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Abstract 

This report defines the Common Platform Enumeration (CPE) Name Matching version 2.3 specification. 

The CPE Name Matching specification is part of a stack of CPE specifications that support a variety of 

use cases relating to IT product description and naming. The CPE Name Matching specification provides 

a method for conducting a one-to-one comparison of a source CPE name to a target CPE name. In 

addition to defining the specification, this report also defines and explains the requirements that IT 

products must meet for conformance with the CPE Name Matching version 2.3 specification. 
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1. Introduction 

Common Platform Enumeration (CPE) is a standardized method of describing and identifying classes of 

applications, operating systems, and hardware devices present in an enterprise’s computing assets. CPE 

can be used as a source of information for enforcing and verifying IT management policies relating to 

these assets, such as vulnerability, configuration, and remediation policies. IT management tools can 

collect information about installed products, identify products using their CPE names, and use this 

standardized information to help make fully or partially automated decisions regarding the assets. 

CPE Name Matching is one of several modular CPE specifications that work together in layers to perform 

various functions. CPE Name Matching defines a method for conducting a one-to-one comparison of a 

source CPE name to a target CPE name. By logically comparing CPE names as sets of values, CPE Name 

Matching methods can determine if common set relations hold. For example, CPE Name Matching can 

determine if the source and target names are equal, if one of the names is a subset of the other, or if the 

names are disjoint. 

One example of the value of CPE Name Matching is in determining if a particular product is installed on 

a system. Suppose that an organization is identifying which of its systems have any variation of Microsoft 

Internet Explorer 8 installed. This could be represented with the following well-formed CPE name (WFN) 

[CPE23-N:5.1]: 

 
wfn:[part="a",vendor="microsoft",product="internet_explorer", 

version="8\.*",update=ANY,edition=ANY,language=ANY] 

 

An asset management tool could collect information on the software installed on a system and compare its 

Internet Explorer installation characteristics to the WFN above. Suppose that the WFN for a particular 

installed instance of Internet Explorer was reported as: 
 
wfn:[part="a",vendor="microsoft",product="internet_explorer", 

version="8\.0\.6001",update=NA,edition=NA,language="en\-us"] 

 

Using these two example WFNs, CPE Name Matching methods perform a pairwise comparison of 

attribute values in the first (source) WFN to those in the second (target) WFN, yielding a list of the set 

relations between each pair of attributes (e.g., equal, superset). This list of comparison results is then 

assessed, leading to a determination that the first WFN represents a superset of the second WFN. This can 

be interpreted to mean that the system being examined does indeed have a variation of Microsoft Internet 

Explorer 8 installed. 

 
Although this may seem like a trivial example, CPE Name Matching is a powerful and flexible way of 

performing product comparisons in a standardized, automated manner. CPE Name Matching is also used 

by other CPE specifications to conduct more complex tasks, such as searching for product names in CPE 

dictionaries and performing complex comparisons of sets of product versions—for example, determining 

if a system is running a particular operating system version, running two particular applications, and not 

running a third particular application. 

1.1 Purpose and Scope 

This report defines the specification for CPE Name Matching version 2.3. The report also defines and 

explains the requirements that producers of CPE Name Matching implementations, such as software and 

services, must meet to claim conformance with version 2.3 of the CPE Name Matching specification. 
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This report only applies to version 2.3 of CPE Name Matching. All other versions are out of the scope of 

this report, as are all CPE specifications other than CPE Name Matching. 

1.2 Audience 

This report is intended for two main audiences: IT management tool developers and the authors and 

editors of CPE content. Readers of this report should already be familiar with CPE naming concepts and 

conventions as defined in [CPE23-N]. 

1.3 Document Structure 

The remainder of this report is organized into the following major sections: 

 Section 2 defines the key terms and abbreviations used in this specification. 

 Section 3 provides an overview of related specifications and standards. 

 Section 4 defines the high-level conformance rules for this specification. 

 Section 5 describes the foundational concepts, name constructs, and technical constraints 

associated with CPE name matching. 

 Section 6 defines CPE set relations. 

 Section 7 describes expected name matching behavior in pseudocode. 

 Appendix A lists normative and informative references. 

 Appendix B describes how to implement CPE 2.2 equivalent matching capabilities using CPE 2.3 

matching functions. 

 Appendix C provides a change log that documents significant changes to major drafts of the 

specification. 

1.4 Document Conventions 

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 

interpreted as described in [RFC 2119]. 

Text intended to represent computing system input, output, or algorithmic processing is presented in 

fixed-width Courier font. 

 

Normative references are listed in Appendix A of this document. The following reference citation 

conventions are used in the text of this document:  

 For normative references, a square bracket notation containing an abbreviation of the overall 

reference citation, followed by a colon and subsection citation where applicable (e.g., [CPE23-

N:7.2] is a citation for the CPE 2.3 Naming specification, Section 7.2) 

 For references within this document (internal references) and non-normative references, a 

parenthetical notation containing the “cf.” (compare) abbreviation followed by a section number 

for internal references or an external reference (e.g., (cf. 3.1) is a citation for Section 3.1 of this 

document). 

The phrase “CPE Name Matching” is capitalized only when referring to the proper name of this 

specification. When “CPE name matching” is otherwise used, such as a verb phrase, only the CPE 

acronym is capitalized.  
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This document uses an abstract pseudocode programming language to specify expected computational 

behavior. Pseudocode is intended to be straightforwardly readable and translatable into actual 

programming language statements. Note, however, that pseudocode specifications are not necessarily 

intended to illustrate efficient or optimized programming code; rather, their purpose is to clearly define 

the desired behavior, leaving it to implementers to choose the best language-specific design which 

respects that behavior. In some cases, particularly where standardized implementations exist for a given 

pseudocode function, we describe the function's behavior in prose. 

When reading pseudocode the following should be kept in mind: 

 All pseudocode functions are pass by value, meaning that any changes applied to the supplied 

arguments within the scope of the function do not affect the values of the variables in the caller’s 

scope. 

 In a few cases, the pseudocode functions reference (more or less) standard library functions, 

particularly to support string handling. Whenever possible, we reference semantically equivalent 

functions from the GNU C library, cf. 

http://www.gnu.org/software/libc/manual/html_node/index.html#toc_String-and-Array-Utilities. 
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2. Definitions and Abbreviations 

This section defines selected terms and acronyms used within the document. 

2.1 Definitions 

The following definitions apply to the CPE Name Matching specification. These definitions build on the 

definitions from the CPE Naming specification [CPE23-N]. They have been adapted where practical from 

authoritative sources, such as industry, national, and international standard specifications.  

Attribute: A property or characteristic of a computing product. CPE 2.2 commonly used the term 

“component” instead of “attribute”. CPE 2.3 uses the term “attribute” to clarify the distinction between 

CPE 2.2 name “components” and computing components, such as software modules. Examples of CPE 

2.3 attributes are part, vendor, product, and version. CPE attributes and their value constraints are defined 

in the CPE Naming specification [CPE23-N:5.2, 5.3]. 

Attribute-Value (A-V) Pair: A tuple a=v in which a (the attribute) is an alphanumeric label representing 

a property or state, and v (the value) is the value assigned to the attribute. 

CPE Attribute Comparison: The first phase of CPE name matching, where a matching engine compares 

each of the A-V pairs of a source CPE name to the corresponding A-V pair of a target name in order to 

specify one of four possible logical attribute comparison relations for each attribute in a CPE name. 

CPE Name Comparison: The second phase of CPE name matching, where the individual attribute 

comparison results from the first phase are analyzed as a collection to determine an overall comparison 

result for the two names. The result of a name comparison is the identification of the relationship between 

a source CPE name and target CPE name. 

CPE Name Matching: A one-to-one source-to-target comparison of CPE names. CPE name matching 

has two phases: attribute comparison and name comparison. CPE name matching compares source-to-

target attribute values at the attribute comparison level, and then applies rules to the set of attribute 

relations to determine a name match, such as the names being equal or the source name being a superset 

of the target name. 

Extension: The set of individual products to which a WFN refers. 

Quote: To precede printable non-alphanumeric characters (e.g., *, $, ?) with the backslash ( \) escape 

character in a value string. When a non-alphanumeric character is quoted in a WFN, it SHALL be 

processed as string data. When a non-alphanumeric character is unquoted in a WFN, it may be interpreted 

as a special character by CPE 2.3 specifications, including this one. 

Source Name: A single WFN that a matching engine compares to a target WFN to determine whether or 

not there is a source-to-target match. (This is the X value in the CPE 2.2 matching algorithm.) 

Source Value: A single value that a matching engine compares to a corresponding target value to 

determine whether or not there is a source-to-target match. Source values include A-V pairs or set relation 

values (e.g., superset or subset). 

Special Character: A non-alphanumeric character that may be defined by one or more CPE 

specifications to have a special meaning when it appears unquoted in a WFN. Special characters typically 

trigger a processor to perform a given function. The rules for escaping CPE special characters are defined 

in the CPE Naming specification [CPE23-N:5.3.2]. 
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Target Name: A single WFN that is the target of a matching process. A matching engine compares a 

source WFN to a target WFN to determine whether or not there is a source-to-target match. In CPE 2.2 

terms a target name is a single item in the list of known values (each N of K) and is equivalent to the N 

value in the CPE 2.2 Matching algorithm. 

Target Value: A single value that is the target of a matching process. A matching engine compares a 

source value to a target value to determine whether or not there is a source-to-target match. Source values 

include AV pairs or set relation values (e.g., superset or subset). 

Value String: A value assigned to an attribute of a WFN. It must be a non-empty contiguous string of 

bytes encoded using printable Unicode Transformation Format-8 (UTF-8) characters with hexadecimal 

values between x00 and x7F. 

Well-Formed CPE Name (WFN): A logical construct that constitutes an unordered list of A-V pairs that 

collectively describe or identify one or more operating systems, software applications, or hardware 

devices. Unordered means that there is no prescribed order in which A-V pairs should be listed, and there 

is no specified relationship (hierarchical, set-theoretic, or otherwise) among attributes. WFNs must satisfy 

the criteria specified in the CPE Naming specification [CPE23-N:5.2]. For a full description and usage 

constraints on WFN logical attribute values, see Section 5 of the CPE Naming specification [CPE23-N:5]. 

2.2 Abbreviations 

A-V Attribute-Value Pair 

CPE  Common Platform Enumeration 

GNU  GNU's Not Unix (recursive acronym) 

IR Interagency Report 

IT  Information Technology 

ITL  Information Technology Laboratory 

NIST  National Institute of Standards and Technology 

RFC  Request for Comment 

SCAP  Security Content Automation Protocol 

URI  Uniform Resource Identifier 

UTF-8  Unicode Transformation Format-8 

WFN  Well-Formed CPE Name 

XML  Extensible Markup Language 
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3. Relationship to Existing Specifications and Standards 

This section explains the relationships between this specification and related specifications or standards. 

3.1 Other CPE Version 2.3 Specifications 

CPE version 2.3 has a modular, stack-based approach, with each major component defined in a separate 

specification. Functional capabilities are built by layering these modular specifications. This architecture 

opens opportunities for innovation, as novel capabilities can be defined by combining only the needed 

specifications, and the impacts of change can be better compartmentalized and managed.  

 

The CPE Name Matching specification builds on the foundation of the CPE Naming specification 

[CPE23-N]. Many of the concepts and methods that are applied in this specification are defined in the 

CPE Naming specification. Specifications layered above the CPE Name Matching specification in the 

CPE stack build on the matching criteria and logic defined in this document. 

3.2 CPE Version 2.2 

The CPE version 2.3 specifications, including this specification, collectively replace [CPE22]. CPE 

version 2.3 is intended to provide all the capabilities made available by [CPE22] while adding new 

features suggested by the CPE user community. 

 

The primary changes in CPE Name Matching since CPE 2.2 are: 

1. The “prefix property” [CPE22:4] was eliminated from CPE 2.3. 

2. New matching criteria and logic support a broad range of use cases. 

3. CPE name matching is defined in terms of a WFN so that it can be implemented in a common 

way regardless of how names are bound for machine processing and interchange. 

4. Attribute matching supports single-character and multi-character wild card values. 
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4. Conformance 

Product manufacturers may want to claim conformance with this specification for a variety of reasons. 

This section provides the high-level requirements that must be met by any implementation seeking to 

claim conformance with this specification. These requirements ensure the interoperability of conformant 

implementations through common CPE name matching functionality. 

The following apply to all implementations claiming conformance with this specification: 

1. An implementation MUST make an explicit claim of conformance to this specification in any 

documentation provided to end users. 

2. An implementation MUST implement the behavior that is specified in the pseudocode of this 

document (cf. 7). 

3. An implementation MUST produce the identical results for CPE attribute and name comparison 

relations that are specified in this document (cf. 5, 6). 

4. An implementation MUST satisfy the technical constraints as defined in this document (cf. 5.2) 
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5. Name Matching Overview 

The CPE Name Matching specification interprets the Well-Formed CPE Name (WFN) as a set-theoretic 

construct. That is, a WFN is treated as an expression that refers to a set of individual products having 

certain attribute values. The set of individual products to which a WFN refers is called the extension of 

the WFN. For example, the extension of the WFN 

wfn:[part="a",vendor="microsoft",product="internet_explorer", 

version="8\.0"] 

is the set of individual products with the part attribute equal to "a" (i.e., applications), the vendor 

attribute equal to "microsoft", the product attribute equal to "internet_explorer", the 

version attribute equal to "8\.0", and all the other (unspecified) attribute values with any value. It is 

important to keep in mind that the attribute values serve as constraints on membership in the WFN's 

extension; they are ANDed together because, to be a member of a WFN's extension, an individual product 

must satisfy all the attribute values. 

 

This conception of WFNs permits an intuitive formulation of WFN matching as the assessment of the set 

relationship (e.g., subset, superset) between the two extensions of the WFNs being compared. This 

specification builds on the set-theoretic conception of WFNs to define common matching functionality 

for the assessment of the set relation between a source WFN and a target WFN. The functionality 

described in this specification encompasses two main parts: a method for comparing attribute values 

within the source and target WFNs to identify their set relations, and a method for comparing source and 

target WFNs as sets of attribute relations. Taken together, these two parts provide for basic tool 

interoperability, while remaining flexible and extensible enough to apply to a broad range of use cases.  

The CPE v2.2 specification [CPE22] provided a single definition of what it means for a source CPE name 

to “match” a target name. In contrast, this specification takes a more open and flexible approach. Here, 

CPE name matching is defined to return individual results for each pairwise attribute comparison, along 

with a single overall set-theoretic result for a name comparison. CPE’s developers have chosen not to 

define a single notion of “name match” because experience has shown that name matching distinctions 

are often use-case dependent. For example, when a source WFN is generated from the sparse results of a 

non-authenticated asset inventory tool, matching of only one or two CPE attribute values may constitute a 

meaningful “name match” for some applications. In contrast, when both the source and target WFNs are 

fully specified, common names in an authoritative CPE dictionary, it may be reasonable to decide that a 

“name match” requires an exact match of all CPE attribute values in both names. In order to remain 

flexible enough to support these and other use cases, the CPE Name Matching specification leaves the 

majority of decisions about what constitutes a “name match” to CPE implementers at design time. This 

flexibility is expected to free the CPE community to develop new and innovative ways to define CPE 

name matches as required to satisfy various application needs. 

Although the following matching capabilities may build on the foundation of the CPE Name Matching 

specification, they are outside of its scope: 

1. Multiple name results. Although CPE Name Matching methods can be sequentially applied to a 

list of target names, they return only the first match found in the list. CPE Name Matching 

methods do not return lists of results.  

2. Many-to-many comparisons. When comparing a list of source names to a list of target names, the 

CPE Name Matching specification provides a foundation from which to build list-to-list 

comparisons, but it does not define many-to-many comparisons. 
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3. Weighting of matching results. CPE Name Matching does not specify how to determine whether 

or not one match is more relevant than another. For example, the algorithm does not distinguish 

whether a match of a version attribute value is more or less relevant than a match of a 

language attribute value. 

The remainder of this section defines the foundational CPE name constructs and technical constraints 

associated with CPE name matching. 

5.1 CPE Name Constructs 

CPE name matching is defined to be independent of any bound form of a CPE name. Rather, it is defined 

only in terms of the logical constructs of a WFN. The possible attribute values of a WFN include the 

logical values ANY and NA, value strings, and special characters. For a full description and basic usage 

constraints on WFN attribute values, see the CPE Naming specification [CPE23-N:5].  

 

The CPE Naming specification designates the asterisk (*) and the question mark (?) as special characters 

for use in the CPE attribute-value strings of a WFN. When these characters appear unquoted within a CPE 

attribute-value string, they may be interpreted as having a special meaning by CPE specifications 

[CPE23-N:5.3.2]. The CPE Name Matching specification assigns special interpretations to these 

unquoted characters. For matching purposes, an unquoted asterisk in an attribute-value string SHALL be 

interpreted as a multi-character wild card, and an unquoted question mark SHALL be interpreted as a 

single-character wild card. Logically, these wild cards translate to multi-character ANY and single-

character ANY, respectively. 

Although the CPE Name Matching specification is defined in terms of WFNs, CPE Name Matching 

implementations are NOT REQUIRED to transform CPE names into WFNs prior to matching. In 

practice, implementers MAY choose to unbind CPE names to WFNs prior to matching, or they MAY 

apply matching to the bound form of their choice. 

 

When applying matching directly to bound forms (e.g., URIs or formatted strings), implementers should 

be aware of the ways in which unquoted special characters are encoded [CPE23-N:6.1.2.1.2]. In URI 

bindings, the unquoted question mark is encoded as the character sequence %01, and the unquoted 

asterisk is encoded as the character sequence %02. In formatted string bindings, the unquoted question 

mark is encoded as a question mark without a preceding escape (backslash) character, and the unquoted 

asterisk is encoded as an asterisk without a preceding escape character. 

5.2 Technical Constraints 

This specification places the following constraints on usage of the unquoted question mark in attribute-

value strings: 

1. An unquoted question mark MAY be used at the beginning and/or the end of an attribute-value 

string. Examples: "?foo", "bar?", "?baz?" 

2. A contiguous sequence of unquoted question marks MAY appear at the beginning and/or the end 

of an attribute-value string. Examples: "??foo", "bar???", "??baz???" 

3. An unquoted question mark SHALL NOT be used in any other place in an attribute-value string. 

Examples of illegal usage: "foo?bar", "bar??baz", "q??x" 

This specification places the following constraints on usage of the unquoted asterisk in attribute-value 

strings: 
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1. A single unquoted asterisk MAY be used as the entire attribute-value string. Example: "*" 

2. A single unquoted asterisk MAY be used at the beginning and/or end of an attribute-value string. 

Examples: "*foo", "bar*", "*baz*" 

3. An unquoted asterisk SHALL NOT be used in any other place in an attribute-value string. 

Example of illegal usage: "foo*bar", "**foo", "bar***" 

Unquoted question marks and asterisks MAY appear in the same attribute-value string as long as they 

meet the constraints above. Examples of legal usage: "?foo*", "*bar??". Examples of illegal usage: 

"*?foobar", "foobar*?". 

CPE Name Matching implementations MUST satisfy the following technical constraints: 

1. The logical meaning that is applied to the unquoted characters asterisk (*) and question mark (?) 

MUST be applied as defined in this specification. 

2. Attribute comparison MUST be performed prior to name comparison. 

3. The collective relations of the attribute comparison of a source CPE name to a target CPE name 

SHALL be used as input to name comparison. 

4. Final CPE name matching results SHALL provide matching results for each attribute comparison 

in a CPE name as well as an overall name comparison result. 
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6. Set Relations 

This section defines CPE Name Matching set relations and describes how they are applied to compare 

CPE attributes and names. 

There are four possible set relations between a source WFN and a target WFN. Although the contents of 

source and target and the applied logic vary among name matching processes, the meaning of the relation 

itself remains consistent throughout this specification. Table 6-1 defines the notation and meaning of each 

set relation. 

Table 6-1: CPE Name Matching Set Relations 

No. Notation Definition 

1 ⊃ The source is a SUPERSET of the target 

2 ⊂ The source is a SUBSET of the target 

3 = The source and target are EQUAL 

4 ≠ The source and target are mutually exclusive or DISJOINT 

 

The SUPERSET and SUBSET relations defined in this specification are the conventional, “non-proper” 

set relations: that is, a set is not only EQUAL to itself, but it is also a SUPERSET and a SUBSET of 

itself. 

 

Given the set-theoretic conception of WFNs, WFN extensions are sets containing zero or more 

individuals. Each A-V pair of a WFN can thus be thought of as a subset of the WFN's full extension, 

namely, the subset of individuals from the full extension having the particular attribute value. This idea 

allows us to design source-to-target WFN comparison as a two-stage process: a sequence of pairwise A-V 

comparisons, yielding a list of results, followed by a holistic evaluation of the results list to arrive at an 

overall determination of the set-theoretic relationship between source and target. The next section 

describes the attribute comparison relations. 

6.1 Attribute Comparison Relations 

The first of two CPE name matching phases, the attribute comparison process compares each A-V pair in 

a source name to its corresponding A-V pair in a target name, matching it to one of the four possible set 

relations. For example, comparing the source A-V vendor=ANY to the target A-V 

vendor="microsoft" matches to set relation number 1 in Table 6-1 (⊃), where the source A-V 

represents a superset of the target A-V. 

 

Table 6-2 enumerates all combinations of CPE WFN A-Vs and defines the set relation for each 

comparison. The following key describes the attribute value notation for Table 6-2. 

1. ANY and NA are logical values as defined in [CPE23-N:5.3.1] 

2. i is a wildcard-free attribute-value string, e.g., "foo" 

3. k is a wildcard-free attribute-value string that is not identical to i, e.g., "bar" 

4. m + wild cards is an attribute-value string containing a legal combination of unquoted question 

mark or asterisk wild cards at the beginning and/or the end of the string, e.g., "*b??" 
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Table 6-2: Enumeration of Attribute Comparison Set Relations 

No. Source A-V  Target A-V Relation 

1 ANY ANY = 

2 ANY NA ⊃ 

3 ANY i ⊃ 

4 ANY m + wild cards undefined 

5 NA ANY ⊂ 

6 NA NA = 

7 NA i ≠ 

8 NA m + wild cards undefined 

9 i i = 

10 i k ≠ 

11 i m + wild cards undefined 

12 i NA ≠ 

13 i ANY ⊂ 

14 m1 + wild cards m2 ⊃ or ≠ 

15 m + wild cards ANY ⊂ 

16 m + wild cards NA ≠ 

17 m1 + wild cards m2 + wild cards undefined 

When comparing string literals, matching results MUST be insensitive to lexical case. 

Wild card usage is a new OPTIONAL feature in CPE 2.3. Wild cards MAY be included as part of the 

source value (lines 14-17 of Table 6-2). Wild cards SHOULD NOT be included in the target value—in 

this specification the inclusion of wild card characters in a target value yields an undefined result. See 

Section 6.3 of this document for a description of wild card matching criteria and relations.  

In line 14 of Table 6-2, the result of the comparison depends on whether the wildcard comparison returns 

a positive string match. For example, if the source value is "9\.*" and the target value is "9\.3", then the 

result of the comparison is ⊃ (SUPERSET). If, however, the source value is "9\.*" and the target value is 

"8\.3", then the string match fails and the result of the comparison is ≠ (DISJOINT). 

The attribute comparison phase results in a list of relations, one for each pairwise comparison of WFN 

attributes. Table 6-3 illustrates a set of source and target A-Vs and the resulting set of attribute 

comparison relations. 
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Table 6-3: Attribute Comparison Example 

Attribute Part Vendor Product Version Update Edition 

Source Value a Adobe ANY 9.* ANY PalmOS 

Target Value a ANY Reader 9.3.2 NA NA 

Relation Set = ⊂ ⊃ ⊃ ⊃ ≠ 

6.2 Name Comparison Relations 

The second of two CPE name matching phases, the name comparison process evaluates the attribute 

relations in the relation set resulting from the attribute comparison phase of the matching process. The 

results of a CPE name comparison is a single set relation between the source and target WFNs. In keeping 

with the goal to remain flexible enough to support a broad range of use cases, while specifying enough 

commonality to ensure basic interoperability between CPE Name Matching conformant tools, CPE 2.3 

provides four basic name comparison relations. These relations were chosen for two reasons: they are the 

least likely to be use-case dependent, and they provide functional backward compatibility with the CPE 

2.2 name matching process. 

The four name comparison relations are described in Table 6-4.  

Table 6-4: Required CPE Name Comparison Relations 

No. If Attribute Relation Set = Then Name Comparison Relation 

1 If any attribute relation is DISJOINT (≠) Then CPE name relation is DISJOINT(≠) 

2 If all attribute relations are EQUAL (=) Then CPE name relation is EQUAL (=) 

3 
If all attribute relations are SUBSET (⊂) or 
EQUAL (=) 

Then CPE name relation is SUBSET(⊂) 

4 
If all attribute relations are SUPERSET (⊃) or 
EQUAL (=) 

Then CPE name relation is SUPERSET (⊃) 

Although additional name matching relations MAY be defined by other CPE specifications or by the CPE 

community to meet their operational needs, these four name comparison relations are the minimal 

REQUIRED set for baseline interoperability of CPE Name Matching implementations. Four 

corresponding name comparison functions define the expected behavior for CPE name comparison in the 

pseudocode specification in Section 7.2. CPE implementers who wish to emulate the functionality of the 

CPE 2.2 Matching algorithm should note that name comparison numbers 1 and 3 in Table 6-4 are 

equivalent to a final result of FALSE in CPE 2.2, while name comparison numbers 2 and 4 are equivalent 

to a CPE 2.2 result of TRUE. See Appendix B for a discussion of how to implement CPE 2.2 equivalent 

matching capabilities using CPE 2.3 name matching procedures. 

6.3 Wild Card Attribute Comparison 

A wild card (i.e., an unquoted special character) MAY be included as part of the source value when 

performing attribute value comparisons. The unquoted asterisk (*) character is a wild card for zero or 

more characters in the target value, and the unquoted question mark (?) character is a wild card for zero or 

one characters in the target value. Following [CPE23-N], wild card characters SHALL BE restricted to 
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appearing at the beginning and/or the end of strings. Use of wild cards embedded within a string is not 

supported. 

 

When comparing a source string containing wild cards to a target string (cf. line 14 in Table 6-2), one of 

two set relation results are possible: SUPERSET (⊃) or DISJOINT (≠). If the source string (treated as a 

simple regular expression) matches the target string, the set-theoretic relation is SUPERSET (⊃), because 

the set denoted by the target string includes or is equal to the set denoted by the target. If the source string 

(treated as a simple regular expression) fails to match the target, the set-theoretic relation is DISJOINT 

(≠), because the set denoted by the source does not overlap the set denoted by the target. 
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7. CPE Name Matching Pseudocode 

This section specifies the required common matching capabilities in terms of an abstract pseudocode 

programming language. The input/output behavior of all functions defined in pseudocode should be 

considered normative. The pseudocode implementations themselves should be considered informative, as 

the algorithms are written for clarity and simplicity rather than for efficiency. 

7.1 Overview of CPE Name Matching Pseudocode 

The following core functions comprise the required common matching capabilities: 

 CPE_DISJOINT: This function compares two WFNs and returns TRUE if the set-theoretic 

relation between the names is DISJOINT. 

 CPE_EQUAL: This function compares two WFNs and returns TRUE if the set-theoretic relation 

between the names is EQUAL. 

 CPE_SUBSET: This function compares two WFNs and returns TRUE if the set-theoretic relation 

between the names is (non-proper) SUBSET. 

 CPE_SUPERSET: This function compares two WFNs and returns TRUE if the set-theoretic 

relation between the names is (non-proper) SUPERSET. 

 Compare_WFNs: This function compares two WFNs and returns a list of pairwise attribute-

value comparison results. This function is required by the functions listed above. It provides full 

access to the individual comparison results to enable use-case specific implementations of novel 

name-comparison algorithms. 

These core functions depend on a number of support functions, including compare(), 

compareStrings(), and several string-processing functions. Section 7.2 defines the core functions, 

and Section 7.3 defines the support functions. 

7.2 CPE Name Matching Pseudocode: Core Functions 

The following CPE Name Matching pseudocode defines the required core matching functions.   

;; Begin CPE DISJOINT function. Input arguments are WFNs. 

;; Returns TRUE if the set relation between source and target is DISJOINT, 

;; otherwise FALSE. 

function CPE_DISJOINT(source, target) 

  result_list := Compare_WFNs(source, target). 

  ;; If any pairwise comparison returned DISJOINT (≠) then the overall 

  ;; name relationship is DISJOINT (≠).  

  foreach result in result_list do 

    if (result = DISJOINT (≠)) then return TRUE. 

  end. 

  return FALSE. 

end. 

 

;; Begin CPE EQUAL function. Input arguments are WFNs. 

;; Returns TRUE if the set relation between source and target is EQUAL, 

;; otherwise FALSE. 

function CPE_EQUAL(source, target) 

  result_list := Compare_WFNs(source, target). 

  ;; If every pairwise comparison returned EQUAL (=) then the overall 

  ;; name relationship is EQUAL (=). 
  foreach result in result_list do 
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    if (result != EQUAL (=)) then return FALSE. 

  end. 

  return TRUE. 

end. 

 

;; Begin CPE SUBSET function. Input arguments are WFNs. 

;; Returns TRUE if the set relation between source and target is SUBSET, 

;; otherwise FALSE. 

function CPE_SUBSET(source, target) 

  result_list := Compare_WFNs(source, target). 

  ;; If any pairwise comparison returned something other than SUBSET or 

  ;; EQUAL, then SUBSET is false. 

  foreach result in result_list do 

    if ((result != SUBSET (⊂)) and (result != EQUAL (=))) then 
      return FALSE. 

  end. 

  return TRUE. 

end. 

 

;; Begin CPE SUPERSET function. Input arguments are WFNs. 

;; Returns TRUE if the set relation between source and target is 

;; SUPERSET, otherwise FALSE. 

function CPE_SUPERSET(source, target) 

  result_list := Compare_WFNs(source, target). 

  ;; If any pairwise comparison returned something other than SUPERSET 

  ;; or EQUAL, then SUPERSET is false. 

  foreach result in result_list do 

    if ((result != SUPERSET (⊃)) and (result != EQUAL (=))) then 
      return FALSE. 

  end. 

  return TRUE. 

end.     

 

;; Compare each attribute of the Source WFN to the Target WFN. 

;; Inputs to the function are WFNs. 

;; Output is a list of pairwise attribute comparison results. 

function Compare_WFNs(source, target) 

  ;; Create a new associative array table. 

  result := new table. 

  ;; Compare results using the get() function defined in Section 5.4.2  

  ;; of the CPE Naming specification. 

  put(result, part, compare(get(source, part), get(target, part))). 

  put(result, vendor, compare(get(source, vendor), get(target, vendor))). 

  put(result, product, compare(get(source, product), get(target, product))). 

  put(result, version, compare(get(source, version), get(target, version))). 

  put(result, update, compare(get(source, update), get(target, update))). 

  put(result, edition, compare(get(source, edition), get(target, edition))). 

  put(result, language, compare(get(source, language), get(target, 

 language))). 

  put(result, sw_edition, compare(get(source, sw_edition), get(target, 

 sw_edition))). 

  put(result, target_sw, compare(get(source, target_sw), get(target, 

 target_sw))). 

  put(result, target_hw, compare(get(source, target_hw), get(target,  

 target_hw))). 

  put(result, other, compare(get(source, other), get(target, other))). 



 COMMON PLATFORM ENUMERATION (CPE): NAME MATCHING SPECIFICATION VERSION 2.3 

17 

  return result. 

end. 

7.3 CPE Name Matching Pseudocode: Support Functions 

The following CPE Name Matching pseudocode defines the required matching support functions. 

 
;; The compare() function is a support function for Compare_WFNs. 

;; Input to the function is a pair of attribute values, which may 

;; be logical values (ANY or NA) or string values. 

;; Output is the attribute comparison relation as defined in Section 6.1 

;; of this document. 

function compare(source, target) 

  if (is_string(source)) then source := to_lowercase(source). 

  if (is_string(target)) then target := to_lowercase(target). 

  ;; In this specification, unquoted wildcard characters in the target 

  ;; yield an undefined result. Table 6-2, lines 4, 8, 11 and 17. 

  if (is_string(target) and contains_wildcards(target)) then 

    return UNDEFINED. 

  ;; If source and target attribute values are equal, then the    

  ;; result is EQUAL (=). Table 6-2, lines 1, 6, 9. 

  if (source = target) then return EQUAL (=). 
  ;; If source attribute value is ANY, then the result is SUPERSET. 

  ;; Table 6-2, lines 2, 3. 

  if (source = ANY) then return SUPERSET (⊃). 
  ;; If target attribute value is ANY, then the result is SUBSET. 

 ;; Table 6-2, lines 5, 13, 15.  

  if (target = ANY) then return SUBSET (⊂). 
  ;; If either source or target attribute value is NA then the  

  ;; result is DISJOINT (≠). Table 6-2, lines 7, 12, 16. 

  if (source = NA or target = NA) then return DISJOINT (≠). 
  ;; If we get to this point, we are comparing two strings, so call 

  ;; compareStrings(). Table 6-2, lines 10, 14. 

  return compareStrings(source, target). 

end. 

 

;; The compareStrings() function compares a source string to a target 

;; string, and addresses the condition in which the source string includes 

;; unquoted special characters. It performs a simple regular expression 

;; match, with the assumption that (as required) unquoted special characters 

;; appear only at the beginning and/or the end of the source string. It 

;; also properly differentiates between unquoted and quoted special  

;; characters. 

function compareStrings(source, target) 

  start := 0. 

  end := strlen(source). 

  begins := 0. 

  ends := 0. 

  if (substr(source,0,0) = "*") then 

    start := 1. 

    begins := -1. 

  else 

    while ((start < strlen(source)) and 

           (substr(source,start,start) = "?")) do 

      start := start + 1. 
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      begins := begins + 1. 

    end. 

  endif. 

  if ((substr(source,end-1,end-1) = "*") and 

      (isEvenWildcards(source,end-1))) then 

    end := end – 1. 

    ends := -1. 

  else 

    while ((end > 0) and 

           (substr(source,end-1,end-1) = "?") and 

           (isEvenWildcards(source,end-1))) do 

      end := end – 1. 

      ends := ends + 1. 

    end. 

  endif. 

  source := substr(source,start,end). 

  index := -1. 

  leftover := strlen(target). 

  while (leftover > 0) do 

    index := indexOf(target,source,index+1). 

    if (index = -1) then break. 

    escapes := countEscapeCharacters(target, 0, index). 

    if ((index > 0) and 

        (begins != -1) and 

        (begins < (index – escapes))) then break. 

    escapes := countEscapeCharacters(target, index+1, strlen(target)). 

    leftover := strlen(target) – index – escapes – strlen(source). 

    if ((leftover > 0) and ((ends != -1) and (leftover > ends))) 

      then continue. 

    return SUPERSET (⊃). 
  end. 

  return DISJOINT (≠). 
end. 

 

;; Function countEscapeCharacters takes a string str, a start index start, 

;; and an end index end. Starting at the start offset into str, it counts 

;; and returns the number of distinct escape (backslash) characters found, 

;; up to and including the end index. 

function countEscapeCharacters(str, start, end) 

  result := 0. 

  active := FALSE. 

  i := 0. 

  while (i < end) do 

    active := (!active and (substr(str,i,i) = "\")). 

    if (active and (i >= start)) then result := result + 1. 

    i := i + 1. 

  end. 

  return result. 

end. 

 

;; Function isEvenWildcards returns true if an even number of 

;; escape (backslash) characters precede the character at index 

;; idx in string str. 

function isEvenWildcards(str,idx) 

  result := 0. 

  while ((idx > 0) and (substr(str,idx-1,idx-1) = "\")) do 
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    idx := idx – 1. 

    result := result + 1. 

  end. 

  return isEvenNumber(result). 

end. 

 

;; The is_string() function is a support function for compare(). 

function is_string(arg) 

  ;; This function should return TRUE if arg is a string value, 

  ;; and FALSE if arg is a logical value (ANY or NA). 

end. 

 

;; The contains_wildcards() function is a support function for compare(). 

function contains_wildcards(string) 

  ;; Input to this function is a string value. 

  ;; This function should return TRUE if the string contains any unquoted 

  ;; special characters (question-mark or asterisk), otherwise FALSE. 

  ;; Ex: contains_wildcards("foo") => FALSE 

  ;; Ex: contains_wildcards("foo\?") => FALSE 

  ;; Ex: contains_wildcards("foo?") => TRUE 

  ;; Ex: contains_wildcards("\*bar") => FALSE 

  ;; Ex: contains_wildcards("*bar") => TRUE 

end. 

 

function strlen(s) 

  ;; Defined as in GNU C, returns the length of string s. 

  ;; Returns zero if the string is empty. 

end. 

 

function substr(s,b,e) 

  ;; Returns a substring of s, beginning at the b'th character, 

  ;; with zero being the first character, and ending at the e'th 

  ;; character. If b = e, returns the b'th character. b must be <= e.     

  ;; Returns nil if b >= strlen(s). 

end. 

 

function indexOf(str1,str2,off) 

  ;; Searches str1 for the first occurrence of the string str2, starting 

  ;; at the offset off into str1. Semantics equivalent to the Java 

  ;; string indexOf method. Returns -1 if str2 is not found. 

end. 

 

function to_lowercase(s) 

  ;; convert all alphabetic characters to lowercase. 

end. 
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Appendix B—Implementing CPE 2.2 Matching Functionality 

This appendix explains how to implement CPE 2.2 equivalent matching capabilities using CPE 2.3 

matching functions. 

 

In [CPE22: 7.2] (“Matching Algorithm: Known Instance Based Matching”) a name-comparison function 

CPE_Name_Match is defined, with the following inputs and outputs: 

 

Inputs:  

 K - A list of m CPE Names, K = {K1, K2, …, Km} .  

 X - A candidate CPE Name  

 
Output:  

 True if X matches K, false otherwise.  

 

The accompanying pseudocode is reproduced below for ease of reference: 

 
function CPE_Name_Match(K, X) 

  for each N in K do 

    if length(N)>= length(X) then r := false. 

    for i := 1 to length(X) do 

      if comp(X,i) = comp(N,i) or comp(X,i) = "" 

        then 

          r := true. 

        else 

          r := false. 

          break. 

      end if. 

    end for. 

    if r = true then return true. 

  end for. 

  return false. 

end. 

 

The above function methodically compares X to each CPE name N in K, and returns TRUE when the first 

match is found between the source X and the target N. If no such match is found, the function returns 

FALSE. 

 

The core source-to-target comparison implemented above in CPE_Name_Match is functionally 

equivalent to the CPE_SUPERSET function specified in Section 7.2 of this document. Using the new 

capabilities introduced in the current specification, one could implement CPE_Name_Match as follows: 

 

Inputs:  

 K - A list of m target WFNs, K = {K1, K2, …, Km} .  

 X - A source WFN  

 

Output:  

 True if X matches K, false otherwise.  

 



 COMMON PLATFORM ENUMERATION (CPE): NAME MATCHING SPECIFICATION VERSION 2.3 

22 

function CPE_Name_Match(K, X) 

  for each N in K do 

    if CPE_SUPERSET(X, N) then return true. 

  end for. 

  return false. 

end. 

 

The above pseudocode differs from the CPE 2.2 implementation in that the argument X is expected to be 

a WFN (rather than a CPE name encoded as a character string), and the argument K is expected to be a 

list of WFNs. To see that this is true, consider the following matching example, based on the example 

presented in [CPE2.2: 7.3]: 

 
K = {wfn:[part="o",vendor="microsoft",product="windows_2000", 

          update="sp3",edition="pro"], 

     wfn:[part="a",vendor="microsoft",product="ie",version="5.5"]} 

                  

X = wfn:[part="o",vendor="microsoft",product="windows_2000"] 

 

In this example, the result of the comparison is true because 

 
CPE_SUPERSET(wfn:[part="o",vendor="microsoft",product="windows_2000"], 

             wfn:[part="o",vendor="microsoft",product="windows_2000", 

                  update="sp3",edition="pro"]) 

 

returns true. Recall that unspecified attributes in a WFN default to the logical value ANY, thus the value 

of the update and edition attributes in X are ANY. The result of comparing an ANY value in the 

source to a specific value (e.g., "sp3") in the target is SUPERSET (cf. line 3 in Table 6-2), and the result 

of comparing an ANY value in the source to an ANY value in the target is EQUAL (cf. line 1 in Table 6-2). 

CPE_SUPERSET is true when all pairwise attribute comparisons yield EQUAL or SUPERSET. 
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