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An Algorithm for Generating Very Large Covering Arrays 
D. Richard Kuhn 

 
One problem that must be solved for automated testing of large systems is producing tests for a 
large number of variables with a high degree of interaction.  The problem of covering arrays is 
known to be NP-hard, so deterministic algorithms do not perform well for large numbers of 
variables.  FireEye, which implements the In Parameter Order (IPO) algorithm, can handle a large 
number of variables, but its run time increases exponentially as the number of variables and 
interaction levels increase, and it is not clear if IPO can be parallelized.  This note describes a 
algorithm – called Paintball – that can be parallelized, unlike other covering array algorithms, 
making it possible to handle a much larger number of variables than other known algorithms.  The 
algorithm trades test case optimization for speed – it produces roughly 3% to 15% more tests 
(depending on run time allowed) than FireEye for 10 or more variables, but this ratio improves as 
the number of variables increases (see examples in Table 1).  It thus complements but may not 
replace FireEye and other algorithms, which produce somewhat fewer tests.  The significant 
advantage of the algorithm is that it can be distributed across any number of processors.  For 
automated test generation this means that both test data generation and test oracle production can be 
run in parallel.   
 
The algorithm is called Paintball because it is conceptually similar to firing paintballs at a wall, 
using a few tunable parameters, until it is completely covered.  Although this would be absurdly 
inefficient for a small number of variables, it becomes effective for the large number of variables 
that must be handled for software testing.  For k-way interaction and variables with v values each, 
the number of tests is ideally vk, if there were no duplication of combinations among tests, a 
condition that is not possible to obtain for realistic examples.  Optimal algorithms produce some 
multiple of this number. Because the number of k-way combinations among n variables, , is 

very large for large n, randomly generated test cases can produce a high degree of coverage.  The 
algorithm works as follows: 
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2. Matrix M is indexed by the k-way combinations of n variables; i.e., M is an associative array 
of the possible combinations of n variables; each combination is associated with a row of vk  
cells.  M will be used as a checkbox to check whether combinations have been covered. 

3. Repeat d times, where d is a pre-specified duplication factor: generate vk tests with n random 
values per test, resulting in a  by n test case matrix T.   Each test generated (each row of 
T), up to a configurable parameter t, is checked to determine the number of new 
combinations covered. The test with the highest number of new combinations covered is 
used.   The objective of this step is to minimize the duplication of combinations covered by 
tests. 
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4. Mark combinations covered by each generated test: 
for each possible combination of variables, set Mi,j = 1, where i =  variable combination 
<v1v2... vm>  and j =  < vm ...v2v1 >v  .  For example, suppose the values of the current 
combination of variables are 2,0,3, and 0.  Then j = 03024 = 5010.  For variables with 
differing numbers of values, a similar procedure is used, with variables ordered by number 
of values. 
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5. Scan M and set c = number of combinations not covered.  If c is less than an experience-
based parameter for similar sized problems, then stop, else increase duplication factor:  d := 
d+1 and repeat the algorithm until number of tests is minimum.  This procedure generally 
covers 99.9% or more of the possible combinations. 

6. Uncovered combinations may number from a few to 10,000 or more.  These are written out 
as tests with one combination per test, with other variable values given as “don’t care” 
conditions.  For example, for 4-way interactions, an uncovered test may be 
 “- 3 - - 2 5 - - 3 - -“  (“-“ represents don’t care value). 

7. Randomize the lines produced in step 6; i.e., for lines Li in the output file, shuffle index i. 
8. Reduce the tests for combinations not covered by combining them into test cases containing 

multiple combinations.  Test cases are combined when their values for each variable are the 
same (i.e., T1i = T2i, all i) or when one is a “don’t care” condition.  For each line i in the file 
of uncovered combinations, compare line i with following lines j = i+p..(i+ p <n ? i+ p : n), 
where p is a lookahead parameter that is some fraction of the total lines in the file.  If a line 
is found that can be combined with line i, merge the two and resume scanning with line i+1.  
If no line in i+1 .. p matches line i, write out line i and resume scanning with line i+1.  This 
procedure can normally reduce 10,000 to 100,000 tests to a several hundred, with the final 
reduced tests containing less than 1% “don’t care” values. 

 
Discussion:  This procedure works because with many variables, each test case contains thousands 
of k-way combinations of variables.  Another way of viewing the covering procedure is to think of 
each of the C = 
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marbles into random bins, most bins will have at least one marble.  Another set of C marbles covers 
more bins, and so on repeated d times, until nearly all contain one or more marbles.  For example, 
with C=20, d=8, all C combinations are covered with 99.5% probability    The number of 
combinations produced by the algorithm is d x C, and each random combination is assigned to one 
of the C bins, with the total number of randomly generated combinations proportional to C ln C.  
With suitable values of d, at least one combination is assigned to each bin with a very high 
probability.  The efficiency of this approach is increased by minimizing the number of duplicate 
combinations in each new test in step 3 
 
Implementation notes:  The algorithm can be distributed across any number of machines, but 
requires a common “checkbox” to record the combinations covered.  For a large number of 
variables, a very large amount of disk storage would be required for the blackboard, roughly 
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 bytes.  For 6-way combinations of 50 variables with 6 values each, this is approximately 
9 gigabytes; large but fairly easy to implement on a cluster system.  With lower interaction levels or 
fewer values per variable, a desktop PC is adequate for 100 variables or more.  Alternatively, a disk 
based version of the program can be used, although this increases run time from a few minutes to 
hours.   
 
Calculation of d in step 3.  The occupancy problem in probability addresses the question of 
throwing m balls into n bins at random, or in this case, the number of combinations generated 
randomly to cover all possible combinations.  For large m and n, the proportion of n bins covered is 
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p = e-m/n  .   The algorithm is designed to cover a high percentage of bins, 
C

RC − , where C = 
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is the number of combinations to be covered, and R is the remaining set that is not covered, usually 
a few hundred to several thousand (see step 6).  From this we can determine the duplication factor d 
(step 3) and an upper bound on the number of tests produced: 
 

RCd lnln −≅   and  
#T = generated tests ≤  kvRC )ln(ln −
In practice the best starting point for the duplication factor d seems to be ln . 1ln −− RC
 
Note from Table 1 that the difference between the number of tests produced by Paintball and 
FireEye declines as the number of variables increases, but this has not been tested above 50 
variables because run times for FireEye become prohibitive (exceeding 24 hours) above this 
number.  There may be relatively little difference for significantly higher numbers of variables.   
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4-way Interactions, 4 to 8 value variables, single processor 
Num. of 
variables      
 
4 value PB2 tests PB2 time FE tests FE time PB2/FE tests 

10 771 3 684 1 112.7%
20 1367 31 1123 62 121.7%
30 1766 68 1486 570 118.8%
40 2051 365 1718 2704 119.4%
50 2260 300 1897 12958 119.1%
60     
70 2504 4989 2144 42383 116.8%

      
5 value      

10 1906 6 1861 102.4%
20 3493 27 3019 115.7%
25 3987 158 3185 125.2%
30 4340 385 3749 115.8%
40 5026 699 4275 7041 117.6%
50 5512 2084 4691 24352 117.5%

      
6 value      

10 3967 53 3858 57 102.8%
      
7 value      

10 7394 152 7155 134 103.3%
      
8 value      

10 12602 320 12173 288 103.5%
Table 1.  Comparison of test generation for 4-way interactions 
PB = paintball algorithm, #tests and time in seconds 
FE = FireEye algorithm, #tests and time in seconds 
 
 


