\operatorname{InvSBOX}()$, is applied to each byte of the state. InvSBox() is derived from Table 4 by switching the roles of inputs and outputs, as presented in Table 6:

Table 6. InvSBox(): substitution values for the byte $x y$ (in hexadecimal format).

		Y															
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	e	f
	0	52	09	6 a	d5	30	36	a 5	38	bf	40	a3	9 e	81	f3	d7	fb
	1	7 c	e3	39	82	9 b	2 f	ff	87	34	8 e	43	44	c 4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4 c	95	0.6	42	fa	c3	4 e
	3	08	2 e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a 4	5 c	Cc	5d	65	b 6	92
	5	6 c	70	48	50	fd	ed	b9	da	5 e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b 8	b3	45	06
	7	do	2 c	1e	8 f	ca	3 f	0 f	02	c1	af	bd	03	01	13	8 a	6 b
x	8	3 a	91	11	41	4 f	67	dc	ea	97	f2	cf	ce	f0	b 4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6 e
	a	47	f1	1 a	71	1d	29	c5	89	$6 \pm$	b 7	62	0e	aa	18	be	1.b
	b	fc	56	3 e	4b	c6	d2	79	20	9 a	db	c0	fe	78	cd	5a	f4
	C	1f	dd	a8	33	88	07	c 7	31	b1	12	10	59	27	80	ec	5 f
	d	60	51	7 f	a 9	19	b 5	4 a	0d	2d	e5	7 a	9f	93	c9	9 c	ef
	e	a0	e0	3b	4 d	ae	2a	f5	b0	c8	eb	b.b	3 c	83	53	99	61
	f	17	2 b	04	7 e	ba	77	d6	26	e1	69	14	63	55	21	0 c	7 d

5.3.3 InvMixColumns()

InvMixColumns() is the inverse of MixColumns(); it multiplies each of the four columns of the state by a single fixed matrix, as described in Section 4.3, with its entries taken from the following word:

$$
\begin{equation*}
\left[a_{0}, a_{1}, a_{2}, a_{3}\right]=[\{0 \mathrm{e}\},\{09\},\{0 \mathrm{~d}\},\{0 \mathrm{~b}\}] . \tag{5.13}
\end{equation*}
$$

Thus,

$$
\left[\begin{array}{l}
s_{0, c}^{\prime} \tag{5.14}\\
s_{1, c}^{\prime} \\
s_{2, c}^{\prime} \\
s_{3, c}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 \mathrm{e} & 0 \mathrm{~b} & 0 \mathrm{~d} & 09 \\
09 & 0 \mathrm{e} & 0 \mathrm{~b} & 0 \mathrm{~d} \\
0 \mathrm{~d} & 09 & 0 \mathrm{e} & 0 \mathrm{~b} \\
0 \mathrm{~b} & 0 \mathrm{~d} & 09 & 0 \mathrm{e}
\end{array}\right]\left[\begin{array}{l}
s_{0, c} \\
s_{1, c} \\
s_{2, c} \\
s_{3, c}
\end{array}\right] \quad \text { for } 0 \leq c<4
$$

As a result of this matrix multiplication, the four bytes in a column are replaced by the following:

$$
\begin{align*}
s_{0, c}^{\prime} & =\left(\{0 \mathrm{e}\} \bullet s_{0, c}\right) \oplus\left(\{0 \mathrm{~b}\} \bullet s_{1, c}\right) \oplus\left(\{0 \mathrm{~d}\} \bullet s_{2, c}\right) \oplus\left(\{09\} \bullet s_{3, c}\right) \\
s_{1, c}^{\prime} & =\left(\{09\} \bullet s_{0, c}\right) \oplus\left(\{0 \mathrm{e}\} \bullet s_{1, c}\right) \oplus\left(\{0 \mathrm{~b}\} \bullet s_{2, c}\right) \oplus\left(\{0 \mathrm{~d}\} \bullet s_{3, c}\right) \tag{5.15}\\
s_{2, c}^{\prime} & =\left(\{0 \mathrm{~d}\} \bullet s_{0, c}\right) \oplus\left(\{09\} \bullet s_{1, c}\right) \oplus\left(\{0 \mathrm{e}\} \bullet s_{2, c}\right) \oplus\left(\{0 \mathrm{~b}\} \bullet s_{3, c}\right) \\
s_{3, c}^{\prime} & =\left(\{0 \mathrm{~b}\} \bullet s_{0, c}\right) \oplus\left(\{0 \mathrm{~d}\} \bullet s_{1, c}\right) \oplus\left(\{09\} \bullet s_{2, c}\right) \oplus\left(\{0 \mathrm{e}\} \bullet s_{3, c}\right) .
\end{align*}
$$

5.3.4 Inverse of AddRoundKey()

AddRoundKey(), described in Section 5.1.4, is its own inverse.

5.3.5 EQInvCIPHER()

Several properties of the AES algorithm allow for an alternative specification of the inverse of CIPHER(), called the equivalent inverse cipher, denoted by EQINVCIPHER(). In the specification of EQInvCipher(), the transformations of the round function of the cipher in Alg. 1 are directly replaced by their inverses in EQINVCIPHER(), i.e., in the same order. The efficiency of this structure in comparison to the specification of InvCIPHER() in Alg. 3 is explained in the Rijndael proposal document [2].

Pseudocode for the equivalent inverse cipher is given in Alg. 4; it uses a modified key schedule, denoted by the word array $d w$. The routine to generate $d w$ is an extension of KEyExpansion(), denoted by KeyExpansionEIC(); its pseudocode is given in Alg. 5.

```
Algorithm 4 Pseudocode for EQINVCIPHER()
    procedure EQINVCIPHER(in, \(d w, N r\) )
        state \(\leftarrow\) in
        state \(\leftarrow \operatorname{ADDRoundKEy}(\) state,\(d w[4 * N r . .4 * N r+3])\)
        for round from \(N r-1\) downto 1 do
            state \(\leftarrow \operatorname{InvSUBB} \operatorname{yTES}(\) state)
            state \(\leftarrow \operatorname{INVSHIFTROWS}(\) state \()\)
            state \(\leftarrow \operatorname{InvMixCoLumns}(\) state \()\)
            state \(\leftarrow \operatorname{ADDROUNDKEY}(\) state,\(d w[4 *\) round. \(.4 *\) round +3\(])\)
        end for
        state \(\leftarrow \operatorname{INVSUBB} \operatorname{yTES}(\) state \()\)
        state \(\leftarrow\) InvShiftRows(state)
        state \(\leftarrow \operatorname{ADDRoundKEY}(\) state,\(d w[0 . .3])\)
        return state
    end procedure
```

```
```

Algorithm 5 Pseudocode for KEyEXPANSIONEIC()

```
```

Algorithm 5 Pseudocode for KEyEXPANSIONEIC()
procedure KeyExpansionEIC(key)
procedure KeyExpansionEIC(key)
$i \leftarrow 0$
$i \leftarrow 0$
while $i \leq N k-1$ do
while $i \leq N k-1$ do
$w[i] \leftarrow k e y[4 i . .4 i+3]$
$w[i] \leftarrow k e y[4 i . .4 i+3]$
$d w[i] \leftarrow w[i]$
$d w[i] \leftarrow w[i]$
$i \leftarrow i+1$
$i \leftarrow i+1$
end while
end while
while $i \leq 4 * N r+3$ do
while $i \leq 4 * N r+3$ do
tem $p \leftarrow w[i-1]$
tem $p \leftarrow w[i-1]$
if $i \bmod N k=0$ then
if $i \bmod N k=0$ then
temp $\leftarrow \operatorname{SUBWORD}(\operatorname{RotWORD}($ temp $)) \oplus \operatorname{Rcon}[i / N k]$
temp $\leftarrow \operatorname{SUBWORD}(\operatorname{RotWORD}($ temp $)) \oplus \operatorname{Rcon}[i / N k]$
else if $N k>6$ and $i \bmod N k=4$ then
else if $N k>6$ and $i \bmod N k=4$ then
tem $p \leftarrow \operatorname{SUBWORD}($ temp $)$
tem $p \leftarrow \operatorname{SUBWORD}($ temp $)$
end if
end if
$w[i] \leftarrow w[i-N k] \oplus t e m p$
$w[i] \leftarrow w[i-N k] \oplus t e m p$
$d w[i] \leftarrow w[i]$
$d w[i] \leftarrow w[i]$
$i \leftarrow i+1$
$i \leftarrow i+1$
end while
end while
for round from 1 to $\mathrm{Nr}-1$ do
for round from 1 to $\mathrm{Nr}-1$ do
$i \leftarrow 4 *$ round
$i \leftarrow 4 *$ round
$d w[i . . i+3] \leftarrow \operatorname{InvMixCoLUMNS}(d w[i . . i+3]) \quad \triangleright$ Note change of type.
$d w[i . . i+3] \leftarrow \operatorname{InvMixCoLUMNS}(d w[i . . i+3]) \quad \triangleright$ Note change of type.
end for
end for
return $d w$
return $d w$
end procedure

```
```

 end procedure
    ```
```

The first and last round keys in $d w$ are the same as in w; the modification of the other round keys is described in Lines $18-21$. The comment in Line 21 refers to the input to InvMixColumns(): the one-dimensional array of words is converted to a two-dimensional array of bytes, as in Fig. 1.

6. Implementation Considerations

6.1 Key Length Requirements

An implementation of the AES algorithm shall support at least one of the three key lengths specified in Sec. 5: 128, 192, or 256 bits (i.e., $N k=4,6$, or 8 , respectively). Implementations may optionally support two or three key lengths, which may promote the interoperability of algorithm implementations.

6.2 Keying Restrictions

When a cryptographic key has been generated appropriately (see NIST Special Publication 800133 Rev. 2 [6] for guidelines), no restriction is imposed when the resulting key is used for the AES algorithm.

6.3 Parameter Extensions

This Standard explicitly defines the allowed values for the key length $(N k)$, block size ($N b$), and number of rounds ($N r$) - see Fig. 3. However, future reaffirmations of this Standard could include changes or additions to the allowed values for those parameters. Therefore, implementers may choose to design their AES implementations with future flexibility in mind.

6.4 Implementation Suggestions Regarding Various Platforms

Implementation variations are possible that may, in many cases, offer performance or other advantages. Given the same input key and data (plaintext or ciphertext), any implementation that produces the same output (ciphertext or plaintext) as the algorithm specified in this Standard is an equivalent implementation of the AES algorithm.

The AES proposal document [2] and other resources located on the AES page [7] include suggestions on how to efficiently implement the AES algorithm on a variety of platforms. Suggested implementations are intended to explain the inner workings of the AES algorithm but do not provide protection against various implementation attacks.

A physical implementation may leak key-dependent information through side channels, such as the time taken to perform a computation, or when faults are injected into the computation. When such attacks are non-invasive, they can be effective even when there are mechanisms to detect physical tampering of the device. For example, cache-timing attacks may affect AES implementations on software platforms that use a cache to accelerate the access to data from main memory.

Protecting implementations of the AES algorithm against implementation attacks where applicable should be considered. Such considerations are outside the scope of this document but are taken into account when testing for conformance to the algorithm in this Standard according to the validation program developed by NIST: https://nist.gov/cmvp.

6.5 Modes of Operation

Block cipher modes of operation are cryptographic functions that feature a block cipher to provide information services, such as confidentiality and authentication. NIST-recommended modes of operation are specified in the 800-38 series of NIST Special Publications; further information is available at https://csrc.nist.gov/Projects/block-cipher-techniques/BCM.

References

[1] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin, James Foti, and Edward Roback. Report on the Development of the Advanced Encryption Standard (AES). Journal of Research of NIST (NIST JRES), May 2001. https://doi.org/10.6028/jres. 106.023.
[2] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael Document Version 2. AES Algorithm Submission, September 1999. Available at https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf.
[3] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced Encryption Standard (AES), Second Edition. Information Security and Cryptography. Springer, 2020. https://doi.org/10.1007/978-3-662-60769-5.
[4] Michael Artin. Algebra. Pearson Modern Classic. Pearson, second edition, 2017.
[5] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography. CRC Press, Inc., USA, 1st edition, 1997. https://doi.org/10.1201/9780429466335.
[6] Elaine Barker, Allen Roginsky, and Richard Davis. Recommendation for Cryptographic Key Generation. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-133 Rev. 2, June 2020. https://doi.org/10.6028/NIST.SP. 800-133r2.
[7] National Institute of Standards and Technology. AES Development, 2022. Available at https://csrc.nist.gov/projects/aes.
[8] Garrett Birkhoff and Saunders Mac Lane. A Survey of Modern Algebra. A K Peters/CRC Press, 1st edition, 2017. https://doi.org/10.1201/9781315275499.
[9] National Institute of Standards and Technology. Computer Security Objects Register (CSOR), 2022. Available at https://csrc.nist.gov/projects/csor.
[10] National Institute of Standards and Technology. Cryptographic Standards and Guidelines: Examples with Intermediate Values, 2022. Available at https://csrc.nist.gov/projects/ cryptographic-standards-and-guidelines/example-values.
[11] National Institute of Standards and Technology. Crypto Publications Review Board, 2022. Available at https://csrc.nist.gov/projects/crypto-publication-review-project.
[12] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In Jean-Jacques Quisquater and Bruce Schneier, editors, CARDIS 1998: Smart Card Research and Applications, pages 277-284, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. https://doi.org/10.1007/ 10721064_26.
[13] Nicky Mouha. Review of the Advanced Encryption Standard. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Interagency Report (IR) 8319. https: //doi.org/10.6028/NIST.IR.8319.

Appendix A - Key Expansion Examples

This appendix shows the development of the key schedule for each key size. Note that multi-byte values are presented using the notation described in Sec. 3. The intermediate values produced during the development of the key schedule (see Sec. 5.2) are given in the following table (all values are in hexadecimal format, with the exception of the index column (i)).

A. 1 Expansion of a 128-bit Key

This section contains the key expansion of the following key:

$$
\text { Key }=2 b 7 e 151628 \text { ae d2 a6 ab f7 } 158809 \text { cf } 4 f 3 c
$$

for $N k=4$, which results in

$$
w_{0}=2 \mathrm{~b} 7 \mathrm{e} 1516 \quad w_{1}=28 \mathrm{aed} 2 \mathrm{a} 6 \quad w_{2}=\mathrm{abf} 71588 \quad w_{3}=09 \mathrm{cf} 4 \mathrm{f} 3 \mathrm{c}
$$

| $\begin{gathered} i \\ (\mathrm{dec}) \end{gathered}$ | temp | After
 RotWord () | After
 SubWord () | Rcon $[i / N k]$ | After XOR with Rcon | $w[i-N k]$ | $\begin{gathered} w[i]= \\ \text { temp } \oplus \\ w[i-N k] \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 09cf4f3c | cf 4 f 3 c 09 | 8 a 4 eb 01 | 01000000 | 8 b 84 eb 01 | 2b7e1516 | a0fafe17 |
| 5 | a0fafe17 | | | | | 28aed2a6 | 88542 cb 1 |
| 6 | 88542 cb 1 | | | | | abf71588 | 23a33939 |
| 7 | 23a33939 | | | | | 09cf4f3c | 2a6c7605 |
| 8 | 2a6c7605 | 6c76052a | 50386be5 | 02000000 | 52386be5 | a0fafe17 | f2c295f2 |
| 9 | £2c295f2 | | | | | $88542 \mathrm{cb1}$ | 7a96b943 |
| 10 | 7a96b943 | | | | | 23a33939 | $5935807 a$ |
| 11 | $5935807 a$ | | | | | 2a6c7605 | 7359f67f |
| 12 | 7359f67f | $59 \mathrm{f67f73}$ | cb42d28f | 04000000 | cf42d28f | f2c295f2 | 3d80477d |
| 13 | 3d80477d | | | | | 7a96b943 | 4716 fe3e |
| 14 | 4716 fe3e | | | | | $5935807 a$ | $1 e 237 e 44$ |
| 15 | 1 e 237 e 44 | | | | | 7359f67f | 6d7a883b |
| 16 | 6d7a883b | 7a883b6d | dac4e23c | 08000000 | d2c4e23c | 3d80477d | ef44a541 |
| 17 | ef44a541 | | | | | 4716 fe 3 e | a8525b7f |
| 18 | a8525b7f | | | | | $1 e 237 e 44$ | b671253b |
| 19 | b671253b | | | | | 6d7a883b | db0bad00 |
| 20 | db0bad00 | 0 bad 00 db | 2b9563b9 | 10000000 | 3b9563b9 | ef44a541 | d4d1c6f8 |
| 21 | d4d1c6f8 | | | | | a8525b7f | 7 c 839 d 87 |
| 22 | 7 c 839 d 87 | | | | | b671253b | caf2b8bc |
| 23 | caf2b8bc | | | | | db0bad00 | 11f915bc |

| 597 | 24 | 11f915bc | f915bc11 | 99596582 | 20000000 | b9596582 | d4d1c6f8 | 6d88a37a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 598 | 25 | 6d88a37a | | | | | 7c839d87 | 110b3efd |
| 599 | 26 | 110b3efd | | | | | caf2b8bc | dbf98641 |
| 600 | 27 | dbf98641 | | | | | 11f915bc | ca0093fd |
| 601 | 28 | ca0093fd | 0093 fdca | 63 dc 5474 | 40000000 | 23dc5474 | 6d88a37a | 4 e 54 f 70 e |
| 602 | 29 | 4e54f70e | | | | | 110b3efd | $5 f 5 f \mathrm{c} 9 \mathrm{f} 3$ |
| 603 | 30 | 5 f 5 fc 9 f 3 | | | | | dbf98641 | 84 a 64 fb 2 |
| 604 | 31 | 84 a 64 fb 2 | | | | | ca0093fd | 4 ea 6 dc 4 f |
| 605 | 32 | 4ea6dc4f | a6dc4f4e | 2486842 f | 80000000 | a486842f | 4e54f70e | ead27321 |
| 606 | 33 | ead27321 | | | | | 5f5fc9f3 | b58dbad2 |
| 607 | 34 | b58dbad2 | | | | | 84 a 64 fb 2 | 312 bf 560 |
| 608 | 35 | 312bf560 | | | | | 4ea6dc4f | 7f8d292f |
| 609 | 36 | $7 \mathrm{f8d292f}$ | $8 \mathrm{~d} 292 \mathrm{f7}$ | 5da515d2 | 1 b 000000 | 46 a 515 d 2 | ead27321 | ac7766f3 |
| 610 | 37 | ac7766f3 | | | | | b58dbad2 | 19fadc21 |
| 611 | 38 | 19fadc21 | | | | | 312bf560 | 28 d 12941 |
| 612 | 39 | 28d12941 | | | | | 7f8d292f | $575 c 006 e$ |
| 613 | 40 | $575 c 006 e$ | 5 c 006 e 57 | 4a639f5b | 36000000 | 7c639f5b | ac7766f3 | d014f9a8 |
| 614 | 41 | d014f9a8 | | | | | 19 fadc 21 | c9ee2589 |
| 615 | 42 | c9ee2589 | | | | | 28d12941 | e13f0cc8 |
| 616 | 43 | e13f0cc8 | | | | | $575 c 006 e$ | b6630ca6 |

${ }_{617}$ A. 2 Expansion of a 192-bit Key
for $N k=6$, which results in

$$
\begin{array}{lll}
w_{0}=8 \mathrm{e} 73 \mathrm{~b} 0 \mathrm{f} 7 & w_{1}=\mathrm{da} 0 \mathrm{e} 6452 & w_{2}=\mathrm{c} 810 \mathrm{f} 32 \mathrm{~b} \\
w_{3}=809079 \mathrm{e} 5 & w_{4}=62 \mathrm{f} 8 \mathrm{ead} 2 & w_{5}=522 \mathrm{c} 6 \mathrm{~b} 7 \mathrm{~b}
\end{array}
$$

| $\begin{gathered} i \\ (\mathrm{dec}) \end{gathered}$ | temp | After
 RotWord () | After
 SuBWord () | Rcon $[i / N k]$ | After XOR
 with Rcon | $w[i-N k]$ | $\begin{gathered} w[i]= \\ \text { temp } \oplus \\ w[i-N k] \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 522 c 6 b 7 b | 2 c 6 b 7 b 52 | 717 f2100 | 01000000 | 707 f2100 | 8 e 73 b 0 f7 | fe0c91f7 |
| 7 | fe0c91f7 | | | | | da0e6452 | 2402f5a5 |
| 8 | 2402f5a5 | | | | | c 810 f 32 b | ec12068e |

| 624 | 9 | ec12068e | | | | | 809079 e 5 | 6 c 827 f 6 b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 625 | 10 | 6 c 827 f 6 b | | | | | 62 f8ead2 | 0e7a95b9 |
| 626 | 11 | 0e7a95b9 | | | | | 522c6b7b | 5c56fec2 |
| 627 | 12 | 5c56fec2 | 56 fec $25 c$ | b1bb254a | 02000000 | b3bb254a | fe0c91f7 | 4 db 7 b 4 bd |
| 628 | 13 | 4 db 7 b 4 bd | | | | | 2402 f5a5 | 69 b 54118 |
| 629 | 14 | 69 b 54118 | | | | | ec12068e | $85 a 74796$ |
| 630 | 15 | $85 a 74796$ | | | | | 6c827f6b | e92538fd |
| 631 | 16 | e92538fd | | | | | 0e7a95b9 | e75 fad44 |
| 632 | 17 | e75 fad44 | | | | | 5c56fec2 | bb095386 |
| 633 | 18 | bb095386 | 095386 bb | 01 ed 44 ea | 04000000 | 05 ed 44 ea | 4 db 7 b 4 bd | 485 f 057 |
| 634 | 19 | 485 f 057 | | | | | 69 b 54118 | 21efbl4f |
| 635 | 20 | 21efbl4f | | | | | $85 a 74796$ | a448f6d9 |
| 636 | 21 | a448f6d9 | | | | | e92538fd | 4d6dce24 |
| 637 | 22 | 4 d 6 dce 24 | | | | | e75fad44 | aa326360 |
| 638 | 23 | aa326360 | | | | | bb095386 | 113 b 30 e 6 |
| 639 | 24 | 113 b 30 e 6 | 3 b 30 e611 | e2048e82 | 08000000 | ea048e82 | 485 af 057 | a25e7ed5 |
| 640 | 25 | a25e7ed5 | | | | | 21efbl4f | $83 \mathrm{blcf9a}$ |
| 641 | 26 | 83b1cf9a | | | | | a448f6d9 | 27 ± 93943 |
| 642 | 27 | 27 ± 93943 | | | | | 4d6dce24 | $6 \mathrm{a94f767}$ |
| 643 | 28 | 6a94f767 | | | | | aa326360 | c0a69407 |
| 644 | 29 | c0a69407 | | | | | 113 b 30 e 6 | d19da4e1 |
| 645 | 30 | d19da4e1 | 9 da 4 eld | $5 e 49$ f83e | 10000000 | 4 e 49 f 83 e | a25e7ed5 | ec1786eb |
| 646 | 31 | ec1786eb | | | | | 83b1cf9a | 6fa64971 |
| 647 | 32 | 6fa64971 | | | | | 27 f93943 | 485 f7032 |
| 648 | 33 | 485 f 7032 | | | | | $6 \mathrm{a94f767}$ | 22 cb 8755 |
| 649 | 34 | 22 cb 8755 | | | | | c0a69407 | e26d1352 |
| 650 | 35 | e26d1352 | | | | | d19da4e1 | 33 f 0 b 7 b 3 |
| 651 | 36 | 33 f 0 b 7 b 3 | f0b 7 b 333 | 8ca96dc3 | 20000000 | aca96dc3 | ec1786eb | 40 beeb28 |
| 652 | 37 | 40 beeb 28 | | | | | 6£a64971 | 2f18a259 |
| 653 | 38 | 2f18a259 | | | | | 485 f7032 | 6747 d 26 b |
| 654 | 39 | $6747 \mathrm{~d} 2 \mathrm{6b}$ | | | | | 22 cb 8755 | 458c553e |
| 655 | 40 | 458c553e | | | | | e26d1352 | a7e1466c |
| 656 | 41 | a7e1466c | | | | | $33 \mathrm{f0b} 7 \mathrm{~b} 3$ | 9411 fldf |
| 657 | 42 | 9411 fldf | 11 fldf 94 | $82 \mathrm{al9e22}$ | 40000000 | c2a19e22 | 40 beeb28 | 821 f 750 a |
| 658 | 43 | 821 f750a | | | | | 2f18a259 | ad07d753 |

| 44 | ad07d753 | | | | | 6747d26b | ca400538 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 | ca400538 | | | | | 458c553e | 8fcc5006 |
| 46 | 8fcc5006 | | | | | a7e1466c | 282d166a |
| 47 | 282d166a | | | | | 9411f1df | bc3ce7b5 |
| 48 | bc3ce7b5 | 3 ce 7 b 5 bc | eb94d565 | 80000000 | 6b94d565 | 821f750a | e98ba06f |
| 49 | e98ba06f | | | | | ad07d753 | 448c773c |
| 50 | 448c773c | | | | | ca400538 | 8 ecc 7204 |
| 51 | 8 ecc 7204 | | | | | 8fcc5006 | 01002202 |

A. 3 Expansion of a 256-bit Key

This section contains the key expansion of the following key:

$$
\begin{aligned}
& \text { Key }=603 \mathrm{~d} \text { eb } 1015 \text { ca } 71 \text { be } 2 \mathrm{~b} 73 \text { ae } \mathrm{f0} 857 \mathrm{~d} 7781 \\
& \text { 1f } 35 \text { 2c } 07 \text { 3b } 6108 \text { d7 2d } 9810 \text { a3 } 0914 \text { df } f 4
\end{aligned}
$$

for $N k=8$, which results in

$$
\begin{array}{llll}
w_{0}=603 \mathrm{deb} 10 & w_{1}=15 \mathrm{ca} 71 \mathrm{be} & w_{2}=2 \mathrm{~b} 73 \mathrm{aef} 0 & w_{3}=857 \mathrm{~d} 7781 \\
w_{4}=1 \mathrm{f} 352 \mathrm{c} 07 & w_{5}=3 \mathrm{~b} 6108 \mathrm{~d} 7 & w_{6}=2 \mathrm{~d} 9810 \mathrm{a} 3 & w_{7}=0914 \mathrm{dff} 4
\end{array}
$$

| $\begin{gathered} i \\ (\mathrm{dec}) \end{gathered}$ | temp | After RotWord () | After SUBWORD () | Rcon $[i / N k]$ | After XOR with Rcon | $w[i-N k]$ | $\begin{gathered} w[i]= \\ \text { temp } \oplus \\ w[i-N k] \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 0914 dff 4 | 14 dff 409 | fa9ebf01 | 01000000 | fb9ebf01 | 603 deb 10 | 9ba35411 |
| 9 | 9ba35411 | | | | | $15 \mathrm{ca71be}$ | 8e6925af |
| 10 | 8 e 925 af | | | | | 2b73aef0 | a51a8b5f |
| 11 | a51a8b5f | | | | | 857 d 7781 | 2067 fcde |
| 12 | 2067 fcde | | b785b01d | | | 1f352c07 | a8b09c1a |
| 13 | a8b09c1a | | | | | 3b6108d7 | 93d194cd |
| 14 | $93 d 194 c d$ | | | | | 2d9810a3 | be49846e |
| 15 | be49846e | | | | | 0914 dff 4 | b75d5b9a |
| 16 | b75d5b9a | 5d5b 9ab 7 | 4c39b8a 9 | 02000000 | 4 e 39 b 8 a | 9ba35411 | d59aecb 8 |
| 17 | d59aecb 8 | | | | | 8e6925af | 5 bf 3 c 917 |
| 18 | 5bf3c917 | | | | | a51a8b5f | fee94248 |
| 19 | fee94248 | | | | | 2067 fcde | de8ebe 96 |
| 20 | de8ebe 96 | | 1d19ae90 | | | a8b09c1a | b5a9328a |
| 21 | b5a9328a | | | | | $93 d 194 \mathrm{~cd}$ | 2678a647 |
| 22 | 2678a647 | | | | | be49846e | 98312229 |

| 686 | 23 | 98312229 | | | | | b75d5b9a | $2 f 6 \mathrm{c} 79 \mathrm{~b} 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 687 | 24 | 2f6c79b3 | 6 c 79 b 32 f | 50b66d15 | 04000000 | 54b66d15 | d59aecb8 | 812c81ad |
| 688 | 25 | 812c81ad | | | | | 5bf3c917 | dadf48ba |
| 689 | 26 | dadf48ba | | | | | fee94248 | 24360 af2 |
| 690 | 27 | 24360af2 | | | | | de8ebe96 | fab8b464 |
| 691 | 28 | fab8b4 64 | | $2 d 6 c 8 d 43$ | | | b5a9328a | 98c5bfc9 |
| 692 | 29 | 98c5bfc9 | | | | | 2678a647 | bebd198e |
| 693 | 30 | bebd198e | | | | | 98312229 | 268c3ba7 |
| 694 | 31 | 268c3ba7 | | | | | $2 \mathrm{f6c} 79 \mathrm{~b} 3$ | 09 e 04214 |
| 695 | 32 | 09 e 04214 | e0421409 | e12cfa01 | 08000000 | e92cfa01 | 812c81ad | 68007 bac |
| 696 | 33 | 68007 bac | | | | | dadf48ba | b2df3316 |
| 697 | 34 | b2df3316 | | | | | 24360af2 | 96e939e4 |
| 698 | 35 | $96 e 939 e 4$ | | | | | fab8b464 | 6c518d80 |
| 699 | 36 | 6c518d80 | | 50 d 15 dcd | | | 98c5bfc9 | c814e204 |
| 700 | 37 | c814e204 | | | | | bebd198e | $76 a 9 f b 8 a$ |
| 701 | 38 | $76 a 9 f b 8 a$ | | | | | 268c3ba7 | 5025c02d |
| 702 | 39 | $5025 c 02 d$ | | | | | 09 e 04214 | 59c58239 |
| 703 | 40 | 59c58239 | c5823959 | a61312cb | 10000000 | b61312cb | 68007 bac | de136967 |
| 704 | 41 | de136967 | | | | | b2df3316 | $6 \operatorname{ccc} 5 a 71$ |
| 705 | 42 | 6 ccc 5 a 71 | | | | | 96 e 939 e 4 | fa256395 |
| 706 | 43 | fa256395 | | | | | 6c518d80 | 9674 ee 15 |
| 707 | 44 | 9674 ee 15 | | 90922859 | | | c814e204 | $5886 \mathrm{ca5d}$ |
| 708 | 45 | $5886 \mathrm{ca5d}$ | | | | | 76 a 9 fb 8 a | $2 e 2 f 31 d 7$ |
| 709 | 46 | 2 e 2 f 31 d 7 | | | | | 5025c02d | 7e0af1fa |
| 710 | 47 | $7 e 0 a f 1$ fa | | | | | 59c58239 | 27cf73c3 |
| 711 | 48 | 27cf73c3 | cf73c327 | 8 aff 2 ecc | 20000000 | aa8f2ecc | de136967 | 749c47ab |
| 712 | 49 | 749 c 47 ab | | | | | 6 ccc 5 a 71 | 18501 dda |
| 713 | 50 | 18501 dda | | | | | fa256395 | e2757e4f |
| 714 | 51 | e2757e4f | | | | | 9674 ee 15 | $7401905 a$ |
| 715 | 52 | $7401905 a$ | | 927c60be | | | 5886 ca 5 d | cafaaae3 |
| 716 | 53 | cafaaae 3 | | | | | $2 e 2 f 31 d 7$ | e4d59b34 |
| 717 | 54 | e4d59b34 | | | | | 7e0af1fa | 9adf6ace |
| 718 | 55 | 9adf6ace | | | | | 27cf73c3 | bd10190d |
| 719 | 56 | bd10190d | 10190 dbd | cad4d77a | 40000000 | 8ad4d77a | 749c47ab | fe4890d1 |
| 720 | 57 | fe4890d1 | | | | | 18501 dda | e6188d0b |
| 721 | 58 | e6188d0b | | | | | e2757e4f | 046 df 344 |
| 722 | 59 | 046 df 344 | | | | | $7401905 a$ | 706c631e |

Round Number

Start of
After
SubBytes

After
ShiftRows

After MixColumns

Round Key
Value
input

| 32 | 88 | 31 | $e 0$ |
| :---: | :---: | :---: | :---: |
| 43 | $5 a$ | 31 | 37 |
| $f 6$ | 30 | 98 | 07 |
| $a 8$ | $8 d$ | $a 2$ | 34 |

| 2 b | 28 | ab | 09 |
| :---: | :---: | :---: | :---: |
| 7 e | ae | f 7 | cf |
| 15 | d 2 | 15 | 4 f |
| 16 | a 6 | 88 | 3 c |

1

| 19 | a 0 | 9 a | e 9 | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 d | f 4 | c 6 | f 8 | | | |
| e 3 | e 2 | 8 d | 48 | | | |
| be | 2 b | 2 a | 08 | e 0 | b 8 | 1 e |
| 27 | bf | b 4 | 41 | | | |
| 11 | 98 | 5 d | 52 | | | |
| ae | f 1 | e 5 | 30 | | | |

| $d 4$ | $e 0$ | $b 8$ | $1 e$ |
| :---: | :---: | :---: | :---: |
| $b f$ | $b 4$ | 41 | 27 |
| $5 d$ | 52 | 11 | 98 |
| 30 | $a e$ | $f 1$ | $e 5$ |

| 04 | $e 0$ | 48 | 28 |
| :---: | :---: | :---: | :---: |
| 66 | cb | f 8 | 06 |
| 81 | 19 | d 3 | 26 |
| $e 5$ | $9 a$ | $7 a$ | $4 c$ |

| a 0 | 88 | 23 | 2 a |
| :---: | :---: | :---: | :---: |
| fa | 54 | a 3 | 6 c |
| fe | 2 c | 39 | 76 |
| 17 | b 1 | 39 | 05 |

2

| $a 4$ | 68 | $6 b$ | 02 |
| :---: | :---: | :---: | :---: |
| $9 c$ | $9 f$ | $5 b$ | $6 a$ |
| $7 f$ | 35 | $e a$ | 50 |
| $f 2$ | $2 b$ | 43 | 49 |

| 49 | 45 | 7 f | 77 |
| :---: | :---: | :---: | :---: |
| de | db | 39 | 02 |
| d 2 | 96 | 87 | 53 |
| 89 | f 1 | 1 a | 3 b |

| 49 | 45 | 7 f | 77 |
| :---: | :---: | :---: | :---: |
| db | 39 | 02 | de |
| 87 | 53 | d 2 | 96 |
| 3 b | 89 | f 1 | 1 a |

| 58 | $1 b$ | $d b$ | $1 b$ |
| :---: | :---: | :---: | :---: |
| $4 d$ | $4 b$ | $e 7$ | $6 b$ |
| $c a$ | $5 a$ | $c a$ | $b 0$ |
| $f 1$ | $a c$ | $a 8$ | $e 5$ |

| f2 | 7 a | 59 | 73 |
| :---: | :---: | :---: | :---: |
| c 2 | 96 | 35 | 59 |
| 95 | b 9 | 80 | f6 |
| f 2 | 43 | 7 a | 7 f |

3

| aa | 61 | 82 | 68 |
| :--- | :--- | :--- | :--- |
| $8 f$ | $d d$ | $d 2$ | 32 |
| $5 f$ | $e 3$ | $4 a$ | 46 |
| 03 | $e f$ | $d 2$ | $9 a$ |

| ac | ef | 13 | 45 |
| :---: | :---: | :---: | :---: |
| 73 | c 1 | b 5 | 23 |
| cf | 11 | d 6 | 5 a |
| 7 b | df | b 5 | b 8 |

| ac | ef | 13 | 45 |
| :---: | :---: | :---: | :---: |
| c 1 | b 5 | 23 | 73 |
| d 6 | 5 a | cf | 11 |
| b 8 | 7 b | df | b 5 |

| 75 | 20 | 53 | bb |
| :---: | :---: | :---: | :---: |
| ec | $0 b$ | $c 0$ | 25 |
| 09 | 63 | $c f$ | $d 0$ |
| 93 | 33 | $7 c$ | $d c$ |

| $3 d$ | 47 | $1 e$ | $6 d$ |
| :---: | :---: | :---: | :---: |
| 80 | 16 | 23 | $7 a$ |
| 47 | fe | $7 e$ | 88 |
| $7 d$ | $3 e$ | 44 | $3 b$ |

4

| 48 | 67 | $4 d$ | $d 6$ |
| :---: | :---: | :---: | :---: |
| $6 c$ | $1 d$ | $e 3$ | $5 f$ |
| $4 e$ | $9 d$ | $b 1$ | 58 |
| $e e$ | $0 d$ | 38 | $e 7$ |

| 52 | 85 | $e 3$ | $f 6$ |
| :---: | :---: | :---: | :---: |
| 50 | $a 4$ | 11 | $c f$ |
| $2 f$ | $5 e$ | $c 8$ | $6 a$ |
| 28 | $d 7$ | 07 | 94 |

| 52 | 85 | $e 3$ | f6 |
| :---: | :---: | :---: | :---: |
| $a 4$ | 11 | $c f$ | 50 |
| $c 8$ | $6 a$ | $2 f$ | $5 e$ |
| 94 | 28 | $d 7$ | 07 |

| $0 f$ | 60 | $6 f$ | $5 e$ |
| :---: | :---: | :---: | :---: |
| $d 6$ | 31 | $c 0$ | $b 3$ |
| $d a$ | 38 | 10 | 13 |
| $a 9$ | $b f$ | $6 b$ | 01 |

| ef | a8 | b6 | db |
| :---: | :---: | :---: | :---: |
| 44 | 52 | 71 | 0 b |
| a5 | 5 b | 25 | ad |
| 41 | 7 f | 3 b | 00 |

5

| $e 0$ | $c 8$ | $d 9$ | 85 |
| :---: | :---: | :---: | :---: |
| 92 | 63 | $b 1$ | b 8 |
| 7 f | 63 | 35 | be |
| e 8 | c 0 | 50 | 01 |

| $e 1$ | $e 8$ | 35 | 97 |
| :---: | :---: | :---: | :---: |
| $4 f$ | fb | c 8 | 6 c |
| d 2 | fb | 96 | ae |
| 9 b | ba | 53 | 7 c |

| $e 1$ | $e 8$ | 35 | 97 |
| :---: | :---: | :---: | :---: |
| $f b$ | $c 8$ | $6 c$ | $4 f$ |
| 96 | $a e$ | $d 2$ | $f b$ |
| $7 c$ | $9 b$ | $b a$ | 53 |

| 25 | bd | b 6 | 4 c |
| :---: | :---: | :---: | :---: |
| d 1 | 11 | 3 a | 4 c |
| a 9 | d 1 | 33 | c 0 |
| ad | 68 | 8 e | b 0 |

| $d 4$ | $7 c$ | $c a$ | 11 |
| :---: | :---: | :---: | :---: |
| $d 1$ | 83 | $f 2$ | $f 9$ |
| $c 6$ | $9 d$ | $b 8$ | 15 |
| f 8 | 87 | $b c$ | $b c$ |

741 742

6

| f 1 | c 1 | 7 c | 5 d |
| :---: | :---: | :---: | :---: |
| 00 | 92 | c 8 | b 5 |
| 6 f | 4 c | 8 b | d 5 |
| 55 | ef | 32 | 0 c |

| $a 1$ | 78 | 10 | $4 c$ |
| :---: | :---: | :---: | :---: |
| 63 | $4 f$ | $e 8$ | $d 5$ |
| $a 8$ | 29 | $3 d$ | 03 |
| $f c$ | $d f$ | 23 | $f e$ |

| a 1 | 78 | 10 | 4 c |
| :---: | :---: | :---: | :---: |
| 4 f | e 8 | d 5 | 63 |
| 3 d | 03 | a 8 | 29 |
| fe | fc | df | 23 |

| $4 b$ | $2 c$ | 33 | 37 |
| :---: | :---: | :---: | :---: |
| 86 | $4 a$ | $9 d$ | $d 2$ |
| $8 d$ | 89 | $f 4$ | 18 |
| $6 d$ | 80 | $e 8$ | $d 8$ |

| $6 d$ | 11 | $d b$ | $c a$ |
| :---: | :---: | :---: | :---: |
| 88 | $0 b$ | $f 9$ | 00 |
| $a 3$ | $3 e$ | 86 | 93 |
| $7 a$ | $f d$ | 41 | $f d$ |

7

| 26 | $3 d$ | $e 8$ | $f d$ |
| :---: | :---: | :---: | :---: |
| $0 e$ | 41 | 64 | $d 2$ |
| $2 e$ | $b 7$ | 72 | $8 b$ |
| 17 | $7 d$ | $a 9$ | 25 |

| $f 7$ | 27 | $9 b$ | 54 |
| :---: | :---: | :---: | :---: |
| $a b$ | 83 | 43 | $b 5$ |
| 31 | $a 9$ | 40 | $3 d$ |
| $f 0$ | $f f$ | $d 3$ | $3 f$ |

| $f 7$ | 27 | $9 b$ | 54 |
| :---: | :---: | :---: | :---: |
| 83 | 43 | $b 5$ | $a b$ |
| 40 | $3 d$ | 31 | $a 9$ |
| $3 f$ | $f 0$ | $f f$ | $d 3$ |

| 14 | 46 | 27 | 34 |
| :---: | :---: | :---: | :---: |
| 15 | 16 | 46 | $2 a$ |
| $b 5$ | 15 | 56 | $d 8$ |
| bf | ec | $d 7$ | 43 |

| $4 e$ | $5 f$ | 84 | $4 e$ |
| :---: | :---: | :---: | :---: |
| 54 | $5 f$ | $a 6$ | $a 6$ |
| $f 7$ | $c 9$ | $4 f$ | $d c$ |
| $0 e$ | $f 3$ | $b 2$ | $4 f$ |

8

| $5 a$ | 19 | $a 3$ | $7 a$ |
| :---: | :---: | :---: | :---: |
| 41 | 49 | $e 0$ | $8 c$ |
| 42 | $d c$ | 19 | 04 |
| $b 1$ | 1 f | 65 | $0 c$ |

| be | $d 4$ | $0 a$ | $d a$ |
| :---: | :---: | :---: | :---: |
| 83 | $3 b$ | $e 1$ | 64 |
| $2 c$ | 86 | $d 4$ | $f 2$ |
| $c 8$ | $c 0$ | $4 d$ | $f e$ |

| $b e$ | $d 4$ | $0 a$ | $d a$ |
| :---: | :---: | :---: | :---: |
| $3 b$ | $e 1$ | 64 | 83 |
| $d 4$ | $f 2$ | $2 c$ | 86 |
| fe | $c 8$ | $c 0$ | $4 d$ |

| 00 | $b 1$ | 54 | fa |
| :---: | :---: | :---: | :---: |
| 51 | c 8 | 76 | 1 b |
| 2 f | 89 | 6 d | 99 |
| d 1 | ff | cd | ea |

| ea | $b 5$ | 31 | $7 f$ |
| :---: | :---: | :---: | :---: |
| $d 2$ | $8 d$ | $2 b$ | $8 d$ |
| 73 | $b a$ | $f 5$ | 29 |
| 21 | $d 2$ | 60 | $2 f$ |

| ea | 04 | 65 | 85 |
| :---: | :---: | :---: | :---: |
| 83 | 45 | $5 d$ | 96 |
| 5 c | 33 | 98 | b 0 |
| $\mathrm{f0}$ | 2 d | ad | c 5 |

| 87 | $f 2$ | $4 d$ | 97 |
| :---: | :---: | :---: | :---: |
| $e c$ | $6 e$ | $4 c$ | 90 |
| $4 a$ | $c 3$ | 46 | $e 7$ |
| $8 c$ | $d 8$ | 95 | $a 6$ |

| 87 | $f 2$ | $4 d$ | 97 |
| :---: | :---: | :---: | :---: |
| $6 e$ | $4 c$ | 90 | $e c$ |
| 46 | $e 7$ | $4 a$ | $c 3$ |
| $a 6$ | $8 c$ | $d 8$ | 95 |

| 47 | 40 | $a 3$ | $4 c$ |
| :---: | :---: | :---: | :---: |
| 37 | $d 4$ | 70 | $9 f$ |
| 94 | $e 4$ | $3 a$ | 42 |
| $e d$ | $a 5$ | $a 6$ | $b c$ |

| $a c$ | 19 | 28 | 57 |
| :---: | :---: | :---: | :---: |
| 77 | fa | d 1 | $5 c$ |
| 66 | dc | 29 | 00 |
| f 3 | 21 | 41 | $6 e$ |

| eb | 59 | 8 b | 1 b |
| :---: | :---: | :---: | :---: |
| 40 | 2 e | a 1 | c 3 |
| f 2 | 38 | 13 | 42 |
| 1 e | 84 | e 7 | d 2 |

| $e 9$ | $c b$ | $3 d$ | $a f$ | | | | | |
|---|---|---|---|---|---|---|---|---|
| 09 | 31 | 32 | $2 e$ |
| 89 | 07 | $7 d$ | $2 c$ |
| 72 | $5 f$ | 94 | $b 5$ |\quad| $e 9$ | $c b$ | $3 d$ | $a f$ |
| :---: | :---: | :---: | :---: |
| 31 | 32 | $2 e$ | 09 |
| $7 d$ | $2 c$ | 89 | 07 |
| $b 5$ | 72 | $5 f$ | 94 |

| $d 0$ | $c 9$ | $e 1$ | $b 6$ |
| :---: | :---: | :---: | :---: |
| 14 | $e e$ | $3 f$ | 63 |
| f9 | 25 | $0 c$ | $0 c$ |
| a8 | 89 | $c 8$ | $a 6$ |

75
output

| 39 | 02 | $d c$ | 19 |
| :---: | :---: | :---: | :---: |
| 25 | $d c$ | 11 | 6 a |
| 84 | 09 | 85 | 0 b |
| 1 d | fb | 97 | 32 |

Appendix C - Example Vectors

75

The NIST Computer Security Resource Center provides a web page with "examples with intermediate values" for AES [10].

Appendix D - Change Log (Informative)

The original FIPS 197 (November 26, 2001) was reviewed and updated under the auspices of NIST's Crypto Publication Review Board [11]. Public comments and the analyses of the security of the AES that are described in NISTIR 8319 [13] were the basis for the decision to maintain the technical specifications of the Standard.

The following is a summary of the editorial changes to the original FIPS 197 in the December 19, 2022 update, NIST FIPS 197-upd1 (initial public draft):

1. The formatting of many elements of the publication was improved, and a lot of text was revised for clarity.
2. The following items were added to the frontmatter: title page, foreword, abstract, and keywords. Officials' names and affiliations on the title page reflect the original publication.
3. The announcement sections were updated to reflect current statutes, regulations, standards, guidelines, and validation programs.
4. Section 1 was revised to 1) add and update references to the AES development effort, and 2) explicitly name AES-128, AES-192, and AES-256.
5. The material in the previous Section 2.2 (Algorithms Parameters, Symbols and Functions) was split into two new sections: 2.2 (List of Functions) and 2.3 (Algorithm Parameters and Symbols).
6. The terms, functions, and symbols from the specifications are comprehensively included in the lists in Sections 2.1-2.3.
7. The description of the indexing convention was removed from Section 3.1.
8. Table 1 was revised, and the text in the previous Section 3.2 on the polynomial interpretation of bytes was revised and moved to Section 4.
9. A general definition of the indexing of byte sequences was added to Section 3.3 before specializing to the example of a block; also, Table 2 was revised.
10. The heading for Section 3.5 was changed to focus on word arrays, and notation for them was included in the text. Also, the column words of the state were presented in a vertical format, with an improved description of the indices.
11. A reference for additional information on finite fields [8] was included in a footnote within Section 4, and the headings for Sections 4.1 and 4.2 were revised to explicitly mention $\mathrm{GF}\left(2^{8}\right)$.
12. Section 4.2 was revised to provide an explicit, general description of finite field multiplication. The previous Section 4.2.1 was incorporated into the revised Section 4.2: the illustration of finite field multiplication using xtime replaced the original example of modular polynomial reduction.
13. The heading of Section 4.3 was revised to focus on multiplication by a fixed matrix, and the text of the section was simplified by removing the secondary interpretation as polynomial
reduction. The descriptions of MixColumns() and InvMixColumns() in Sections 5.1.3 and 5.3.3 were revised accordingly, to refer back to this construction.
14. The text on multiplicative inverses in $\operatorname{GF}\left(2^{8}\right)$ from the previous Section 4.2 was revised and moved to the new Section 4.4.
15. The discussion of the algorithm specifications in Section 5 was expanded to elaborate on the relationships among its components. Also, a brief, new explanation of $N b$ as a Rijndael parameter enabled the replacement of $N b$ with its constant value 4 in the rest of the Standard.
16. The pseudocode for the cipher, the key expansion routine, and the inverse cipher in Sections 5.1, 5.2, and 5.3 was reformatted, and some of the text in these sections was revised for clarity.
17. The descriptions of ShiftRows() in Section 5.1.2 and InvShiftRows() in Section 5.3.2 were improved, and a mistake in the latter was corrected.
18. Illustrations of the three instances of KeyExpansion() in the new Figs. 6, 7, and 8 were added to Section 5.2. Also, the text in the section was revised, including an explicit display of the round constants in the new Fig. 5.
19. A separate algorithm for the modified key expansion routine for the equivalent inverse cipher was added to Section 5.3.5 instead of only the supplementary lines. The description of the equivalent inverse cipher was simplified in favor of the citation of an updated reference [3].
20. Section 6.2 was revised to include a reference to the NIST Special Publication on cryptographic key generation [6].
21. Section 6.4 was revised to expand the discussion of implementation attacks.
22. The References section is no longer labeled as an appendix. The references were updated to replace withdrawn publications and correct citation information and URLs.
23. The examples in Appendix C were removed in favor of a reference to the detailed example vectors that are now maintained at [10].
24. Appendix D was created to summarize the changes in this update to FIPS 197.

[^0]: U.S. Department of Commerce

 Donald L. Evans, Secretary
 Technology Administration
 Phillip J. Bond, Under Secretary for Technology
 National Institute of Standards and Technology
 Karen H. Brown, Acting Director

[^1]: ${ }^{1}$ Information about the properties of finite fields can be found in textbooks such as Michael Artin's Algebra [4].

[^2]: ${ }^{2}$ Informally, these functions are sometimes called "encryption" and "decryption," but neutral terminology is appropriate because there are other applications of block ciphers besides encryption.

