

Special Publication 800-22
Revision 1a

A Statistical Test Suite for
Random and Pseudorandom
Number Generators for
Cryptographic Applications

AndrewRukhin, JuanSoto,JamesNechvatal,Miles
Smid,ElaineBarker,Stefan Leigh,MarkLevenson,Mark
Vangel,DavidBanks,AlanHeckert, JamesDray,SanVo

Revised:April 2010
LawrenceEBasshamIII

NIST Special Publication 800-22
Revision 1a

A Statistical Test Suite for Random and
Pseudorandom Number Generators for
Cryptographic Applications

Andrew Rukhin1, Juan Soto2, James
Nechvatal2, Miles Smid2, Elaine
Barker2, Stefan Leigh1, Mark
Levenson1, Mark Vangel1, David
Banks1, Alan Heckert1, James Dray2 ,
San Vo2

Revised: April 2010
Lawrence E Bassham III2

C O M P U T E R S E C U R I T Y

1Statistical Engineering Division
2Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

Revised: April 2010

U.S. Department of Commerce

Gary Locke, Secretary

National Institute of Standards and Technology

Patrick Gallagher, Director

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Special Publication 800-series
reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative
activities with industry, government, and academic organizations.

National Institute of Standards and Technology Special Publication 800-22 revision 1a

Natl. Inst. Stand. Technol. Spec. Publ. 800-22rev1a, 131 pages (April 2010)

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

ii

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Table of Contents

Abstract ... 1

1. Introduction to Random Number Testing...1-1

1.1 General Discussion.. 1-1

1.1.1 Randomness ..1-1

1.1.2 Unpredictability...1-1

1.1.3 Random Number Generators (RNGs)..1-2

1.1.4 Pseudorandom Number Generators (PRNGs) ..1-2

1.1.5 Testing ...1-2

1.1.6 Considerations for Randomness, Unpredictability and Testing1-5

1.2 Definitions .. 1-5

1.3 Abbreviations ... 1-8

1.4 Mathematical Symbols... 1-8

2. Random Number Generation Tests...2-1

2.1 Frequency (Monobit) Test.. 2-2

2.1.1 Test Purpose..2-2

2.1.2 Function Call ..2-2

2.1.3 Test Statistic and Reference Distribution ...2-2

2.1.4 Test Description ...2-2

2.1.5 Decision Rule (at the 1% Level) ...2-3

2.1.6 Conclusion and Interpretation of Results ...2-3

2.1.7 Input Size Recommendation ..2-3

2.1.8 Example ...2-3

2.2 Frequency Test within a Block ... 2-4

2.2.1 Test Purpose..2-4

2.2.2 Function Call ..2-4

2.2.3 Test Statistic and Reference Distribution ...2-4

2.2.4 Test Description ...2-4

2.2.5 Decision Rule (at the 1% Level) ...2-5

2.2.6 Conclusion and Interpretation of Results ...2-5

2.2.7 Input Size Recommendation ..2-5

2.2.8 Example ...2-5

2.3 Runs Test... 2-5

2.3.1 Test Purpose..2-5

2.3.2 Function Call ..2-6

2.3.3 Test Statistic and Reference Distribution ...2-6

2.3.4 Test Description ...2-6

2.3.5 Decision Rule (at the 1% Level) ...2-7

2.3.6 Conclusion and Interpretation of Results ...2-7

2.3.7 Input Size Recommendation ..2-7

2.3.8 Example ...2-7

2.4 Test for the Longest Run of Ones in a Block ... 2-7

2.4.1 Test Purpose..2-7

2.4.2 Function Call ..2-8

2.4.3 Test Statistic and Reference Distribution ...2-8

2.4.4 Test Description ...2-8

2.4.5 Decision Rule (at the 1% Level) ...2-9

iii

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.4.6 Conclusion and Interpretation of Results ...2-9

2.4.7 Input Size Recommendation ..2-9

2.4.8 Example ...2-9

2.5 Binary Matrix Rank Test... 2-10

2.5.1 Test Purpose..2-10

2.5.2 Function Call ..2-10

2.5.3 Test Statistic and Reference Distribution ...2-10

2.5.4 Test Description ...2-10

2.5.5 Decision Rule (at the 1% Level) ...2-11

2.5.6 Conclusion and Interpretation of Results ...2-12

2.5.7 Input Size Recommendation ..2-12

2.5.8 Example ...2-12

2.6 Discrete Fourier Transform (Spectral) Test ... 2-12

2.6.1 Test Purpose..2-12

2.6.2 Function Call ..2-12

2.6.3 Test Statistic and Reference Distribution ...2-13

2.6.4 Test Description ...2-13

2.6.5 Decision Rule (at the 1% Level) ...2-14

2.6.6 Conclusion and Interpretation of Results ...2-14

2.6.7 Input Size Recommendation ..2-14

2.6.8 Example ...2-14

2.7 Non-overlapping Template Matching Test ... 2-14

2.7.1 Test Purpose..2-14

2.7.2 Function Call ..2-14

2.7.3 Test Statistic and Reference Distribution ...2-15

2.7.4 Test Description ...2-15

2.7.5 Decision Rule (at the 1% Level) ...2-16

2.7.6 Conclusion and Interpretation of Results ...2-16

2.7.7 Input Size Recommendation ..2-16

2.7.8 Example ...2-16

2.8 Overlapping Template Matching Test .. 2-17

2.8.1 Test Purpose..2-17

2.8.2 Function Call ..2-17

2.8.3 Test Statistic and Reference Distribution ...2-17

2.8.4 Test Description ...2-17

2.8.5 Decision Rule (at the 1% Level) ...2-19

2.8.6 Conclusion and Interpretation of Results ...2-19

2.8.7 Input Size Recommendation ..2-19

2.8.8 Example ...2-19

2.9 Maurer’s “Universal Statistical” Test .. 2-20

2.9.1 Test Purpose..2-20

2.9.2 Function Call ..2-20

2.9.3 Test Statistic and Reference Distribution ...2-20

2.9.4 Test Description ...2-20

2.9.5 Decision Rule (at the 1% Level) ...2-23

2.9.6 Conclusion and Interpretation of Results ...2-23

2.9.7 Input Size Recommendation ..2-23

2.9.8 Example ...2-23

2.10 Linear Complexity Test .. 2-24

2.10.1 Test Purpose ..2-24

2.10.2 Function Call ..2-24

iv

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.10.3 Test Statistic and Reference Distribution ...2-24

2.10.4 Test Description ...2-24

2.10.5 Decision Rule (at the 1% Level) ...2-26

2.10.6 Conclusion and Interpretation of Results ...2-26

2.10.7 Input Size Recommendation ..2-26

2.10.8 Example ...2-26

2.11 Serial Test.. 2-26

2.11.1 Test Purpose ..2-26

2.11.2 Function Call ..2-26

2.11.3 Test Statistic and Reference Distribution ...2-27

2.11.4 Test Description ...2-27

2.11.5 Decision Rule (at the 1% Level) ...2-28

2.11.6 Conclusion and Interpretation of Results ...2-28

2.11.7 Input Size Recommendation ..2-28

2.11.8 Example ...2-28

2.12 Approximate Entropy Test ... 2-29

2.12.1 Test Purpose ..2-29

2.12.2 Function Call ..2-29

2.12.3 Test Statistic and Reference Distribution ...2-29

2.12.4 Test Description ...2-29

2.12.5 Decision Rule (at the 1% Level) ...2-30

2.12.6 Conclusion and Interpretation of Results ...2-30

2.12.7 Input Size Recommendation ..2-30

2.12.8 Example ...2-31

2.13 Cumulative Sums (Cusum) Test .. 2-31

2.13.1 Test Purpose ..2-31

2.13.2 Function Call ..2-31

2.13.3 Test Statistic and Reference Distribution ...2-31

2.13.4 Test Description ...2-31

2.13.5 Decision Rule (at the 1% Level) ...2-33

2.13.6 Conclusion and Interpretation of Results ...2-33

2.13.7 Input Size Recommendation ..2-33

2.13.8 Example ...2-33

2.14 Random Excursions Test... 2-33

2.14.1 Test Purpose ..2-33

2.14.2 Function Call ..2-34

2.14.3 Test Statistic and Reference Distribution ...2-34

2.14.4 Test Description ...2-34

2.14.5 Decision Rule (at the 1% Level) ...2-37

2.14.6 Conclusion and Interpretation of Results ...2-37

2.14.7 Input Size Recommendation ..2-37

2.14.8 Example ...2-37

2.15 Random Excursions Variant Test .. 2-38

2.15.1 Test Purpose ..2-38

2.15.2 Function Call ..2-38

2.15.3 Test Statistic and Reference Distribution ...2-38

2.15.4 Test Description ...2-38

2.15.5 Decision Rule (at the 1% Level) ...2-39

2.15.6 Conclusion and Interpretation of Results ...2-39

2.15.7 Input Size Recommendation ..2-40

2.15.8 Example ...2-40

v

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

3. Technical Description of Tests..3-1

3.1 Frequency (Monobits) Test .. 3-1

3.2 Frequency Test within a Block ... 3-1

3.3 Runs Test... 3-2

3.4 Test for the Longest Run of Ones in a Block ... 3-3

3.5 Binary Matrix Rank Test... 3-5

3.6 Discrete Fourier Transform (Specral) Test .. 3-6

3.7 Non-Overlapping Template Matching Test .. 3-9

3.8 Overlapping Template Matching Test .. 3-12

3.9 Maurer’s “Universal Statistical” Test .. 3-13

3.10 Linear Complexity Test .. 3-15

3.11 Serial Test.. 3-18

3.12 Approximate Entropy Test ... 3-19

3.13 Cumulative Sums (Cusum) Test .. 3-21

3.14 Random Excursions Test... 3-22

3.15 Random Excursions Variant Test .. 3-24

4. Testing Strategy and Result Interpretation ..4-1

4.1 Strategies for the Statistical Analysis of an RNG... 4-1

4.2 The Interpretation of Empirical Results.. 4-2

4.2.1 Proportion of Sequences Passing a Test...4-2

4.2.2 Uniform Distribution of P-values...4-3

4.3 General Recommendations and Guidelines .. 4-3

4.4 Application of Multiple Tests .. 4-6

5. User’s Guide..5-1

5.1 About the Package... 5-1

5.2 System Requirements.. 5-1

5.3 How to Get Started .. 5-2

5.4 Data Input and Output of Empirical Results... 5-3

5.4.1 Data Input...5-3

5.4.2 Output of Empirical Results..5-3

5.4.3 Test Data Files ...5-3

5.5 Program Layout ... 5-3

5.5.1 General Program..5-3

5.5.2 Global Parameters ...5-4

5.5.3 Mathematical Software...5-4

5.6 Running the Test Code .. 5-5

5.7 Interpretation of Results... 5-7

List of Appendices

Appendix A— Source Code ... A-1

A.1 Hierarchical Directory Structure...A-1

A.2 Configuration Information ..A-3

Appendix B— Empirical Results for Sample Data... B-1

vi

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix C— Extending the Test Suite ... C-1

C.1 Incorporating Additional Statistical Tests.. C-1

C.2 Incorporating Additional PRNGs... C-2

Appendix D— Description of Reference Pseudorandom Number Generators................. D-1

D.1 Linear Congruential Generator (LCG) .. D-1

D.2 Quadratic Congruential Generator I (QCG-I) .. D-1

D.3 Quadratic Congruential Generator II (QCG-II) .. D-1

D.4 Cubic Congruential Generator II (CCG).. D-2

D.5 Exclusive OR Generator (XORG) ... D-2

D.6 Modular Exponentiation Generator (MODEXPG) ... D-2

D.7 Secure Hash Generator (G-SHA1) ... D-3

D.8 Blum-Blum-Shub (BBSG) ... D-3

D.9 Micali-Schnorr Generator (MSG) .. D-4

D.10 Test Results .. D-5

Appendix E— Numerical Algorithm Issues...E-1

Appendix F— Supporting Software ...F-1

F.1 Rank Computation of Binary Matrices ...F-1

F.2 Construction of Aperiodic Templates...F-4

F.3 Generation of the Binary Expansion of Irrational NumbersF-7

Appendix G— References.. G-1

vii

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Abstract

This paper discusses some aspects of selecting and testing random and pseudorandom number generators.
The outputs of such generators may be used in many cryptographic applications, such as the generation of
key material. Generators suitable for use in cryptographic applications may need to meet stronger
requirements than for other applications. In particular, their outputs must be unpredictable in the absence
of knowledge of the inputs. Some criteria for characterizing and selecting appropriate generators are
discussed in this document. The subject of statistical testing and its relation to cryptanalysis is also
discussed, and some recommended statistical tests are provided. These tests may be useful as a first step
in determining whether or not a generator is suitable for a particular cryptographic application. However,
no set of statistical tests can absolutely certify a generator as appropriate for usage in a particular
application, i.e., statistical testing cannot serve as a substitute for cryptanalysis. The design and
cryptanalysis of generators is outside the scope of this paper.

Key words: random number generator, hypothesis test, P-value

Abstract-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

1. Introduction to Random Number Testing

The need for random and pseudorandom numbers arises in many cryptographic applications. For
example, common cryptosystems employ keys that must be generated in a random fashion. Many
cryptographic protocols also require random or pseudorandom inputs at various points, e.g., for auxiliary
quantities used in generating digital signatures, or for generating challenges in authentication protocols.

This document discusses the randomness testing of random number and pseudorandom number
generators that may be used for many purposes including cryptographic, modeling and simulation
applications. The focus of this document is on those applications where randomness is required for
cryptographic purposes. A set of statistical tests for randomness is described in this document. The
National Institute of Standards and Technology (NIST) believes that these procedures are useful in
detecting deviations of a binary sequence from randomness. However, a tester should note that apparent
deviations from randomness may be due to either a poorly designed generator or to anomalies that appear
in the binary sequence that is tested (i.e., a certain number of failures is expected in random sequences
produced by a particular generator). It is up to the tester to determine the correct interpretation of the test
results. Refer to Section 4 for a discussion of testing strategy and the interpretation of test results.

1.1 General Discussion

There are two basic types of generators used to produce random sequences: random number generators
(RNGs - see Section 1.1.3) and pseudorandom number generators (PRNGs - see Section 1.1.4). For
cryptographic applications, both of these generator types produce a stream of zeros and ones that may be
divided into substreams or blocks of random numbers.

1.1.1 Randomness

A random bit sequence could be interpreted as the result of the flips of an unbiased “fair” coin with sides
that are labeled “0” and “1,” with each flip having a probability of exactly ½ of producing a “0” or “1.”
Furthermore, the flips are independent of each other: the result of any previous coin flip does not affect
future coin flips. The unbiased “fair” coin is thus the perfect random bit stream generator, since the “0”
and “1” values will be randomly distributed (and [0,1] uniformly distributed). All elements of the
sequence are generated independently of each other, and the value of the next element in the sequence
cannot be predicted, regardless of how many elements have already been produced.

Obviously, the use of unbiased coins for cryptographic purposes is impractical. Nonetheless, the
hypothetical output of such an idealized generator of a true random sequence serves as a benchmark for
the evaluation of random and pseudorandom number generators.

1.1.2 Unpredictability

Random and pseudorandom numbers generated for cryptographic applications should be unpredictable.
In the case of PRNGs, if the seed is unknown, the next output number in the sequence should be
unpredictable in spite of any knowledge of previous random numbers in the sequence. This property is
known as forward unpredictability. It should also not be feasible to determine the seed from knowledge
of any generated values (i.e., backward unpredictability is also required). No correlation between a seed
and any value generated from that seed should be evident; each element of the sequence should appear to
be the outcome of an independent random event whose probability is 1/2.

To ensure forward unpredictability, care must be exercised in obtaining seeds. The values produced by a
PRNG are completely predictable if the seed and generation algorithm are known. Since in many cases

1-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

the generation algorithm is publicly available, the seed must be kept secret and should not be derivable
from the pseudorandom sequence that it produces. In addition, the seed itself must be unpredictable.

1.1.3 Random Number Generators (RNGs)

The first type of sequence generator is a random number generator (RNG). An RNG uses a non-
deterministic source (i.e., the entropy source), along with some processing function (i.e., the entropy
distillation process) to produce randomness. The use of a distillation process is needed to overcome any
weakness in the entropy source that results in the production of non-random numbers (e.g., the occurrence
of long strings of zeros or ones). The entropy source typically consists of some physical quantity, such as
the noise in an electrical circuit, the timing of user processes (e.g., key strokes or mouse movements), or
the quantum effects in a semiconductor. Various combinations of these inputs may be used.

The outputs of an RNG may be used directly as a random number or may be fed into a pseudorandom
number generator (PRNG). To be used directly (i.e., without further processing), the output of any RNG
needs to satisfy strict randomness criteria as measured by statistical tests in order to determine that the
physical sources of the RNG inputs appear random. For example, a physical source such as electronic
noise may contain a superposition of regular structures, such as waves or other periodic phenomena,
which may appear to be random, yet are determined to be non-random using statistical tests.

For cryptographic purposes, the output of RNGs needs to be unpredictable. However, some physical
sources (e.g., date/time vectors) are quite predictable. These problems may be mitigated by combining
outputs from different types of sources to use as the inputs for an RNG. However, the resulting outputs
from the RNG may still be deficient when evaluated by statistical tests. In addition, the production of
high-quality random numbers may be too time consuming, making such production undesirable when a
large quantity of random numbers is needed. To produce large quantities of random numbers,
pseudorandom number generators may be preferable.

1.1.4 Pseudorandom Number Generators (PRNGs)

The second generator type is a pseudorandom number generator (PRNG). A PRNG uses one or more
inputs and generates multiple “pseudorandom” numbers. Inputs to PRNGs are called seeds. In contexts
in which unpredictability is needed, the seed itself must be random and unpredictable. Hence, by default,
a PRNG should obtain its seeds from the outputs of an RNG; i.e., a PRNG requires a RNG as a
companion.

The outputs of a PRNG are typically deterministic functions of the seed; i.e., all true randomness is
confined to seed generation. The deterministic nature of the process leads to the term “pseudorandom.”
Since each element of a pseudorandom sequence is reproducible from its seed, only the seed needs to be
saved if reproduction or validation of the pseudorandom sequence is required.

Ironically, pseudorandom numbers often appear to be more random than random numbers obtained from
physical sources. If a pseudorandom sequence is properly constructed, each value in the sequence is
produced from the previous value via transformations that appear to introduce additional randomness. A
series of such transformations can eliminate statistical auto-correlations between input and output. Thus,
the outputs of a PRNG may have better statistical properties and be produced faster than an RNG.

1.1.5 Testing

Various statistical tests can be applied to a sequence to attempt to compare and evaluate the sequence to a
truly random sequence. Randomness is a probabilistic property; that is, the properties of a random

1-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

sequence can be characterized and described in terms of probability. The likely outcome of statistical
tests, when applied to a truly random sequence, is known a priori and can be described in probabilistic
terms. There are an infinite number of possible statistical tests, each assessing the presence or absence of
a “pattern” which, if detected, would indicate that the sequence is nonrandom. Because there are so many
tests for judging whether a sequence is random or not, no specific finite set of tests is deemed “complete.”
In addition, the results of statistical testing must be interpreted with some care and caution to avoid
incorrect conclusions about a specific generator (see Section 4).

A statistical test is formulated to test a specific null hypothesis (H0). For the purpose of this document,
the null hypothesis under test is that the sequence being tested is random. Associated with this null
hypothesis is the alternative hypothesis (Ha), which, for this document, is that the sequence is not
random. For each applied test, a decision or conclusion is derived that accepts or rejects the null
hypothesis, i.e., whether the generator is (or is not) producing random values, based on the sequence that
was produced.

For each test, a relevant randomness statistic must be chosen and used to determine the acceptance or
rejection of the null hypothesis. Under an assumption of randomness, such a statistic has a distribution of
possible values. A theoretical reference distribution of this statistic under the null hypothesis is
determined by mathematical methods. From this reference distribution, a critical value is determined
(typically, this value is "far out" in the tails of the distribution, say out at the 99 % point). During a test, a
test statistic value is computed on the data (the sequence being tested). This test statistic value is
compared to the critical value. If the test statistic value exceeds the critical value, the null hypothesis for
randomness is rejected. Otherwise, the null hypothesis (the randomness hypothesis) is not rejected (i.e.,
the hypothesis is accepted).

In practice, the reason that statistical hypothesis testing works is that the reference distribution and the
critical value are dependent on and generated under a tentative assumption of randomness. If the
randomness assumption is, in fact, true for the data at hand, then the resulting calculated test statistic
value on the data will have a very low probability (e.g., 0.01 %) of exceeding the critical value.
On the other hand, if the calculated test statistic value does exceed the critical value (i.e., if the low
probability event does in fact occur), then from a statistical hypothesis testing point of view, the low
probability event should not occur naturally. Therefore, when the calculated test statistic value exceeds
the critical value, the conclusion is made that the original assumption of randomness is suspect or faulty.
In this case, statistical hypothesis testing yields the following conclusions: reject H0 (randomness) and
accept Ha (non-randomness).

Statistical hypothesis testing is a conclusion-generation procedure that has two possible outcomes, either
accept H0 (the data is random) or accept Ha (the data is non-random). The following 2 by 2 table relates
the true (unknown) status of the data at hand to the conclusion arrived at using the testing procedure.

TRUE SITUATION
CONCLUSION

Accept H0 Accept Ha (reject H0)
Data is random (H0 is true) No error Type I error

Data is not random (Ha is true) Type II error No error

If the data is, in truth, random, then a conclusion to reject the null hypothesis (i.e., conclude that the data
is non-random) will occur a small percentage of the time. This conclusion is called a Type I error. If the
data is, in truth, non-random, then a conclusion to accept the null hypothesis (i.e., conclude that the data is
actually random) is called a Type II error. The conclusions to accept H0 when the data is really random,
and to reject H0 when the data is non-random, are correct.

1-3

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

The probability of a Type I error is often called the level of significance of the test. This probability can
be set prior to a test and is denoted as α. For the test, α is the probability that the test will indicate that the
sequence is not random when it really is random. That is, a sequence appears to have non-random
properties even when a “good” generator produced the sequence. Common values of α in cryptography
are about 0.01.

The probability of a Type II error is denoted as β. For the test, β is the probability that the test will
indicate that the sequence is random when it is not; that is, a “bad” generator produced a sequence that
appears to have random properties. Unlike α, β is not a fixed value. β can take on many different values
because there are an infinite number of ways that a data stream can be non-random, and each different
way yields a different β. The calculation of the Type II error β is more difficult than the calculation of α
because of the many possible types of non-randomness.

One of the primary goals of the following tests is to minimize the probability of a Type II error, i.e., to
minimize the probability of accepting a sequence being produced by a generator as good when the
generator was actually bad. The probabilities α and β are related to each other and to the size n of the
tested sequence in such a way that if two of them are specified, the third value is automatically
determined. Practitioners usually select a sample size n and a value for α (the probability of a Type I
error – the level of significance). Then a critical point for a given statistic is selected that will produce the
smallest β (the probability of a Type II error). That is, a suitable sample size is selected along with an
acceptable probability of deciding that a bad generator has produced the sequence when it really is
random. Then the cutoff point for acceptability is chosen such that the probability of falsely accepting a
sequence as random has the smallest possible value.

Each test is based on a calculated test statistic value, which is a function of the data. If the test statistic
value is S and the critical value is t, then the Type I error probability is P(S > t || Ho is true) = P(reject Ho |
H0 is true), and the Type II error probability is P(S ≤ t || H0 is false) = P(accept H0 | H0 is false). The test
statistic is used to calculate a P-value that summarizes the strength of the evidence against the null
hypothesis. For these tests, each P-value is the probability that a perfect random number generator would
have produced a sequence less random than the sequence that was tested, given the kind of non-
randomness assessed by the test. If a P-value for a test is determined to be equal to 1, then the sequence
appears to have perfect randomness. A P-value of zero indicates that the sequence appears to be
completely non-random. A significance level (α) can be chosen for the tests. If P-value ≥ α, then the
null hypothesis is accepted; i.e., the sequence appears to be random. If P-value < α, then the null
hypothesis is rejected; i.e., the sequence appears to be non-random. The parameter α denotes the
probability of the Type I error. Typically, α is chosen in the range [0.001, 0.01].

• An α of 0.001 indicates that one would expect one sequence in 1000 sequences to be rejected by
the test if the sequence was random. For a P-value ≥ 0.001, a sequence would be considered to be
random with a confidence of 99.9%. For a P-value < 0.001, a sequence would be considered to be non-
random with a confidence of 99.9%.

• An α of 0.01 indicates that one would expect 1 sequence in 100 sequences to be rejected. A P-
value ≥ 0.01 would mean that the sequence would be considered to be random with a confidence of 99%.
A P-value < 0.01 would mean that the conclusion was that the sequence is non-random with a confidence
of 99%.

For the examples in this document, α has been chosen to be 0.01. Note that, in many cases, the
parameters in the examples do not conform to the recommended values; the examples are for illustrative
purposes only.

1-4

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

1.1.6	 Considerations for Randomness, Unpredictability and Testing

The following assumptions are made with respect to random binary sequences to be tested:

1.	 Uniformity: At any point in the generation of a sequence of random or pseudorandom
bits, the occurrence of a zero or one is equally likely, i.e., the probability of each is
exactly 1/2. The expected number of zeros (or ones) is n/2, where n = the sequence
length.

2.	 Scalability: Any test applicable to a sequence can also be applied to subsequences
extracted at random. If a sequence is random, then any such extracted subsequence
should also be random. Hence, any extracted subsequence should pass any test for
randomness.

3.	 Consistency: The behavior of a generator must be consistent across starting values
(seeds). It is inadequate to test a PRNG based on the output from a single seed, or an
RNG on the basis of an output produced from a single physical output.

1.2 Definitions

Term Definition
Asymptotic Analysis A statistical technique that derives limiting approximations for functions

of interest.
Asymptotic Distribution The limiting distribution of a test statistic arising when n approaches

infinity.
Bernoulli Random
Variable

A random variable that takes on the value of one with probability p and the
value of zero with probability 1-p.

Binary Sequence A sequence of zeroes and ones.
Binomial Distribution A random variable is binomially distributed if there is an integer n and a

probability p such that the random variable is the number of successes in n
independent Bernoulli experiments, where the probability of success in a
single experiment is p. In a Bernoulli experiment, there are only two
possible outcomes.

Bit String A sequence of bits.
Block A subset of a bit string. A block has a predetermined length.
Central Limit Theorem For a random sample of size n from a population with mean µ and

variance σ2, the distribution of the sample means is approximately normal
with mean µ and variance σ2/n as the sample size increases.

Complementary Error
Function

See Erfc.

Confluent Hypergeometric
Function

The confluent hypergeometric function is defined as

Φ(a;b;z) =
Γ(b)

Γ(a)Γ(b − a)
ezt t a−1(1− t)b−a−1 dt
0

1
∫ ,0 < a < b.

Critical Value The value that is exceeded by the test statistic with a small probability
(significance level). A "look-up" or calculated value of a test statistic (i.e.,
a test statistic value) that, by construction, has a small probability of
occurring (e.g., 5 %) when the null hypothesis of randomness is true.

Cumulative Distribution
Function (CDF) F(x)

A function giving the probability that the random variable X is less than or
equal to x, for every value x. That is,
F(x) = P(X ≤ x).

1-5

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Entropy A measure of the disorder or randomness in a closed system. The entropy
of uncertainty of a random variable X with probabilities pi, …, pn is

defined to be H(X) = i
n

i 1
i− ∑ p log p

=
.

Entropy Source A physical source of information whose output either appears to be
random in itself or by applying some filtering/distillation process. This
output is used as input to either a RNG or PRNG.

Erfc The complementary error function erfc(z) is defined in Section 5.5.3. This
function is related to the normal cdf.

Geometric Random
Variable

A random variable that takes the value k, a non-negative integer with
probability pk(1-p). The random variable x is the number of successes
before a failure in an infinite series of Bernoulli trials.

Global Structure/Global
Value

A structure/value that is available by all routines in the test code.

igamc The incomplete gamma function Q(a,x) is defined in Section 5.5.3.
Incomplete Gamma
Function

See the definition for igamc.

Hypothesis (Alternative) A statement Ha that an analyst will consider as true (e.g., Ha: the sequence
is non-random) if and when the null hypothesis is determined to be false.

Hypothesis (Null) A statement H0 about the assumed default condition/property of the
observed sequence. For the purposes of this document, the null hypothesis
H0 is that the sequence is random. If H0 is in fact true, then the reference
distribution and critical values of the test statistic may be derived.

Kolmogorov-Smirnov Test A statistical test that may be used to determine if a set of data comes from
a particular probability distribution.

Level of Significance (α) The probability of falsely rejecting the null hypothesis, i.e., the probability
of concluding that the null hypothesis is false when the hypothesis is, in
fact, true. The tester usually chooses this value; typical values are 0.05,
0.01 or 0.001; occasionally, smaller values such as 0.0001 are used. The
level of significance is the probability of concluding that a sequence is
non-random when it is in fact random. Synonyms: Type I error, α error.

Linear Dependence In the context of the binary rank matrix test, linear dependence refers to m-
bit vectors that may be expressed as a linear combination of the linearly
independent m-bit vectors.

Maple An interactive computer algebra system that provides a complete
mathematical environment for the manipulation and simplification of
symbolic algebraic expressions, arbitrary extended precision mathematics,
two- and three-dimensional graphics, and programming.

MATLAB An integrated, technical computer environment that combines numeric
computation, advanced graphics and visualization, and a high level
programming language. MATLAB includes functions for data analysis and
visualization; numeric and symbolic computation; engineering and
scientific graphics; modeling, simulation and prototyping; and
programming, application development and a GUI design.

Normal (Gaussian)
Distribution

A continuous distribution whose density function is given by
2

2
1

22
1);(;

 −
−

= σ

µ

πσ
µ σ

x

exf , where µ and σ are location and scale

parameters.

1-6

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

P-value The probability (under the null hypothesis of randomness) that the chosen
test statistic will assume values that are equal to or worse than the
observed test statistic value when considering the null hypothesis. The P-
value is frequently called the “tail probability.”

Poisson Distribution - §3.8 Poisson distributions model (some) discrete random variables. Typically,
a Poisson random variable is a count of the number of rare events that
occur in a certain time interval.

Probability Density
Function (PDF)

A function that provides the "local" probability distribution of a test
statistic. From a finite sample size n, a probability density function will be
approximated by a histogram.

Probability Distribution The assignment of a probability to the possible outcomes (realizations) of
a random variable.

Pseudorandom Number
Generator (PRNG)

A deterministic algorithm which, given a truly random binary sequence of
length k, outputs a binary sequence of length l >> k which appears to be
random. The input to the generator is called the seed, while the output is
called a pseudorandom bit sequence.

Random Number
Generator (RNG)

A mechanism that purports to generate truly random data.

Random Binary Sequence A sequence of bits for which the probability of each bit being a “0” or “1”
is ½. The value of each bit is independent of any other bit in the sequence,
i.e., each bit is unpredictable.

Random Variable Random variables differ from the usual deterministic variables (of science
and engineering) in that random variables allow the systematic
distributional assignment of probability values to each possible outcome.

Rank (of a matrix) Refers to the rank of a matrix in linear algebra over GF(2). Having
reduced a matrix into row-echelon form via elementary row operations, the
number of nonzero rows, if any, are counted in order to determine the
number of linearly independent rows or columns in the matrix.

Run An uninterrupted sequence of like bits (i.e., either all zeroes or all ones).
Seed The input to a pseudorandom number generator. Different seeds generate

different pseudorandom sequences.
SHA-1 The Secure Hash Algorithm defined in Federal Information Processing

Standard 180-1.
Standard Normal
Cumulative Distribution
Function

See the definition in Section 5.5.3. This is the normal function for mean =
0 and variance = 1.

Statistically Independent
Events

Two events are independent if the occurrence of one event does not affect
the chances of the occurrence of the other event. The mathematical
formulation of the independence of events A and B is the probability of the
occurrence of both A and B being equal to the product of the probabilities
of A and B (i.e., P(A and B) = P(A)P(B)).

Statistical Test (of a
Hypothesis)

A function of the data (binary stream) which is computed and used to
decide whether or not to reject the null hypothesis. A systematic statistical
rule whose purpose is to generate a conclusion regarding whether the
experimenter should accept or reject the null hypothesis Ho.

Word A predefined substring consisting of a fixed pattern/template (e.g., 010,
0110).

1-7

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

1.3 Abbreviations

Abbreviation Definition
ANSI American National Standards Institute
FIPS Federal Information Processing Standard
NIST National Institute of Standards and Technology
RNG Random Number Generator
SHA-1 Secure Hash Algorithm

1.4 Mathematical Symbols

In general, the following notation is used throughout this document. However, the tests in this document
have been designed and described by multiple authors who may have used slightly different notation.
The reader is advised to consider the notation used for each test separate from that notation used in other
tests.

Symbol Meaning
x The floor function of x; for a given real positive x, x = x-g, where x

is a non-negative integer, and 0 ≤ g < 1.
α The significance level.
d The normalized difference between the observed and expected number of frequency

components. See Sections 2.6 and 3.6.
∇ψ2

m(obs);
∇ 2ψ2

m(obs)
A measure of how well the observed values match the expected value. See Sections
2.11 and 3.11.

E[] The expected value of a random variable.
ε The original input string of zero and one bits to be tested.
εi The ith bit in the original sequence ε.
H0 The null hypothesis; i.e., the statement that the sequence is random.
log(x) The natural logarithm of x: log(x) = loge(x) = ln(x).
log2(x)

Defined as
ln(2)
ln(x)

, where ln is the natural logarithm.

M The number of bits in a substring (block) being tested.
N The number of M-bit blocks to be tested.
n The number of bits in the stream being tested.
fn The sum of the log2 distances between matching L-bit templates, i.e., the sum of the

number of digits in the distance between L-bit templates. See Sections 2.9 and 3.9.
π 3.14159… unless defined otherwise for a specific test.
σ The standard deviation of a random variable = ()∫ − f (x)dxx 2 µ .
σ2 The variance of a random variable = (standard deviation)2 .
sobs The observed value which is used as a statistic in the Frequency test.
Sn The nth partial sum for values Xi = {-1, +1}; i.e., the sum of the first n values of Xi.
Σ The summation symbol.
Φ Standard Normal Cumulative Distribution Function (see Section 5.5.3).
ξj The total number of times that a given state occurs in the identified cycles. See

Section 2.15 and 3.15.
Xi The elements of the string consisting of ±1 that is to be tested for randomness, where

Xi = 2εi -1.

1-8

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

χ2 The [theoretical] chi-square distribution; used as a test statistic; also, a test statistic
that follows the χ2 distribution.

χ2(obs) The chi-square statistic computed on the observed values. See Sections 2.2, 2.4, 2.5,
2.7, 2.8, 2.10, 2.12, 2.14, and the corresponding sections of Section 3.

Vn The expected number of runs that would occur in a sequence of length n under an
assumption of randomness See Sections 2.3 and 3.3.

Vn(obs) The observed number of runs in a sequence of length n. See Sections 2.3 and 3.3.

1-9

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2. Random Number Generation Tests

The NIST Test Suite is a statistical package consisting of 15 tests that were developed to test the
randomness of (arbitrarily long) binary sequences produced by either hardware or software based
cryptographic random or pseudorandom number generators. These tests focus on a variety of different
types of non-randomness that could exist in a sequence. Some tests are decomposable into a variety of
subtests. The 15 tests are:

1. The Frequency (Monobit) Test,
2. Frequency Test within a Block,
3. The Runs Test,
4. Tests for the Longest-Run-of-Ones in a Block,
5. The Binary Matrix Rank Test,
6. The Discrete Fourier Transform (Spectral) Test,
7. The Non-overlapping Template Matching Test,
8. The Overlapping Template Matching Test,
9. Maurer's "Universal Statistical" Test,
10. The Linear Complexity Test,
11. The Serial Test,
12. The Approximate Entropy Test,
13. The Cumulative Sums (Cusums) Test,
14. The Random Excursions Test, and
15. The Random Excursions Variant Test.

This section (Section 2) consists of 15 subsections, one subsection for each test. Each subsection provides
a high level description of the particular test. The corresponding subsections in Section 3 provide the
technical details for each test.

Section 4 provides a discussion of testing strategy and the interpretation of test results. The order of the
application of the tests in the test suite is arbitrary. However, it is recommended that the Frequency test
be run first, since this supplies the most basic evidence for the existence of non-randomness in a
sequence, specifically, non-uniformity. If this test fails, the likelihood of other tests failing is high.
(Note: The most time-consuming statistical test is the Linear Complexity test; see Sections 2.10 and
3.10).

Section 5 provides a user's guide for setting up and running the tests, and a discussion on program layout.
The statistical package includes source code and sample data sets. The test code was developed in ANSI
C. Some inputs are assumed to be global values rather than calling parameters.

A number of tests in the test suite have the standard normal and the chi-square (χ2) as reference
distributions. If the sequence under test is in fact non-random, the calculated test statistic will fall in
extreme regions of the reference distribution. The standard normal distribution (i.e., the bell-shaped
curve) is used to compare the value of the test statistic obtained from the RNG with the expected value of
the statistic under the assumption of randomness. The test statistic for the standard normal distribution is
of the form z = (x - µ)/σ, where x is the sample test statistic value, and µ and σ2 are the expected value
and the variance of the test statistic. The χ2 distribution (i.e., a left skewed curve) is used to compare the
goodness-of-fit of the observed frequencies of a sample measure to the corresponding expected

2-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

frequencies of the hypothesized distribution. The test statistic is of the form χ2 = ∑((o − ei)
2
e),i i

where oi and ei are the observed and expected frequencies of occurrence of the measure, respectively.

For many of the tests in this test suite, the assumption has been made that the size of the sequence length,
n, is large (of the order 103 to 107). For such large sample sizes of n, asymptotic reference distributions
have been derived and applied to carry out the tests. Most of the tests are applicable for smaller values of
n. However, if used for smaller values of n, the asymptotic reference distributions would be inappropriate
and would need to be replaced by exact distributions that would commonly be difficult to compute.

Note: For many of the examples throughout Section 2, small sample sizes are used for illustrative
purposes only, e.g., n = 10. The normal approximation is not really applicable for these examples.

2.1 Frequency (Monobit) Test

2.1.1 Test Purpose
The focus of the test is the proportion of zeroes and ones for the entire sequence. The purpose of this test
is to determine whether the number of ones and zeros in a sequence are approximately the same as would
be expected for a truly random sequence. The test assesses the closeness of the fraction of ones to ½, that
is, the number of ones and zeroes in a sequence should be about the same. All subsequent tests depend on
the passing of this test.

2.1.2	 Function Call
Frequency(n), where:

n	 The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε	 The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.1.3	 Test Statistic and Reference Distribution
sobs:	 The absolute value of the sum of the Xi (where, Xi = 2ε - 1 = ±1) in the sequence divided

by the square root of the length of the sequence.

The reference distribution for the test statistic is half normal (for large n). (Note: If z (where
z = 2 ; see Section 3.1) is distributed as normal, then |z| is distributed as half normal.) If the sobs
sequence is random, then the plus and minus ones will tend to cancel one another out so that the test
statistic will be about 0. If there are too many ones or too many zeroes, then the test statistic will tend to
be larger than zero.

2.1.4 Test Description
(1)	 Conversion to ±1: The zeros and ones of the input sequence (ε) are converted to values of –1 and

+1 and are added together to produce Sn = X1 + X2 ++Xn , where Xi = 2εi – 1.

2-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For example, if ε = 1011010101, then n=10 and Sn = 1 + (-1) + 1 + 1 + (-1) + 1 + (-1) + 1 +
(-1) + 1 = 2.

Sn
(2) Compute the test statistic sobs =

n

2
For the example in this section, sobs = = .632455532.

10

sobs(3)
 Compute P-value = erfc , where erfc is the complementary error function as defined in
2

Section 5.5.3.

.632455532

For the example in this section, P-value = erfc = 0.527089.

2

2.1.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.1.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 3 of Section 2.1.4 is ≥ 0.01 (i.e., P-value = 0.527089), the conclusion is
that the sequence is random.

Note that if the P-value were small (< 0.01), then this would be caused by or being large. Sn sobs
Large positive values of Sn are indicative of too many ones, and large negative values of Sn are indicative
of too many zeros.

2.1.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n ≥ 100).

2.1.8 Example
(input) ε = 11001001000011111101101010100010001000010110100011

00001000110100110001001100011001100010100010111000

(input) n = 100

(processing) S100 = -16

(processing) sobs = 1.6

(output) P-value = 0.109599

(conclusion) Since P-value ≥ 0.01, accept the sequence as random.

2-3

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.2 Frequency Test within a Block

2.2.1 Test Purpose
The focus of the test is the proportion of ones within M-bit blocks. The purpose of this test is to determine
whether the frequency of ones in an M-bit block is approximately M/2, as would be expected under an
assumption of randomness. For block size M=1, this test degenerates to test 1, the Frequency (Monobit)
test.

2.2.2 Function Call
BlockFrequency(M,n), where:

M The length of each block.

n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.2.3 Test Statistic and Reference Distribution

χ 2 (obs):	 A measure of how well the observed proportion of ones within a given M-bit
block match the expected proportion (1/2).

The reference distribution for the test statistic is a χ2 distribution.

2.2.4 Test Description
 n (1) Partition the input sequence into N = non-overlapping blocks. Discard any unused bits. M

For example, if n = 10, M = 3 and ε = 0110011010, 3 blocks (N = 3) would be created,
consisting of 011, 001 and 101. The final 0 would be discarded.

M
∑ε (i−1)M + j
j=1(2) Determine the proportion πi of ones in each M-bit block using the equation π = ,i M

for 1 ≤ i ≤ N.

For the example in this section, π1 = 2/3, π2 = 1/3, and π3 = 2/3.

N

(3) Compute the χ2 statistic: χ2(obs) = 4 M ∑ (πi - ½)2.
i =1

2 2 2 2 1) + (1 − 1) + (2 − 1) = 1 .For the example in this section, χ2(obs) = 4 x 3 x (−3 2 3	 2 3 2

2-4

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

(4)	 Compute P-value = igamc (N/2, χ2(obs)/2) , where igamc is the incomplete gamma function for
Q(a,x) as defined in Section 5.5.3.

Note: When comparing this section against the technical description in Section 3.2, note that
Q(a,x) = 1-P(a,x).

3 1

For the example in this section, P-value = igamc = 0.801252.

,
2 2

2.2.5	 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.2.6	 Conclusion and Interpretation of Results
Since the P-value obtained in step 4 of Section 2.2.4 is ≥ 0.01 (i.e., P-value = 0.801252), the conclusion is
that the sequence is random.

Note that small P-values (< 0.01) would have indicated a large deviation from the equal proportion of
ones and zeros in at least one of the blocks.

2.2.7	 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n ≥ 100). Note
that n ≥ MN. The block size M should be selected such that M ≥ 20, M > .01n and N < 100.

2.2.8 Example
(input) ε = 11001001000011111101101010100010001000010110100011

00001000110100110001001100011001100010100010111000

(input) n = 100

(input) M = 10

(processing) N = 10

(processing) χ2 = 7.2

(output) P-value = 0.706438

(conclusion) Since P-value ≥ 0.01, accept the sequence as random.

2.3 Runs Test

2.3.1	 Test Purpose
The focus of this test is the total number of runs in the sequence, where a run is an uninterrupted sequence
of identical bits. A run of length k consists of exactly k identical bits and is bounded before and after with
a bit of the opposite value. The purpose of the runs test is to determine whether the number of runs of

2-5

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines
whether the oscillation between such zeros and ones is too fast or too slow.

2.3.2 Function Call
Runs(n), where:

n The length of the bit string.

Additional inputs for the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.3.3 Test Statistic and Reference Distribution
Vn(obs):	 The total number of runs (i.e., the total number of zero runs + the total number of

one-runs) across all n bits.

The reference distribution for the test statistic is a χ2 distribution.

2.3.4 Test Description
Note: The Runs test carries out a Frequency test as a prerequisite.

∑ j ε j(1) Compute the pre-test proportion π of ones in the input sequence: π = .
n

For example, if ε = 1001101011, then n=10 and π = 6/10 = 3/5.

(2) Determine if the prerequisite Frequency test is passed: If it can be shown that π - 1 ≥ τ , then the 2

Runs test need not be performed (i.e., the test should not have been run because of a failure to
pass test 1, the Frequency (Monobit) test). If the test is not applicable, then the P-value is set to
0.0000. Note that for this test, τ =

2 has been pre-defined in the test code.
n

For the example in this section, since τ = 2 ≈ 0.63246 , then |π - 1/2| = | 3/5 – 1/2 | = 0.1 < τ,
10

and the test is not run.

Since the observed value π is within the selected bounds, the runs test is applicable.

n−1
n(3)	 Compute the test statistic V (obs) = ∑r(k) + 1 , where r(k)=0 if εk=εk+1, and r(k)=1 otherwise.

k =1

Since ε = 1 00 11 0 1 0 11, then

V10(obs)=(1+0+1+0+1+1+1+1+0)+1=7.

 |V (obs) − 2nπ (1−π) |
(4) Compute P-value = erfc

n	 .
2 2nπ (1−π)

2-6

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

= 0.147232.

3

5

1
3

3

5

7
 2 •10

For the example, P-value = erfc

−

3

−
 •

•

2.3.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.3.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 4 of Section 2.3.4 is ≥ 0.01 (i.e., P-value = 0.147232), the conclusion is
that the sequence is random.

Note that a large value for Vn(obs) would have indicated an oscillation in the string which is too fast; a
small value would have indicated that the oscillation is too slow. (An oscillation is considered to be a
change from a one to a zero or vice versa.) A fast oscillation occurs when there are a lot of changes, e.g.,
010101010 oscillates with every bit. A stream with a slow oscillation has fewer runs than would be
expected in a random sequence, e.g., a sequence containing 100 ones, followed by 73 zeroes, followed by
127 ones (a total of 300 bits) would have only three runs, whereas 150 runs would be expected.

2.3.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n ≥ 100).

2.3.8 Example
(input) ε = 11001001000011111101101010100010001000010110100011

00001000110100110001001100011001100010100010111000

(input) n = 100

(input) τ = 0.02

(processing) π = 0.42

(processing) Vn(obs) = 52

(output) P-value = 0.500798

(conclusion) Since P-value ≥ 0.01, accept the sequence as random.

2.4 Test for the Longest Run of Ones in a Block

2.4.1 Test Purpose
The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to
determine whether the length of the longest run of ones within the tested sequence is consistent with the
length of the longest run of ones that would be expected in a random sequence. Note that an irregularity in
the expected length of the longest run of ones implies that there is also an irregularity in the expected
length of the longest run of zeroes. Therefore, only a test for ones is necessary. See Section 4.4.

5

−
1

•
5

2 2 •10•

2-7

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.4.2	 Function Call
LongestRunOfOnes(n), where:

n The length of the bit string.

Additional input for the function supplied by the testing code:

The sequence of bits as generated by the RNG or PRNG being tested; this exists as a global structure at
the time of the function call; ε = ε1, ε2, … , εn.

M The length of each block. The test code has been pre-set to accommodate three values for
M: M = 8, M = 128 and M = 104 in accordance with the following values of sequence
length, n:

Minimum n M
128 8

6272 128
750,000 104

N	 The number of blocks; selected in accordance with the value of M.

2.4.3	 Test Statistic and Reference Distribution
χ2(obs):	 A measure of how well the observed longest run length within M-bit blocks

matches the expected longest length within M-bit blocks.

The reference distribution for the test statistic is a χ2 distribution.

2.4.4	 Test Description
(1)	 Divide the sequence into M-bit blocks.

(2)	 Tabulate the frequencies νi of the longest runs of ones in each block into categories, where each
cell contains the number of runs of ones of a given length.

For the values of M supported by the test code, the vi cells will hold the following counts:

vi M = 8 M = 128 M = 104

v0 ≤ 1 ≤ 4 ≤ 10
v1 2 5 11
v2 3 6 12
v3 ≥ 4 7 13
v4 8 14
v5 ≥ 9 15
v6 ≥ 16

For an example, see Section 2.4.8.

2-8

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

K (− Nπ)2 2 vi i(3) Compute χ (obs) = ∑ , where the values for πi are provided in Section 3.4. The
Nπi=0 i

values of K and N are determined by the value of M in accordance with the following table:

M K N
8 3 16

128 5 49
104 6 75

For the example of 2.4.8,
2 2 2 2

2 (4 − 16(.2148)) (9 − 16(.3672)) (3 − 16(.2305)) (0 − 16(.1875))
χ (obs) = + + + = 4.882605

16(.2148) 16(.3672) 16(.2305 16(.1875)

 K χ 2(obs)
(4) Compute P-value = igamc ,

 .
2 2

3 4.882605

For the example, P-value = igamc = 0.180598.

,
2 2

2.4.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.4.6 Conclusion and Interpretation of Results
For the example in Section 2.4.8, since the P-value ≥ 0.01 (P-value = 0.180609), the conclusion is that the
sequence is random. Note that large values of χ2(obs) indicate that the tested sequence has clusters of
ones.

2.4.7 Input Size Recommendation
It is recommended that each sequence to be tested consists of a minimum of bits as specified in the table
in Section 2.4.2.

2.4.8 Example
For the case where K = 3 and M = 8:

(input) ε = 11001100000101010110110001001100111000000000001001
00110101010001000100111101011010000000110101111100
1100111001101101100010110010

(input) n = 128

(processing) Subblock Max-Run
11001100
01101100
11100000

(2)
(2)
(3)

Subblock Max-Run
00010101
01001100
00000010

(1)
(2)
(1)

2-9

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

01001101 (2) 01010001 (1)
00010011 (2) 11010110 (2)
10000000 (1) 11010111 (3)
11001100 (2) 11100110 (3)
11011000 (2) 10110010 (2)

(processing) ν0 = 4; ν1 = 9; ν2 = 3; ν4 = 0; χ2 = 4.882457

(output) P-value = 0.180609

(conclusion) Since the P-value is ≥ 0.01, accept the sequence as random.

2.5 Binary Matrix Rank Test

2.5.1 Test Purpose
The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The purpose of this test is
to check for linear dependence among fixed length substrings of the original sequence. Note that this test
also appears in the DIEHARD battery of tests [7].

2.5.2 Function Call
Rank(n), where:

n The length of the bit string.

Additional input used by the function supplied by the testing code:

The sequence of bits as generated by the RNG or PRNG being tested; this exists as a global structure at
the time of the function call; ε = ε1, ε2, … , εn.

M The number of rows in each matrix. For the test suite, M has been set to 32. If other
values of M are used, new approximations need to be computed.

Q The number of columns in each matrix. For the test suite, Q has been set to 32. If other
values of Q are used, new approximations need to be computed.

2.5.3 Test Statistic and Reference Distribution
χ2(obs):	 A measure of how well the observed number of ranks of various orders match the

expected number of ranks under an assumption of randomness.

The reference distribution for the test statistic is a χ2 distribution.

2.5.4 Test Description
 n(1) Sequentially divide the sequence into M•Q-bit disjoint blocks; there will exist N =

such
MQ

blocks. Discarded bits will be reported as not being used in the computation within each block.
Collect the M•Q bit segments into M by Q matrices. Each row of the matrix is filled with
successive Q-bit blocks of the original sequence ε.

2-10

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For example, if n = 20, M = Q = 3, and ε = 01011001001010101101, then partition the stream

into N = n = 2 matrices of cardinality M•Q (3•3 = 9). Note that the last two bits (0 and 1)
3 • 3

0 1 0 0 1 0
will be discarded. The two matrices are 1 1 0 and 1 0 1 . Note that the first matrix

0 1 0 0 1 1
consists of the first three bits in row 1, the second set of three bits in row 2, and the third set of
three bits in row 3. The second matrix is similarly constructed using the next nine bits in the
sequence.

(2)	 Determine the binary rank (R) of each matrix, where = 1,..., N . The method for determining
the rank is described in Appendix A.

For the example in this section, the rank of the first matrix is 2 (R1 = 2), and the rank of the
second matrix is 3 (R2 = 3).

(3)	 Let FM = the number of matrices with R = M (full rank),

FM-1 = the number of matrices with R = M-1 (full rank - 1),
N – FM	 - FM-1 = the number of matrices remaining.

For the example in this section, FM = F3 = 1 (R2 has the full rank of 3), FM-1 = F2 = 1 (R1 has rank
2), and no matrix has any lower rank.

(4)	 Compute
2 2	 2(F − 0.2888N) (F − 0.5776N) (N − F − F − 0.1336N)2 M M −1	 M M −1χ (obs) = + +	 .

0.2888N 0.5776N	 0.1336N

For the example in this section,
2 2	 2

2 (1− 0.2888 • 2) (1− 0.5776 • 2) (2 −1−1− 0.1336 • 2)
χ (obs) = + +	 = 0.596953.

0.2888 • 2 0.5776 • 2 0.1336 • 2

−χ 2 (obs) / 2(5)	 Compute P − value = e . Since there are 3 classes in the example, the P-value for the
 χ 2 (obs)

example is equal to igamc1, . 2

0.596953

For the example in this section, P-value = e 2
 = 0.741948.

2.5.5	 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2-11

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.5.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 5 of Section 2.5.4 is ≥ 0.01 (P-value = 0.741948), the conclusion is that
the sequence is random.

Note that large values of χ 2 (obs) (and hence, small P-values) would have indicated a deviation of the
rank distribution from that corresponding to a random sequence.

2.5.7 Input Size Recommendation
The probabilities for M = Q = 32 have been calculated and inserted into the test code. Other choices of
M and Q may be selected, but the probabilities would need to be calculated. The minimum number of
bits to be tested must be such that n ≥ 38MQ (i.e., at least 38 matrices are created). For M = Q = 32, each
sequence to be tested should consist of a minimum of 38,912 bits.

2.5.8 Example
(input) ε = the first 100,000 binary digits in the expansion of e

(input) n = 100000, M = Q = 32 (NOTE: 672 BITS WERE DISCARDED.)

(processing) N = 97

(processing) FM = 23, FM-1 = 60, N – FM – FM-1= 14

(processing) χ2 = 1.2619656

(output) P-value = 0.532069

(conclusion) Since P-value ≥ 0.01, accept the sequence as random.

2.6 Discrete Fourier Transform (Spectral) Test

2.6.1 Test Purpose
The focus of this test is the peak heights in the Discrete Fourier Transform of the sequence. The purpose
of this test is to detect periodic features (i.e., repetitive patterns that are near each other) in the tested
sequence that would indicate a deviation from the assumption of randomness. The intention is to detect
whether the number of peaks exceeding the 95 % threshold is significantly different than 5 %.

2.6.2 Function Call
DiscreteFourierTransform(n), where:

n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2-12

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.6.3	 Test Statistic and Reference Distribution
d:	 The normalized difference between the observed and the expected number of frequency

components that are beyond the 95 % threshold.

The reference distribution for the test statistic is the normal distribution.

2.6.4	 Test Description
(1)	 The zeros and ones of the input sequence (ε) are converted to values of –1 and +1 to create the

sequence X = x1, x2, …, xn, where xi = 2εi – 1.

For example, if n = 10 and ε = 1001010011, then X = 1, -1, -1, 1, -1, 1, -1, -1, 1, 1.

(2)	 Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). A sequence of
complex variables is produced which represents periodic components of the sequence of bits at
different frequencies (see Section 3.6 for a sample diagram of a DFT result).

(3)	 Calculate M = modulus(S´) ≡ |S'|, where S´ is the substring consisting of the first n/2 elements in
S, and the modulus function produces a sequence of peak heights.

1log

(4) Compute T = n = the 95 % peak height threshold value. Under an assumption of

0.05

randomness, 95 % of the values obtained from the test should not exceed T.

(5)	 Compute N0 = .95n/2. N0 is the expected theoretical (95 %) number of peaks (under the
assumption of randomness) that are less than T.

For the example in this section, N0 = 4.75.

(6)	 Compute N1 = the actual observed number of peaks in M that are less than T.

For the example in this section, N1 = 4.

(N1 − N0)(7)	 Compute d = .
n(.95)(.05) /4

(4 − 4.75)
For the example in this section, d = = -2.176429.

10 .95)(.05) /4 (

d

(8) Compute P-value = erfc

.
 2

For the example in this section, P-value = erfc 2.176429

= 0.029523.

2

2-13

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.6.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.6.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 8 of Section 2.6.4 is ≥ 0.01 (P-value = 0.029523), the conclusion is that
the sequence is random.

A d value that is too low would indicate that there were too few peaks (< 95%) below T, and too many
peaks (more than 5%) above T.

2.6.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 1000 bits (i.e., n ≥ 1000).

2.6.8 Example
(input) ε = 11001001000011111101101010100010001000010110100011

00001000110100110001001100011001100010100010111000

(input) n = 100

(processing) N1 = 46

(processing) N0 = 47.5

(processing) d = -1.376494

(output) P-value = 0.168669

(conclusion) Since P-value ≥ 0.01, accept the sequence as random.

2.7 Non-overlapping Template Matching Test

2.7.1 Test Purpose
The focus of this test is the number of occurrences of pre-specified target strings. The purpose of this
test is to detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
For this test and for the Overlapping Template Matching test of Section 2.8, an m-bit window is used to
search for a specific m-bit pattern. If the pattern is not found, the window slides one bit position. If the
pattern is found, the window is reset to the bit after the found pattern, and the search resumes.

2.7.2 Function Call
NonOverlappingTemplateMatching(m,n)

m The length in bits of each template. The template is the target string.

n The length of the entire bit string under test.

Additional input used by the function, but supplied by the testing code:

2-14

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

B The m-bit template to be matched; B is a string of ones and zeros (of length m) which is
defined in a template library of non-periodic patterns contained within the test code.

M The length in bits of the substring of ε to be tested.

N The number of independent blocks. N has been fixed at 8 in the test code.

2.7.3	 Test Statistic and Reference Distribution
χ2(obs):	 A measure of how well the observed number of template “hits” matches the

expected number of template “hits” (under an assumption of randomness).

The reference distribution for the test statistic is the χ2 distribution.

2.7.4	 Test Description
(1)	 Partition the sequence into N independent blocks of length M.

For example, if ε = 10100100101110010110, then n = 20. If N = 2 and M = 10, then the two
blocks would be 1010010010 and 1110010110.

(2)	 Let Wj (j = 1, …, N) be the number of times that B (the template) occurs within the block j. Note
that j = 1,…,N. The search for matches proceeds by creating an m-bit window on the sequence,
comparing the bits within that window against the template. If there is no match, the window
slides over one bit , e.g., if m = 3 and the current window contains bits 3 to 5, then the next
window will contain bits 4 to 6. If there is a match, the window slides over m bits, e.g., if the
current (successful) window contains bits 3 to 5, then the next window will contain bits 6 to 8.

For the above example, if m = 3 and the template B = 001, then the examination proceeds as
follows:

Bit Positions
Block 1 Block 2

Bits W1 Bits W2

1-3 101 0 111 0
2-4 010 0 110 0
3-5 100 0 100 0
4-6 001 (hit) Increment to 1 001 (hit) Increment to 1
5-7 Not examined Not examined
6-8 Not examined Not examined
7-9 001 Increment to 2 011 1

8-10 010 (hit) 2 110 1

Thus, W1 = 2, and W2 = 1.

(3)	 Under an assumption of randomness, compute the theoretical mean µ and variance σ2:
 1	 2m −1

µ = (M-m+1)/2m σ 2 = M − . m	 2m 2 2

2-15

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2 1 2 • 3 − 1 For the example in this section, µ = (10-3+1)/23 = 1, and σ = 10 • − = 0.46875 . 3 2•3 2 2

2 N (W j − µ)2
(4)	 Compute χ (obs) = ∑ 2

.
j=1 σ

(2 −1)2 + (1−1)2 1 + 0
For the example in this section, χ 2 (obs) =	 = = 2.133333 .

0.46875 0.46875

 N χ 2 (obs) (5) Compute P-value = igamc

,

. Note that multiple P-values will be computed, i.e.,
2 2

one P-value will be computed for each template. For m = 9, up to 148 P-values may be
computed; for m = 10, up to 284 P-values may be computed.

2 2.133333

For the example in this section, P-value = igamc = 0.344154.

,
2 2

2.7.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.7.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 5 of Section 2.7.4 is ≥ 0.01 (P-value = 0.344154), the conclusion is that
the sequence is random.

If the P-value is very small (< 0.01), then the sequence has irregular occurrences of the possible template
patterns.

2.7.7 Input Size Recommendation
The test code has been written to provide templates for m = 2, 3,…,10. It is recommended that m = 9 or
m = 10 be specified to obtain meaningful results. Although N = 8 has been specified in the test code, the
code may be altered to other sizes. However, N should be chosen such that N ≤ 100 to be assured that the
P-values are valid. Additionally, be sure that M > 0.01 • n and N = n/M.

2.7.8 Example
For a template B = 000000001 whose size is m = 9:

(input) ε = 220 bits produced by the G-SHA-1 generator1

(input) n = 220 , B = 000000001

(processing) µ = 255.984375 and σ2= 247.499999

(processing) W1 = 259; W2 = 229; W3 = 271; W4 = 245; W5 = 272; W6 = 262;
W7 = 259; and W8 = 246

1 Defined in Federal Information Processing Standard (FIPS) 186-2.

2-16

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

(processing) χ2(obs) = 5.999377

(output) P-value = 0.647302

(conclusion) Since the P-value ≥ 0.01, accept the sequence as random.

2.8 Overlapping Template Matching Test

2.8.1 Test Purpose
The focus of the Overlapping Template Matching test is the number of occurrences of pre-specified target
strings. Both this test and the Non-overlapping Template Matching test of Section 2.7 use an m-bit
window to search for a specific m-bit pattern. As with the test in Section 2.7, if the pattern is not found,
the window slides one bit position. The difference between this test and the test in Section 2.7 is that
when the pattern is found, the window slides only one bit before resuming the search.

2.8.2 Function Call
OverlappingTemplateMatching(m,n)

m The length in bits of the template – in this case, the length of the run of ones.

n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

B The m-bit template to be matched.

K The number of degrees of freedom. K has been fixed at 5 in the test code.

M The length in bits of a substring of ε to be tested. M has been set to 1032 in the test code.

N The number of independent blocks of n. N has been set to 968 in the test code.

2.8.3 Test Statistic and Reference Distribution
χ2(obs):	 A measure of how well the observed number of template “hits” matches the expected

number of template “hits” (under an assumption of randomness).

The reference distribution for the test statistic is the χ2 distribution.

2.8.4 Test Description
(1) Partition the sequence into N independent blocks of length M.

For example, if ε = 10111011110010110100011100101110111110000101101001, then n = 50.
If K = 2, M = 10 and N = 5, then the five blocks are 1011101111, 0010110100, 0111001011,
1011111000, and 0101101001 .

2-17

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

(2)	 Calculate the number of occurrences of B in each of the N blocks. The search for matches
proceeds by creating an m-bit window on the sequence, comparing the bits within that window
against B and incrementing a counter when there is a match. The window slides over one bit after
each examination, e.g., if m = 4 and the first window contains bits 42 to 45, the next window
consists of bits 43 to 46. Record the number of occurrences of B in each block by incrementing
an array vi (where i = 0,…5), such that v0 is incremented when there are no occurrences of B in a
substring, v1 is incremented for one occurrence of B,…and v5 is incremented for 5 or more
occurrences of B.

For the above example, if m = 2 and B = 11, then the examination of the first block (1011101111)
proceeds as follows:

Bit Positions Bits No. of occurrences of B = 11
1-2 10 0
2-3 01 0
3-4 11 (hit) Increment to 1
4-5 11 (hit) Increment to 2
5-6 10 2
6-7 01 2
7-8 11 (hit) Increment to 3
8-9 11 (hit) Increment to 4

9-10 11 (hit) Increment to 5

Thus, after block 1, there are five occurrences of 11, v5 is incremented, and v0 = 0, v1 = 0, v2 = 0,
v3 = 0, v4 = 0, and v5 = 1.

In a like manner, blocks 2-5 are examined. In block 2, there are 2 occurrences of 11; v2 is
incremented. In block 3, there are 3 occurrences of 11; v3 is incremented. In block 4, there are 4
occurrences of 11; v4 is incremented. In block 5, there is one occurrence of 11; v1 is incremented.

Therefore, v0 = 0, v1 = 1, v2 =1, v3 = 1, v4 = 1, v5 = 1 after all blocks have been examined.

(3)	 Compute values for λ and η that will be used to compute the theoretical probabilities πi

corresponding to the classes of v0:

λ = (M-m+1)/2m η = λ/2.

For the example in this section, λ = (10-2+1)/22 = 2.25, and η = λ/2=1.125.

5 (v − Nπ)2 2 i i(4)	 Compute χ (obs) = ∑ , where π0 = 0.364091, π1 = 0.185659, π2 = 0.139381, π3
i =0 Nπ i

= 0.100571, π4 = 0.070432 and π5 = 0.139865 as specified in Section 3.8.

For the example in this section, the values of πi were recomputed, since the example doesn’t fit
the requirements stated in Section 2.8.7. The example is intended only for illustration. The values
of πi are: π0 = 0.324652, π1 = 0.182617, π2 = 0.142670, π3 = 0.106645, π4 = 0.077147, and π5 =
0.166269.

2-18

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2 2	 2(0 − 5 • 0.324652) (1 − 5 • 0.182617) (1 − 5 • 0.142670)
χ 2 (obs) = + +	 +

5 • 0.324652 5 • 0.182617 5 • 0.142670
2	 2 2(1 − 5 • 0.106645) (1 − 5 • 0.077147) (1 − 5 • 0.166269)
+ +	 = 3.167729.

5 • 0.106645 5 • 0.077147 5 • 0.166269

 5	 χ 2(obs)
(5) Compute P-value = igamc ,

 .
2 2

5 3.167729

For the example in this section, P-value = igamc = 0.274932.

,
2 2

2.8.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.8.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 4 of Section 2.8.4 is ≥ 0.01 (P-value = 0.274932), the conclusion is that
the sequence is random.

Note that for the 2-bit template (B = 11), if the entire sequence had too many 2-bit runs of ones, then: 1)
ν5 would have been too large, 2) the test statistic would be too large, 3) the P-value would have been
small (< 0.01) and 4) a conclusion of non-randomness would have resulted.

2.8.7 Input Size Recommendation
The values of K, M and N have been chosen such that each sequence to be tested consists of a minimum
of 106 bits (i.e., n ≥ 106). Various values of m may be selected, but for the time being, NIST recommends
m = 9 or m = 10. If other values are desired, please choose these values as follows:

•	 n ≥ MN.
•	 N should be chosen so that N • (min πi) > 5.
•	 λ = (M-m+1)/2m ≈ 2
•	 m should be chosen so that m ≈ log2 M
•	 Choose K so that K ≈ 2λ. Note that the πi values would need to be recalculated for values of

K other than 5.

2.8.8 Example
(input) ε = the binary expansion of e up to 1,000,000 bits

(input) n = 1000000, B = 111111111

(processing) ν0 = 329; ν1 = 164; ν2 = 150; ν3 = 111; ν4 = 78; and ν5 = 136

(processing) χ2(obs) = 8.965859

(output) P-value = 0.110434

(conclusion) Since the P-value ≥ 0.01, accept the sequence as random.

2-19

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.9 Maurer’s “Universal Statistical” Test

2.9.1	 Test Purpose
The focus of this test is the number of bits between matching patterns (a measure that is related to the
length of a compressed sequence). The purpose of the test is to detect whether or not the sequence can be
significantly compressed without loss of information. A significantly compressible sequence is
considered to be non-random.

2.9.2	 Function Call
Universal(L, Q, n), where

L	 The length of each block. Note: the use of L as the block size is not consistent with the
block size notation (M) used for the other tests. However, the use of L as the block size
was specified in the original source of Maurer's test.

Q	 The number of blocks in the initialization sequence.

n	 The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε	 The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.9.3	 Test Statistic and Reference Distribution
fn :	 The sum of the log2 distances between matching L-bit templates, i.e., the sum of the number of

digits in the distance between L-bit templates.

The reference distribution for the test statistic is the half-normal distribution (a one-sided variant of the
normal distribution) as is also the case for the Frequency test in Section 2.1.

2.9.4	 Test Description
(1)	 The n-bit sequence (ε) is partitioned into two segments: an initialization segment consisting of Q

L-bit non-overlapping blocks, and a test segment consisting of K L-bit non-overlapping blocks.
Bits remaining at the end of the sequence that do not form a complete L-bit block are discarded.
The first Q blocks are used to initialize the test. The remaining K blocks are the test blocks (K =
n/L - Q).

2-20

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For example, if ε = 01011010011101010111, then n = 20. If L = 2 and Q = 4, then K = n/L -
Q = 20/2 - 4 = 6 . The initialization segment is 01011010; the test segment is 011101010111.
The L-bit blocks are shown in the following table:

Block Type Contents
1 01
2 Initialization 01
3 Segment 10
4 10
5 01
6 Test Segment 11
7 01
8 01
9 01

10 11

(2)	 Using the initialization segment, a table is created for each possible L-bit value (i.e., the L-bit
value is used as an index into the table). The block number of the last occurrence of each L-bit
block is noted in the table (i.e., For i from 1 to Q, Tj= i, where j is the decimal representation of
the contents of the ith L-bit block).

For the example in this section, the following table is created using the 4 initialization blocks.

Possible L-bit Value
00

(saved in T0)
01

(saved in T1)
10

(saved in T2)
11

(saved in T3)
Initialization 0 2 4 0

(3)	 Examine each of the K blocks in the test segment and determine the number of blocks since the
last occurrence of the same L-bit block (i.e., i – Tj). Replace the value in the table with the
location of the current block (i.e., Tj= i). Add the calculated distance between re-occurrences of
the same L-bit block to an accumulating log2 sum of all the differences detected in the K blocks
(i.e., sum = sum + log2(i – Tj)).

For the example in this section, the table and the cumulative sum are developed as follows:

For block 5 (the 1st test block): 5 is placed in the “01” row of the table (i.e., T1), and
sum=log2(5-2) = 1.584962501.

For block 6: 6 is placed in the “11” row of the table (i.e., T3), and sum = 1.584962501 +
log2(6-0) = 1.584962501 + 2.584962501 = 4.169925002.

For block 7: 7 is placed in the “01” row of the table (i.e., T1), and sum = 4.169925002 +
log2(7-5) = 4.169925002 + 1 = 5.169925002.

For block 8: 8 is placed in the “01” row of the table (i.e., T1), and sum = 5.169925002 +
log2(8-7) = 5.169925002 + 0 = 5.169925002.

For block 9: 9 is placed in the “01” row of the table (i.e., T1), and sum = 5.169925002 +
log2(9-8) = 5.169925002 + 0 = 5.169925002.

2-21

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For block 10: 10 is placed in the “11” row of the table (i.e., T3), and sum = 5.169925002
+ log2(10-6) = 5.169925002 + 2 = 7.169925002.

The states of the table are:

Iteration Possible L-bit Value
Block 00 01 10 11

4 0 2 4 0
5 0 5 4 0
6 0 5 4 6
7 0 7 4 6
8 0 8 4 6
9 0 9 4 6

10 0 9 4 10

Q+ K
(4) Compute the test statistic: fn =

1
∑ log2(i − Tj) , where Tj is the table entry corresponding to

K i=Q+1

the decimal representation of the contents of the ith L-bit block.

7.169925002
For the example in this section, f n = = 1.1949875.

6

fn −
expectedValue(L)

Compute P-value = erfc , where erfc is defined in Section 5.5.3, and (5)

2σ

expectedValue(L) and σ are taken from a table of precomputed values2 (see the table below).
Under an assumption of randomness, the sample mean, expectedValue(L), is the theoretical
expected value of the computed statistic for the given L-bit length. The theoretical standard

−3 L
deviation is given by σ = c var iance(L)

K

0.8 32 K , where 0.7 4 +−

c += .

L L 15

L expectedValue variance
6 5.2177052 2.954
7 6.1962507 3.125
8 7.1836656 3.238
9 8.1764248 3.311

10 9.1723243 3.356
11 10.170032 3.384

L expectedValue variance
12 11.168765 3.401
13 12.168070 3.410
14 13.167693 3.416
15 14.167488 3.419
16 15.167379 3.421

For the example in this section, P-value = erfc

1.1949875 − 1.5374383

2 1.338

 0.767189. Note =

that the expected value and variance for L = 2 are not provided in the above table, since a block of
length two is not recommended for testing. However, this value for L is easy to use in an

2 From the “Handbook of Applied Cryptography.”

2-22

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

example. The value for the expected value and variance for the case where L = 2, although not
shown in the above table, were taken from the indicated reference3.

2.9.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.9.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 5 of Section 2.9.4 is ≥ 0.01 (P-value = 0.767189), the conclusion is that
the sequence is random.

Theoretical expected values for ϕ have been computed as shown in the table in step (5) of Section 2.9.4.
If fn differs significantly from expectedValue(L), then the sequence is significantly compressible.

2.9.7 Input Size Recommendation
This test requires a long sequence of bits (n ≥ (Q + K)L) which are divided into two segments of L-bit
blocks, where L should be chosen so that 6 ≤ L ≤ 16. The first segment consists of Q initialization blocks,
where Q should be chosen so that Q = 10 • 2L. The second segment consists of K test blocks, where K =
n/L - Q ≈ 1000 • 2L . The values of L, Q and n should be chosen as follows:

n L Q = 10 • 2L

≥ 387,840 6 640
≥ 904,960 7 1280
≥ 2,068,480 8 2560
≥ 4,654,080 9 5120
≥ 10,342,400 10 10240
≥ 22,753,280 11 20480
≥ 49,643,520 12 40960
≥ 107,560,960 13 81920
≥ 231,669,760 14 163840
≥ 496,435,200 15 327680
≥ 1,059,061,760 16 655360

2.9.8 Example
(input) ε = A binary string constructed using G-SHA-14

(input) n = 1048576, L = 7, Q = 1280

(note) Note: 4 bits are discarded.

(processing) c =0.591311, σ = 0.002703, K = 148516, sum = 919924.038020

(processing) fn = 6.194107, expectedValue = 6.196251, σ = 3.125

(output) P-value = 0.427733

3 From the “Handbook of Applied Cryptography.”
4 Defined in FIPS 186-2.

2-23

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

(conclusion)	 Since P-value ≥ 0.01, accept the sequence as random.

2.10 Linear Complexity Test

2.10.1 Test Purpose
The focus of this test is the length of a linear feedback shift register (LFSR). The purpose of this test is to
determine whether or not the sequence is complex enough to be considered random. Random sequences
are characterized by longer LFSRs. An LFSR that is too short implies non-randomness.

2.10.2 Function Call
LinearComplexity(M, n), where:

M	 The length in bits of a block.

n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

K The number of degrees of freedom; K = 6 has been hard coded into the test.

2.10.3 Test Statistic and Reference Distribution
χ2(obs):	 A measure of how well the observed number of occurrences of fixed length LFSRs

matches the expected number of occurrences under an assumption of randomness.

The reference distribution for the test statistic is the χ2 distribution.

2.10.4 Test Description
(1)	 Partition the n-bit sequence into N independent blocks of M bits, where n = MN.

(2)	 Using the Berlekamp-Massey algorithm5, determine the linear complexity Li of each of the N
blocks (i = 1,…,N). Li is the length of the shortest linear feedback shift register sequence that
generates all bits in the block i. Within any Li-bit sequence, some combination of the bits, when
added together modulo 2, produces the next bit in the sequence (bit Li + 1).

For example, if M = 13 and the block to be tested is 1101011110001, then Li = 4, and the
sequence is produced by adding the 1st and 2nd bits within a 4-bit subsequence to produce the next
bit (the 5th bit). The examination proceeded as follows:

5 Defined in The Handbook of Applied Cryptography; A. Menezes, P. Van Oorschot and S. Vanstone; CRC Press, 1997.

2-24

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5
The first 4 bits and the resulting 5th bit 1 1 0 1 0

Bits 2-5 and the resulting 6th bit 1 0 1 0 1
Bits 3-6 and the resulting 7th bit 0 1 0 1 1
Bits 4-7 and the resulting 8th bit 1 0 1 1 1
Bits 5-8 and the resulting 9th bit 0 1 1 1 1

Bits 6-9 and the resulting 10th bit 1 1 1 1 0
Bits 7-10 and the resulting 11th bit 1 1 1 0 0
Bits 8-11 and the resulting 12th bit 1 1 0 0 0
Bits 9-12 and the resulting 13th bit 1 0 0 0 1

(1)

(4)

(5)

(6)

(7)

For this block, the trial feedback algorithm works. If this were not the case, other feedback
algorithms would be attempted for the block (e.g., adding bits 1 and 3 to produce bit 5, or adding
bits 1, 2 and 3 to produce bit 6, etc.).

Under an assumption of randomness, calculate the theoretical mean µ:
M +1 M

3 + 29)M (9 + (− 1)) (
µ = + − .

2 36 2M

+13 (9 + (− 1)13+1) (133 29)For the example in this section, µ = + −
213

= 6.777222.
2 36

MFor each substring, calculate a value of Ti, where T = (− 1) • (L − µ)+ 29 .i i

13For the example, Ti = (− 1) (4 − 6.777222)+ 29 = 2.999444.

Record the Ti values in v0,…, v6 as follows:

If:	 Ti ≤ -2.5 Increment vo by one

-2.5 < Ti ≤ -1.5 Increment v1 by one

-1.5 < Ti ≤ -0.5 Increment v2 by one

-0.5 < Ti ≤ 0.5 Increment v3 by one

0.5 < Ti ≤ 1.5 Increment v4 by one
1.5 < Ti ≤ 2.5 Increment v5 by one

Ti > 2.5 Increment v6 by one

K (v − Nπ)2 2 i iCompute χ (obs) = ∑ , where π0 = 0.010417, π1 = 0.03125, π2 = 0.125, π3 = 0.5,
Nπi=0 i

π4 = 0.25,π5 = 0.0625, π6 = 0.020833 are the probabilities computed by the equations in Section
3.10.

 χ 2 K (obs)Compute P-value = igamc , .
 2	 2

2-25

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.10.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.10.6 Conclusion and Interpretation of Results
If the P-value were < 0.01, this would have indicated that the observed frequency counts of Ti stored in
the νI bins varied from the expected values; it is expected that the distribution of the frequency of the Ti

(in the νI bins) should be proportional to the computed πi as shown in step (6) of Section 2.10.5.

2.10.7 Input Size Recommendation
Choose n ≥ 106. The value of M must be in the range 500≤ M ≤ 5000, and N ≥ 200 for the χ2 result to be
valid (see Section 3.10 for a discussion).

2.10.8 Example
(input) ε = “the first 1,000,000 binary digits in the expansion of e”

(input) n = 1000000 = 106, M = 1000

(processing) v0 = 11; v1 = 31; v2 = 116; v3 = 501; v4 = 258; v5 = 57; v6 = 26

(processing) χ2(obs) = 2.700348

(output) P-value = 0.845406

(conclusion) Since the P-value ≥ 0.01, accept the sequence as random.

2.11 Serial Test

2.11.1 Test Purpose

The focus of this test is the frequency of all possible overlapping m-bit patterns across the entire
sequence. The purpose of this test is to determine whether the number of occurrences of the 2m m-bit
overlapping patterns is approximately the same as would be expected for a random sequence. Random
sequences have uniformity; that is, every m-bit pattern has the same chance of appearing as every other
m-bit pattern. Note that for m = 1, the Serial test is equivalent to the Frequency test of Section 2.1.

2.11.2 Function Call
Serial(m,n), where:

m The length in bits of each block.

n The length in bits of the bit string.

Additional input used by the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2-26

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.11.3 Test Statistic and Reference Distribution
∇ψ2

m(obs) and∇ 2ψ2
m(obs):	 A measure of how well the observed frequencies of m-bit patterns match

the expected frequencies of the m-bit patterns.

The reference distribution for the test statistic is the χ2 distribution.

2.11.4 Test Description
(1)	 Form an augmented sequence ε′: Extend the sequence by appending the first m-1 bits to the end

of the sequence for distinct values of n.

For example, given n = 10 and ε = 0011011101. If m = 3, then ε´ = 001101110100. If m = 2,
then ε´ = 00110111010. If m = 1, then ε´ = the original sequence 0011011101.

(2)	 Determine the frequency of all possible overlapping m-bit blocks, all possible overlapping (m-1)-
bit blocks and all possible overlapping (m-2)-bit blocks. Let denote the frequency of the m-vi1 ...im

bit pattern i1…im; let denote the frequency of the (m-1)-bit pattern i1…im-1; and let vi1 ...im −1

denote the frequency of the (m-2)-bit pattern i1…im-2.vi1 ...im −2

For the example in this section, when m = 3, then (m-1) = 2, and (m-2) = 1. The frequency of all
3-bit blocks is: v000 = 0, v001 = 1, v010 = 1, v011 = 2, v100 = 1, v101 = 2, v110 = 2, v111 = 0. The
frequency of all possible (m-1)-bit blocks is: v00 = 1, v01 = 3, v10 = 3, v11 = 3. The frequency of all
(m-2)-bit blocks is: v0 = 4, v1 = 6.

2
2

m	 m
22	 n 2(3) Compute: ψ = ∑	 v − = ∑ − n m i1 ...im m vi1 ...imn i ...i 2 n i ...i1 m	 1 m

m−1	 2 m−1
2 2 n	 2 2ψ = v − =	 − n m−1 ∑ i1 ...im−1 m−1 ∑ vi1 ...im−1n i ...i 2 n i ...i1 m−1	 1 m−1

m−2	 2 m−2
2 2 n	 2

= v − =	 − nψ m−2 ∑ i1 ...im−2 m−2 ∑ vi21 ...im−2n 2 ni1 ...im−2	 i1 ...im−2

For the example in this section,
23

ψ2
3 = (0 + 1 + 1 + 4 + 1 + 4 + 4 + 1) − 10 = 12.8 − 10 = 2.8
10
22

ψ2
2 = (1+ 9 + 9 + 9) −10 = 11.2 −10 = 1.2
10

ψ2
1 =
2 (16 + 36) −10 = 10.4 −10 = 0.4
10

2 2 2(4)	 Compute: ∇ψ =ψ −ψ , and m m m−1
2 2 2 2 2∇ ψ =ψ − 2ψ +ψ . m m m−1 m−2

For the example in this section,
2 2 2 2 2∇ψ =ψ −ψ = Ψ −Ψ = 2.8 −1.2 = 1.6m m m−1 3 2

2-27

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2 2 2	 2 2 2 2 2∇ ψ =ψ − 2ψ +ψ = Ψ − 2Ψ + Ψ = 2.8 − 2(1.2)+ 0.4 = 0.8m m m−1 m−2 3 2 1

m−2

(5) Compute: P-value1 = igamc and 2 ∇

2

, ψ 2
m

ψ 2
m

−3

mP-value2 = igamc 2 ∇ .
,

For the example in this section,
1.62,
2

P-value1 = igamc = 0.9057

0.81,
2

P-value2 = igamc = 0.8805.

2.11.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.11.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 5 of Section 2.11.4 is ≥ 0.01 (P-value1 = 0.808792 and P-value2 =
0.670320), the conclusion is that the sequence is random.

Note that if ∇2ψ2
m or ∇ψ2

m had been large then non-uniformity of the m-bit blocks is implied.

2.11.7 Input Size Recommendation
Choose m and n such that m < log2 n -2.

2.11.8 Example
(input) ε = 1,000,000 bits from the binary expansion of e

(input) m = 2; n = 1000000 = 106

(processing) #0s = 499971; #1s = 500029
#00s = 250116; #01s = #10s = 249855; #11s = 250174

(processing) ψ2
2 = 0.343128; ψ2

1 = 0.003364; ψ2
0 = 0.000000

(processing) ∇ψ2
2 = 0.339764; ∇2ψ2

2 = 0.336400

(output)P-value1 = 0.843764; P-value2 = 0.561915

(conclusion)	 Since both P-value1 and P-value2 were ≥ 0.01, accept the sequences as random for both
tests.

2-28

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.12 Approximate Entropy Test

2.12.1 Test Purpose
As with the Serial test of Section 2.11, the focus of this test is the frequency of all possible overlapping
m-bit patterns across the entire sequence. The purpose of the test is to compare the frequency of
overlapping blocks of two consecutive/adjacent lengths (m and m+1) against the expected result for a
random sequence.

2.12.2 Function Call
ApproximateEntropy(m,n), where:

m The length of each block – in this case, the first block length used in the test. m+1 is the
second block length used.

n The length of the entire bit sequence.

Additional input used by the function, but supplied by the testing code:

ε	 The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.12.3 Test Statistic and Reference Distribution
χ2(obs):	 A measure of how well the observed value of ApEn(m) (see step 6 in Section 2.12.4)

matches the expected value.

The reference distribution for the test statistic is the χ2 distribution.

2.12.4 Test Description
(1)	 Augment the n-bit sequence to create n overlapping m-bit sequences by appending m-1 bits from

the beginning of the sequence to the end of the sequence.

For example, if ε = 0100110101 and m = 3, then n = 10. Append the 0 and 1 at the beginning of
the sequence to the end of the sequence. The sequence to be tested becomes 010011010101.
(Note: This is done for each value of m.)

(2)	 A frequency count is made of the n overlapping blocks (e.g., if a block containing εj to εj+m-1 is
examined at time j, then the block containing εj+1 to εj +m is examined at time j+1). Let the count
of the possible m-bit ((m+1)-bit) values be represented as Cm , where i is the m-bit value. i

For the example in this section, the overlapping m-bit blocks (where m = 3) become 010, 100,
001, 011, 110, 101, 010, 101, 010, and 101. The calculated counts for the 2m = 23 = 8 possible m-
bit strings are:

#000 = 0, #001 = 1, #010 = 3, #011 = 1, #100 = 1, #101 = 3, #110 = 1, #111 = 0

(3)	 Compute Cim =
i for each value of i.
n

2-29

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For example in this section, C3
000 = 0, C3

001 = 0.1, C3
010 = 0.3, C3

011 =0.1, C3
100 = 0.1, C3

101 = 0.3,
C3

110 = 0.1, C3
111 = 0.

2m −1(m)(4) Compute ϕ = ∑π log π , where πi = C3
j , and j=log2 i.i i

i=0

For the example in this section, ϕ(3) = 0(log 0) + 0.1(log 0.1) + 0.3(log 0.3) + 0.1(log 0.1) +
0.1(log 0.1) + 0.3(log 0.3) + 0.1(log 0.1) + 0(log 0) = -1.64341772.

(5) Repeat steps 1-4, replacing m by m+1.

Step 1: For the example in this section, m is now 4, the sequence to be tested becomes
0100110101010.

Step 2: The overlapping blocks become 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1010, 0101,
1010. The calculated values are: #0011 = 1, #0100 = 1, #0101 = 2, #0110 = 1, #1001 = 1, #1010
= 3, #1101 = 1, and all other patterns are zero.

Step 3: C4
0011 = C4

0100 = C4
0110 = C4

1001 = C4
1101 = 0.1, C4

0101 = 0.2, C4
1010 = 0.3, and all other

values are zero.

Step 4: ϕ(4) = 0 + 0 + 0 + 0.1(log 0.01) + 0.1(log 0.01) + 0.2(log 0.02) + 0.1(log 0.01) + 0 + 0 +
0.1(log 0.01) + 0.3(log 0.03) + 0 + 0 + 0.1(log 0.01) + 0 + 0) = -1.83437197.

(m) (m+1)(6) Compute the test statistic: χ2 = 2n[log 2 – ApEn(m)] , where ApEn(m) = ϕ −ϕ .

For the example in this section,
ApEn(3) = -1.643418 – (-1.834372) = 0.190954
χ2 = 2•10(0.693147-0.190954) = 0.502193

χ 2 (7) Compute P-value = igamc(2m-1 ,).
2

For the example in this section, P-value = igamc

0.50219322 ,
2

= 0.261961.

2.12.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.12.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 7 of Section 2.12.4 is ≥ 0.01 (P-value = 0.261961), the conclusion is
that the sequence is random.

Note that small values of ApEn(m) would imply strong regularity (see step 6 of Section 2.12.4). Large
values would imply substantial fluctuation or irregularity.

2.12.7 Input Size Recommendation
Choose m and n such that m < log2 n -5.

2-30

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.12.8 Example
(input) ε = 11001001000011111101101010100010001000010110100011

00001000110100110001001100011001100010100010111000

(input) m = 2; n = 100

(processing) ApEn(m) = 0.665393

(processing) χ2(obs) = 5.550792

(output) P-value = 0.235301

(conclusion) Since P-value ≥ 0.01, accept the sequence as random.

2.13 Cumulative Sums (Cusum) Test

2.13.1 Test Purpose
The focus of this test is the maximal excursion (from zero) of the random walk defined by the cumulative
sum of adjusted (-1, +1) digits in the sequence. The purpose of the test is to determine whether the
cumulative sum of the partial sequences occurring in the tested sequence is too large or too small relative
to the expected behavior of that cumulative sum for random sequences. This cumulative sum may be
considered as a random walk. For a random sequence, the excursions of the random walk should be near
zero. For certain types of non-random sequences, the excursions of this random walk from zero will be
large.

2.13.2 Function Call
CumulativeSums(mode,n), where:

n The length of the bit string.

Additional input for the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

mode A switch for applying the test either forward through the input sequence (mode = 0) or
backward through the sequence (mode = 1).

2.13.3 Test Statistic and Reference Distribution
z:	 The largest excursion from the origin of the cumulative sums in the corresponding (-1, +1)

sequence.

The reference distribution for the test statistic is the normal distribution.

2.13.4 Test Description
(1)	 Form a normalized sequence: The zeros and ones of the input sequence (ε) are converted to

values Xi of –1 and +1 using Xi = 2εi – 1.

2-31

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For example, if ε = 1011010111, then X = 1, (-1), 1, 1, (-1), 1, (-1), 1, 1, 1.

(2)	 Compute partial sums Si of successively larger subsequences, each starting with X1 (if mode = 0)
or Xn (if mode = 1).

Mode = 0 (forward) Mode = 1 (backward)
S1 = X1
S2 = X1 + X2
S3 = X1 + X2 + X3
.
.
Sk = X1 + X2 + X3 + … + Xk
.
.
Sn = X1 + X2 + X3 + … + Xk + …+ Xn

S1 = Xn
S2 = Xn + Xn-1
S3 = Xn + Xn-1 + Xn-2
.
.
Sk = Xn + Xn-1 + Xn-2 + … + Xn-k+1
.
.
Sn = Xn + Xn-1 + Xn-2 + … + Xk-1 + …+ X1

That is, Sk = Sk-1 + Xk for mode 0, and Sk = Sk-1 + Xn-k+1 for mode 1.

For the example in this section, when mode = 0 and X = 1, (-1), 1, 1, (-1), 1, (-1), 1, 1, 1, then:

S1 = 1

S2 = 1 + (-1) = 0

S3 = 1 + (-1) + 1 = 1

S4 = 1 + (-1) + 1 + 1 = 2

S5 = 1 + (-1) + 1 + 1 + (-1) = 1

S6 = 1 + (-1) + 1 + 1 + (-1) + 1 = 2

S7 = 1 + (-1) + 1 + 1 + (-1) + 1 + (-1) = 1

S8 = 1 + (-1) + 1 + 1 + (-1) + 1 + (-1) + 1 = 2

S9 = 1 + (-1) + 1 + 1 + (-1) + 1 + (-1) + 1 + 1 = 3

S10 = 1 + (-1) + 1 + 1 + (-1) + 1 + (-1) + 1 + 1 + 1 = 4

(3)	 Compute the test statistic z =max1≤k≤n|Sk|, where max1≤k≤n|Sk| is the largest of the absolute values of
the partial sums Sk.

For the example in this section, the largest value of Sk is 4, so z = 4.

 n
 −1 4
 z (4k +1)z (4k −1)z

(4)	 Compute P-value = 1− Φ − Φ +∑ n n −n k = +1 4
 z

 n
 −1 4

 z
 (4k + 3)z (4k +1)z ∑ Φ − Φ

 n n −n k = −3 4

 z

2-32

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

where Φ is the Standard Normal Cumulative Probability Distribution Function as defined in
Section 5.5.3.

For the example in this section, P-value = 0.4116588.

2.13.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.13.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 4 of Section 2.13.4 is ≥ 0.01 (P-value = 0.411658), the conclusion is
that the sequence is random.

Note that when mode = 0, large values of this statistic indicate that there are either “too many ones” or
“too many zeros” at the early stages of the sequence; when mode = 1, large values of this statistic indicate
that there are either “too many ones” or “too many zeros” at the late stages. Small values of the statistic
would indicate that ones and zeros are intermixed too evenly.

2.13.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n ≥ 100).

2.13.8 Example
(input) ε = 11001001000011111101101010100010001000010110100011

00001000110100110001001100011001100010100010111000

(input) n = 100

(input) mode = 0 (forward) || mode = 1 (reverse)

(processing) z = 1.6 (forward) || z = 1.9 (reverse)

(output) P-value = 0.219194 (forward) || P-value = 0.114866 (reverse)

(conclusion) Since P-value > 0.01, accept the sequence as random.

2.14 Random Excursions Test

2.14.1 Test Purpose
The focus of this test is the number of cycles having exactly K visits in a cumulative sum random walk.
The cumulative sum random walk is derived from partial sums after the (0,1) sequence is transferred to
the appropriate (-1, +1) sequence. A cycle of a random walk consists of a sequence of steps of unit length
taken at random that begin at and return to the origin. The purpose of this test is to determine if the
number of visits to a particular state within a cycle deviates from what one would expect for a random
sequence. This test is actually a series of eight tests (and conclusions), one test and conclusion for each of
the states: -4, -3, -2, -1 and +1, +2, +3, +4.

2-33

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.14.2 Function Call
RandomExcursions(n), where:

n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

ε The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.14.3 Test Statistic and Reference Distribution
χ2(obs):	 For a given state x, a measure of how well the observed number of state visits within a

cycle match the expected number of state visits within a cycle, under an assumption of
randomness.

The reference distribution for the test statistic is the χ2 distribution.

2.14.4 Test Description
(1)	 Form a normalized (-1, +1) sequence X: The zeros and ones of the input sequence (ε) are changed

to values of –1 and +1 via Xi = 2εi – 1.

For example, if ε = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1.

(2)	 Compute the partial sums Si of successively larger subsequences, each starting with X1. Form the
set S = {Si}.

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

.

.

Sk = X1 + X2 + X3 + … + Xk

.

.

Sn = X1 + X2 + X3 + … + Xk + …+ Xn

For the example in this section,
S1 = -1 S6 = 2

S2 = 0 S7 = 1

S3 = 1 S8 = 2

S4 = 0 S9 = 1

S5 = 1 S10 = 2

The set S = {-1, 0, 1, 0, 1, 2, 1, 2, 1, 2}.

(3)	 Form a new sequence S' by attaching zeros before and after the set S. That is, S' = 0, s1, s2, … , sn,
0.

2-34

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For the example in this section, S' = 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0. The resulting random walk is
shown below.

Example Random Walk (S')

(4)	 Let J = the total number of zero crossings in S', where a zero crossing is a value of zero in S ' that
occurs after the starting zero. J is also the number of cycles in S′, where a cycle of S′ is a
subsequence of S′consisting of an occurrence of zero, followed by no-zero values, and ending
with another zero. The ending zero in one cycle may be the beginning zero in another cycle. The
number of cycles in S ' is the number of zero crossings. If J < 500, discontinue the test6.

For the example in this section, if S' = {0, –1, 0 1, 0, 1, 2, 1, 2, 1, 2, 0}, then J = 3 (there are zeros
in positions 3, 5 and 12 of S'). The zero crossings are easily observed in the above plot. Since J =
3, there are 3 cycles, consisting of {0, -1, 0}, {0, 1, 0} and {0, 1, 2, 1, 2, 1, 2, 0}.

(5)	 For each cycle and for each non-zero state value x having values –4 ≤ x ≤ -1 and 1 ≤ x ≤ 4,
compute the frequency of each x within each cycle.

For the example in this section, in step 3, the first cycle has one occurrence of –1, the second
cycle has one occurrence of 1, and the third cycle has three occurrences each of 1 and 2. This can
be visualized using the following table.

State
x

Cycles
Cycle 1
(0, -1, 0)

Cycle 2
(0, 1, 0)

Cycle 3
(0,1,2,1,2,1,2,0)

-4 0 0 0
-3 0 0 0
-2 0 0 0
-1 1 0 0
1 0 1 3
2 0 0 3
3 0 0 0
4 0 0 0

6 J times the minimum of the probabilities found in the table in Section 3.14 must be ≥ 5 in order to satisfy the empirical rule for
Chi-square computations.

2-35

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

(6)	 For each of the eight states of x, compute νk(x) = the total number of cycles in which state x
occurs exactly k times among all cycles, for k = 0, 1, …, 5 (for k = 5, all frequencies ≥ 5 are

5
stored in ν5(x)). Note that ∑ν k (x) = J .

k =0

For the example in this section,

•	 ν0(-1) = 2 (the –1 state occurs exactly 0 times in two cycles),
ν1(-1) = 1 (the –1 state occurs only once in 1 cycle), and
ν2(-1) = ν3(-1) = ν4(-1) = ν5(-1) = 0 (the –1 state occurs exactly {2, 3, 4, ≥5} times

in 0 cycles).

•	 ν0(1) = 1 (the 1 state occurs exactly 0 times in 1 cycle),
ν1(1) = 1 (the 1 state occurs only once in 1 cycle),
ν3(1) = 1 (the 1 state occurs exactly three times in 1 cycle), and
ν2(1) = ν4(1) = ν5(1) = 0 (the 1 state occurs exactly {2, 4, ≥5} times in 0 cycles).

•	 ν0(2) = 2 (the 2 state occurs exactly 0 times in 2 cycles),
ν3(2) = 1 (the 2 state occurs exactly three times in 1 cycle), and
ν1(2) = ν2(2) = ν4(2) = ν5(2) = 0 (the 1 state occurs exactly {1, 2, 4, ≥5} times in 0

cycles).

•	 ν0(-4) = 3 (the -4 state occurs exactly 0 times in 3 cycles), and
ν1(-4) = ν2(-4) = ν3(-4) = ν4(-4) = ν5(-4) = 0 (the -4 state occurs exactly {1, 2, 3, 4,

≥5} times in 0 cycles).

And so on….

This can be shown using the following table:

State x
Number of Cycles

0 1 2 3 4 5
-4 3 0 0 0 0 0
-3 3 0 0 0 0 0
-2 3 0 0 0 0 0
-1 2 1 0 0 0 0
1 1 1 0 1 0 0
2 2 0 0 1 0 0
3 3 0 0 0 0 0
4 3 0 0 0 0 0

2 5 (ν k (x) − Jπ k (x))
2

(7)	 For each of the eight states of x, compute the test statistic χ (obs) = ∑ ,
Jπ	 (x)k =0 k

where πk(x) is the probability that the state x occurs k times in a random distribution (see Section
3.14 for a table of πk values). The values for πk(x) and their method of calculation are provided in
Section 3.14. Note that eight χ2 statistics will be produced (i.e., for x = -4, -3, -2, -1, 1, 2, 3, 4).

2-36

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For example in this section, when x = 1,
2 2 2 2	 2 2(1− 3(0.5)) (1− 3(0.25)) (0 − 3(0.125)) (1− 3(0.0625)) (0 − 3(0.0312)) (0 − 3(0.0312))2χ = + + + + +

3(0.5) 3(0.25) 3(0.125) 3(0.0625) 3(0.0312) 3(0.0312)
= 4.333033

(8)	 For each state of x, compute P-value = igamc(5/2, χ 2 (obs) 2) . Eight P-values will be
produced.

5 4.333033

For the example when x = 1, P-value = igamc = 0.502529.

,
2 2

2.14.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.14.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 8 of Section 2.14.4 is ≥ 0.01 (P-value = 0.502529), the conclusion is
that the sequence is random.

Note that if χ2(obs) were too large, then the sequence would have displayed a deviation from the
theoretical distribution for a given state across all cycles.

2.14.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 1,000,000 bits (i.e., n ≥ 106).

2.14.8 Example
(input)	 ε = "the binary expansion of e up to 1,000,000 bits"

(input)	 n = 1000000 = 106

(processing)	 J = 1490

State=x χ2 P-value Conclusion
-4 3.835698 0.573306 Random
-3 7.318707 0.197996 Random
-2 7.861927 0.164011 Random
-1 15.692617 0.007779 Non-random
+1 2.485906 0.778616 Random
+2 5.429381 0.365752 Random
+3 2.404171 0.790853 Random
+4 2.393928 0.792378 Random

(conclusion)	 For seven of the states of x, the P-value is ≥ 0.01, and the conclusion would be that the
sequence was random. However, for one state of x (x = -1), the P-value is < 0.01, so the
conclusion would be that the sequence is non-random. When contradictions arise, further
sequences should be examined to determine whether or not this behavior is typical of the
generator.

2-37

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.15 Random Excursions Variant Test

2.15.1 Test Purpose
The focus of this test is the total number of times that a particular state is visited (i.e., occurs) in a
cumulative sum random walk. The purpose of this test is to detect deviations from the expected number
of visits to various states in the random walk. This test is actually a series of eighteen tests (and
conclusions), one test and conclusion for each of the states: -9, -8, …, -1 and +1, +2, …, +9.

2.15.2 Function Call
RandomExcursionsVariant(n), where:

n	 The length of the bit string; available as a parameter during the function call.

Additional input used by the function, but supplied by the testing code:

ε	 The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; ε = ε1, ε2, … , εn.

2.15.3 Test Statistic and Reference Distribution
ξ:	 For a given state x, the total number of times that the given state is visited during the

entire random walk as determined in step 4 of Section 2.15.4.

The reference distribution for the test statistic is the half normal (for large n). (Note: If ξ is distributed as
normal, then |ξ| is distributed as half normal.) If the sequence is random, then the test statistic will be
about 0. If there are too many ones or too many zeroes, then the test statistic will be large.

2.15.4 Test Description
(1)	 Form the normalized (-1, +1) sequence X in which the zeros and ones of the input sequence (ε)

are converted to values of –1 and +1 via X = X1, X2, … , Xn, where Xi = 2εi – 1.

For example, if ε = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1.

(2)	 Compute partial sums Si of successively larger subsequences, each starting with x1. Form the set S
= {Si}.

S1 = X1

S2 = X1 + X2

S3 = X1 + X2 + X3

.

.

Sk = X1 + X2 + X3 + . . . + Xk

.

.

Sn = X1 + X2 + X3 + . . . + Xk + . . .+ Xn

2-38

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For the example in this section,
S1 = -1 S6 = 2

S2 = 0 S7 = 1

S3 = 1 S8 = 2

S4 = 0 S9 = 1

S5 = 1 S10 = 2

The set S = {-1, 0, 1, 0, 1, 2, 1, 2, 1, 2}.

(3)	 Form a new sequence S' by attaching zeros before and after the set S. That is, S' = 0, s1, s2, … , sn,
0.

For the example, S' = 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0. The resulting random walk is shown below.

Example Random Walk (S')

(4)	 For each of the eighteen non-zero states of x, compute ξ(x) = the total number of times that state x
occurred across all J cycles.

For the example in this section, ξ(-1) = 1, ξ(1) = 4, ξ(2) = 3, and all other ξ(x) = 0.

 ξ (x) J−

(5)
 For each ξ(x), compute P-value = erfc .
 Eighteen P-values are computed. See
2J (4 2)−x

Section 5.5.3 for the definition of erfc.

For the example in this section, when x = 1, P-value = erfc

(•

−

3 412

34

)

− 2
= 0.683091.

2.15.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.15.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 7 of Section 2.15.4 is ≥ 0.01 for the state x = 1 (P-value = 0.683091),
the conclusion is that the sequence is random.

2-39

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.15.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 1,000,000 bits (i.e., n ≥ 106).

2.15.8 Example
(input) ε = "the binary expansion of e up to 1,000,000 bits"

(input) n = 1000000 = 106

(processing) J = 1490

State(x) Counts P-value Conclusion
-9 1450 0.858946 Random
-8 1435 0.794755 Random
-7 1380 0.576249 Random
-6 1366 0.493417 Random
-5 1412 0.633873 Random
-4 1475 0.917283 Random
-3 1480 0.934708 Random
-2 1468 0.816012 Random
-1 1502 0.826009 Random
+1 1409 0.137861 Random
+2 1369 0.200642 Random
+3 1396 0.441254 Random
+4 1479 0.939291 Random
+5 1599 0.505683 Random
+6 1628 0.445935 Random
+7 1619 0.512207 Random
+8 1620 0.538635 Random
+9 1610 0.593930 Random

(conclusion) Since the P-value ≥ 0.01 for each of the eighteen states of x, accept the sequence as
random.

2-40

€

€

€

€ € €

€ €

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

3. Technical Description of Tests

This section contains the mathematical background for the tests in the NIST test suite. Each subsection
corresponds to the appropriate subsection in Section 2. The relevant references for each subsection are
provided at the end of that subsection.

3.1 Frequency (Monobits) Test
The most basic test is that of the null hypothesis: in a sequence of independent identically distributed
Bernoulli random variables (X's or ε's, where X = 2ε-1, and so Sn = X1 + … + Xn = 2(ε1 + … + εn) – n), the
probability of ones is 1/2. By the classic De Moivre-Laplace theorem, for a sufficiently large number of
trials, the distribution of the binomial sum, normalized by n , is closely approximated by a standard
normal distribution. This test makes use of that approximation to assess the closeness of the fraction of
1's to 1/2. All subsequent tests are conditioned on having passed this first basic test.

The test is derived from the well-known limit Central Limit Theorem for the random walk, Sn = X1 + … +
Xn. According to the Central Limit Theorem,

lim P(S
n
n ≤ z) = Φ(z) ≡

2
1

π
∫
z
e−u

2 / 2du (1)
−∞n →∞

This classical result serves as the basis of the simplest test for randomness. It implies that, for positive z,

SnP(≤ z) = 2Φ(z) −1.
n

According to the test based on the statistic s = / n , evaluate the observed value s(obs) =Sn

/ n , and then calculate the corresponding P-value, which is X1 + …+ Xn

2 1−Φ(s(obs))] = erfc(s(obs) / n) . Here, erfc is the (complementary) error function [

2 ∞
erfc(z) = ∫ e−u

2

du .
π z

References for Test

[1] Kai Lai Chung, Elementary Probability Theory with Stochastic Processes. New York: Springer-
Verlag, 1979 (especially pp. 210-217).

[2] Jim Pitman, Probability. New York: Springer-Verlag, 1993 (especially pp. 93-108).

3.2 Frequency Test within a Block
The test seeks to detect localized deviations from the ideal 50% frequency of 1's by decomposing the test
sequence into a number of nonoverlapping subsequences and applying a chi-square test for a
homogeneous match of empirical frequencies to the ideal 1/2. Small P-values indicate large deviations
from the equal proportion of ones and zeros in at least one of the substrings. The string of 0's and 1's (or
equivalent -1's and 1's) is partitioned into a number of disjoint substrings. For each substring, the
proportion of ones is computed. A chi-square statistic compares these substring proportions to the ideal

3-1

€

€

€

€

€

€

€ € € €

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

1/2. The statistic is referred to a chi-squared distribution with the degrees of freedom equal to the number
of substrings.

The parameters of this test are M and N, so that n = MN, i.e., the original string is partitioned into N
substrings, each of length M. For each of these substrings, the probability of ones is estimated by the
observed relative frequency of 1's, π i, i = 1,…,N. The sum

N 	 1
2

Χ2(obs) = 4 M∑ π i − i=1	 2

under the randomness hypothesis has the Χ2-distribution with N degrees of freedom. The reported P-
value is

∞	 ∞
e−u / 2 uN / 2−1du e−uuN / 2−1∫

Χ 2 (obs) =
∫
Χ 2 (obs) / 2

du9
= igamc(N

2
, Χ

2(obs)).
Γ(N /2)2N / 2 Γ(N /2) 2

References for Test

[1]	 Nick Maclaren, “Cryptographic Pseudo-random Numbers in Simulation,” Cambridge Security
Workshop on Fast Software Encryption. Dec. 1993. Cambridge, U.K.: R. Anderson, pp. 185-190.

[2]	 Donald E. Knuth, The Art of Computer Programming. Vol 2: Seminumerical Algorithms. 3rd ed.
Reading, Mass: Addison-Wesley, 1998 (especially pp. 42-47).

[3]	 Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions: NBS Applied
Mathematics Series 55. Washington, D.C.: U.S. Government Printing Office, 1967.

3.3 Runs Test
This variant of a classic nonparametric test looks at “runs” defined as substrings of consecutive 1's and
consecutive 0's, and considers whether the oscillation among such homogeneous substrings is too fast or
too slow.

The specific test used here is based on the distribution of the total number of runs, Vn. For the fixed
proportion π = ∑ j

ε j /n (which by the Frequency test of Section 3.1 must have been established to be

1 2
close to 0.5: π − ≤).

2 n

P(Vn − 2nπ (1−π)lim ≤ z) = Φ(z).	 (2)
n →∞ 2 nπ (1−π)

To evaluate Vn, define for k = 1,…,n-1, r(k) = 0 if εk = εk +1 and r(k) = 1 if εk ≠ εk +1. Then

Vn = ∑
n−1
r(k) + 1. The P-value reported is

k=1

(obs) − 2nπ (1−π)
erfc(

Vn) .
2 2nπ (1−π)

3-2

€

€

€

€

€

€

€

€

€ €

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Large values of Vn (obs) indicate oscillation in the string of ε's which is too fast; small values indicate
oscillation which is too slow.

References for Test

[1]	 Jean D. Gibbons, Nonparametric Statistical Inference, 2nd ed. New York: Marcel Dekker, 1985
(especially pp. 50-58).

[2]	 Anant P. Godbole and Stavros G. Papastavridis, (ed), Runs and patterns in probability: Selected
papers. Dordrecht: Kluwer Academic, 1994.

3.4 Test for the Longest Run of Ones in a Block
The length of the longest consecutive subsequence (run) of ones is another characteristic that can be used
for testing randomness. A string of length n, such that n = MN, must be partitioned into N substrings,
each of length M. For the test based on the length of the longest run of ones ν j within the j-th substring
of size M, K + 1 classes are chosen (depending on M). For each of these substrings, one evaluates the
frequencies ν 0,ν1,…,ν k(ν 0 + ν1 + …+ νK = N , i.e., the computed values of the longest run of ones
within each of these substrings belonging to any of the K + 1 chosen classes). If there are r ones and M -
r zeroes in the m-bit block, then the conditional probability that the longest string of ones ν in this block

 r
is less than or equal to m has the following form with U = min(M − r +1,) (see [1]): m + 1

U M − r +1

j

M − j(m +1)

M − r

,

1
 (−1)
 j

P(ν ≤ m | r) = ∑

M

j= 0

r

so that

M M 1P(ν ≤ m) = ∑ P(ν ≤ m | r) . (3)
2M r r= 0

The theoretical probabilities π 0,π1,…,π K of these classes are determined from [3].

The empirical frequencies ν i,i = 0,…,K are conjoined by the Χ2 -statistic

K (ν i − Nπ i)
2

Χ2 = ∑ ,
i= 0 Nπ i

which, under the randomness hypothesis, has an approximate Χ2 -distribution with K degrees of freedom.
The reported P-value is

3-3

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

e−u / 2uK / 2−1du ∫
Χ

∞

2 (obs) = igamc K Χ2(obs)
)2K / 2 2

, ,
Γ(K /2 2

with P(a,x) denoting the incomplete gamma function as expressed in Section 3.2.

The following table contains selected values of K and M with the corresponding probabilities obtained
from [3]. Cases K=3, M=8; K=5, M=128; and K=6, M=10000 are currently embedded in the test suite
code.

K=3, M=8
classes probabilities
{ν≤1} π0 = 0.2148
{ν=2} π1 = 0.3672
{ν=3} π2 = 0.2305
{ν≥4} π3 = 0.1875

K=5, M=128

classes probabilities
{ν≤4} π0 = 0.1174
{ν=5} π1 = 0.2430
{ν=6} π2 = 0.2493
{ν=7} π3 = 0.1752
{ν=8} π4 = 0.1027
{ν≥9} π5 = 0.1124

K=5, M=512

classes probabilities
{ν≤6} π0 = 0.1170
{ν=7} π1 = 0.2460
{ν=8} π2 = 0.2523
{ν=9} π3 = 0.1755

{ν=10} π4 = 0.1027
{ν≥11} π5 = 0.1124

K=5, M=1000

classes probabilities
{ν≤7} π0 = 0.1307
{ν=8} π1 = 0.2437
{ν=9} π2 = 0.2452

{ν=10} π3 = 0.1714
{ν=11} π4 = 0.1002
{ν≥12} π5 = 0.1088

3-4

€
€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

K=6, M=10000

classes probabilities
{ν≤10} π0 = 0.0882
{ν=11} π1 = 0.2092
{ν=12} π2 = 0.2483
{ν=13} π3 = 0.1933
{ν=14} π4 = 0.1208
{ν=15} π5 = 0.0675
{ν≥16} π6 = 0.0727

Large values of Χ2 indicate that the sequence has clusters of ones; the generation of “random'” sequences
by humans tends to lead to small values of ν n (see [3, p. 55]).

References for Test

[1]	 F. N. David and D. E. Barton, Combinatorial Chance. New York: Hafner Publishing Co., 1962, p.
230.

[2]	 Anant P. Godbole and Stavros G. Papastavridis (ed), Runs and Patterns in Probability: Selected
Papers. Dordrecht: Kluwer Academic, 1994.

[3]	 Pal Revesz, Random Walk in Random and Non-Random Environments. Singapore: World
Scientific, 1990.

3.5 Binary Matrix Rank Test
Another approach to testing for randomness is to check for linear dependence among fixed-length
substrings of the original sequence: construct matrices of successive zeroes and ones from the sequence,
and check for linear dependence among the rows or columns of the constructed matrices. The deviation of
the rank - or rank deficiency - of the matrices from a theoretically expected value gives the statistic of
interest.

This test is a specification of one of the tests coming from the DIEHARD [1] battery of tests. It is based
on the result of Kovalenko [2] and also formulated by Marsaglia and Tsay [3]. The result states that the
rank R of the M x Q random binary matrix takes values r = 0, 1, 2, …, m where m ≡ min(M,Q) with
probabilities

r−1

pr	
(1− 2i−Q)(1− 2i−M)

.= 2r(Q +M −r)−MQ ∏ 1− 2i−r i= 0

The probability values are fixed in the test suite code for M = Q = 32. The number M is then a parameter
of this test, so that ideally n = M2N, where N is the new “sample size.” In practice, values for M and N are
chosen so that the discarded part of the string, n - NM2, is fairly small.

The rationale for this choice is that

3-5

€
€

€

€
€ €

€
€

€

€

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

∞ 1 pM ≈ ∏1− = 0.2888...,
 2 j j=1

pM −1 ≈ 2pM ≈ 0.5776...,
4 pMpM −2 ≈ ≈ 0.1284...
9

and all other probabilities are very small (≤ 0.005) when M ≥ 10.

For the N square matrices obtained, their ranks Rl ,l = 1,…,N are evaluated, and the frequencies

FM ,FM −1, and N − FM − FM −1 of the values M, M-1 and of ranks not exceeding M-2 are determined:

FM =#{Rl = M} ,
FM −1 =#{Rl = M −1} .

To apply the Χ2 -test, use the classical statistic

2 2	 2(FM − 0.2888N) (FM −1 − 0.5776N) (N − FM − FM −1 − 0.1336N)
Χ2 = + +	 ,

0.2888N 0.5776N	 0.13336N

which, under the null (randomness) hypothesis, has an approximate Χ2 -distribution with 2 degrees of
freedom. The reported P-value is exp{−Χ2(obs) /2 }.

Interpretation of this test: large values of Χ2(obs) indicate that the deviation of the rank distribution from
that corresponding to a random sequence is significant. For example, pseudo random matrices produced
by a shift-register generator formed by less than M successive vectors systematically have rank Rl ≡ M ,
while for truly random data, the proportion of such occurrences should be only about 0.29.

References for Test

[1]	 George Marsaglia, DIEHARD: a battery of tests of randomness.
http://www.stat.fsu.edu/pub/diehard/.

[2]	 I. N. Kovalenko (1972), “Distribution of the linear rank of a random matrix,” Theory of
Probability and its Applications. 17, pp. 342-346.

[3]	 G. Marsaglia and L. H. Tsay (1985), “Matrices and the structure of random number sequences,”
Linear Algebra and its Applications. Vol. 67, pp. 147-156.

3.6 Discrete Fourier Transform (Specral) Test
The test described here is based on the discrete Fourier transform. It is a member of a class of procedures
known as spectral methods. The Fourier test detects periodic features in the bit series that would indicate
a deviation from the assumption of randomness.

Let xk be the kth bit, where k = 1, ..., n. Assume that the bits are coded -1 and +1. Let

3-6

http://www.stat.fsu.edu/pub/diehard

€

€ €

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

n

= xk exp 2π i k −1) j /n ,f j ∑ (()
k=1

where exp 2πikj /n) = cos 2πkj /n) + isin 2πkj /n), j = 0,…,n −1, and i ≡ −1. Because of the
symmetry of the real to complex-value transform, only the values from 0 to (n/2 - 1) are considered. Let
modj be the modulus of the complex number fj. Under the assumption of the randomness of the series xi, a
confidence interval can be placed on the values of modj. More specifically, 95 percent of the values of

(((

1logmodj should be less than h =

n . A P-value based on this threshold comes from the binomial

0.05

distribution. Let N1 be the number of peaks less than h. Only the first n/2 peaks are considered. Let N0 =
.95N/2 and d = (N1 − N0) / n(0.95)(0.05) /4 . The P-value is

d

2 1−φ)) = erfc((d

2

where φ(x) is the cumulative probability function of the standard normal distribution.

Other P-values based on the series fj or modj that are sensitive to departures from randomness are
possible. However, the primary value of the transform comes from a plot of the series modj. In the
accompanying figure, the top plot shows the series of modj for 4096 bits generated from a satisfactory
generator. The line through the plot is the 95% confidence boundary. The P-value for this series is
0.8077. The bottom plot shows a corresponding plot for a generator that produces bits that are
statistically dependent in a periodic pattern. In the bottom plot, significantly greater than 5% of the
magnitudes are beyond the confidence boundary. In addition, there is a clear structure in the magnitudes
that is not present in the top plot. The P-value for this series is 0.0001.

References for Test

[1]	 R. N. Bracewell, The Fourier Transform and Its Applications. New York: McGraw-Hill, 1986.
[2]	 W. Killman, J. Schüth, W. Thumser, and I. Uludag, A Note Concerning the DFT Test in NIST

Special Publication 800-22, T-Systems, Systems Integration, July 2004.
[3]	 S. Kim, K, Umeno, and A. Hasegawa, Corrections of the NIST Statistical Test Suite for

Randomness, Cryptology ePrint Archive, Report 2004/018, 2004.

3-7

http:n(0.95)(0.05

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

3-8

€

€

€
€ €

€
€

€

€

€

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

3.7 Non-Overlapping Template Matching Test
This test rejects sequences exhibiting too many or too few occurrences of a given aperiodic pattern.

Let B = (ε10,…,εm
0) be a given word (template or pattern, i.e., a fixed sequence of zeros and ones) of

length m. This pattern is to be chosen as if it were a parameter of the test. We consider a test based on
patterns for fixed length m. A table of selected aperiodic words out of such patterns for m = 2, …, 8 is
provided at the end of this section.

The set of periods of B

Β = { j,1 ≤ j ≤ m −1,ε0
j +k = εk

0,k = 1,…,m − j},

plays an important role. For example, when B corresponds to a run of m ones, Β = {1,…,m −1}. For the
B above, Β = ∅, and B is an aperiodic pattern (i.e., it cannot be written as CC…CC′ for a pattern C
shorter than B with C' denoting a prefix of C). In this situation, occurrences of B in the string are non-
overlapping.

In general, let W = W (m, M) be the number of occurrences of the given pattern B in the string. Note
that the statistic W is defined also for patterns B with Β = ∅. The best way to calculate W is as the sum,

n−m +1

W = ∑I(εi+k−1 = εk
0,k = 1,…,m) .

i=1

The random variables I(εi+k−1 = εk
0,k = 1,…,m) are m-dependent, so that the Central Limit Theorem

holds for W. The mean and variance of the approximating normal distribution have the following form,

n − m + 1
µ = ,

2m

 1 2m −1
σ 2 = n − .2m 22m

For the test suite code, M and N are chosen so that n = MN and N = 8. Partition the original string into N
blocks of length M. Let W j = W j (m, M) be the number of occurrences of the pattern B in the block j, for
j = 1, …, N.

Let µ = EW j = (M − m + 1)2−m . Then, for large M, Wj has a normal distribution with mean µ and
variance σ2, so that the statistic

N (W j −µ)
2

Χ2(obs) = ∑ (4)
σ 2

j=1

3-9

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

has an approximate Χ2 -distribution with N degrees of freedom. Report the P-value as
Χ2(obs)
1− P N

2
,

.

2

The test can be interpreted as rejecting sequences exhibiting irregular occurrences of a given non-periodic
pattern.

References for Test

[1]	 A. D. Barbour, L. Holst, and S. Janson, Poisson Approximation (1992). Oxford: Clarendon Press
(especially Section 8.4 and Section 10.4).

Aperiodic Templates for small values of 2 ≤ m ≤ 5

m = 2 m = 3 m = 4 m = 5
0 1 0 0 1 0 0 0 1 0 0 0 0 1
1 0 0 1 1

1 0 0
0 0 1 1
0 1 1 1

0 0 0 1 1
0 0 1 0 1

1 1 0 1 0 0 0
1 1 0 0
1 1 1 0

0 1 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 0 0
1 1 0 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
1 1 1 1 0

3-10

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Aperiodic Templates for small values of 6 ≤ m ≤ 8

m = 6 m = 7 m = 8
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1
0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1
0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1
0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1
1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1
1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1
1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1
1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1
1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1
1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1
1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1
1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1
1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1

1 0 0 0 0 0 0 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 0 1 1 0 1 0 1
1 0 1 0 0 0 0 0 0 1 1 0 1 1 1
1 0 1 0 1 0 0 0 0 1 1 1 0 1 1
1 0 1 1 0 0 0 0 0 1 1 1 1 0 1
1 0 1 1 1 0 0 0 0 1 1 1 1 1 1
1 1 0 0 0 0 0 0 1 0 0 0 0 1 1
1 1 0 0 0 1 0 0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 0 1 0 0 1 0 1 1
1 1 0 1 0 0 0 0 1 0 0 1 1 1 1
1 1 0 1 0 1 0 0 1 0 1 0 0 1 1
1 1 0 1 1 0 0 0 1 0 1 0 1 1 1
1 1 1 0 0 0 0 0 1 0 1 1 0 1 1
1 1 1 0 0 1 0 0 1 0 1 1 1 1 1
1 1 1 0 1 0 0 0 1 1 0 0 1 1 1
1 1 1 0 1 1 0 0 1 1 0 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 0 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 0 0 1 0 0 0 0
1 1 1 1 1 1 0 1 0 0 1 1 0 0 0

1 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 1 0 0 0
1 0 1 0 1 1 0 0
1 0 1 1 0 0 0 0
1 0 1 1 0 1 0 0
1 0 1 1 1 0 0 0
1 0 1 1 1 1 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0
1 1 0 0 1 0 1 0
1 1 0 1 0 0 0 0
1 1 0 1 0 0 1 0
1 1 0 1 0 1 0 0
1 1 0 1 1 0 0 0
1 1 0 1 1 0 1 0
1 1 0 1 1 1 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 1 0
1 1 1 0 0 1 0 0
1 1 1 0 0 1 1 0
1 1 1 0 1 0 0 0
1 1 1 0 1 0 1 0
1 1 1 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 1 0
1 1 1 1 0 1 0 0
1 1 1 1 0 1 1 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0

3-11

€

€

€

€
€

€

€

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

3.8 Overlapping Template Matching Test
This test rejects sequences which show too many or too few occurrences of m-runs of ones, but can be
easily modified to detect irregular occurrences of any periodic pattern B.

To implement this test, parameters M and N are determined so that n = MN, i.e., the original string is
partitioned into N blocks, each of length M.

Let W̃
j = W̃

j (m,n) be the number of (possibly overlapping) runs of ones of length m in the jth block.
The asymptotic distribution of Wj is the compound Poisson distribution (the so-called Pòlya-Aeppli law,
see[1]):

λ(et −1)

2 − et

E exp{tW̃

j } → exp (5)

when (M − m + 1)2−m →λ > 0 (t is a real variable).

The corresponding probabilities can be expressed in terms of the confluent hypergeometric function
Φ =1 F1. If U denotes a random variable with the compound Poisson asymptotic distribution, then for u ≥
1 with η = λ /2 .

ue−η u −1η l ηe−2η

P U = u) = ∑ = Φ u +1,2,η).((
2u l=1 l −1 l! 2u

For example,

P U = 0) = e−η ,(
ηP U (= 1) =
2
e−η ,

ηe−η

P U = 2 η + 2() = [] ,
8

ηe−η η2
P U = 3() = 6

+η + 1,
8

ηe−η η3 η2 3η
P U = 4) = .(+ 1

2
+

16 24
+

2

More accurate, but also more complicated, expressions are given in [3]. These expressions yield the
following probabilities:

π0 0.364091
π1 0.185659
π2 0.139381
π3 0.100571
π4 0.0704323
π5 0.139865

3-12

€

€

€
€

€

€ €
€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

The complement to the distribution function of this random variable has the form

u η l

L u () = e−η Δ(l,u() = P U > u	 ∑)
l=1 l!

with

u 1 k −1
Δ(l,u) = ∑

k= l 2
k l −1

Choose K + 1 classes or cells for U, i.e., {U = 0},{U = 1},…,{U = K −1},{U ≥ K} . The theoretical
probabilities π 0,π1,…,π K +1 of these cells are found from the above formulas. A reasonable choice
could be K = 5,λ = 2,η = 1.

After U1, …, UN are found, evaluate the frequencies ν 0,ν1,…,νK of each cell, ν 0 + ν1 + …+ νK = N ,
and calculate the value of the Χ2 -statistic

K (ν i − Nπ i)
2

Χ2 = ∑ .
i= 0 Nπ i

The expression for the P-value is the same as that used in Section 3.7. The interpretation is that for very
small P-values, the sequence shows irregular occurrences of m-runs of ones.

References for Test

[1]	 O. Chrysaphinou and S. Papastavridis, “A Limit Theorem on the Number of Overlapping
Appearances of a Pattern in a Sequence of Independent Trials.” Probability Theory and Related
Fields, Vol. 79 (1988), pp. 129-143.

[2]	 N.J. Johnson, S. Kotz, and A. Kemp, Discrete Distributions. John Wiley, 2nd ed. New York,
1996 (especially pp. 378-379).

[3]	 K. Hamano and T. Kaneko, The Correction of the Overlapping Template Matching Test Included
in NIST Randomness Test Suite, IEICE Transactions of Electronics, Communications and
Computer Sciences 2007, E90-A(9), pp 1788-1792.

3.9 Maurer’s “Universal Statistical” Test
Ueli Maurer of the Department of Computer Science at Princeton University introduced this test in 1992.
Maurer's test statistic relates closely to the per-bit entropy of the stream, which its author asserts is “the
correct quality measure for a secret-key source in a cryptographic application.” As such, the test is
claimed to measure the actual cryptographic significance of a defect because it is “related to the running
time of [an] enemy's optimal key-search strategy,” or the effective key size of a cipher system.

The test is not designed to detect a very specific pattern or type of statistical defect. However, the test is
designed “to be able to detect any one of the very general class of statistical defects that can be modeled

3-13

€
€

€
€

€

€

€

€
€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

by an ergodic stationary source with finite memory.” Because of this, Maurer claims that the test
subsumes a number of the standard statistical tests.

The test is a compression-type test “based on the idea of Ziv that a universal statistical test can be based
on a universal source coding algorithm. A generator should pass the test if and only if its output sequence
cannot be compressed significantly.” According to Maurer, the source-coding algorithm due to Lempel-
Ziv “seems to be less suited for application as a statistical test” because it seems to be difficult to define a
test statistic whose distribution can be determined or approximated.

The test requires a long (on the order of 10 • 2L +1000 • 2L with 6≤L≤16) sequence of bits, which are
divided into two stretches of L-bit blocks (6≤L≤16), Q (≥ 10 • 2L) initialization blocks and K

n
(≈1000 • 2L) test blocks. We take K = − Q to maximize its value. The order of magnitude of Q L

should be specifically chosen to ensure that all possible L-bit binary patterns do in fact occur within the
initialization blocks. The test is not suited for very large values of L because the initialization takes time
exponential in L.

The test looks backs through the entire sequence while walking through the test segment of L-bit blocks,
checking for the nearest previous exact L-bit template match and recording the distance - in number of
blocks - to that previous match. The algorithm computes the log2 of all such distances for all the L-bit
templates in the test segment (giving, effectively, the number of digits in the binary expansion of each
distance). Then it averages over all the expansion lengths by the number of test blocks.

Q +K1fn = [∑log2 (# indices since previous occurrence of ith template)]
K i=Q +1

The algorithm achieves this efficiently by subscripting a dynamic look-up table making use of the integer
representation of the binary bits constituting the template blocks. A standardized version of the statistic –
the standardization being prescribed by the test - is compared to an acceptable range based on a standard
normal (Gaussian) density, making use of the test statistic's mean which is given by formula (16) in [1],

Efn = 2−L ∑
∞

(1− 2−L)
i−1
log2 i .

i=1

The expected value of the test statistic fn is that of the random variable log2 G where G = GL is a
geometric random variable with the parameter 1− 2−L .

There are several versions of approximate empirical formulas for the variance of the form

Var fn) = c L,K)Var(log2 G) /K .((

Here, c(L,K) represents the factor that takes into account the dependent nature of the occurrences of
templates. The latest of the approximations (Coron and Naccache [2]: not embedded in the test suite code)
has the form

K−4 / L0.8
 12.8

+ 1.6 +

3-14

c L,K() = 0.7 −
 .

L
 L

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

However, Coron and Naccache (1998) report that “the inaccuracy due to [this approximation] can make
the test 2.67 times more permissive than what is theoretically admitted.” In other words, the ratio of the
standard deviation of fn obtained from the approximation above to the true standard deviation deviates
considerably from one. In view of this fact and also since all approximations are based on the
“admissible” assumption that Q →∞ , the randomness hypothesis may be tested by verifying normality
of the observed values fn, assuming that the variance is unknown. This can be done using a t-test.

The original sequence must be partitioned into r (r ≤ 20) substrings, on each of which the value of the
universal test statistic is evaluated (for the same value of parameters K, L and Q). The sample variance is
evaluated, and the P-value is

erfc

fn − E L()
var(fn)

References for Test

[1] Ueli M. Maurer, “A Universal Statistical Test for Random Bit Generators,” Journal of
Cryptology. Vol. 5, No. 2, 1992, pp. 89-105.

[2] J-S Coron and D. Naccache, “An Accurate Evaluation of Maurer's Universal Test,” Proceedings
of SAC '98 (Lecture Notes in Computer Science). Berlin: Springer-Verlag, 1998.

[3] H. Gustafson, E. Dawson, L. Nielsen, W. Caelli, “A computer package for measuring the strength
of encryption algorithms,” Computers & Security. 13 (1994), pp. 687-697.

[4] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography. Boca
Raton: CRC Press, 1997.

[5] J. Ziv, “Compression, tests for randomness and estimating the statistical model of an individual
sequence,” Sequences (ed. R.M. Capocelli). Berlin: Springer-Verlag, 1990.

[6] J. Ziv and A. Lempel, ``A universal algorithm for sequential data compression,''
Transactions on Information Theory. Vol. 23, pp. 337-343.

IEEE

3.10 Linear Complexity Test
This test uses linear complexity to test for randomness. The concept of linear complexity is related to a
popular part of many keystream generators, namely, Linear Feedback Shift Registers (LFSR). Such a
register of length L consists of L delay elements each having one input and one output. If the initial state
of LFSR is (εL-1, …, ε1, ε0), then the output sequence, (εL, εL+1, …), satisfies the following recurrent
formula for j ≥ L

ε j = (c1ε j−1 + c2ε j−2 +…+ cLε j−L)mod2 .

c1, …, cL are coefficients of the connection polynomial corresponding to a given LFSR. An LFSR is said
to generate a given binary sequence if this sequence is the output of the LFSR for some initial state.

3-15

€
€

€

€

€

€

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For a given sequence sn = (ε1, …,εn), its linear complexity L(sn) is defined as the length of the shortest
LFSR that generates sn as its first n terms. The possibility of using the linear complexity characteristic for
testing randomness is based on the Berlekamp-Massey algorithm, which provides an efficient way to
evaluate finite strings.

When the binary n-sequence sn is truly random, formulas exist [2] for the mean, µn = EL(sn), and the
variance, σ n

2 = Var L sn) of the linear complexity L(sn) = Ln when the n-sequence sn is truly random. (()
The Crypt-X package [1] suggests that the ratio (Ln −µn) /σ n is close to a standard normal variable, so
that the corresponding P-values can be found from the normal error function. Indeed, Gustafson et al. [1]
(p. 693) claim that “for large n, L(sn) is approximately normally distributed with mean n/2 and a variance

81

86
.” This is completely false. Even

L sn() −

n
86/81 times that of the standard normal statistic z =

2

the mean value µn does not behave asymptotically precisely as n/2, and in view of the boundedness of the
variance, this difference becomes significant. More importantly, the tail probabilities of the limiting
distribution are much larger than those of the standard normal distribution.

The asymptotic distribution of (Ln −µn) /σ n along the sequence of even or odd values of n is that of a
discrete random variable obtained via a mixture of two geometric random variables (one of them taking
only negative values). Strictly speaking, the asymptotic distribution as such does not exist. The cases n

ξn

even and n odd must be treated separately with two different limiting distributions arising.

Because of this fact the following sequence of statistics is adapted

Tn = (−1)n [Ln −ξn] +
2

(6)
9

.

Here
4 +
n rn (7)
 =

2
+ .
18

These statistics, which take only integer values, converge in distribution to the random variable T. This
1

limiting distribution is skewed to the right. While P T (= 0) =
2

, for k = 1, 2, …

P T (= k) =
1

(8)
22k

,

for k = -1, -2, …

P(T = k) =
1

+1
. (9) k22

It follows from (8) that

P T ≥ k > 0) =
1(

3 × 22k−2 ;

for k < 0 (9) shows that

3-16

€

€

€

€

€

€

€
€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

P T ≤ k) =
1(−1

.k3 × 22

So the P-value corresponding to the observed value Tobs can be evaluated in the following way. Let
κ = [] + 1. Then the P-value isTobs

1 1 1
=

3 × 22κ −1 +
3 × 22κ −2 22κ −1 .

In view of the discrete nature of this distribution and the impossibility of attaining the uniform
distribution for P-values, the same strategy can be used that was used with other tests in this situation.
Namely, partition the string of length n, such that that n = MN, into N substrings each of length M. For the
test based on the linear complexity statistic (6), evaluate TM within the j-th substring of size M, and
choose K+1 classes (depending on M.) For each of these substrings, the frequencies, ν0, ν1, …, νK, of
values of TM belonging to any of K+1 chosen classes, ν0 + ν1 + … + νK = N, are determined. It is
convenient to choose the classes with end-points at semi-integers.

The theoretical probabilities π0, π1, …, πK of these classes are determined from (8) and (9). For this
purpose, M has to be large enough for the limiting distribution given by (8) and (9) to provide a
reasonable approximation. M should exceed 500. It is recommended that M be chosen so that 500 ≤ M ≤
5000.

The frequencies are conjoined by the Χ2 -statistic

K (ν i − Nπ i)
2

Χ2 = ∑ .
i= 0 Nπ i

which, under the randomness hypothesis, has an approximate Χ2 -distribution with K degrees of freedom.
The reported P-value is

e−u / 2uK / 2−1du∫
Χ

∞

2 (obs)

)2K / 2 = igamc
K

2
, Χ

2(obs)
 .

Γ(K /2 2
As before, a conservative condition for the use of the Χ2 -approximation is that

N minπ i ≥ 5 .
i

For reasonably large values of M and N, the following classes (K=6) seem to be adequate: {T ≤ -2.5},
{-2.5 < T ≤ -1.5}, {-1.5 < T ≤ -0.5}, {-0.5 < T ≤ 0.5}, {0.5 < T ≤ 1.5}, {-1.5 < T ≤ 2.5}, {T > 2.5}.

The probabilities of these classes are π0=0.010417, π1=0.03125, π2=0.125, π3=0.5, π4=0.25, π5=0.0625,
π6=0.020833. These probabilities are substantially different from the ones obtained from the normal
approximation for which their numerical values are: 0.0041, 0.0432, 0.1944, 0.3646, 0.2863, 0.0939,
0.0135.

3-17

€

€

€ € € €

€

€

€

€ € € €
€ €

€

€

€

€ €

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

References for Test

[1] H. Gustafson, E. Dawson, L. Nielsen, and W. Caelli (1994), “A computer package for measuring
the strength of encryption algorithms,” Computers and Security. 13, pp. 687-697.

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone (1997), Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL.

[3] R.A. Rueppel, Analysis and Design of Stream Ciphers. New York: Springer, 1986.

3.11 Serial Test
The (generalized) serial test represents a battery of procedures based on testing the uniformity of
distributions of patterns of given lengths.

Specifically, for i1, …, im running through the set of all 2m possible 0,1 vectors of length m, let
ν i1…im

denote the frequency of the pattern (i1, …, im) in the “circularized” string of bits (ε1, …, εn, ε1, …,
εm-1).

Set

m

2 ν i1…im
ψ

22m 2m

n ∑ν i
2
1…im∑
 −
 − n ,

=
 =

2mn ni1…im i1…im

Thus, ψm
2 is a Χ2 -type statistic, but it is a common mistake to assume that ψm

2 has the Χ2 -distribution.
Indeed, the frequencies ν i1…im

are not independent.

The corresponding generalized serial statistics for the testing of randomness ([1], [2], and [3]) are

∇ψm
2 =ψm

2 −ψm
2
−1

and
2 2 2∇2ψm =ψm

2 − 2ψm−1 +ψm−2.

2 2 2(Here ψ0 =ψ−1 = 0 .) Then ∇ψm
2 has a Χ2 -distribution with 2m-1 degrees of freedom, and ∇2ψm has a

Χ2 -distribution with 2m-2 degrees of freedom. Thus, for small values of m, m ≤ log2 n() − 2 , one can
find the corresponding 2m P-values from the standard formulas.

P − value1 = igamc(2m−2,∇Ψm
2 /2)

P − value2 = igamc(2m−3,∇2Ψm
2 /2)

The result for ∇ψ2
2 and the usual counting of frequencies is incorrectly given in [1, p. 181, formula

(5.2)]: +1 should be replaced by -1.

The convergence of ∇ψm
2 to the Χ2 -distribution was proven by Good (1953).

3-18

€

€

€

€

€

€

€ € €

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

References for Test

[1]	 I. J. Good (1953), “The serial test for sampling numbers and other tests for randomness,” Proc.
Cambridge Philos. Soc.. 47, pp. 276-284.

[2]	 M. Kimberley (1987), “Comparison of two statistical tests for keystream sequences,” Electronics
Letters. 23, pp. 365-366.

[3]	 D. E. Knuth (1998), The Art of Computer Programming. Vol. 2, 3rd ed. Reading: Addison-
Wesley, Inc., pp. 61-80.

[4]	 A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone (1997), Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, p. 181.

3.12 Approximate Entropy Test
Approximate entropy characteristics [1] are based on repeating patterns in the string. If
Yi m εi,…,εi+m−1), set () = (

m	 1
= # j :1 ≤ j < n − m,Yj m mCi {	 () = Yi () } = π ln +1− m

and
n +1−m1 mΦ(m) = ∑logCi ,

n + 1− m i+1

Ci
m is the relative frequency of occurrences of the pattern Yi(m) in the string, and -Φ(m) is the entropy of

the empirical distribution arising on the set of all 2m possible patterns of length m,

2m

Φ(m) = ∑π l logπ l ,
l=1

where πl is the relative frequency of pattern l = (i1, …,im) in the string.

The approximate entropy ApEn of order m, m ≥ 1 is defined as

ApEn m() = Φ(m) −Φ(m +1)

with ApEn(0) = -Φ(1). “ApEn(m) measures the logarithmic frequency with which blocks of length m that
are close together remain close together for blocks augmented by one position. Thus, small values of
ApEn(m) imply strong regularity, or persistence, in a sequence. Alternatively, large values of ApEn(m)
imply substantial fluctuation, or irregularity.” [1, p. 2083].

Pincus and Kalman [2] defined sequence to be m-irregular (m-random) if its approximate entropy
ApEn(m) takes the largest possible value. They evaluated quantities ApEn(m), m = 0, 1, 2 for binary and
decimal expansions of e, π, 2 and 3 with the surprising conclusion that the expansion of 3
demonstrated more irregularity than that of π.

3-19

€
€ €

€

€

€

€
€ €

€

€

€

€ €

€

€

€

€

€ €

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

For a fixed block length m, one should expect that in long random (irregular) strings, ApEn(m) ≈ log2.
The limiting distribution of n[log2 − ApEn(m)] coincides with that of a Χ2 -random variable with 2m

degrees of freedom. This fact provides the basis for a statistical test, as was shown by Rukhin [3].

Thus, with Χ2(obs) = n[log2 − ApEn(m)] , the reported P-value is

igamc(2m−1,Χ2(obs) /2) .

Actually, this limiting distribution of approximate entropy is more exact for its modified definition as

~ (m)

Φ =	 ∑ν i1…im
logν i1…im

,
i1…im

where ν i1…im
denotes the relative frequency of the template (i1, …,im) in the augmented (or circular)

version of the original string, i.e., in the string (ε1,…,εn ,ε1,…,εm−1) . Let ω i1…im
= nν i1…im

be the

frequency of the pattern i1, …,im. Under our definition, ω i1…im
= ∑k

ω i1 …imk
, so that for any

m,∑ = n .
i1 …im

Define the modified approximate entropy as
~ (m) ~ (m +1)

Apen
~
(m) = Φ −Φ .

By Jensen's inequality, log s ≥ Apen
~
(m) for any m, whereas it is possible that log s < Apen(m) .

Therefore, the largest possible value of the modified entropy is merely log s, which is attained when n =
sm, and the distribution of all m-patterns is uniform. When calculating the approximate entropy for several
values of m, it is very convenient to have the sum of all frequencies of m-templates be equal to n.

When n is large, ApEn(m) and its modified version cannot differ much. Indeed, one has with
ω′i1…im

= (n − m + 1)ν′ i1…im

∑ω′i1…im
= n − m + 1,

i1…im

and ω i1…im
−ω′i1 …im

≤ m −1. It follows that
m −1

ν i1…im
−ν′ i1…im

≤
n − m + 1

,

~ (m)

which suggests that for a fixed m,Φ(m) and Φ must be close for large n. Therefore, Pincus' approximate
entropy and its modified version are also close, and their asymptotic distributions must coincide.

References for Test

[1]	 S. Pincus and B. H. Singer, “Randomness and degrees of irregularity,” Proc. Natl. Acad. Sci.
USA. Vol. 93, March 1996, pp. 2083-2088.

3-20

€

€

€

€

€

€

€

€

€

€

€
€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

[2] S. Pincus and R. E. Kalman, “Not all (possibly) “random” sequences are created equal,” Proc.
Natl. Acad. Sci. USA. Vol. 94, April 1997, pp. 3513-3518.

[3] A. Rukhin (2000), “Approximate entropy for testing randomness,” Journal of Applied
Probability. Vol. 37, 2000.

3.13 Cumulative Sums (Cusum) Test

This test is based on the maximum absolute value of the partial sums of the sequence represented in the
±1 fashion. Large values of this statistic indicate that there are either too many ones or too many zeros at
the early stages of the sequence. Small values indicate that ones and zeros are intermixed too evenly. A
dual test can be derived from the reversed time random walk with Sk ′ = Xn + …+ Xn−k +1. With this
definition, the interpretation of the test results is modified by replacing “the early stages” by the late

stages.”

The test is based on the limiting distribution of the maximum of the absolute values of the partial sums,
max1≤k≤n ,Sk

Sk (−1)k exp − du
 (u − 2kz)21

 ∞

∫P
max1≤k≤n

4

lim ≤ z

=

2
2nnn →∞

k=−∞

(2 j + 1)2π 2

8z2

(−1) j

2 j +1
exp −

∞

∑

= H(z),z > 0 . (10) =

π
 j= 0

With the test statistic z = max1≤k≤n (obs) / n , the randomness hypothesis is rejected for large values

of z, and the corresponding P-value is 1− H(max1≤k≤n

Sk
(obs) / n) =1− G(max1≤k≤n (obs) / n)Sk Sk

where the function G(z) is defined by the formula (11).

The series H(z) in the last line of (10) converges quickly and should be used for numerical calculation
only for small values of z. The function G(z) (which is equal to H(z) for all z) is preferable for the
calculation for moderate and large values of max1≤k≤n (obs) / n ,Sk

(u − 2kz)21
 ∞

∑

(−1)k exp −

= ∑
∞

(−1)k [Φ((2k +1)z) −Φ ((2k −1)z)]
k=−∞

= Φ(z) −Φ(−z) + 2∑
∞

(−1)k [Φ((2k + 1)z) −Φ ((2k −1)z)]
k=1

= Φ(z) −Φ(−z) − 2∑
∞

[2Φ((4k −1)z) −Φ ((4k + 1)z) −Φ ((4k − 3)z)]
k=1

≈ Φ(z) −Φ(−z) − 2 2Φ(3z) −Φ(5z) −Φ(z)][

exp − ,z →∞

z
G(z) = du∫
 2
2π
 −z

k=−∞

z24
≈1− (11)

2π z 2

where Φ(x) is the standard normal distribution.

3-21

€

€

€

€

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

More directly, using Theorem 2.6, p. 17 of Revesz [2], one obtains

P(max ≥ z)Sk1≤k≤n

= 1− ∑
∞

P((4k −1)z < Sn < (4k + 1)z)
k=−∞

+ ∑
∞

P((4k +1)z < Sn < (4k + 3)z) .
k=−∞

This formula is used for the evaluation of the P-values with

z = max Sk (obs) / n .
1≤k≤n

The randomness hypothesis is rejected for large values of z.

References for Test

[1]	 Frank Spitzer, Principles of Random Walk. Princeton: Van Nostrand, 1964 (especially p. 269).

[2]	 Pal Revesz, Random Walk in Random And Non-Random Environments. Singapore: World
Scientific, 1990.

3.14 Random Excursions Test
This test is based on considering successive sums of the binary bits (plus or minus simple ones) as a one-
dimensional random walk. The test detects deviations from the distribution of the number of visits of the
random walk to a certain “state,” i.e., any integer value.

Consider the random walk Sk = X1 + … + Xk as a sequence of excursions to and from zero

(i,…,l) : Si−1 = Sl +1 = 0,Sk ≠ 0 for1 ≤ k ≤ l .

Let J denote the total number of such excursions in the string. The limiting distribution for this (random)
number J (i.e., the number of zeros among the sums Sk, k = 1, 2, …, n when S0 = 0) is known to be

 J 2 e−u
2 / 2 lim P < z = ∫

z
du,z > 0.	 (12)

0n →∞ πn

The test rejects the randomness hypothesis immediately if J is too small, i.e., if the following P-value is
small:

2 J e−u
2 / 2du = P

1 J 2(obs)P J < J(obs)) ≈(∫ 2
, .

π o 2n

If J < max(0.005 n,500) , the randomness hypothesis is rejected. Otherwise the number of visits of the
random walk S to a certain state is evaluated.

3-22

€

€

€

€

€

€ €

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Let ξ(x) be the number of visits to x, x ≠ 0, during one 0-excursion. Its distribution is derived in Revesz
[2] and Baron and Rukhin [1]:

P(ξ(x) = 0) = 1−
1

(13)
2 x

and for k = 1, 2, …

1 1
k−1

P(ξ(x) = k) = 1− (14)
4x 2

 2 x

This means that ξ(x) = 0 with probability 1 - 1/2|x|; otherwise (with probability 1/2|x|), ξ(x) coincides with
a geometric random variable with the parameter 1/2|x|.

It is easy to see that
Eξ(x) = 1,

and
Var(ξ(x)) = 4 x − 2.

A useful formula is:
 a1 1P(ξ(x) ≥ a + 1) = 2xP(ξ(x) = a +1) = 1− ,a = 0,1,2,… (15)

2 x 2 x

The above results are used for randomness testing in the following way. For a “representative” collection
of x-values (say, 1 ≤ x ≤ 7 or -7 ≤ x ≤ -1: -4 ≤ x ≤ 4 is used in the test suite code), evaluate the observed
frequencies νk(x) of the number k of visits to the state x during J excursions which occur in the string. So

ν k (x) = ∑
J

j=1
ν k

j (x) with ν k
j (x) = 1 if the number of visits to x during the jth excursion (j = 1, …, J) is

exactly equal to k, and ν k
j (x) = 0 otherwise. Pool the values of ξ(x) into classes, say, k = 0, 1, …, 4 with

an additional class k ≥ 5. The theoretical probabilities for these classes are:

π 0 = P(ξ(x) = 0) = 1−
1

;
2 x
k−1

π k = P(ξ(x) = k) = 1−
1 1

 ,k = 1,…,4 ;
4x 2

 2 x

1 1
4

π 5 = P(ξ(x) ≥ 5) = 1− .
2 x 2 x

These probabilities have the form

3-23

€

€

€

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

π0(x) π1(x) π2(x) π3(x) π4(x) π5(x)
x = 1 0.5000 0.2500 0.1250 0.0625 0.0312 0.0312
x = 2 0.7500 0.0625 0.0469 0.0352 0.0264 0.0791
x = 3 0.8333 0.0278 0.0231 0.0193 0.0161 0.0804
x = 4 0.8750 0.0156 0.0137 0.0120 0.0105 0.0733
x = 5 0.9000 0.0100 0.0090 0.0081 0.0073 0.0656
x = 6 0.9167 0.0069 0.0064 0.0058 0.0053 0.0588
x = 7 0.9286 0.0051 0.0047 0.0044 0.0041 0.0531

Compare these frequencies to the theoretical ones using the Χ2-test,

5 (ν k (x) − Jπ k (x))
2

Χ2(x) = ∑ ,
k= 0 Jπ k (x)

which, for any x under the randomness hypothesis, must have approximately a Χ2-distribution with 5
degrees of freedom. This is a valid test when J minπ k (x) ≥ 5, i.e., if J ≥ 500. (The test suite code uses
π4(x=4) for min πk(x).) If this condition does not hold, values of ξ(x) must be pooled into larger classes.

The corresponding battery of P-values is reported. These values are obtained from the formula

Χ2(obs)(x)

1− P
5
2
,

.

2

References for Test

[1] M. Baron and A. L. Rukhin, “Distribution of the Number of Visits For a Random Walk,”
Communications in Statistics: Stochastic Models. Vol. 15, 1999, pp. 593-597.

[2] Pal Revesz, Random Walk in Random and Non-random Environments. Singapore: World Scientific,
1990.

[3] Frank Spitzer, Principles of Random Walk. Princeton: Van Nostrand, 1964, (especially p. 269).

3.15 Random Excursions Variant Test
An alternative to the random excursions test can be derived as follows. Using the notation of the previous
subsection, let ξJ(x) be the total number of visits to x during J excursions. (The test suite code assumes J
≥ 500.) Since Sk renews at every zero, ξJ(x) is a sum of independent identically distributed variables with
the same distribution as ξ(x) = ξ1(x). Therefore, the limiting distribution of ξJ(x),

lim P ξJ (x) − J

< z = Φ(z) ,
J →∞ J(4 x − 2)

is normal. The randomness hypothesis will be rejected when the P-value

3-24

€

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

 erfc
ξJ (x)(obs) − J
 2J(4 x − 2)

is small.

References for Test

[1]	 M. Baron and A. L. Rukhin, “Distribution of the Number of Visits For a Random Walk,”
Communications in Statistics: Stochastic Models. Vol.15, 1999.

[2]	 Pal Revesz, Random Walk in Random and Non-random Environments. Singapore: World
Scientific, 1990.

[3]	 Frank Spitzer, Principles of Random Walk. Princeton: Van Nostrand, 1964 (especially p. 269).

3-25

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

4. Testing Strategy and Result Interpretation

Three topic areas will be addressed in this section: (1) strategies for the statistical analysis of a random
number generator, (2) the interpretation of empirical results using the NIST Statistical Test Suite, and (3)
general recommendations and guidelines.

4.1 Strategies for the Statistical Analysis of an RNG
In practice, there are many distinct strategies employed in the statistical analysis of a random number
generator. NIST has adopted the strategy outlined in Figure 1. Figure 1 provides an architectural
illustration of the five stages involved in the statistical testing of a random number generator.

Stage 1: Selection of a Generator

Select a hardware or software based generator for evaluation. The generator should produce a binary
sequence of 0’s and 1’s of a given length n. Examples of pseudorandom generators (PRNG) that may be
selected include a DES-based PRNG from ANSI X9.17 (Appendix C), and two further methods that are
specified in FIPS 186 (Appendix 3) and are based on the Secure Hash Algorithm (SHA-1) and the Data
Encryption Standard (DES).

Stage 2: Binary Sequence Generation

For a fixed sequence of length n and the pre-selected generator, construct a set of m binary sequences and
save the sequences to a file7.

Stage 3: Execute the Statistical Test Suite

Invoke the NIST Statistical Test Suite using the file produced in Stage 2 and the desired sequence length.
Select the statistical tests and relevant input parameters (e.g., block length) to be applied.

Stage 4: Examine the P-values

An output file will be generated by the test suite with relevant intermediate values, such as test statistics,
and P-values for each statistical test. Based on these P-values, a conclusion regarding the quality of the
sequences can be made.

Stage 5: Assessment: Pass/Fail Assignment

For each statistical test, a set of P-values (corresponding to the set of sequences) is produced. For a fixed
significance level, a certain percentage of P-values are expected to indicate failure. For example, if the
significance level is chosen to be 0.01 (i.e., α = 0.01), then about 1 % of the sequences are expected to
fail. A sequence passes a statistical test whenever the P-value ≥ α and fails otherwise. For each
statistical test, the proportion of sequences that pass is computed and analyzed accordingly. More in-
depth analysis should be performed using additional statistical procedures (see Section 4.2.2).

7 Sample data may also be obtained from George Marsaglia's Random Number CDROM, at
http://stat.fsu.edu/pub/diehard/cdrom/.

4-1

http://stat.fsu.edu/pub/diehard/cdrom

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

4.2 The Interpretation of Empirical Results
Three scenarios typify events that may occur due to empirical testing. Case 1: The analysis of the P-
values does not indicate a deviation from randomness. Case 2: The analysis clearly indicates a deviation
from randomness. Case 3: The analysis is inconclusive.

The interpretation of empirical results can be conducted in any number of ways. Two approaches NIST
has adopted include (1) the examination of the proportion of sequences that pass a statistical test and (2)
the distribution of P-values to check for uniformity. The file finalAnalysisReport.txt contains the results
of these two forms of analysis.

In the event that either of these approaches fails (i.e., the corresponding null hypothesis must be rejected),
additional numerical experiments should be conducted on different samples of the generator to determine
whether the phenomenon was a statistical anomaly or a clear evidence of non-randomness.

4.2.1 Proportion of Sequences Passing a Test

Figure 4-1: P-value Plot

Given the empirical results for a particular statistical test,
compute the proportion of sequences that pass. For
example, if 1000 binary sequences were tested (i.e., m =
1000), α = 0.01 (the significance level), and 996 binary
sequences had P-values ≥ .01, then the proportion is
996/1000 = 0.9960.

The range of acceptable proportions is determined using
p̂(1 − p̂)

the confidence interval defined as, p̂ ± 3 ,
m

where p = 1-α, and m is the sample size. If the proportion
falls outside of this interval, then there is evidence that the
data is non-random. Note that other standard deviation
values could be used. For the example above, the

.99(.01)confidence interval is .99 ± 3 = .99 ± 0.0094392 (i.e., the proportion should lie above 0.9805607. This
1000

can be illustrated using a graph as shown in Figure 4-1. The confidence interval was calculated using a
normal distribution as an approximation to the binomial distribution, which is reasonably accurate for
large sample sizes (e.g., n ≥ 1000).

4-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

4.2.2 Uniform Distribution of P-values

Figure 4-2: Histogram of P-values

The distribution of P-values is examined to ensure
uniformity. This may be visually illustrated using a
histogram (see Figure 4-2), whereby, the interval
between 0 and 1 is divided into 10 sub-intervals, and the
P-values that lie within each sub-interval are counted
and displayed.

Uniformity may also be determined via an application of
a χ2 test and the determination of a P-value
corresponding to the Goodness-of-Fit Distributional Test
on the P-values obtained for an arbitrary statistical test
(i.e., a P-value of the P-values). This is accomplished

2s10 (Fi −2 10)by computing χ = ∑ , where Fi is the
si=1 10

number of P-values in sub-interval i, and s is the sample
size. A P-value is calculated such that P-valueT =

χ 2 igamc(9 2 , 2) . If P-valueT ≥ 0.0001, then the sequences can be considered to be uniformly

distributed. Additionally, to provided statistically meaningful results at least 55 sequences must be
processed.

4.3 General Recommendations and Guidelines
In practice, many reasons can be given to explain why a data set has failed a statistical test. The following
is a list of possible explanations. The list was compiled based upon NIST statistical testing efforts.

(a) An incorrectly programmed statistical test.

Unless otherwise specified, it should be assumed that a statistical test was tailored to handle a
particular problem class. Since the NIST test code has been written to allow the selection of
input parameters, the code has been generalized in any number of ways. Unfortunately, this
doesn't necessarily translate to coding ease.

A few statistical tests have been constrained with artificial upper bounds. For example, the
random excursions tests are assumed to be no more than max{1000, n/128} cycles.
Conceivably, fixed parameters may have to be increased, depending on experimental
conditions.

(b) An underdeveloped (immature) statistical test.

There are occasions when either probability or complexity theory isn’t sufficiently developed
or understood to facilitate a rigorous analysis of a statistical test.

Over time, statistical tests are revamped in light of new results. Since many statistical tests
are based upon asymptotic approximations, careful work needs to be done to determine how
good an approximation is.

4-3

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

(c) An improper implementation of a random number generator.

It might be plausible that a hardware RNG or a software RNG has failed due to a flaw in the
design or due to a coding implementation error. In each case, careful review must be made to
rule out this possibility.

(d) Improperly written codes to harness test input data.

Another area that needs to be scrutinized is the harnessing of test data. The test data
produced by a (P)RNG must be processed before being used by a statistical test. For
example, processing might include dividing the output stream from the (P)RNG into
appropriate sized blocks, and translating the 0’s to negative ones. On occasion, it was
determined that the failures from a statistical test were due to errors in the code used to
process the data.

(e) Poor mathematical routines for computing P-values

Quality math software must be used to ensure excellent approximations whenever possible.
In particular, the incomplete gamma function is more difficult to approximate for larger
values of the constant a. Eventually, P-value formulas will result in bogus values due to
difficulties arising from numerical approximations. To reduce the likelihood of this event,
NIST has prescribed preferred input parameters.

(f) Incorrect choices for input parameters.

In practice, a statistical test will not provide reliable results for all seemingly valid input
parameters. It is important to recognize that constraints are made upon tests on a test-by-test
basis. Take the Approximate Entropy Test, for example. For a sequence length on the order
of 106, one would expect that block lengths approaching log2 n would be acceptable.
Unfortunately, this is not the case. Empirical evidence suggests that beyond m = 14, the
observed test statistic will begin to disagree with the expected value (in particular, for known
good generators, such as SHA-1). Hence, certain statistical tests may be sensitive to input
parameters.

Considerations must often be made regarding the numerical experimentation input

parameters, namely: sequence length, sample size, block size and template.

Sequence Length

The determination as to how long sequences should be taken for the purposes of statistical
testing is difficult to address. If one examines the FIPS 140-1 statistical tests, it is evident
that sequences should be about 20,000 bits long.

However, the difficulty with taking relatively short sequence lengths is problematic in the
sense that some statistical tests, such as Maurer’s Universal Statistical Test, require extremely
long sequence lengths. One of the reasons is the realization that asymptotic approximations
are used in determining the limiting distribution. Statements regarding the distribution for

4-4

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

certain test statistics are more difficult to address for short length sequences than their longer
length counterparts.

Sample Size

The issue of sample size is tied to the choice of the significance level. NIST recommends
that, for these tests, the user should fix the significance level to be at least 0.001, but no larger
than 0.018. A sample size that is disproportional to the significance level may not be suitable.
For example, if the significance level (α) is chosen to be 0.001, then it is expected that 1 out
of every 1000 sequences will be rejected. If a sample of only 100 sequences is selected, it
would be rare to observe a rejection. In this case, the conclusion may be drawn that a
generator was producing random sequences, when in all likelihood a sufficiently large
enough sample was not used. Thus, the sample should be on the order of the inverse of the
significance level (α-1). That is, for a level of 0.001, a sample should have at least 1000
sequences. Ideally, many distinct samples should be analyzed.

Block Size

Block sizes are dependent on the individual statistical test. In the case of Maurer's Universal
Statistical test, block sizes range from 1 to 16. However, for each specific block size, a
minimum sequence length should be used. If the block size were fixed at 16, a sequence of
more than a billion bits would be required. For some users, that may not be feasible.

Intuitively, it would seem that the larger the block size, the more information could be gained
from the parsing of a sequence, such as in the Approximate Entropy test. However, a block
size that is too large should not be selected either, for otherwise the empirical results may be
misleading and incorrect because the test statistic is better approximated by a distinct
probability distribution. In practice, NIST advises selecting a block size no larger than
log2 n , where n is the sequence length. However, certain exceptions hold, and thus NIST
suggests choosing a smaller block size.

Template

Certain statistical tests are suited for detecting global non-randomness. However, other
statistical tests are more apt at assessing local non-randomness, such as tests developed to
detect the presence of too many m-bit patterns in a sequence. Still, it makes sense that
templates of a block size greater than log2 n should not be chosen, since frequency counts
will most probably be in the neighborhood of zero, which does not provide any useful
information. Thus, appropriate choices must be made.

Other Considerations

In principle, there are many commonly occurring questions regarding randomness testing.
Perhaps the most frequently asked question is, "How many tests should one apply?" In
practice, no one can truly answer this question. The belief is that the tests should be
independent of each other as much as possible.

8 Note that for FIPS 140-2, the significance level has been set to 0.0001 for the power up tests.

4-5

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Another, frequently asked question concerns the need for applying a monobits test (i.e.,
Frequency test), in lieu of Maurer’s Universal Statistical test. The perception is that Maurer's
Universal Statistical test supercedes the need to apply a monobits test. This may hold true for
infinite length sequences. However, it is important to keep in mind that there will be
instances when a finite binary sequence will pass Maurer's Universal Statistical test, yet fail
the monobits test. Because of this fact, NIST recommends that the Frequency test be applied
first. If the results of this test support the null hypothesis, then the user may proceed to apply
other statistical tests.

4.4 Application of Multiple Tests
Given a concern regarding the application of multiple tests, NIST performed a study to determine the
dependence between the tests. The performance of the tests was checked by using a Kolmogorov-
Smirnov test of uniformity on the P-values obtained from the sequences. However, it required an
assumption that the sequences that were generated to test uniformity were sufficiently random. There are
many tests in the suite. Some tests should intuitively give independent answers (e.g., the frequency test
and a runs test that conditions on frequencies should assess completely different aspects of randomness).
Other tests, such as the cusum test and the runs test, result in P-values that are likely to be correlated.

To understand the dependencies between the tests in order to eliminate redundant tests, and to ensure that
the tests in the suite are able to detect a reasonable range of patterned behaviors, a factor analysis of the
resulting P-values was performed. More precisely, in order to assess independence, m sequences of
binary pseudorandom digits were generated, each of length n, and all k=161 tests in the suite were applied
to those sequences to determine their randomness. Each test produced a significance probability; denote
by pij the significance probability of test i on sequence j.

= −1 pGiven the uniformly distributed pij , the transformation z Φ ()leads to normally distributed ij ij

variables. Let zj be the vector of transformed significance probabilities corresponding to the ith sequence.
A principal components analysis was performed on the z1, … , zm. Usually, a small number of
components suffices to explain a great proportion of the variability, and the number of these components
can be used to quantify the number of “dimensions'” of nonrandomness spanned by the suite tests. The
principal component analysis of this data was performed. This analysis extracts 161 factors, equal to the
number of tests. The first factor is the one that explains the largest variability. If many tests are
correlated, their P-values will greatly depend on this factor, and the fraction of total variability explained
by this factor will be large. The second factor explains the second largest proportion of variability, subject
to the constraint that the second factor is orthogonal to the first, and so on for subsequent factors. The
corresponding fractions corresponding to the first 50 factors were plotted for the tests, based on Blum-
Blum-Shub sequences of length 1,000,000. This graph showed that there is no large redundancy among
our tests.

The correlation matrix formed from the z1, … , zm was constructed via a statistical software application
(SAS). The same conclusion was supported by the structure of these matrices. The degree of duplication
among the tests seems to be very small.

4-6

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

5. User’s Guide

This section describes the set-up and proper usage of the statistical tests developed by NIST that are
available in the NIST test code. Descriptions of the algorithms and data structures that were utilized are
included in this section.

5.1 About the Package

This toolbox was specifically designed for individuals interested in conducting statistical testing of
cryptographic (P)RNGs. Several implementations of PRNGs utilized during the development phase of
the project have also been included.

This package will address the problem of evaluating (P)RNGs for randomness. It will be useful in:

•	 identifying (P)RNGs which produce weak (or patterned) binary sequences,
•	 designing new (P)RNGs,
•	 verifying that the implementations of (P)RNGs are correct,
•	 studying (P)RNGs described in standards, and
•	 investigating the degree of randomness by currently used (P)RNGs.

The objectives during the development of the NIST statistical test suite included:

•	 Platform Independence: The source code was written in ANSI C. However, some modification
may have to be made, depending on the target platform and the compiler.

•	 Flexibility: The user may freely introduce their own math software routines.
•	 Extensibility: New statistical tests can easily be incorporated.
•	 Versatility: The test suite is useful in performing tests for PRNGs, RNGs and cipher algorithms.
•	 Portability: With minor modifications, source code may be ported to different platforms. The

NIST source code was ported to a Windows XP system running Visual Studio 2005 compiler and
a Ubuntu Linux system running gcc.

•	 Orthogonality: A diverse set of tests is provided.
•	 Efficiency: Linear time or space algorithms were utilized whenever possible.

5.2 System Requirements

This software package was originally developed on a SUN workstation under the Solaris operating
system. All of the source code was written in ANSI C. The latest revisions were done on an Apple
MacBook Pro with an Intel Core 2 Duo processor using the gcc compiler.

In practice, minor modifications may have to be introduced during the porting process in order to ensure
the correct interpretation of tests. In the event that a user wishes to compile and execute the code on a
different platform, sample data and the corresponding results for each of the statistical tests have been
provided. In this manner, the user will be able to gain confidence that the ported statistical test suite is
functioning properly. For additional details see Appendix B.

For the majority of the statistical tests, memory must be allocated dynamically in order to proceed. In the
event that workspace cannot be provided, the statistical test returns a diagnostic message.

5-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

5.3 How to Get Started

To setup a copy of the NIST test code on a workstation, follow the instructions below.

•	 Copy the sts.tar file into the root directory. Use the instruction, tar -xvf sts.tar, to
unbundle the source code.

•	 Six subdirectories and one file should have been created. The subdirectories are:
data/, experiments/, include/, obj/, src/ and templates/. The file is makefile.

•	 The data/ subdirectory is reserved for pre-existing RNG data files that are under
investigation. Currently, two formats are supported, i.e., data files consisting of
ASCII zeroes and ones, and binary data files.

• The experiments/ subdirectory will be the repository of the empirical results for the
statistical tests. Several subdirectories should be contained in it. These include
AlgorithmTesting/, BBS/, CCG/, G-SHA1/, LCG/, MODEXP/, MS/, QCG1/,
QCG2/, and XOR/. All but the first of these subdirectories is meant to store the
results for the corresponding PRNG. The AlgorithmTesting/ subdirectory is the
default subdirectory for empirical results corresponding to RNG data stored in the
data/ subdirectory.

•	 The include/ subdirectory contains the header files for the statistical tests, pseudo-
random number generators, and associated routines.

•	 The obj/ subdirectory contains the object files corresponding to the statistical tests,
pseudo random number generators and other associated routines.

•	 The src/ subdirectory contains the source codes for each of the statistical tests.

•	 The templates/ subdirectory contains a series of non-periodic templates for varying
block sizes that are utilized by the NonOverlapping Templates statistical test.

•	 User prescribed modifications may be introduced in several files. This will be
discussed subsequently in Section 5.5.2 and Appendix A.

•	 Edit the makefile. Modify the following lines:
(a) CC (your ANSI C compiler)
(b) ROOTDIR (the root directory that was prescribed earlier in the process, e.g.,

rng/)

•	 Now execute makefile. An executable file named assess should appear in the project
directory.

•	 The data may now be evaluated. Type the following: assess <sequenceLength>, e.g.,
assess 1000000.

Follow the menu prompts.

5-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

5.4 Data Input and Output of Empirical Results

5.4.1 Data Input

Data input may be supplied in one of two ways. If the user has a stand-alone program or hardware device
which implements a RNG, the user may want to construct as many files of arbitrary length as desired.
Files should contain binary sequences stored as either ASCII characters consisting of zeroes and ones, or
as binary data where each byte contains eight bits worth of 0’s and 1’s. The NIST Statistical Test Suite
can then independently examine these files.

In the event that storage space is a problem, the user may want to modify the reference implementation
and plug-in their implementation of the PRNG under evaluation. The bit streams will be stored directly
in the epsilon data structure, which contains binary sequences.

5.4.2 Output of Empirical Results

The output logs of empirical results will be stored in two files, stats and results, that correspond
respectively to the computational information e.g., test statistics, intermediate parameters, and P-values
for each statistical test applied to a data set.

If these files are not properly created, then it is most probably due to the inability to open the files for
output. See Appendix C for further details.

5.4.3 Test Data Files

Six sample files have been created and are contained in the data/ subdirectory. Four of these files
correspond to the Mathematica9 generated binary expansion of several classical numbers for over
1,000,000 bits. These files are data.e, data.pi, data.sqrt2, and data.sqrt3. The Mathematica program
used in creating these files can be found in Appendix F. A fifth file, data.sha1, was constructed utilizing
the SHA-1 hash function. The final sample file is one produced by a biased PRNG and is intended to fail
certain statistical tests.

5.5 Program Layout

The test suite package has been decomposed into a series of modules which include the: statistical tests
and (pseudo)random number generators, empirical results (hierarchical) directories, and data.

The three primary components of the NIST test suite are the statistical tests, the underlying mathematical
software, and the pseudo random number generators under investigation. Other components include the
source code library files, the data directory and the hierarchical directory (experiments/) containing the
sample data files and empirical result logs, respectively.

5.5.1 General Program

The NIST test suite contains fifteen tests which will be useful in studying and evaluating the binary
sequences produced by random and pseudo random number generators. As in previous work in this field,
statistical tests must be devised which, under some hypothesized distribution, employ a particular test
statistic, such as the number of runs of ones or the number of times a pattern appears in a bit stream. The
majority of the tests in the test suite either (1) examine the distribution of zeroes and ones in some

9 Mathematica, Stephen Wolfram’s Computer Algebra System, http://www.wolfram.com/.

5-3

http:http://www.wolfram.com

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

fashion, (2) study the harmonics of the bit stream utilizing spectral methods, or (3) attempt to detect
patterns via some generalized pattern matching technique on the basis of probability theory or information
theory.

5.5.2 Global Parameters

In practice, any number of problems can arise if the user executes this software in unchartered domains.
It is plausible that sequence lengths well beyond the testing procedure (i.e., on the order of 106) may be
chosen. If memory is available, there should not be any reason why the software should fail. However,
in many instances, user defined limits are prescribed for data structures and workspace. Under these
conditions, it may be necessary to increase certain parameters, such as the NUMOFTEMPLATES.
Several parameters that may be modified by a user are listed in Table 5-1.

Table 5-1 User Prescribed Statistical Test Parameters

Source Code Parameter Default Parameter Description/Definition
ALPHA 0.01 Significance Level
MAXNUMOFTEMPLATES 40 Non-overlapping Templates Test
NUMOFTESTS 16 Max number of tests
NUMOFGENERATORS 12 Max number of PRNGs

The parameter ALPHA denotes the significance level that determines the region of acceptance and
rejection. NIST recommends that ALPHA be in the range [0.001, 0.01].

The parameter MAXNUMOFTEMPLATES indicates the maximum number of non-periodic templates that
may be executed by the Nonoverlapping Template Matchings test. For templates of size m = 9, up to 148
possible non-periodic templates may be applied.

The parameters NUMOFTESTS and NUMOFGENERATORS correspond to the maximum number of tests
that may be defined in the test suite, and the maximum number of generators specified in the test suite,
respectively.

5.5.3 Mathematical Software

Special functions required by the test suite are the incomplete gamma function and the complementary
error function. The cumulative distribution function, also known as the standard normal function, is also
required, but it can be expressed in terms of the error function.

One of the initial concerns regarding the development of the reference implementation was the
dependencies that were required in order to gain reliable mathematical software for the special functions
required in the statistical tests. To resolve this matter, the test suite makes use of the following libraries:

The Fast Fourier Transform routine was obtained at http://www.netlib.org/fftpack/fft.c.
The normal function utilized in this code was expressed in terms of the error function.

Standard Normal (Cumulative Distribution) Function
1 z −u2 / 2Φ(z) = e du∫−∞2π

5-4

http://www.netlib.org/fftpack/fft.c

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

The complementary error function (erfc) utilized in the package is the ANSI C function contained in the
math.h header file and its corresponding mathematical library. This library should be included during
compilation.

Complementary Error Function
2 ∞ −u2erfc(z) = e du
π ∫z

The incomplete gamma function is based on an approximation formula whose origin is described in the
Handbook of Applied Mathematical Functions [1] and in the Numerical Recipes in C book [6].
Depending on the values of its parameters a and x, the incomplete gamma function may be approximated
using either a continued fraction development or a series development.

Gamma Function
∞ z −1 − tΓ()z = ∫0 t e dt

Incomplete Gamma Function

a x) 1 xγ (, − t a −1P a x) ≡ ≡ ∫ e t dt (, 0Γ a Γ a() ()

where P(a,0) = 0 and P(a,∞) = 1.

Incomplete Gamma Function

Γ(a x ,) 1 ∞ − t a −1Q a x) ≡ 1− P a x ,) ≡ ≡ x e t(, (∫ dt
Γ a Γ a() ()

where Q(a,0) = 1 and Q(a,∞) = 0.

NIST has chosen to use the Cephes C language special functions math library in the test software.
Cerphes may be found at http://www.moshier.net/ - Cephes or on the GAMS server at
http://gams.nist.gov/serve.cgi/Package/CEPHES/. The specific functions that are utilized are igamc (for
the complementary incomplete gamma function) and lgam (for the logarithmic gamma function).

5.6 Running the Test Code

A sample NIST Statistical Test Suite monolog is described below. Note: In this section bold items
indicate input.

In order to invoke the NIST statistical test suite, type assess, followed by the desired bit stream length, n.
For example, assess 100000. A series of menu prompts will be displayed in order to select the data to be
analyzed and the statistical tests to be applied. The first screen appears as follows:

5-5

http://gams.nist.gov/serve.cgi/Package/CEPHES
http:http://www.moshier.net

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

GENERATOR OPTIONS

[00] Input File [01] Linear Congruential
[02] Quadratic Congruential I [03] Quadratic Congruential II
[04] Cubic Congruential [05] XOR
[06] Modular Exponentiation [07] Blum-Blum-Shub
[08] Micali-Schnorr [09] G Using SHA-1

OPTION ----> 0
User Prescribed Input File: data/data.pi

Once the user has prescribed a particular data set or PRNG, the statistical tests to be applied must be
selected. The following screen is displayed:

STATISTICAL TESTS

[01] Frequency [02] Block Frequency
[03] Cumulative Sums [04] Runs
[05] Longest Runs of Ones [06] Rank
[07] Spectral - Discrete Fourier Transform [08] Nonperiodic Template Matchings
[09] Overlapping Template Matchings [10] Universal Statistical
[11] Approximate Entropy [12] Random Excursions
[13] Random Excursions Variant [14] Serial
[15] Linear Complexity

INSTRUCTIONS
Enter 0 if you DO NOT want to apply all of the
statistical tests to each sequence and 1 if you DO.
Enter Choice: 0

In this case, 0 has been selected to indicate interest in applying a subset of the available statistical tests.
The following screen is then displayed.

INSTRUCTIONS
Enter a 0 or 1 to indicate whether or not the numbered
statistical test should be applied to each sequence. For
example, 111111111111111 applies every test to each
sequence.

123456789111111
012345

000000001000000

5-6

http:data/data.pi

Select input mode: 0

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

As shown above, the only test applied was number 9, the Nonoverlapping templates test. A query for the
desired sample size is then made.

How many bit streams should be generated? 10

Ten sequences will be parsed using the data.pi file. Since a file was selected as the data specification
mode, a subsequent query is made regarding the data representation. The user must specify whether the
file consists of bits stored in ASCII format or hexadecimal strings stored in binary format.

Input File Format:
[0] ASCII – A sequence of ASCII 0’s and 1’s
[1] Binary – Each byte in data file contains 8 bits of data

Select input mode: 0

Since the data consists of a long sequence of zeroes and ones, 0 was chosen. Given all necessary input
parameters the test suite proceeds to analyze the sequences.

Statistical Testing In Progress.........

Once the testing process is complete, the empirical results can be found in the experiments/ subdirectory.

Statistical Testing Complete!!!!!!!!!!!!

Upon completion, an in-depth analysis is performed to simplify the analysis of empirical results. Two
types of analyses are conducted. One type examines the proportion of sequences that pass a statistical
test. The other type examines the distribution of the P-values for each statistical test. More details are
supplied in the following section.

5.7 Interpretation of Results

An analytical routine has been included to facilitate interpretation of the results. A file
finalAnalysisReport is generated when statistical testing is complete. The report contains a summary of
empirical results as described in Section 4.2. The results are represented via a table with p rows and q
columns. The number of rows, p, corresponds to the number of statistical tests applied. The number of
columns, q = 13, are distributed as follows: columns 1-10 correspond to the frequency of P-values10,
column 11 is the P-value that arises via the application of a chi-square test11, column 12 is the proportion
of binary sequences that passed, and the 13th column is the corresponding statistical test. An example is
shown in Figure 5-1.

10 The unit interval has been divided into ten discrete bins.
11 Used to assess the uniformity of P-values in the ith statistical test. Value is undefined if less than 10 sequences are processed.

As noted Section 4.2 at least 55 sequences must be processed to derive statistically meaningful results for the uniformity of
p-values.

5-7

--

--

--

--

- -- - - - - - - - - - - -

- -- - - - - - - - - - - -

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

6 12 9 12 8 7 8 12 15 11 0.616305 0.9900 Frequency

11 11 12 6 10 9 8 9 17 7 0.474986 0.9900 Cusum

 6 10 8 14 16 10 10 6 5 15 0.129620 0.9900 Cusum

 7 9 9 11 11 11 8 12 12 10 0.978072 0.9900 Serial

 13 6 13 15 9 7 3 11 13 10 0.171867 0.9600 Serial

The minimum pass rate for each statistical test with the exception of the random

excursion (variant) test is approximately = 0.960150 for a sample

size = 100 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

Figure 5-1 Depiction of the Final Analysis Report

5-8

 —

A.1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix A Source Code

Hierarchical Directory Structure

sts/
assess The NIST Statistical Test Suite executable file is called assess. This file will be

generated upon execution of the included makefile.

makefile	 The NIST Statistical Test Suite makefile. This file is invoked in order to build
the entire test suite and produce the executable file assess.

data/	 This subdirectory contains sample data files to be analyzed. These include the
3 .binary expansions to well known constants such as e, π, 2 , and

experiments/ This subdirectory contains the empirical result subdirectories for each RNG.

AlgorithmTesting/ BBS/

CCG/ G-SHA-1/

LCG/ MODEXP/

MS/ QCG1/

QCG2/ XOR/

For each subdirectory there is a set of nested directories, that is,

ApproximateEntropy/ BlockFrequency/

CumulativeSums/ FFT/

Frequency/ LinearComplexity/

LongestRun/ NonOverlappingTemplates/

OverlappingTemplates/ RandomExcursions/

RandomExcursionsVariant/ Rank/

Runs/ Serial/

Universal/

For each nested directory there are two files created upon execution of an

individual statistical test. The results file contains a P-value list for each binary

sequence, and the stats file contains a list of statistical information for each

binary sequence.

include/	 This subdirectory contains all of the header files that prescribe any global
variables, constants, and data structures utilized in the reference implementation.
In addition, the subdirectory contains all function declarations and prototypes.

cephes.h config.h
decls.h defs.h
externs.h generators.h
genutils.h matrix.h
stat_fncs.h utilities.h

obj/	 This subdirectory contains the object files corresponding to the source code files.
These files will be generated upon execution of the included makefile.

A-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

src/	 This subdirectory contains the source codes for the statistical tests.

approximateEntropy.c : Approximate Entropy Test
assess.c : The driver program for this package
blockFrequency.c : Block Frequency Test
cephes.c : Defines the incomplete gamma function
cusum.c : Cumulative Sums Test
dfft.c : The discrete fourier transform routine
discreteFourierTransform.c

: Spectral Test
frequency.c : Frequency Test
generators.c : Source code for the built-in generators
genutils.c : Support routines for the generators
linearComplexity.c : Linear Complexity Test
longestRunOfOnes.c : Longest Run Of Ones Test
matrix.c : Source code for the determination of rank

for binary matrices
nonOverlappingTemplateMatchings.c

: Nonoverlapping Template Matchings Test
OverlappingTemplateMatchings.c

: Overlapping Template Matchings Test
randomExcursions.c : Random Excursions Test
randomExcursionsVariant.c

: Random Excursions Variant Test
rank.c : Rank Test
runs.c : Runs Test
serial.c : Serial Test
universal.c : Universal Test
utilities.c : Utility functions…

templates/	 This subdirectory contains the templates (or patterns) that are evaluated in the
NonOverlapping Template Matching Test. The corresponding file is opened for
the prescribed template block length m. Currently, the only options for which
nonperiodic templates have been stored are those that lie in [2,21]. In the event
that m > 21, the user must pre-compute the non-periodic templates.

template2 template3 template4 template5 template6
template7 template8 template9 template10 template11
template12 template13 template14 template15 template16
template17 template18 template19 template20 template21

A-2

A.2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Configuration Information

The following parameters are available in the file defs.h.

1. #define ALPHA 0.01
2. #define MAXNUMOFTEMPLATES 148
3. #define NUMOFTESTS 15
4. #define NUMOFGENERATORS 10
5. #define MAXFILESPERMITTEDFORPARTITION 148

Lines 1-5 correspond to test suite parameters that have been preset. Under various conditions, the user
may decide to modify them.

Line 1 refers to the significance level. It is recommended that the user select the level in the range
[0.001,0.01].

Line 2 refers to the maximum number of templates that may be used in the Nonoverlapping Template
Matching test. The value 148 corresponds to the number of templates of length 9.

Line 3 refers to the maximum number of tests that is supported in the test suite. If the user adds
additional tests, this parameter should be incremented.

Line 4 refers to the maximum number of generators that is supported in the package. If the user adds
additional generators, this parameter should be incremented.

Line 5 refers to the maximum number of files that may be decomposed by the partitionResultFile
routine. This routine is applied only for specific tests where more than one P-value is produced per
sequence. This routine decomposes the corresponding results file into separate files, data001, data002,
data003, …

A-3

http:0.001,0.01

 —

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix B Empirical Results for Sample Data

The user is urged to validate that the statistical test suite is operating properly. For this reason, five
sample files have been provided. These five files are: (1) data.pi, (2) data.e, (3) data.sha1, (4)
data.sqrt2, and (5) data.sqrt3. For each data file, all of the statistical tests were applied, and the results
recorded in the following tables. The Block Frequency, Non-overlapping Template Matching,
Overlapping Template Matching, Approximate Entropy, Serial, and Linear Complexity tests require user
prescribed input parameters. The exact values used in these examples have been included in parenthesis
beside the name of the statistical test. In the case of the random excursions and random excursions
variant tests, only one of the possible 8 and 18 P-values, respectively, has been reported. Each sample is
1,000,000 bits in length. Additionally, the p-values reported in the tables can be found in the results.txt
files for each of the individual test – not in the finalAnalysisReport.txt file.

Example #1: The binary expansion of π
Statistical Test P-value

Frequency 0.578211
Block Frequency (m = 128) 0.380615
Cusum-Forward 0.628308
Cusum-Reverse 0.663369
Runs 0.419268
Long Runs of Ones 0.024390
Rank 0.083553
Spectral DFT 0.010186
Non-overlapping Templates (m = 9, B = 000000001) 0.165757
Overlapping Templates (m = 9) 0.296897
Universal 0.669012
Approximate Entropy (m = 10) 0.361595
Random Excursions (x = +1) 0.844143
Random Excursions Variant (x = -1) 0.760966
Linear Complexity (M = 500) 0.255475
Serial (m = 16, 2

m∇Ψ) 0.143005

B-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Example #2: The binary expansion of e
Statistical Test P-value

Frequency 0.953749
Block Frequency (m = 128) 0.211072
Cusum-Forward 0.669887
Cusum-Reverse 0.724266
Runs 0.561917
Long Runs of Ones 0.718945
Rank 0.306156
Spectral DFT 0.847187
NonOverlapping Templates (m = 9, B = 000000001) 0.078790
Overlapping Templates (m = 9) 0.110434
Universal 0.282568
Approximate Entropy (m = 10) 0.700073
Random Excursions (x = +1) 0.786868
Random Excursions Variant (x = -1) 0.826009
Linear Complexity (M = 500) 0.826335
Serial (m = 16, 2

m∇Ψ) 0.766182

Example #3: A G-SHA-1 binary sequence
Statistical Test P-value

Frequency 0.604458
Block Frequency (m = 128) 0.091517
Cusum-Forward 0.451231
Cusum-Reverse 0.550134
Runs 0.309757
Long Runs of Ones 0.657812
Rank 0.577829
Spectral DFT 0.163062
NonOverlapping Templates (m = 9, B = 000000001) 0.496601
Overlapping Templates (m = 9) 0.339426
Universal 0.411079
Approximate Entropy (m = 10) 0.982885
Random Excursions (x = +1) 0.000000
Random Excursions Variant (x = -1) 0.000000
Linear Complexity (M = 500) 0.309412
Serial (m = 16, 2

m∇Ψ) 0.760793

B-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Example #4: The binary expansion of 2
Statistical Test P-value

Frequency 0.811881
Block Frequency (m = 128) 0.833222
Cusum-Forward 0.879009
Cusum-Reverse 0.957206
Runs 0.313427
Long Runs of Ones 0.012117
Rank 0.823810
Spectral DFT 0.581909
NonOverlapping Templates (m = 9, B = 000000001) 0.569461
Overlapping Templates (m = 9) 0.791982
Universal 0.130805
Approximate Entropy (m = 10) 0.884740
Random Excursions (x = +1) 0.216235
Random Excursions Variant (x = -1) 0.566118
Linear Complexity (M = 500) 0.317127
Serial (m = 16, 2

m∇Ψ) 0.861925

3Example #5: The binary expansion of
Statistical Test P-value

Frequency 0.610051
Block Frequency (m = 128) 0.473961
Cusum-Forward 0.917121
Cusum-Reverse 0.689519
Runs 0.261123
Long Runs of Ones 0.446726
Rank 0.314498
Spectral DFT 0.776046
NonOverlapping Templates (m = 9, B = 000000001) 0.532235
Overlapping Templates (m = 9) 0.082716
Universal 0.165981
Approximate Entropy (m = 10) 0.180481
Random Excursions (x = +1) 0.783283
Random Excursions Variant (x = -1) 0.155066
Linear Complexity (M = 500) 0.346469
Serial (m = 16, 2

m∇Ψ) 0.157500

B-3

 —

C.1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix C Extending the Test Suite

Incorporating Additional Statistical Tests

In order to add another statistical test to the test suite, the user should make the following modifications:

1.	 [In the file include/defs.h]

Insert any test input parameters into the _testParameters structure. Increment the value of
NUMOFTESTS by the number of tests to be added. Add a define for the new test, for example:

#define TEST_MYNEWTEST 16

2.	 [In the file include/decls.h]

Insert the new test name, e.g., “MyNewTest”, into the testNames array.

3.	 [In the file include/stat_fncs.h]

Insert the statistical test function prototype declaration.

4.	 [In the file src/myNewTest.c]

Define the statistical test function. Note: The programmer should embed fprintf statements
using stats[TEST_MYNEWTEST], and results[TEST_MYNEWTEST] as the corresponding output
channel for writing intermediate test statistic parameters and P-values, respectively.

5.	 [In the file src/utilities.c]

(a) In the function, chooseTests, modify the printf’s to properly display the new test name. For
example, change

printf(" [15] Linear Complexity\n\n");

to

printf(" [15] Linear Complexity [16] MyNewTest\n\n");

and modify the following lines of code (as modified by the actual number of total tests):

printf(" 1234567891111111\n");

printf(" 	 0123456\n");

Note: For each PRNG defined in the experiments/ directory, a sub-directory myNewTest must
be created.

(c) If an input test parameter is required, in the function, fixParameters, insert the following lines
of code (under the assumption that myNewTestParameter is an integer). For example,
insert

if (testVector[TEST_MYNEWTEST] == 1) {

counter++;

C-1

C.2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

if (counter == testid) {

printf(" Enter MyNewTest Parameter Value: ");

scanf("%d", &tp.myNewTestParameter);

printf(“\n”);

continue;

}

}

(d) Embed the test function call into the nist_test_suite function. For example:

if ((testVector[0] == 1) || (testVector[TEST_MYNEWTEST] == 1))

myNewTest(tp.myNewTestInputParameters,tp.n);

Incorporating Additional PRNGs

In order to add a PRNG to the test suite, the user should make the following modifications:

1.	 [In the file include/defs.h]

Increment the variable NUMOFGENERATORS by one.

2.	 [In the file include/decls.h]

Insert the new PRNG name into the generatorDir array, For example,

char generatorDir[20][20] = {"AlgorithmTesting",

…,"G-SHA1", "MYNEWPRNG"};

3.	 [In the file include/generators.h]

Insert the generator function prototype declaration. For example,
void myNewPRNG();

4.	 [In the file generators/generators.c]

Define the generator function. The general scheme for each PRNG defined in the test
suite is as follows:

Allocate space for epsilon, the n-bit BitField array.

for i = 1 to numOfBitStreams {

Construct an n-bit sequence using myNewGenerator and store

in epsilon.

Invoke the nist_test_suite.

}

Deallocate the space given to epsilon.

Note: A sub-directory called myNewPRNG/ must be created in the experiments/ directory.
Under this new directory, a set of sub-directories must be created for each of the test suite
statistical tests. The script createScript has been included to facilitate this operation.

C-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

5. [In the file src/utilities.c]

(a) In the function, displayGeneratorOptions, inset the following line of code:

printf(" [10] MyNewPRNG\n\n");

(b) In the function, generatorOptions, insert the following lines of code:

case 10:

*streamFile = "myNewPRNG";

break;

(c) In the function, invokeTestSuite, insert the following lines of code:

case 10:

myNewPRNG();

break;

C-3

 —

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix D Description of Reference Pseudorandom Number Generators

The NIST Statistical Test Suite supplies the user with nine pseudo-random number generators. A brief
description of each pseudo-random number generator follows. The user supplied sequence length
determines the number of iterations for each generator.

D.1 Linear Congruential Generator (LCG)

The input parameter for the Fishman and Moore12 LCG13 is fixed in code but may be altered by the user.

Input Parameter:

z0 = 23482349

Description:

Given a seed z0, subsequent numbers are computed based on zi+1 = a*zi mod (231-1), where a is a function

of the current state. These numbers are then converted to uniform values in [0,1]. At each step, output ‘0’
if the number is ≤ 0.5, otherwise output ‘1’.

D.2 Quadratic Congruential Generator I (QCG-I)

The input parameters to the QCG-I are fixed in code, but may modified by the user.

Input Parameters:

p = 987b6a6bf2c56a97291c445409920032499f9ee7ad128301b5d0254aa1a9633fdbd378
d40149f1e23a13849f3d45992f5c4c6b7104099bc301f6005f9d8115e1

x0 = 3844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62e
a9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5

Description:

Using a 512-bit prime p, and a random 512-bit seed x0, construct subsequent elements (each 512-bit
numbers) in the sequence via the rule:

xi+1 = xi
2 mod p, for i ≥ 0.

D.3 Quadratic Congruential Generator II (QCG-II)

The input parameter to the QCG-II is fixed in code, but may be modified by the user.

12 Fishman, G. S. and L. R. Moore (1986). An exhaustive analysis of multiplicative congruential random number generators with
modulus 2**31-1, SIAM Journal on Scientific and Statistical Computation, 7, 24-45.

13 Additional information may be found in Chapter 16 (Pseudo-Random Sequence Generators & Stream Ciphers), Section 16.1
(Linear Congruential Generators) of Bruce Schneier’s book, Applied Cryptography: Protocols, Algorithms and Source
Code in C, 2nd edition, John Wiley & Sons, 1996.

D-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Input Parameter:

x0 = 7844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62e
a9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5

Description:

Using a 512-bit modulus, and a random 512-bit seed x0, construct subsequent elements (each 512-bit
numbers) in the sequence via the rule:

xi+1 = 2xi
2 + 3xi + 1 mod 2512, for i ≥ 0.

D.4 Cubic Congruential Generator II (CCG)

The input parameter to the CCG is fixed in code, but may be modified by the user.

Input Parameter:

x0 =7844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62ea

9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5

Description:

Given a 512 bit seed x0, construct subsequent 512-bit strings via the rule:

xi+1 = xi
3 mod 2512, for i ≥ 0.

D.5 Exclusive OR Generator (XORG)

The input parameter to the XORG is a 127-bit seed that is fixed in code, but may be user modified.

Input Parameter:

x , x2 ,…, x = 00010110110110010001011110010010100110111011010001000000101
1 127

01111111010100100001010110110000000000100110000101110011111111100111

Description:

Choose a bit sequence, x , x ,…, x . Construct subsequent bits via the rule:
 1 2 127

x = x ⊕ x 127 , for i ≥ 128.i i −1 i −

D.6 Modular Exponentiation Generator (MODEXPG)

The input parameters to the MODEXPG are fixed in code, but they may be user modified.

Input Parameters:

seed = 7AB36982CE1ADF832019CDFEB2393CABDF0214EC

D-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

p = 987b6a6bf2c56a97291c445409920032499f9ee7ad128301b5d0254aa1a9633fdbd378

d40149f1e23a13849f3d45992f5c4c6b7104099bc301f6005f9d8115e1

g = 3844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62ea

9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5

Description:

A sequence {xi} of 512-bit pseudo-random numbers can be generated as follows:

Choose a 512-bit prime p, and a base g, as in the Digital Signature Standard (DSS). Choose an arbitrary

160-bit seed y. Let x1 = gseed mod p and xi+1 = g yi mod p, for i ≥ 1 where yi is the lowest-order 160 bits

of xi. Splicing together the {xi} will generate an n-bit sequence.

D.7 Secure Hash Generator (G-SHA1)

The input parameters to the G-SHA1 are fixed in code, but may be user modified. The length of the key,
keylen should be chosen in the interval [160, 512].

Input Parameters:

seedlen = 160
Xseed = 237c5f791c2cfe47bfb16d2d54a0d60665b20904

keylen = 160
Xkey = ec822a619d6ed5d9492218a7a4c5b15d57c61601

Description:

For a detailed description of G-SHA1 (the FIPS 186 one-way function using SHA-1), visit

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf, especially p. 175.

D.8 Blum-Blum-Shub (BBSG)

The input parameters to the BBSG are not fixed in code. They are variable parameters, which are time
dependent. The three required parameters are two primes, p and q, and a random integer s.

Input Parameters:

Two primes p and q such that each is congruent to 3 modulo 4. A random integer s (the seed), selected in
the interval [1, pq-1] such that gcd(s,pq) = 1. The parameters p, q and s are not fixed in code; thus, the
user will not be able to reconstruct the original sequence because these values will vary (i.e., they are
dependent on the system time). The input parameters have been fixed so the code will reproduce the same
results.

Description:

For a detailed description of the Blum-Blum-Shub pseudo-random number generator, visit
http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf, especially p. 186.

D-3

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf
http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

D.9

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Micali-Schnorr Generator (MSG)

The input parameters to the MSG are not fixed in code. They are variable parameters, which are time
dependent. The four required parameters are two primes, p and q, an integer e, and the seed x0.

Input Parameters:

Two primes p and q. A parameter e, selected such that 1 < e < φ = (p-1)(q-1), gcd(e, φ) = 1, and 80e < N
= floor(lg n + 1). A random sequence x0 (the seed) consisting of r (a function of e and n) bits is chosen.
The parameters e, p, q, and x0 are not fixed in code; thus, the user will not be able to reconstruct the
original sequence because these values will vary (i.e., they are dependent on the system time). The input
parameters have been fixed so the code will reproduce the same results.

Description:

For a detailed description of the Micali-Schnorr pseudo-random number generator, visit
http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf, especially p. 186.

D-4

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

D.10 Test Results

The following table depicts test-by-test failures for the above reference generators.

Statistical Test ExcessiveR
ejections

Lacks
Uniformity Generator

Frequency X X Modular Exponentiation
X X Cubic Congruential
X X Quadratic Congruential (Type I)

Block Frequency X Cubic Congruential
X X XOR

Cusum X X Micali-Schnorr
X X Modular Exponentiation
X X Cubic Congruential
X X Quadratic Congruential (Type I)

Runs X Modular Exponentiation
X X Cubic Congruential
X Quadratic Congruential (Type I)

Rank X X XOR
Spectral X X Cubic Congruential

X Quadratic Congruential (Type II)
Aperiodic Templates X ANSI X9.17

X Micali-Schnorr
X Modular Exponentiation
X X Cubic Congruential
X Quadratic Congruential (Type I)
X Quadratic Congruential (Type II)
X X XOR

Periodic Templates X Modular Exponentiation
X X XOR

Approximate
Entropy

X X Modular Exponentiation
X X Cubic Congruential
X X Quadratic Congruential (Type I)
X X XOR

Serial X X Modular Exponentiation
X X Cubic Congruential
X X Quadratic Congruential (Type I)
X X XOR

Table D.1: Illustration of Rejection/Uniformity Failures

D-5

 —

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix E Numerical Algorithm Issues

For each binary sequence, an individual statistical test must produce at least one P-value. P-values are
based on the evaluation of special functions, which must be as accurate as possible on the target platform.
The log files produced by each statistical test report P-values with six digits of precision, which should be
sufficient. However, if greater precision is desired, modify the printf statements in each statistical test
accordingly.

During the testing phase, NIST commonly evaluated sequences on the order 106; hence, results are based
on this assumption. If the user wishes to choose longer sequence lengths, then be aware that numerical
computations may be inaccurate due to machine or algorithmic limitations. For further information on
numerical analysis matters, see [6]14.

For the purposes of illustration, sample parameter values and corresponding special function values are
shown in Table E.1 and Table E.2. Table E.1 compares the results for the incomplete gamma function for
selected parameter values for a and x. The results are shown for Maple15, Matlab10, and the Numerical
Recipe16 routines. Recall that the definitions for the gamma function and the incomplete gamma function
are defined, respectively, as:

∞ z −1 − tΓ()z = ∫0 t e dt

Γ(a, x) 1 ∞ −t a−1Q(a, x) = = e t dt ,∫xΓ(a) Γ(a)

where Q(a,0) = 1 and Q(a,∞) = 0.

Since the algorithm used in the test suite implementation of the incomplete gamma function is based on
the numerical recipe codes, it is evident that the function is accurate to at least the seventh decimal place.
For large values of a, the precision will degrade, as will confidence in the result (unless a computer
algebra system is employed to ensure high precision computations).

Table E.2 compares the results for the complementary error function (see Section 5.3.3) for selected
parameter values for x. The results are shown for ANSI C, Maple, and Matlab. Recall that the definition
for the complementary error function is:

2 −uerfc(z) =
π ∫z

∞
e

2

du

14 Visit http://www.nr.com/, particularly, Section 1.1 (Error, Accuracy, and Stability).

15 See Section 1.2, Definitions and Abbreviations.

16 The parameter values for eps and itmax were fixed at 3x10-15 and 2,000,000 respectively.

E-1

http:http://www.nr.com

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

a = x = 600 Q(a,x) a = x = 800 Q(a,x)
Maple
Matlab
Test Suite

0.4945710333
0.4945710331
0.4945710331

Maple
Matlab
Test Suite

0.4952983876
0.4952983876
0.4952983876

a = x = 1000 Q(a,x) a = x = 10000 Q(a,x)
Maple
Matlab
Test Suite

0.4957947559
0.4957947558
0.4957947558

Maple
Matlab
Test Suite

0.4986701918
0.4986701917
0.4986701917

a = x = 100000 Q(a,x) a = x = 1000000 Q(a,x)
Maple
Matlab
Test Suite

0.4995794779
0.4995794779
0.4995794778

Maple
Matlab
Test Suite

0.4998670192
0.4998670196
0.4998670205

Table E.1: Selected Input Parameters for the Incomplete Gamma Function

x erfc(x) x erfc(x)
0.00 Test Suite

Maple
Matlab

1.000000000000000
1.000000000000000
1.000000000000000

0.50 Test Suite
Maple
Matlab

0.479500122186953
0.479500122186950
0.479500122186953

1.00 Test Suite
Maple
Matlab

0.157299207050285
0.157299207050280
0.157299207050285

1.50 Test Suite
Maple
Matlab

0.033894853524689
0.033894853524690
0.033894853524689

2.00 Test Suite 0.004677734981047 2.50 Test Suite 0.000406952017445
Maple 0.004677734981050 Maple 0.000406952017440
Matlab 0.004677734981047 Matlab 0.000406952017445

3.00 Test Suite
Maple
Matlab

0.000022090496999
0.000022090497000
0.000022090496999

3.50 Test Suite
Maple
Matlab

0.000000743098372
0.000000743098370
0.000000743098372

Table E.2: Selected Input Parameters for the Complementary Error Function

Thus, it is evident that the various math routines produce results that are sufficiently close to each other.
The differences are negligible. To reduce the likelihood for obtaining an inaccurate P-value result, NIST
has prescribed recommended input parameters.

E-2

 —

F.1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix F Supporting Software

Rank Computation of Binary Matrices

Apply elementary row operations where the addition operator is taken to be the exclusive-OR operation.
The matrices are reduced to upper triangular form using forward row operations, and the operation is
repeated in reverse in order using backward row operations in order to arrive at a matrix in triangular
form. The rank is then taken to be the number of nonzero rows in the resulting Gaussian reduced matrix.

Forward Application of Elementary Row Operations:

Let each element in the m by m matrix be designated as ai,j

1. Set i = 1

2. If element ai,i = 0 (i.e., the element on the diagonal ≠ 1), then swap all elements in the ith row
with all elements in the next row that contains a one in the ith column (i.e., this row is the kth row,
where i < k ≤ m) . If no row contains a “1” in this position, go to step 4.

3. If element = 1 , then if any subsequent row contains a “1” in the ith column, replace each ai,i
element in that row with the exclusive-OR of that element and the corresponding element in the
ith row.

a. Set row = i + 1
b. Set col=i.
c. If arow,col = 0, then go to step 3g.
d. a = a ⊕ arow,col row,col i,col

e. If col=m, then go to step 3g.
f. col=col+1; go to step 3d.
g. If row = m, then go to step 4.
h. row=row+1; go to step 3b.

4. If i<m-1, then i=i+1; go to step 2.

5. Forward row operations completed.

Backward Application of Elementary Row Operations:

1. Set i=m.

2. If element ai,i = 0 (i.e., the element on the diagonal ≠ 1), then swap all elements in the ith row
with all elements in the next row that contains a one in the ith column (i.e., this row is the kth row,
where 1 ≤ k < i) . If no row contains a “1” in this position, go to step 4.

3. If element = 1 , then if any preceding row contains a “1” in the ith column, replace each ai,i
element in that row with the exclusive-OR of that element and the corresponding element in the
ith row.

F-1

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

a. Set row = i - 1
b. Set col=i.
c. If arow,col = 0, then go to step 3g.
d. a = a ⊕ arow,col row,col i,col

e. If col= 1, then go to step 3g.
f. col=col – 1; go to step 3d.
g. If row = 1, then go to step 4.
h. row=row-1; go to step 3b.

4. If i>2, then i=i-1 and go to step 2.

5. Backward row operation complete.

6. The rank of the matrix = the number of non-zero rows.

Example of Forward Row Operations:

A

1 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 1
1 0 1 0 1 0
0 0 1 0 1 1
0 0 0 0 1 0

The original matrix.

B

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 1 0 1 0
0 0 1 0 1 1
0 0 0 0 1 0

Since a1,1 = 1 and rows 3 and 4 contain a 1 in the first column (see the original
matrix), rows 3 and 4 are replaced by the exclusive-OR of that row and row 1.

C

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 1 0 1 0
0 0 1 0 1 1
0 0 0 0 1 0

Since a2,2 ≠ 1 and no other row contains a “1” in this column (see B), the
matrix is not altered.

F-2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0 Since a3,3 ≠ 1, but the 4th row contains a “1” in the 3rd column (see B or C), the

D 0 0 0 0 0 1 two rows are switched.
0 0 1 0 1 1
0 0 0 0 1 0

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0 Since row 5 contains a “1” in the 3rd column (see D), row 5 is replaced by the

E 0 0 0 0 0 1 exclusive-OR of row 1 and row 5.
0 0 0 0 0 1
0 0 0 0 1 0

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0 Since a4,4 ≠ 1 and no other row contains a “1” in this column (see E), the

F 0 0 0 0 0 1 matrix is not altered.
0 0 0 0 0 1
0 0 0 0 1 0

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0 Since a5,5≠ 1, but row 6 contains a 1 in column 5 (see F), the two rows are

G 0 0 0 0 0 1 switched. Since no row below this contains a “1” in the 5th column, the end of
0 0 0 0 1 0 the forward process is complete.
0 0 0 0 0 1

The Subsequent Backward Row Operations:

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0 Since a6,6 = 1 and rows 2 and 4 contain ones in the 6th column (see G), rows 2

H 0 0 0 0 0 0 and 4 are replaced by the exclusive-OR of that row and row 6.
0 0 0 0 1 0
0 0 0 0 0 1

F-3

F.2

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

I

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Since a5,5 = 1and row 3 contains a one in the 5th column (see H), row 3 is
replaced by the exclusive-OR or row 3 and row 5.

J

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Since a4,4 ≠ 1 and no other row has a one in column 4, the matrix is not altered.

K

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Since a3,3 = 1, but no other row has a one in column 3, the matrix is not
altered.

L

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Since a2,2≠ 1 and no other row has a one in column 2, the matrix is not altered,
and he process is complete.

Since the final form of the matrix has 4 non-zero rows, the rank of the matrix is 4.

Construction of Aperiodic Templates

For the purposes of executing the Non-overlapping Template Matching statistical test, all 2m m-bit binary
sequences that are aperiodic were pre-computed. These templates, or patterns, were stored in a file for m
= 2 to m = 21. The ANSI-C program utilized in finding these templates is provided below. By
modifying the parameter M, the template library corresponding to the template can be constructed. This
parameter value should not exceed B, since the dec2bin conversion routine will not operate correctly.
Conceivably, this source code can be easily modified to construct arbitrary 2m m-bit binary sequences for
larger m.

F-4

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

#include <stdio.h>

#include <math.h>

#define B 32

#define M 6

int *A;

static long nonPeriodic;

unsigned displayBits(FILE*, long, long);

int main()

{

 FILE *fp1, *fp2;

long i, j, count, num;

 A = (unsigned*) calloc(B,sizeof(unsigned));

fp1 = fopen("template", "w");

fp2 = fopen("dataInfo", "a");

num = pow(2,M);

count = log(num)/log(2);

nonPeriodic = 0;

for(i = 1; i < num; i++)

displayBits(fp1, i,count);

fprintf(fp2,"M = %d\n", M);

fprintf(fp2,"# of nonperiodic templates = %u\n", nonPeriodic);

fprintf(fp2,"# of all possible templates = %u\n", num);

fprintf(fp2,"{# nonperiodic}/{# templates} = %f\n", (double)nonPeriodic/num);

fprintf(fp2,"==\n");

fclose(fp1);

fclose(fp2);

free(A);

 return 0;

}

void displayBits(FILE* fp, long value, long count)

{

 int i, j, match, c, displayMask = 1 << (B-1);

 for(i = 0; i < B; i++)

A[i] = 0;

for(c = 1; c <= B; c++) {

if (value & displayMask)

A[c-1] = 1;

else

 A[c-1] = 0;

value <<= 1;

}

F-5

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

for(i = 1; i < count; i++) {

match = 1;

if ((A[B-count]!= A[B-1]) &&

((A[B-count]!= A[B-2])||(A[B-count+1] != A[B-1]))) {

for(c = B-count; c <= (B-1)-i; c++) {

if (A[c] != A[c+i]) {

match = 0;

break;

}

}

}

if (match) {

/* printf("\nPERIODIC TEMPLATE: SHIFT = %d\n",i); */

break;

}

}

if (!match) {

for(c = B-count; c < (B-1); c++) fprintf(fp,"%u",A[c]);

fprintf(fp,"%u\n", A[B-1]);

nonPeriodic++;

}

 return;

}

F-6

F.3

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Generation of the Binary Expansion of Irrational Numbers

The sample Mathematica program utilized in constructing four sample files is shown below.

Mathematica Program

(**)

(* Purpose: Converts num to its decimal expansion using *)
(* its binary representation. *)
(* *)
(* Caution: The $MaxPrecision variable must be set to *)
(* the value of d. By default, Mathematica *)
(* sets this to 50000, but this can be increased.*)

(**)

BinExp[num_,d_] := Module[{n,L},

If[d > $MaxPrecision, $MaxPrecision = d];

n = N[num,d];

L = First[RealDigits[n,2]]

];

SE = BinExp[E,302500];

Save["data.e",{SE}];

SP = BinExp[Pi,302500];

Save["data.pi",{SP}];

S2 = BinExp[Sqrt[2],302500];

Save["data.sqrt2",{S2}];

S3 = BinExp[Sqrt[3],302500];

Save["data.sqrt3",{S3}];

F-7

 —

A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

Appendix G References

[1]	 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Applied Mathematics
Series. Vol. 55, Washington: National Bureau of Standards, 1964; reprinted 1968 by Dover
Publications, New York.

[2]	 T. Cormen, C. Leiserson, & R. Rivest, Introduction to Algorithms. Cambridge, MA: The MIT
Press, 1990.

[3]	 Gustafson et al., “A computer package for measuring strength of encryption algorithms,” Journal
of Computers & Security. Vol. 13, No. 8, 1994, pp. 687-697.

[4]	 U. Maurer, “A Universal Statistical Test for Random Bit Generators,” Journal of Cryptology.
Vol. 5, No. 2, 1992, pp. 89-105.

[5]	 A. Menezes, et al., Handbook of Applied Cryptography. CRC Press, Inc., 1997.
See http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf.

[6]	 W. Press, S. Teukolsky, W. Vetterling, Numerical Recipes in C : The Art of Scientific
Computing, 2nd Edition. Cambridge University Press, January 1993.

[7]	 G. Marsaglia, DIEHARD Statistical Tests: http://www.stat.fsu.edu/pub/diehard/.

[8]	 T. Ritter, “Randomness Tests and Related Topics,
http://www.ciphersbyritter.com/RES/RANDTEST.HTM.

[9]	 American National Standards Institute: Financial Institution Key Management (Wholesale),
American Bankers Association, ANSI X9.17 - 1985 (Reaffirmed 1991).

[10]	 FIPS 140-1, Security Requirements for Cryptographic Modules, Federal Information Processing
Standards Publication 140-1. U.S. Department of Commerce/NIST, National Technical
Information Service, Springfield, VA, 1994.

[11]	 FIPS 180-1, Secure Hash Standard, Federal Information Processing Standards Publication 180-1.
U.S. Department of Commerce/NIST, National Technical Information Service, Springfield, VA,
April 17, 1995.

[12]	 FIPS 186, Digital Signature Standard (DSS), Federal Information Processing Standards
Publication 186. U.S. Department of Commerce/NIST, National Technical Information Service,
Springfield, VA, May 19, 1994.

[13]	 MAPLE, A Computer Algebra System (CAS). Available from Waterloo Maple Inc.;
http://www.maplesoft.com.

G-1

http:http://www.maplesoft.com
http://www.ciphersbyritter.com/RES/RANDTEST.HTM
http://www.stat.fsu.edu/pub/diehard
http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

