NIST Big Data Interoperability Framework: Volume 4, Security and Privacy

Version 3

NIST Big Data Public Working Group Definitions and Taxonomies Subgroup

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-4r2

NIST Special Publication 1500-4r2

NIST Big Data Interoperability Framework: Volume 4, Security and Privacy

Version 3

NIST Big Data Public Working Group Definitions and Taxonomies Subgroup Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.1500-4r2

October 2019

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology

National Institute of Standards and Technology (NIST) Special Publication 1500-4r2 176 pages (October 2019)

NIST Special Publication series 1500 is intended to capture external perspectives related to NIST standards, measurement, and testing-related efforts. These external perspectives can come from industry, academia, government, and others. These reports are intended to document external perspectives and do not represent official NIST positions.

Certain commercial entities, equipment, or materials may be identified in this document to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. All NIST publications are available at <u>http://www.nist.gov/publication-portal.cfm</u>.

Copyrights and Permissions

Official publications of the National Institute of Standards and Technology are not subject to copyright in the United States. Foreign rights are reserved. Questions concerning the possibility of copyrights in foreign countries should be referred to the Office of Chief Counsel at NIST via email to <u>nistcounsel@nist.gov</u>.

Comments on this publication may be submitted to Wo Chang

National Institute of Standards and Technology Attn: Wo Chang, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8900) Gaithersburg, MD 20899-8930 Email: <u>SP1500comments@nist.gov</u>

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at NIST promotes the U.S. economy and public welfare by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology (IT). ITL's responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems. This document reports on ITL's research, guidance, and outreach efforts in IT and its collaborative activities with industry, government, and academic organizations.

Abstract

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the *NIST Big Data Interoperability Framework (NBDIF)* series of volumes. This volume, Volume 4, contains an exploration of security and privacy topics with respect to Big Data. The volume considers new aspects of security and privacy with respect to Big Data, reviews security and privacy use cases, proposes security and privacy taxonomies, presents details of the Security and Privacy Fabric of the NIST Big Data Reference Architecture (NBDRA), and begins mapping the security and privacy use cases to the NBDRA.

Keywords

Big Data characteristics; Big Data forensics; Big Data privacy; Big Data risk management; Big Data security; Big Data taxonomy, computer security; cybersecurity; encryption standards; information assurance; information security frameworks; role-based access controls; security and privacy fabric; use cases.

Acknowledgements

This document reflects the contributions and discussions by the membership of the NBD-PWG, cochaired by Wo Chang (NIST ITL), Bob Marcus (ET-Strategies), and Chaitan Baru (San Diego Supercomputer Center; National Science Foundation). The document contains input from members of the NBD-PWG Security and Privacy Subgroup. For all versions, the Subgroups were led by the following people: Nancy Grady (SAIC), Natasha Balac (San Diego Supercomputer Center), and Eugene Luster (R2AD) for the Definitions and Taxonomies Subgroup; Geoffrey Fox (Indiana University) and Tsegereda Beyene (Cisco Systems) for the Use Cases and Requirements Subgroup; Arnab Roy (Fujitsu), Mark Underwood (Krypton Brothers; Synchrony Financial), and Akhil Manchanda (GE) for the Security and Privacy Subgroup; David Boyd (InCadence Strategic Solutions), Orit Levin (Microsoft), Don Krapohl (Augmented Intelligence), and James Ketner (AT&T) for the Reference Architecture Subgroup; and Russell Reinsch (Center for Government Interoperability), David Boyd (InCadence Strategic Solutions), Carl Buffington (Vistronix), and Dan McClary (Oracle), for the Standards Roadmap Subgroup.

The editors for this document were the following:

- *Version 1*: Arnab Roy (Fujitsu), Mark Underwood (Krypton Brothers; Synchrony Financial) and Wo Chang (NIST)
- *Version 2*: Arnab Roy (Fujitsu), Mark Underwood (Krypton Brothers; Synchrony Financial) and Wo Chang (NIST)
- *Version 3*: Arnab Roy (Fujitsu), Mark Underwood (Krypton Brothers; Synchrony Financial) and Wo Chang (NIST)

Laurie Aldape (Energetics Incorporated) and Elizabeth Lennon (NIST) provided editorial assistance across all NBDIF volumes.

NIST SP1500-4, Version 3 has been collaboratively authored by the NBD-PWG. As of the date of this publication, there are over six hundred NBD-PWG participants from industry, academia, and government. Federal agency participants include the National Archives and Records Administration (NARA), National Aeronautics and Space Administration (NASA), National Science Foundation (NSF), and the U.S. Departments of Agriculture, Commerce, Defense, Energy, Health and Human Services, Homeland Security, Transportation, Treasury, and Veterans Affairs.

NIST would like to acknowledge the specific contributions to this volume, during Version 1, Version 2, and/or Version 3 activities, by the following NBD-PWG members:

Cavan Capps	Pavithra Kenjige	Sanjay Mishra
U.S. Census Bureau	PK Technologies	Verizon
Pw McKenna Carey, III	Orit Levin	Robert Reyling
Compliance Partners,	Microsoft	Wyle Aerospace Corporation
<i>LLC/RALAND</i>	Yale Li	Ann Racuya-Robbins
Wo Chang	Microsoft	World Knowledge Bank
NIST	Akhil Manchanda	Arnab Roy
Brent Comstock	<i>General Electric</i>	Fujitsu
Cox Communications	Marcia Mangold	Anh-Hong Rucker
Lee Anne Davies	General Electric	Jet Propulsion Laboratory
Agenomics	Serge Mankovski	Paul Savitz
Jacob Dilles Mount Airey Group	CA Technologies	ATIS
	Robert Marcus ET-Strategies	John Schiel CenturyLink, Inc.

Michele Drgon

Data Probity

Roy D'Souza AlephCloud Systems, Inc.

Eddie Garcia *Gazzang, Inc.*

David Harper

Johns Hopkins University/ Applied Physics Laboratory Lisa Martinez Northbound Transportation and Infrastructure, US

William Miller MaCT USA Mark Underwood Krypton Brothers; Synchrony Financial

Alicia Zuniga-Alvarado Consultant

TABLE OF CONTENTS

EXECUTIVE SUMMARY IX		
1 INTRODUCTION	1	
1.1 Background	1	
1.2 Scope And Objectives OF The Security And Privacy Subgroup		
1.3 REPORT PRODUCTION		
1.4 Report Structure	4	
2 BIG DATA SECURITY AND PRIVACY		
 2.1 WHAT IS DIFFERENT ABOUT BIG DATA SECURITY AND PRIVACY		
2.2 OVERVIEW		
2.3 SECURITY AND FRIVACY IMPACTS ON BIG DATA CHARACTERISTICS		
2.3.1 Volume		
2.3.2 Velocity		
2.3.5 Variety		
2.3.4 Veracity 2.3.5 Volatility		
2.4 EFFECTS OF EMERGING TECHNOLOGY ON BIG DATA SECURITY AND PRIVACY		
2.4.1 Cloud Computing		
2.4.2 Big Data Security and Privacy Safety Levels		
2.4.3 Internet of Things and CPS		
2.4.4 Mobile Devices and Big Data		
2.4.5 Integration of People and Organizations		
2.4.6 System Communicator		
2.4.7 Ethical Design	16	
2.4.7.1 Self-Cleaning Systems	16	
2.4.7.2 The Toxic Data Model		
2.4.7.3 Big Data Security Safety Annotation		
2.4.7.4 Big Data Trust and Federation		
2.4.7.5 Orchestration in Weak Federation Scenarios		
2.4.7.6 Consent and the Glass-Breaking Scenario 2.4.8 Big Data Transparency		
3 EXAMPLE USE CASES FOR SECURITY AND PRIVACY	21	
3.1 RETAIL/MARKETING		
3.1.1 Consumer Digital Media Usage		
3.1.2 Nielsen Homescan: Project Apollo	22	
3.1.3 Web Traffic Analytics		
3.2 HEALTHCARE		
3.2.1 Health Information Exchange		
3.2.2 Genetic Privacy		
3.2.3 Pharma Clinical Trial Data Sharing		
3.3 Cybersecurity		
3.3.1 Network Protection	-	
3.4 GOVERNMENT	-	
3.4.1 Unmanned Vehicle Sensor Data		
3.4.2 Education: Common Core Student Performance Reporting		
3.5 INDUSTRIAL: AVIATION	28	

3.5.1	Sensor Data Storage And Analytics	28
3.6	TRANSPORTATION	28
3.6.1	Cargo Shipping	
3.7	Additional Security and Privacy Use Cases	29
3.7.1	SEC Consolidated Audit Trail	29
3.7.2	IoT Device Management	29
3.7.3	Statewide Education Data Portal	29
4 TAX	ONOMY OF SECURITY AND PRIVACY TOPICS	31
4.1	CONCEPTUAL TAXONOMY OF SECURITY AND PRIVACY TOPICS	31
4.1.1	Data Confidentiality	32
4.1.2	Provenance	32
4.1.3	System Health	
4.1.4	Public Policy, Social and Cross-Organizational Topics	
	OPERATIONAL TAXONOMY OF SECURITY AND PRIVACY TOPICS	
4.2.1	Device and Application Registration	35
4.2.2	Identity and Access Management	35
4.2.3	Data Governance	
4.2.		
4.2.4	Infrastructure Management	
4.2.5	Risk and Accountability	
	ROLES RELATED TO SECURITY AND PRIVACY TOPICS	
4.3.1	Infrastructure Management	
4.3.2	Governance, Risk Management, and Compliance	
4.3.3	Information Worker	
	RELATION OF ROLES TO THE SECURITY AND PRIVACY CONCEPTUAL TAXONOMY	
4.4.1	Data Confidentiality	
4.4.2	Provenance	
4.4.3	System Health Management	
4.4.4	Public Policy, Social, and Cross-Organizational Topics	
	ADDITIONAL TAXONOMY TOPICS	
4.5.1 4.5.2	Provisioning, Metering, And Billing Data Syndication	
4.5.2	ACM Taxonomy	
	ACM Taxonomy	
4.0	WHY SECURITY ONTOLOGIES MATTER FOR DIG DATA	44
	DATA REFERENCE ARCHITECTURE AND SECURITY AND PRIVACY FABRIC	
	RELATION OF THE BIG DATA SECURITY OPERATIONAL TAXONOMY TO THE NBDRA	
	SECURITY AND PRIVACY FABRIC IN THE NBDRA	-
	SECURITY AND PRIVACY FABRIC PRINCIPLES	
	Security and Privacy Approaches in Analytics	
	CRYPTOGRAPHIC TECHNOLOGIES FOR DATA TRANSFORMATIONS	
5.5.1	Classification	
5.5.2	Homomorphic Encryption	
5.5.3	Functional Encryption	
5.5.4 5.5.5	Access Control Policy-Based Encryption Secure Multi-Party Computations	
5.5.5 5.5.6		
5.5.0 5.5.7	Blockchain Hardware Support for Secure Computations	
5.5.8		
5.5.8	Cryptographic Key Rotation Federal Standard FIPS140-2 on Cryptographic Systems	
	Risk Management	
5.6.1	PII as Requiring Toxic Substance Handling	
2.0.1		

	5.6.2	Consent Withdrawal Scenarios	58
	5.6.3	Transparency Portal Scenarios	59
	5.6.4	Big Data Forensics and Operational AAR	59
	5.7	BIG DATA SECURITY MODELING AND SIMULATION (MODSIM)	59
	5.8	SECURITY AND PRIVACY MANAGEMENT PHASES	60
6	DON	AAIN-SPECIFIC SECURITY	62
7	AUD	DIT AND CONFIGURATION MANAGEMENT	63
	7.1	PACKET-LEVEL TRACEABILITY / REPRODUCIBILITY	63
	7.2	AUDIT	
	7.3	MONITORING	
8	STA	NDARDS, BEST PRACTICES AND GAPS	65
	8.1	NIST CYBERSECURITY FRAMEWORK	
	8.2	CONFIGURATION MANAGEMENT FOR BIG DATA	65
	8.2.1	Emergence of DevSecOps	65
	8.2.2		
	8.3	BIG DATA SDLC STANDARDS AND GUIDELINES	
	8.3.1	· · · · · · · · · · · · · · · · · · ·	
		3.1.1 Application Life Cycle Management	
		3.1.2 Security and Privacy Events in Application Release Management 3.1.3 Orchestration	
		3.1.4 API-First	
	8.3.2		
	8.3.3	*	
	8.3	3.3.1 ISO 21827:2008 and SSE-CMM	68
		3.3.2 ISO 27018: Protection of PII in Public Clouds Acting as PII Processors	
	8.3.4	.8	
	8.3.5		
	8.3.6	Application Security for Big Data	
		3.6.2 'Least Exposure' Big Data Practices	
		3.6.3 Logging	
	8.3	3.6.4 Ethics and Privacy by Design	
	8.4	BIG DATA GOVERNANCE	
	8.5	Emerging Technologies	
	8.5.1		
• 1	8.5.2		
A	PPEND	IX A: NIST BIG DATA SECURITY AND PRIVACY SAFETY LEVELS	/3
A	PPEND	IX B: EXISTING STANDARDS IN RELATION TO THE SECURITY AND PRIVACY FABI	RIC99
A	PPEND	IX C: INTERNAL SECURITY CONSIDERATIONS WITHIN CLOUD ECOSYSTEMS	124
A	PPEND	IX D: BIG DATA ACTORS AND ROLES—ADAPTATION TO BIG DATA SCENARIOS	129
A]	PPEND	IX E: MAPPING USE CASES TO NBDRA	131
	E.1	RETAIL/MARKETING	
	E.1.1		
	<i>E.1.2</i>	$J \sim I$	
	<i>E.1.3</i>		
	E.2	HEALTHCARE	
	E.2.1		
	E.2.2	Pharmaceutical Clinical Trial Data Sharing	130

E.3 Cybersecurity	
E.3.1 Network Protection	
E.4 GOVERNMENT	
E.4.1 Unmanned Vehicle Sensor Data	
E.4.2 Education: Common Core Student Performance Reporting	
E.5 TRANSPORTATION	
E.5.1 Cargo Shipping	
APPENDIX F: VERSION 2 CHANGES AND NEW TOPICS	
APPENDIX G: ACRONYMS	
APPENDIX H: BIBLIOGRAPHY	146

Figures

FIGURE 1: NBDIF DOCUMENTS NAVIGATION DIAGRAM PROVIDES CONTENT FLOW BETWEEN VOLUMES	5
FIGURE 2: HIGH-LEVEL CAT REQUIREMENTS	29
FIGURE 3: EDWISE FIGURE	
FIGURE 4: SECURITY AND PRIVACY CONCEPTUAL TAXONOMY	31
FIGURE 5: SECURITY AND PRIVACY OPERATIONAL TAXONOMY	35
FIGURE 6: NIST BIG DATA REFERENCE ARCHITECTURE	47
FIGURE 7: NOTIONAL SECURITY AND PRIVACY FABRIC OVERLAY TO THE NBDRA	49
FIGURE C-1: COMPOSITE CLOUD ECOSYSTEM SECURITY ARCHITECTURE	124

Tables

TABLE 1: DRAFT SECURITY OPERATIONAL TAXONOMY MAPPING TO THE NBDRA COMPONENTS	48
TABLE 2: CLASSIFICATION OF CRYPTOGRAPHIC TECHNOLOGIES	51
TABLE A-1: APPENDIX A: NIST BIG DATA SECURITY AND PRIVACY SAFETY LEVELS	73
TABLE B-1: TERMS AND STANDARDS IN RELATION TO THE SECURITY AND PRIVACY FABRIC	99
TABLE C-1: STANDARDS AND GUIDES RELEVANT TO CLOUD COMPUTING	125
TABLE E-1: MAPPING CONSUMER DIGITAL MEDIA USAGE TO THE REFERENCE ARCHITECTURE	131
TABLE E-2: MAPPING NIELSEN HOMESCAN TO THE REFERENCE ARCHITECTURE	132
TABLE E-3: MAPPING WEB TRAFFIC ANALYTICS TO THE REFERENCE ARCHITECTURE	133
TABLE E-4: MAPPING HIE TO THE REFERENCE ARCHITECTURE	134
TABLE E-5: MAPPING PHARMACEUTICAL CLINICAL TRIAL DATA SHARING TO THE REFERENCE ARCHITECTURE	136
TABLE E-6: MAPPING NETWORK PROTECTION TO THE REFERENCE ARCHITECTURE	137
TABLE E-7: MAPPING MILITARY UNMANNED VEHICLE SENSOR DATA TO THE REFERENCE ARCHITECTURE	138
TABLE E-8: MAPPING COMMON CORE K-12 STUDENT REPORTING TO THE REFERENCE ARCHITECTURE	139
TABLE E-9: MAPPING CARGO SHIPPING TO THE REFERENCE ARCHITECTURE	141

EXECUTIVE SUMMARY

This *NIST Big Data Interoperability Framework (NBDIF): Volume 4, Security and Privacy* document
was prepared by the NIST Big Data Public Working Group (NBD-PWG) Security and Privacy Subgroup
to identify security and privacy issues that are specific to Big Data.

Big Data application domains include healthcare, drug discovery, insurance, finance, retail, and many others from both the private and public sectors. Among the scenarios within these application domains are health exchanges, clinical trials, mergers and acquisitions, device telemetry, targeted marketing, and international anti-piracy. Security technology domains include identity, authorization, audit, network and device security, and federation across trust boundaries.

Clearly, the advent of Big Data has necessitated paradigm shifts in the understanding and enforcement of security and privacy requirements. Significant changes are evolving, notably in scaling existing solutions to meet the volume, variety, velocity, and variability of Big Data and retargeting security solutions amid shifts in technology infrastructure (e.g., distributed computing systems and non-relational data storage). In addition, diverse datasets are becoming easier to access and increasingly contain personal content. A new set of emerging issues must be addressed, including balancing privacy and utility, enabling analytics and governance on encrypted data, and reconciling authentication and anonymity.

With the key Big Data characteristics of variety, volume, velocity, and variability in mind, the Subgroup gathered use cases from volunteers, developed a consensus-based security and privacy taxonomy, related the taxonomy to the NIST Big Data Reference Architecture (NBDRA), and validated the NBDRA by mapping the use cases to the NBDRA.

The *NIST Big Data Interoperability Framework* (NBDIF) was released in three versions, which correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current effort documented in this volume reflects concepts developed within the rapidly evolving field of Big Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data Reference Architecture (NBDRA).

- Stage 3: Validate the NBDRA by building Big Data general applications through the general interfaces;
- Stage 2: Define general interfaces between the NBDRA components; and
- Stage 1: Identify the high-level Big Data reference architecture key components, which are technology-, infrastructure-, and vendor-agnostic.

The *NBDIF* consists of nine volumes, each of which addresses a specific key topic, resulting from the work of the NBD-PWG. The nine volumes are as follows:

- Volume 1, Definitions [1]
- Volume 2, Taxonomies [2]
- Volume 3, Use Cases and General Requirements [3]
- Volume 4, Security and Privacy (this volume)
- Volume 5, Architectures White Paper Survey [4]
- Volume 6, Reference Architecture [5]
- Volume 7, Standards Roadmap [6]
- Volume 8, Reference Architecture Interfaces [7]
 - Volume 9, Adoption and Modernization [8]

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

5

6

7

8

- 44 During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version
- 45 1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website
- 46 (https://bigdatawg.nist.gov/V1_output_docs.php).
- 47 During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the
- 48 exception of Volume 5, which contained the completed architecture survey work that was used to inform
- 49 Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define
- 50 general interfaces between the NBDRA components by aggregating low-level interactions into high-level
- 51 general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the
- 52 need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created.
- 53 Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final
- 54 Version page of the NBD-PWG website (<u>https://bigdatawg.nist.gov/V2_output_docs.php</u>).
- 55 Version 2 of *NBDIF: Volume 4, Security and Privacy* was principally informed by the introduction of the
- 56 NIST Big Data Security and Privacy Safety Levels (NBD-SPSL). Using the NBD-SPSL, organizations
- 57 can identify specific elements to which their systems conform. Readers are encouraged to study the NBD-
- 58 SPSL (Appendix A) before launching into the body of this version of the document. Appendix A is
- designed to be a stand-alone, readily transferred artifact that can be used to share concepts that can improve Big Data security and privacy safety engineering.
- By declaring conformance with selected elements from the NBD-SPSL, practitioners in Big Data can
 voluntarily attest to specific steps they have undertaken to improve Big Data security and privacy in their
 systems. The NBD-SPSL provides a clear path to implement the recommendations of standards aimed at
 improving ethical practices (e.g., Institute of Electrical and Electronics Engineers [IEEE] P7000, IEEE
 P7002, IEEE P7007, International Organization for Standardization [ISO] 27500:2016), as well as
- 66 methods to integrate security and privacy into Big Data DevOps, (e.g., IEEE P2675).

1 INTRODUCTION

69 1.1 BACKGROUND

There is broad agreement among commercial, academic, and government leaders about the potential of Big Data to spark innovation, fuel commerce, and drive progress. Big Data is the common term used to describe the deluge of data in today's networked, digitized, sensor-laden, and information-driven world. The availability of vast data resources carries the potential to answer questions previously out of reach, including the following:

- How can a potential pandemic reliably be detected early enough to intervene?
- Can new materials with advanced properties be predicted before these materials have ever been synthesized?
- How can the current advantage of the attacker over the defender in guarding against cybersecurity threats be reversed?

There is also broad agreement on the ability of Big Data to overwhelm traditional approaches. The growth rates for data volumes, speeds, and complexity are outpacing scientific and technological advances in data analytics, management, transport, and data user spheres.

Bespite widespread agreement on the inherent opportunities and current limitations of Big Data, a lack of
 consensus on some important fundamental questions continues to confuse potential users and stymie
 progress. These questions include the following:

- How is Big Data defined?
- What attributes define Big Data solutions?
- What is new in Big Data?
- What is the difference between Big Data and *bigger data* that has been collected for years?
- How is Big Data different from traditional data environments and related applications?
- What are the essential characteristics of Big Data environments?
- How do these environments integrate with currently deployed architectures?
- What are the central scientific, technological, and standardization challenges that need to be addressed to accelerate the deployment of robust, secure Big Data solutions?

Within this context, on March 29, 2012, the White House announced the Big Data Research and
Development Initiative [9]. The initiative's goals include helping to accelerate the pace of discovery in
science and engineering, strengthening national security, and transforming teaching and learning by
improving analysts' ability to extract knowledge and insights from large and complex collections of
digital data.

100 Six federal departments and their agencies announced more than \$200 million in commitments spread 101 across more than 80 projects, which aim to significantly improve the tools and techniques needed to 102 access, organize, and draw conclusions from huge volumes of digital data. The initiative also challenged 103 industry, research universities, and nonprofits to join with the federal government to make the most of the 104 opportunities created by Big Data.

- 105 Motivated by the White House initiative and public suggestions, the National Institute of Standards and
- 106 Technology (NIST) has accepted the challenge to stimulate collaboration among industry professionals to
- 107 further the secure and effective adoption of Big Data. As one result of NIST's Cloud and Big Data Forum
- 108 held on January 15–17, 2013, there was strong encouragement for NIST to create a public working group
- 109 for the development of a Big Data Standards Roadmap. Forum participants noted that this roadmap

68

75

76

77

78

79

80

81

82

86

87

88

89

90

91

92

93

- 110 should define and prioritize Big Data requirements, including interoperability, portability, reusability, 111 extensibility, data usage, analytics, and technology infrastructure. In doing so, the roadmap would
- 112 accelerate the adoption of the most secure and effective Big Data techniques and technology.

113 On June 19, 2013, the NIST Big Data Public Working Group (NBD-PWG) was launched with extensive

- 114 participation by industry, academia, and government from across the nation. The scope of the NBD-PWG
- involves forming a community of interests from all sectors—including industry, academia, and
- 116 government—with the goal of developing consensus on definitions, taxonomies, secure reference
- architectures, security and privacy, and from these, a standards roadmap. Such a consensus would create a
- 118 vendor-neutral, technology- and infrastructure-independent framework that would enable Big Data
- stakeholders to identify and use the best analytics tools for their processing and visualization requirements
 on the most suitable computing platform and cluster, while also allowing added value from Big Data
 service providers.
- The *NIST Big Data Interoperability Framework* (NBDIF) was released in three versions, which correspond to the three stages of the NBD-PWG work. Version 3 (current version) of the NBDIF volumes resulted from Stage 3 work with major emphasis on the validation of the NBDRA Interfaces and content enhancement. Stage 3 work built upon the foundation created during Stage 2 and Stage 1. The current effort documented in this volume reflects concepts developed within the rapidly evolving field of Big Data. The three stages (in reverse order) aim to achieve the following with respect to the NIST Big Data Reference Architecture (NBDRA).
 - Stage 3: Validate the NBDRA by building Big Data general applications through the general interfaces;
 - Stage 2: Define general interfaces between the NBDRA components; and
 - Stage 1: Identify the high-level Big Data reference architecture key components, which are technology-, infrastructure-, and vendor-agnostic.

The *NBDIF* consists of nine volumes, each of which addresses a specific key topic, resulting from the work of the NBD-PWG. The nine volumes are as follows:

- Volume 1, Definitions [1]
- Volume 2, Taxonomies [2]
- Volume 3, Use Cases and General Requirements [3]
- Volume 4, Security and Privacy (this volume)
- Volume 5, Architectures White Paper Survey [4]
- Volume 6, Reference Architecture [5]
- Volume 7, Standards Roadmap [6]
- Volume 8, Reference Architecture Interfaces [7]
- Volume 9, Adoption and Modernization [8]

145 During Stage 1, Volumes 1 through 7 were conceptualized, organized, and written. The finalized Version
146 1 documents can be downloaded from the V1.0 Final Version page of the NBD-PWG website
147 (<u>https://bigdatawg.nist.gov/V1_output_docs.php</u>).

- 148 During Stage 2, the NBD-PWG developed Version 2 of the NBDIF Version 1 volumes, with the
- 149 exception of Volume 5, which contained the completed architecture survey work that was used to inform
- 150 Stage 1 work of the NBD-PWG. The goals of Stage 2 were to enhance the Version 1 content, define
- general interfaces between the NBDRA components by aggregating low-level interactions into high-level
- general interfaces, and demonstrate how the NBDRA can be used. As a result of the Stage 2 work, the
- need for NBDIF Volume 8 and NBDIF Volume 9 was identified and the two new volumes were created.
 Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final
- Version 2 of the NBDIF volumes, resulting from Stage 2 work, can be downloaded from the V2.0 Final Version page of the NBD PWG website (https://bigdatuwg pist.gov/V2 output, does php)
- 155 Version page of the NBD-PWG website (<u>https://bigdatawg.nist.gov/V2_output_docs.php</u>).

129

130

131 132

133 134

135

136

137

138

139

140

141

142

143

1.2 SCOPE AND OBJECTIVES OF THE SECURITY AND PRIVACY SUBGROUP

The focus of the NBD-PWG Security and Privacy Subgroup is to form a community of interest from industry, academia, and government with the goal of developing consensus on a reference architecture to handle security and privacy issues across all stakeholders. This includes understanding what standards are available or under development, as well as identifying which key organizations are working on these standards. Early standards work, including the efforts of this Public Working Group, helped to focus attention on emerging risks as well as on the underlying technology.

The scope of the Subgroup's work includes the following topics:

- Provide a context from which to begin Big Data-specific security and privacy discussions;
- Analyze/prioritize a list of challenging security and privacy requirements that may delay or prevent adoption of Big Data deployment;
- Develop a Security and Privacy Reference Architecture that supplements the NBDRA;
- Produce a working draft of this Big Data Security and Privacy document;
- Develop Big Data security and privacy taxonomies;
- Explore mapping between the Big Data security and privacy taxonomies and the NBDRA; and
- Explore mapping between the use cases and the NBDRA.

While there are many issues surrounding Big Data security and privacy, the focus of this Subgroup is onthe technology aspects of security and privacy with respect to Big Data.

In Version 1, the NBD-PWG introduced the concept of a security and privacy fabric. The fundamental
idea is that security and privacy considerations impact all components within the NBDRA. Version 2 of
this document extended and amplified this concept into the NIST Big Data Security and Privacy Safety
Levels (NBD-SPSL) set forth in a single artifact (Appendix A). The single broadest objective for this
document is to offer a three-level security and privacy safety rating for a Big Data system. This highmedium-low simplification is offered in a list form (Appendix A), though it can be implemented through
semi-automated means; the latter are indicated but not proscriptive.

In addition, rather than embracing a maturity model, a safety engineering approach was chosen. The threats to safety and privacy in Big Data are sufficiently grave, and the teams involved in Big Data creation and analytics potentially so small, that a heavyweight, organizationally demanding framework seemed inappropriate for broad use. Other frameworks, both existing and under development, including some at NIST, address that space for Big Data and Internet of Things (IoT).

Since the initial version of this document, recent developments—some refocusing the practice of software engineering on specific components such as scalability, others form part of the steady march of technology—have impacted security and privacy. These recent developments include the following:

- Risks for intentional/unintentional breaches of privacy or discrimination against protected groups through machine learning and algorithmic reasoning;
- Need for decentralization of high-risk data, particularly authenticating resources;
- Adoption and integration of safety engineering practices;
- Security and safety engineering in DevOps (a clipped compound of software DEVelopment and information technology OPerationS) frameworks (DevSecOps);
- Security and privacy practices in agile development;
- Collaborative use of software-defined networks to partition and protect data, application realms, and physical infrastructure;
 - Integral use of domain, application, and utility models to guide security and privacy practices;
 - Blockchain and higher-granularity dynamic *smart contracts*;

164

165

166

167

168

169

170

171

172

187

188 189

190

191

192

193

194

195

196

199

- Cryptography and privacy-preserving methods;
 - Big Data forensics frameworks to be concurrently engineered, not constructed after-the-fact;
 - Increased use of attribute-based access control [10];
 - Providing a broadly usable self-assessment for conformance to Big Data security levels; and
 - Microservices, containers, and software-defined network as opportunity areas for security and privacy fabric enhancements.

207**1.3 REPORT PRODUCTION**

The NBD-PWG Security and Privacy Subgroup explored various facets of Big Data security and privacy to develop this document. The major steps involved in this effort included the following:

- Announce that the NBD-PWG Security and Privacy Subgroup is open to the public to attract and solicit a wide array of subject matter experts and stakeholders in government, industry, and academia;
- Identify use cases specific to Big Data security and privacy;
- Expand the security and privacy fabric of the NBDRA and identify specific topics related to NBDRA components; and
- Begin mapping of identified security and privacy use cases to the NBDRA.

This report is a compilation of contributions from the NBD-PWG. Since this is a community effort, there are several topics covered that are related to security and privacy. While an effort has been made to connect the topics, gaps may exist.

1.4 REPORT STRUCTURE

Following this introductory section, the remainder of this document is organized as follows:

- Section 2 discusses security and privacy issues particular to Big Data.
- Section 3 presents examples of security- and privacy-related use cases.
- Section 4 offers a preliminary taxonomy for security and privacy.
- Section 5 explores details of the NBDRA, Security and Privacy Fabric, cryptographic technologies, risk management, Big Data security modeling and simulation (ModSim), and security and privacy management.
- Section 6 introduces the topic of domain-specific security.
- Section 7 introduces the topic of audit and configuration management.
- Section 8 considers standards, best practices, and gaps with respect to security and privacy.
- Appendix A presents the draft NBD-SPSL.
- Appendix B introduces concepts developed in selected existing standards.
- Appendix C discusses considerations when implementing a mature security and privacy framework within a Big Data cloud ecosystem enterprise architecture.
- Appendix D expands the notion of actors and roles.
- Appendix E maps the security- and privacy-related use cases presented in Section 3 to the NBDRA components.
- Appendix F provides a high-level list of additional topics explored in Version 2.
- Appendix G contains the acronyms used in this document.
- Appendix H lists the references used in the document.

241 While each NBDIF volume was created with a specific focus within Big Data, all volumes are

- 242 interconnected. During the creation of the volumes, information from some volumes was used as input for
- 243 other volumes. Broad topics (e.g., definition, architecture) may be discussed in several volumes with each

202

203

204

205

206

208

209

210

211

212

213

214

215

216 217

218 219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234 235

236

237

238

239

- discussion circumscribed by the volume's particular focus. Arrows shown in Figure 1 indicate the main
- flow of information input and/or output from the volumes. Volumes 2, 3, and 5 (blue circles) are
- essentially standalone documents that provide output to other volumes (e.g., to Volume 6). These
- volumes contain the initial situational awareness research. During the creation of Volumes 4, 7, 8, and 9
- 248 (green circles), input from other volumes was used. The development of these volumes took into account
- work on the other volumes. Volumes 1 and 6 (red circles) were developed using the initial situationalawareness research and continued to be modified based on work in other volumes. The information from
- awareness research and continued to be modified based on work in other volumes. The mile
- these volumes was also used as input to the volumes in the green circles.

Figure 1: NBDIF Documents Navigation Diagram Provides Content Flow Between Volumes

2 BIG DATA SECURITY AND PRIVACY

Opinions, standards, and analysis on the topics of security and privacy are vast, with intensive work under
way in disciplines ranging from law and education to highly specialized aspects of systems engineering.
An overarching goal of the current work is to focus as narrowly as possible on Big Data security and
privacy concerns, while identifying related work elsewhere that can clarify or strengthen the present
undertaking.

2.1 WHAT IS DIFFERENT ABOUT BIG DATA SECURITY AND PRIVACY

The NBD-PWG Security and Privacy Subgroup began this effort by identifying a number of ways that security and privacy in Big Data projects can be different from traditional implementations. While not all concepts apply all the time, the following principles were considered representative of a larger set of differences:

- 1. Big Data projects often encompass heterogeneous components in which a single security scheme has not been designed from the outset.
- 2. Most security and privacy methods have been designed for batch or online transaction processing systems. Big Data projects increasingly involve one or more streamed data sources that are used in conjunction with data at rest, creating unique security and privacy scenarios.
- 3. The use of multiple Big Data sources not originally intended to be used together can compromise privacy, security, or both. Approaches to de-identify personally identifiable information (PII) that were satisfactory prior to Big Data may no longer be adequate, while alternative approaches to protecting privacy are made feasible. Although de-identification techniques can apply to data from single sources as well, the prospect of unanticipated consequences from the fusion of multiple datasets exacerbates the risk of compromising privacy.
- 4. A huge increase in the number of sensor streams for the Internet of Things (e.g., smart medical devices, smart cities, smart homes) creates vulnerabilities in the Internet connectivity of the devices, in the transport, and in the eventual aggregation.
- 5. Certain types of data thought to be too big for analysis, such as geospatial and video imaging, will become commodity Big Data sources. These uses were not anticipated and/or may not have implemented security and privacy measures.
- 6. Issues of veracity, context, provenance, and jurisdiction are greatly magnified in Big Data. Multiple organizations, stakeholders, legal entities, governments, and an increasing amount of citizens will find data about themselves included in Big Data analytics.
- 7. Volatility is significant because Big Data scenarios envision that data is permanent by default. Security is a fast-moving field with multiple attack vectors and countermeasures. Data may be preserved beyond the lifetime of the security measures designed to protect it.
- 8. Data and code can more readily be shared across organizations, but many standards presume management practices that are managed inside a single organizational framework. A related observation is that smaller firms, subject to fewer regulations or lacking mature governance practices, can create valuable Big Data systems. Lack of common data schemas can further inhibit consistent security and privacy practices.

The Security and Privacy Subgroup envisions further work to investigate the following list of potential
 differences between Big Data projects and traditional implementations with respect to security and
 privacy.

- Inter-organizational issues (e.g., federation, data licensing—not only for cloud);
 - Mobile/geospatial increased risk for deanonymization;
 - Change to life cycle processes (no *archive* or *destroy* due to Big Data);
 - Related sets of standards are written with large organizational assumptions but currently, Big Data can be created / analyzed with small teams;
 - Audit and provenance for Big Data intersects in novel ways with other aspects;
 - Big Data as a technology accelerator for improved audit (e.g., blockchain, noSQL, machine learning for information security enabled by Big Data), analytics for intrusion detection, complex event processing;
 - Transborder data flows present challenges to Big Data as it moves across national boundaries [11];
 - Consent (e.g., smart contracts) frameworks, perhaps implemented using blockchain;
 - Impact of real-time Big Data on security and privacy;
 - Risk management in Big Data moves the focus to inter-organizational risk and risks associated with analytics versus a simplified four-walls perspective; and
 - Of lesser importance, but relevant to how Big Data systems are often built, DevOps and agile processes inform the efforts of small teams (even single-developer efforts) in creation and fusion with Big Data.

2.2 OVERVIEW

Security and privacy measures are becoming ever more important with the increase of Big Datageneration and utilization and the increasingly public nature of data storage and availability.

The importance of security and privacy measures is increasing along with the growth in the generation, access, and utilization of Big Data. Data generation is expected to double every two years to about 40,000 exabytes in 2020. It is estimated that over one-third of the data in 2020 could be valuable if analyzed. (EMC2) Less than a third of data needed protection in 2010, but more than 40 percent of data will need protection in 2020. (EMC2)

Security and privacy measures for Big Data involve a different approach than for traditional systems. Big Data is increasingly stored on public cloud infrastructure built by employing various hardware, operating systems, and analytical software. Traditional security approaches usually addressed small-scale systems holding static data on firewalled and semi-isolated networks. The surge in streaming cloud technology necessitates extremely rapid responses to security issues and threats [12].

Big Data system representations that rely on concepts of actors and roles present a different facet to security and privacy. The Big Data systems should be adapted to the emerging Big Data landscape, which is embodied in many commercial and open source access control frameworks. These security approaches will likely persist for some time and may evolve with the emerging Big Data landscape. Appendix C considers actors and roles with respect to Big Data security and privacy.

Big Data is increasingly generated and used across diverse industries such as healthcare, drug discovery, finance, insurance, and marketing of consumer-packaged goods. Effective communication across these diverse industries will require standardization of the terms related to security and privacy. The NBD-PWG Security and Privacy Subgroup aims to encourage participation in the global Big Data discussion with due recognition to the complex and difficult security and privacy requirements particular to Big Data.

- 340 There is a large body of work in security and privacy spanning decades of academic study and
- 341 commercial solutions. While much of that work may be applicable for protection of Big Data, it may have
- been produced using different assumptions. One of the primary objectives of this document is to

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314 315

343 understand how Big Data security and privacy requirements arise out of the defining characteristics of

Big Data and related emerging technologies, and how these requirements are different from traditional
 security and privacy requirements.

The following list is a representative—though not exhaustive—list of differences between what is new for Big Data security and privacy and those of other big systems:

- Big Data may be gathered from diverse end points. Actors include more types than just traditional providers and consumers—data owners, such as mobile users and social network users, are primary actors in Big Data. Devices that ingest data streams for physically distinct data consumers may also be actors. This alone is not new, but the mix of human and device types is on a scale that is unprecedented. The resulting combination of threat vectors and potential protection mechanisms to mitigate them is new.
 - Data aggregation and dissemination must be secured inside the context of a formal, understandable framework. The availability of data and transparency of its current and past use by data consumers is an important aspect of Big Data. However, Big Data systems may be operational outside formal, readily understood frameworks, such as those designed by a single team of architects with a clearly defined set of objectives. In some settings, where such frameworks are absent or have been unsystematically composed, there may be a need for public or walled garden portals and ombudsman-like roles for data at rest. These system combinations, and unforeseen combinations, call for a renewed Big Data framework.
 - Data search and selection can lead to privacy or security policy concerns. There is a lack of systematic understanding of the capabilities that should be provided by a data provider in this respect. A combination of well-educated users, well-educated architects, and system protections may be needed, as well as excluding databases or limiting queries that may be foreseen as enabling re-identification. If a key feature of Big Data is, as one analyst called it, "the ability to derive differentiated insights from advanced analytics on data at any scale," the search and selection aspects of analytics will accentuate security and privacy concerns [13].
 - Privacy-preserving mechanisms are needed for Big Data, such as for PII. The privacy and integrity of data coming from end points should be protected at every stage because there may be disparate, potentially unanticipated processing steps between the data owner, provider, and data consumer. End-to-end information assurance practices for Big Data are not dissimilar from other systems but must be designed on a larger scale.
 - Big Data is pushing beyond traditional definitions for information trust, openness, and responsibility. Governance, previously consigned to static roles and typically employed in larger organizations, is becoming an increasingly important intrinsic design consideration for Big Data systems.^a
 - Legacy security solutions need to be retargeted to the infrastructural shift due to Big Data. Legacy security solutions address infrastructural security concerns that persist in Big Data, such as authentication, access control, and authorization. These solutions need to be retargeted to the underlying Big Data High Performance Computing (HPC) resources or completely replaced. Oftentimes, such resources can face the public domain, and thus necessitate vigilant security monitoring methods to prevent adversarial manipulation and to preserve integrity of operations.
- Information assurance (IA) and disaster recovery (DR) for Big Data Systems may require unique and emergent practices. Because of its extreme scalability, Big Data presents challenges for IA and DR practices that were not previously addressed in a systematic way. Traditional backup and replication methods may be impractical for Big Data systems. In addition, test, verification, and provenance assurance for Big Data replicas may not complete in time to meet temporal requirements that were readily accommodated in smaller systems.

^a Reference to NBDRA Data Provider.

• Big Data creates potential targets of increased value. The effort required to consummate system attacks will be scaled to meet the opportunity value. Big Data systems will present concentrated, high-value targets to adversaries. As Big Data becomes ubiquitous, such targets are becoming more numerous—a new information technology (IT) scenario in itself.

• Risks have increased for deanonymization and transfer of PII without consent traceability. Security and privacy can be compromised through unintentional lapses or malicious attacks on data integrity. Managing data integrity for Big Data presents additional challenges related to all the Big Data characteristics, but especially for PII. While there are technologies available to develop methods for de-identification, some experts caution that equally powerful methods can leverage Big Data to re-identify personal information. For example, the availability of unanticipated datasets could make re-identification possible. Even when technology can preserve privacy, proper consent and use may not follow the path of the data through various custodians. Because of the broad collection and set of uses of Big Data, consent for collection is much less likely to be sufficient and should be augmented with technical and legal controls to provide auditability and accountability for use [14], [15].

• There are emerging risks in open data and Big Data science. Data identification, metadata tagging, aggregation, and segmentation—widely anticipated for data science and open datasets— if not properly managed, may have degraded veracity because they are derived and not primary information sources. Retractions of peer-reviewed research due to inappropriate data interpretations may become more commonplace as researchers leverage third-party Big Data.

2.3 SECURITY AND PRIVACY IMPACTS ON BIG DATA CHARACTERISTICS

Volume, velocity, variety, and variability are key characteristics of Big Data and commonly referred to as the Vs of Big Data. Where appropriate, these characteristics shaped discussions within the NBD-PWG Security and Privacy Subgroup. While the Vs provide a useful shorthand description used in the public discourse about Big Data, there are other important characteristics of Big Data that affect security and privacy, such as veracity, validity, and volatility. These elements are discussed below with respect to their impact on Big Data security and privacy.

418 **2.3.1 VOLUME**

The volume of Big Data describes the size of the dataset. In Big Data parlance, this typically ranges from gigabytes (GB) to exabytes and beyond. As a result, the volume of Big Data has necessitated storage in multitiered storage media. The movement of data between tiers has led to a requirement of cataloging threat models and a surveying of novel techniques. The threat model for network-based, distributed, autotier systems includes the following major scenarios: confidentiality and integrity, provenance, availability, consistency, collusion attacks, roll-back attacks, and recordkeeping disputes [16].

A flip side of having volumes of data is that analytics can be performed to help detect security breach
events. This is an instance where Big Data technologies can fortify security. This document addresses
both facets of Big Data security.

428 **2.3.2 VELOCITY**

Velocity describes the rate of data flow. The data usually arrives in batches or is streamed continuously.
As with certain other non-relational databases, distributed programming frameworks were not developed
with security and privacy in mind [16]. Malfunctioning computing nodes might leak confidential data.

432 Partial infrastructure attacks could compromise a significantly large fraction of the system due to high

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

levels of connectivity and dependency. If the system does not enforce strong authentication amonggeographically distributed nodes, rogue nodes can be added that can eavesdrop on confidential data.

435 **2.3.3 VARIETY**

436 Variety describes the organization of the data—whether the data is structured, semi-structured, or unstructured. Retargeting traditional relational database security to non-relational databases has been a 437 438 challenge [12]. These systems were not designed with security and privacy in mind, and these functions are usually relegated to middleware. Traditional encryption technology also hinders organization of data 439 440 based on semantics. The aim of standard encryption is to provide semantic security, which means that the 441 encryption of any value is indistinguishable from the encryption of any other value. Therefore, once 442 encryption is applied, any organization of the data that depends on any property of the data values 443 themselves are rendered ineffective, whereas organization of the metadata, which may be unencrypted, 444 may still be effective.

445 An emergent phenomenon, introduced by Big Data variety that has gained considerable importance is the 446 ability to infer identity from anonymized datasets by correlating with apparently innocuous public 447 databases. The inference process is also aided by data volume, but the diversity of data sources is the 448 primary cause here. While several formal models to address privacy-preserving data disclosure have been 449 proposed [17], [18], in practice, sensitive data is shared after sufficient removal of apparently unique 450 identifiers, and indirectly identifying information by the processes of anonymization and aggregation. 451 This is an ad hoc process that is often based on empirical evidence [19] and has led to many instances of 452 deanonymization in conjunction with publicly available data [20]. Although some laws/regulations 453 recognize only identifiers per se, laws such as the Health Insurance Portability and Accountability Act 454 (HIPAA: the statistician provision), the Family Educational Rights and Privacy Act (FERPA), and 45 455 Code of Federal Regulations (CFR) 46 recognize that combinations of attributes, even if not the 456 identifiers by themselves, can lead to actionable personal identification, possibly in conjunction with 457 external information.

458 **2.3.4 VERACITY**

459 Big Data veracity encompass several sub-characteristics as described below.

Veracity encompasses information assurance for the methods through which information was collected.
 For example, when sensors are used, traceability, calibration, version, sampling, and device configuration are needed. See reference [21] for a deeper discussion. In the NBDIF, veracity may be seen as a technical attribute required for provenance, just as confidentiality is a technical attribute required for privacy.

"Veracity refers to the accuracy of the data, and relates to the vernacular *garbage-in, garbage-out*description for data quality issues in existence for a long time. If the analytics are causal, then the quality
of every data element is very important. If the analytics are correlations or trending over massive volume
datasets, then individual bad elements could be lost in the overall counts and the trend would still be
accurate. Data quality concerns, for the most part, are still vitally important for Big Data analytics. This
concept is not new to Big Data, but remains important." (*NBDIF: Volume 1, Definitions*)

470 **Provenance:** Big Data frequently moves across individual boundaries to groups and communities of 471 interest, and across state, national, and international boundaries. Provenance addresses the problem of 472 understanding the data's original source, such as through metadata, though the problem extends beyond 473 metadata maintenance. Also, as noted before, with respect to privacy policy, additional context is needed 474 to make responsible decisions over collected data, which may include the form of consent, intended use, 475 temporal connotations (e.g., Right to be Forgotten), or broader context of collection. The additional 476 context could be considered a type of provenance, broadly, but goes beyond the range of provenance 477 information typically collected in production information systems. Various approaches have been tried, 478 such as for glycoproteomics [22], but no clear guidelines vet exist.

- 479 A common understanding holds that provenance data is metadata establishing pedigree and chain of
- 480 custody, including calibration, errors, missing data (e.g., time stamp, location, equipment serial number,
 481 transaction number, and authority).
- 482 Some experts consider the challenge of defining and maintaining metadata to be the overarching 483 principle, rather than provenance. The two concepts, though, are clearly interrelated.
- *Curation,* an integral concept, includes processes to improve the veracity of information, and is related to
 which binds veracity and provenance to principles of governance, as well as to data quality assurance.
 Curation, for example, may improve raw data by fixing errors, filling in gaps, modeling, calibrating
 values, and ordering data collection.
- *Transparency* is succinctly defined in ISO 16759:2013 [23] as "open, comprehensive, *accessible*, clear
 and understandable presentation of information." This definition reflects a general purpose, lay
 understanding of transparency. The definition is one among several important dimensions of a
 transparency framework.
- More detail is specified in this NBDIF framework. Big Data transparency is discussed in depth in Section
 2.4.8. Additional context is usually required as data may be aggregated or disaggregated across and
 between Big Data systems. Application of algorithmic processing on data creates additional
 responsibilities for data owners. Changes in ownership, governance and system configurations over time
 are an integral part of Big Data security and privacy fabric. In addition to the System Communicator,
 NBDIF support for transparency is buttressed by optional *System Learner Models* and *Interaction Profiles*.
- 499 *Validity* refers to the usefulness, accuracy, and correctness of data for its application. Traditionally, this has been referred to as data quality. In the Big Data security scenario, validity refers to a host of 500 501 assumptions about data from which analytics are being applied. For example, continuous and discrete 502 measurements have different properties. The field gender can be coded as 1=Male, 2=Female, but 1.5 503 does not mean halfway between male and female. In the absence of such constraints, an analytical tool 504 can make inappropriate conclusions. There are many types of validity whose constraints are far more 505 complex. By definition, Big Data allows for aggregation and collection across disparate datasets in ways 506 not envisioned by system designers.
- 507 "While the data may have high veracity (accurate representation of the real-world processes that created 508 it), there are times when the data is no longer valid for the hypothesis being asked. For example, in a fast-509 changing environment such as the stock market, while historical price data has high veracity, it is not 510 valid for certain types of analysis that rely upon real-time pricing information. In many cases, there is a 511 time window before which the data is no longer valid for analysis. This concept is not new to Big Data, 512 but remains important." (*NBDIF: Volume 1, Definitions*)
- Fraud. Invalid uses of Big Data can be malicious or unintended. Several examples of *invalid* uses for Big Data have been cited. Click fraud, conducted on a Big Data scale, but which can be detected using Big Data techniques, has been cited as the cause of perhaps \$11 billion in wasted advertisement spending [24]. A software executive listed seven different types of online ad fraud, including nonhuman-generated impressions, nonhuman-generated clicks, hidden ads, misrepresented sources, all-advertising sites, malicious ad injections, and policy-violating content such as pornography or privacy violations [25]. Each of these can be conducted at Big Data scale and may require Big Data solutions to detect and combat.
- 520 While not malicious, some trend-producing applications that use social media to predict the incidence of 521 flu have been called into question. A study by Lazer et al. [26] suggested that one application
- 522 overestimated the prevalence of flu for 100 of 108 weeks studied. Careless interpretation of social media
- 523 to answer questions not related to the reason the data was collected is possible when attempts are made to
- 524 characterize or even predict consumer behavior using imprecise meanings and intentions for *like* and
- 525 *follow*. Researchers have also identified big data as both a palliative tool and a contributing factor to fake

news (e.g., Vargo, Guo, Amazeen, 2018). These examples show that what passes for *valid* Big Data can
be innocuously lost in translation, misinterpreted, or intentionally corrupted to malicious intent.

528 2.3.5 VOLATILITY

Volatility of data—how data structures change over time—directly affects provenance. Big Data is
transformational in part because systems may produce indefinitely persisting data—data that outlives the
instruments on which it was collected; the architects who designed the software that acquired, processed,
aggregated, and stored it; and the sponsors who originally identified the project's data consumers.

Volatility is related to governance. Roles are time-dependent in nature. For instance, the role associated
with "admin" may change when system responsibilities are reassigned. Security and privacy requirements
shift when systems undergo such transitions. In fact, governance can shift as responsible organizations
merge or even disappear.

While research has been conducted into how to manage temporal data (e.g., for satellite instrument data in
IEEE e-Science) [27], there are few standards beyond simplistic time stamps and even fewer common
practices available as guidance. To manage security and privacy for long-lived Big Data, data temporality
should be taken into consideration.

For example, in health care, temporal data can be critical. Consider the following:

- Permissions for healthcare proxy in malpractice litigation;
- Administration dates and symptom onset for clinical trials;
- Medical records sharing across enterprises when carriers or employers change policies;
- Identification of high-cost patient populations; and
- Predictive analytics for adverse treatment and lifestyle choice events.

Increased adoption of big data-enabled clinical analytics includes numerous use cases in which patient safety, security or privacy must be considered. Researchers (e.g., see Bates, Saria, Ohno-Machado, Shah, Escobar, 2014) warn that these "findings have implications for regulatory oversight [and] ways to address privacy concerns."

2.4 EFFECTS OF EMERGING TECHNOLOGY ON BIG DATA SECURITY AND PRIVACY

2.4.1 CLOUD COMPUTING

Many Big Data systems will be designed using cloud architectures. Any strategy to achieve proper access control and security risk management within a Big Data cloud ecosystem enterprise architecture must address the complexities associated with cloud-specific security requirements triggered by cloud characteristics, including, but not limited to, the following:

- Broad network access;
- Decreased visibility and control by consumers
- Dynamic system boundaries and commingled roles and responsibilities between consumers and providers
- Multi-tenancy;
- Different organizations are responsible for different parts of one system;
- Data residency;
- Measured service; and
- Order-of-magnitude increases in scale (e.g., on demand), dynamics (e.g., elasticity and cost optimization), and complexity (e.g., automation and virtualization).

541

542

543

544

545

546

547

548 549

550

551

552

553 554

555

556

557

558

559

560

561

562

563

564

565

566

568 These cloud computing characteristics often present different security risks to an organization than the 569 traditional IT solutions, altering the organization's security posture.

570 To preserve security when migrating data to the cloud, organizations need to identify all cloud-specific,

571 risk-adjusted security controls or components in advance. It may be necessary in some situations to

572 request from the cloud service providers, through contractual means and service-level agreements, that all

573 required security components and controls be fully and accurately implemented. A further discussion of

574 internal security considerations within cloud ecosystems can be found in Appendix C.

575 Even though cloud computing is driving innovation in technologies that support Big Data, some Big Data 576 projects are not in the cloud. However, because of the resurgence of the cloud, considerable work has 577 been invested in developing cloud standards to alleviate concerns over its use. A number of organizations, 578 including NIST, are diligently engaged in standards work around cloud computing. Central among these 579 for Big Data security and privacy is NIST SP 800-144 [28], which included a then-current list of related 580 standards and guides, which is reproduced in Appendix C. In the EU, the European Telecommunications 581 Standards Institute (ETSI) produced the Cloud Standards Coordination Report [29]. More recently, the 582 Defense Information Systems Agency (DISA) at the U.S. Department of Defense (DoD) published its 583 Cloud Security Requirements Guide [30], which covers DoD projects through the secret level.

584 On the privacy front, when the Federal Chief Information Officer (CIO) Council published 585 recommendations for Digital Privacy Controls [31], Big Data received a mention in a footnote:

"The potential for re-identifying, tracing, or targeting individuals may arise from the application of predictive analyses and other "data mining" techniques to "big data" (i.e., the increasing availability of vast amounts of stored and streaming digital information). See, e.g., NIST Data Mining Portal (describing ongoing programs, projects, and workshops), http://www.nist.gov/data-mining-portal.cfm. Agencies should ensure that their PIAs for digital services and programs consider whether data mining could be used to identify, trace or target individuals, and be aware of statutory reporting obligations when engaged in data mining for the detection of criminal or terrorist activities. See GAO, Data Mining; Agencies Have Taken Key Steps to Protect Privacy in Selected Efforts, but Significant Compliance Issues Remain (Aug. 2005) (noting need for agencies to provide proper notice and perform PIAs), http://www.gao.gov/new.items/d05866.pdf; Federal Agency Data Mining Reporting Act of 2007, 42 U.S.C. 2000ee3 (requiring the reporting to Congress of pattern-based queries, searches, or analyses of one or more databases by or on behalf of the Federal

Government to discover or locate a predictive pattern or anomaly indicative of terrorist or criminal activity on the part of any individual or individuals) (p. 10)."

2.4.2 BIG DATA SECURITY AND PRIVACY SAFETY LEVELS

Following the practice of standards work elsewhere, this document offers guidance to enterprises wishing
to commit to improving security practices. During work on Version 2, an understanding emerged from
discussions within the Security and Privacy Subgroup of the links between safety and security. This link
is increasingly noted in the literature. For example, Draeger noted [32]:

"The close connection between safety and security has led to a growing interest in a combined handling of these two areas of research ... The conditions enabling a combined safety and security analysis are identified and used as starting point of the elaboration. Utilizing these properties, a theoretical framework unifying key aspects of both safety and security is developed, whereby a model-based approach is chosen [32]."

610 611

613 The Security and Privacy Subgroup proposes the NIST Big Data Security and Privacy Safety Levels

(NBD-SPSL), which contains three levels of conformance to security safety practices for Big Data 614

615 security and privacy. The initial development work on the NBD-SPSL is presented in Appendix A and

616 contains some Big Data security and privacy elements with details of the three Big Data security and 617 privacy safety levels. When paired with a checklist and recommended practices, organizations can self-

618 designate their systems as conforming to a level of the NBD-SPSL, as identified in this report.

619 That safety engineering has a clear counterpart in Big Data security and privacy can be seen by 620 considering the fabric of safety that encompasses commercial and military aviation. Aviation is a complex 621 milieu of human, mechanical, and geospatial aspects, yet aviation has achieved extraordinary safety 622 levels.

623 A closer look at the analogy between the aviation safety fabric and Big Data security and privacy safety 624 considerations is illustrative. Taken as a whole, the aviation industry (e.g., aircraft and engine 625 manufacturers, Federal Aviation Administration [FAA], airports, airline maintenance, airline crews, travel 626 agents, Transportation Security Administration [TSA]) is one the oldest and most mature Big Data 627 verticals. From the earliest days of automaton, aviation has utilized computer networks and the most 628 modern testing equipment as early adopters. Aviation is distributed globally. Every aircraft down to nuts 629 and bolts is registered by tail number and then monitored for safety incidents throughout its life. Every 630 significant line replaceable unit is numbered and tracked during its life cycle, representing comprehensive 631 traceability.^b Every instrument is recalibrated periodically. Every licensed pilot is periodically checked 632 out medically and for proficiency. Crews are scheduled within strict safety rules. Currently, all the 633 information is stored in computers federated around the globe. Many terabytes stream from commercial 634 aircraft every day, to ground computers [33]. Currently, ground controllers record much flight data. The 635 digital data is stovepiped and networked globally.

636 These aviation industry concepts and practices of data collection, traceability, parts registration, and safety monitoring can be translated to analogous elements of Big Data systems. The state of the art in 637 638 aviation Big Data for operational analytics is dynamic and expanding [34]. Someday, future Big Data 639 generating elements, functional components, and other pieces of the Big Data ecosystem might be as 640 closely monitored as aircraft, flights, pilots, and air crews. At present, most nascent cyber-physical systems (CPSs), including IoT items, are very far removed from a regulated and enforced Big Data-driven 642 environment. Much work remains before artificial intelligence (AI) systems and Big Data achieve 643 acceptable security safety levels.

644 Extensive literature surveys have demonstrated an intimate connection between "methods, models, tools 645 and techniques" employed in safety engineering and "transposed to security engineering, or vice versa [35]." The Piètre-Cambacédès & Bouissou study observed the following. 646

> "A careful screening of the literature (this paper contains 201 references) made it possible to identify cross-fertilizations in various fields such as architectural concepts (e.g., defense in depth, security or safety kernels), graphical formalisms (e.g., attack trees), structured risk analyses or fault tolerance and prevention techniques" [35] (p. 110)

652 The time for a Big Data security and privacy safety framework has arrived—to protect not only the public 653 but also its practitioners enmeshed in a complex web of engineering and marketing of Big Data. The 654 proposed NBD-SPSL is intended to serve as an accessible first step.

641

647

648

649

650

^b Some historians believe that the Titanic sank because some of the rivets used were substandard, which could be proven by tracing the rivets to their original point of manufacture. http://www.bbem.com/military-hardwaretraceability

655 2.4.3 INTERNET OF THINGS AND CPS

The Big Data security and privacy community has identified relevant intersections with work in IoT
 security and crosswalks to related standards efforts in those communities at NIST [36] and elsewhere.

658 Methods to secure individual IoT devices fall outside the scope of the NBDRA; however, it is worthwhile 659 to note that IoT devices present unique security challenges due to limited hardware capability, rapid 660 market evolution, and lack of a widely used security standard. While some progress has been made with 661 industrial devices [37], [38], consumer device manufactures have no regulatory or market incentive to 662 secure their devices.

Until IoT hardware reaches sufficient maturity to allow TLS communication and support other
cryptographic authentication mechanisms, IoT data required for a BDRA will typically be collected under
a single provider per device type or class. Volume and Velocity for an individual IoT device are low, due
to power and processing constraints, though in an aggregate provider, very high volumes are easily
realized. Veracity of this provider is strongly dependent on hardware and protocol implementation details,
which might be opaque to relying Big Data consumers.

IoT aggregate NBDRA Data Providers should authenticate individual IoT device connections prior to
accepting data wherever possible. While statistical analytics might detect a security breach, relying on this
alone is undesirable as it lacks means to distinguish between individual and compromised devices –
resulting in a complete loss of functionality in the event of a breach.

673 2.4.4 MOBILE DEVICES AND BIG DATA

On its face, mobile devices are simply an evolution of decades-old concepts in distributed computing.
While this is undeniable, there are certainly lessons in distributed computing that must be updated for
current security concerns. Mobile must be viewed as a critical element of Big Data.

Although mobile spans many facets of computer security, there are several reasons for addressing mobile in any comprehensive Big Data security and privacy checklist, including the following:

- Mobile devices challenge governance and controls for enterprises, especially in BYOD (bring your own device) environments. As a result, specialized security approaches enabling mobile-centric access controls have been proposed [39].
- Some web-based and desktop applications may be migrated to mobile versions without adequate security and privacy protections.
- Mobile devices are less subject to physical security protection, yet they can access Big Data systems as well as any desktop.
- Many organizations lag in the control of mobile device security, preferring to focus on server and desktop security, which has a longer history and is more profitable for tools suppliers.
- Mobile devices often disclose geospatial data, which can be used in Big Data settings to enrich other datasets, and even to perform deanonymization.

2.4.5 INTEGRATION OF PEOPLE AND ORGANIZATIONS

The Security and Privacy Fabric did not integrate the ways in which people and organizations impact BigData workflow and contribute to the strength or weakness of a Big Data system's security and privacy.

To communicate across organizations, eXtensible Markup Language (XML)-based solutions should be considered. For example, Lenz and Oberweis suggested using an XML variant of Petri nets [40]. They point out that, "Due to the fast growth of Internet-based electronic business activities, languages for modeling as well as methods for analyzing and executing distributed business processes are becoming

697 more and more important. Efficient inter-organizational business processes in the field of ecommerce

677

678

679

680

681

682

683 684

685 686

687 688

689

require the integration of electronic document interchange and inter-organizational process management[40]." (p. 243)

700 Similarly, Hypertext Markup Language (HTML) microdata can be used to transfer or house information

exchanged across organizational boundaries [41]. Microdata has been extended for use with Resource
 Description Framework (RDF) [42].

The Security and Privacy Subgroup looked at a body of research that addressed concerns for digital
systems sharing across organizations. The scope is considerable. Information sharing is key to exchanges
in finance, supply chain, healthcare, emergency services, and defense [43].

That said, in mature systems such as the Enterprise Data Management (EDM) Council's Financial
Industry Business Ontology (FIBO; <u>https://www.edmcouncil.org/financialbusiness</u>), the issues of Big
Data security and privacy, despite its regulatory facets, may be understated. Additional work is needed to
ensure that such frameworks address security and privacy knowledge representation—thus permitting
automated reasoning about some aspects of a Big Data system's level of compliance, as well as
facilitating comparisons across Big Data security and privacy frameworks by deployment of a unifying
model.

713 Various Institute of Electrical and Electronics Engineers (IEEE) and ISO standards address

organizational, life cycle, and systems development processes (e.g., ISO 15288 [44]). It remains as an

open task to consider if and how such standards affect Big Data security and privacy and whether

716 improvements are needed to enhance Big Data security and privacy safety.

717 2.4.6 System Communicator

Big Data systems that collect, store, manage, or transform data considered in need of protection (e.g., data
called out as payment card industry [PCI]) should be designed with accessible portals that enable classes
of persons to review their own data, direct its removal or extraction, and to understand how it is being
used.

The System Communicator is one of the elements in the NBD-SPSL. Additional work is needed to identify how System Communicator requirements should be crafted to meet both usability objectives (e.g., for public PII) and interoperability requirements to work with legacy as well as greenfield Big Data applications.

By providing a System Communicator capability that can be accessed by all stakeholders—potentially
including software agents, as well as human stakeholders—Big Data systems can be made more
transparent, responsive to citizen- or stakeholder-initiated data correction, and offer feature continuity for
such capabilities as data and code moves between organizations.

730 2.4.7 ETHICAL DESIGN

Journalists, as well as technologists, have decried the apparent lack of ethical standards in Big Data. The incorporation of ethical, and often technical, guidelines is part of ISO 27500 [45] and a suite of IEEE working groups, especially P7000 [46], P7002 [47], P7003 [48], and P7007 [49]. As the work of these teams proceed, features and capabilities that enhance the Security and Privacy Fabric and add to the NBD-SPSL will surface. The subsections below touch on a few aspects of ethical design.

736 2.4.7.1 Self-Cleaning Systems

737 Some reports suggest that as much as 20% of the data in global firms is not fully reliable. This citation is

repeated in a proposal by Khayyat et al. [50], in which the case is made for self-cleaning Big Data

range systems. The presence of erroneous or misleading information, such as citizens who are mistakenly

placed on terrorist watch lists or falsely connected to other criminal activities, is a Big Data security and

722

723

724

privacy problem. Their work and other research [51] reflect increased attention to data quality, data

742 curation, and its associated risk.

743 2.4.7.2 The Toxic Data Model

In other fields of study, *toxicity* is employed as a construct to help represent risk associated with a

material or process. An analogous approach to high-risk data is suggested in Appendix A. Data elements

should be assessed based on their toxicity. For example, a U.S. passport number or an HIV diagnosis on an electronic health record could be said to have high toxicity. A standard, based on the well-established

748 Material Safety Data Sheets, should be employed for data elements in Big Data systems.

For instance, the U.S. Department of Labor, Occupational Safety and Health Administration promulgatesa standard communication format for chemical hazards

(https://www.osha.gov/Publications/OSHA3514.html). Future standards could specify the content and
 format that should accompany Big Data elements shared across and within enterprises. Recipients of a
 data communications might decline to accept certain types of Big Data, or recognize what changes would
 be required in their systems and processes to accommodate *toxic* data. System and process changes, for

riformation-intensive organizations such as the U.S. Census Bureau or social media firms, could prove
 essential to their mission.

757 2.4.7.3 Big Data Security Safety Annotation

Federation is key to information supply chains. Most of the world's global enterprises and governments
rely upon extensive information system supply chains, yet managing these to ensure security and privacy
is challenging. A review of currently available approaches is needed. One approach is seen in marketplace
notions (e.g., closed clearinghouses, federation as an engineering principle, InCommon, GENI.net,
Organization for the Advancement of Structured Information Standards [OASIS] IDTrust). However,
sometimes there will also be requirements for out-of-band guest identity, such as for emergencies,
regulatory, or other exceptional circumstances.

765 2.4.7.4 Big Data Trust and Federation

Federation and trust are aspects of information sharing. These are sometimes explicit, sometimes not. The
level of detail exchanged between organizations varies wildly. Some limit themselves to a one-off
exchange of keys. One research team has suggested the use of *transactional memory* managed through the
use of cloud brokers [52].

The scope of this document is necessarily limited, whereas there are entire disciplines within computingdedicated to various aspects of federation.

Middleware, message-passing, and enterprise service bus remain important concepts for Big Data. For
 example, in SE-CLEVER investigators wanted to address issues raised by the Cloud Security Alliance in
 their Extensible Messaging and Presence Protocol (XMPP)-based middleware [53].

Enterprises large and small will increasingly automate functions and share information, creating new and varied Big Data sources. Even for relatively mature organizations, federation across a supply chain or customer federation multiplies threats while governance, risk management, and compliance (GRC) is weakened. That weakening is a necessary byproduct of cross-organization sharing, but still a risk. While shared standards, mutual open dialog, and other socialization and training techniques matter, systems must be put in place that operate across organizational boundaries.

781 2.4.7.5 Orchestration in Weak Federation Scenarios

Orchestration design patterns may be needed for weak federation scenarios. How these interact with
 broad orchestration for Big Data (e.g., Kubernetes, Topology and Orchestration Specification for Cloud

784 Applications [TOSCA]) requires further study.

785 2.4.7.6 Consent and the Glass-Breaking Scenario

The *glass-breaking* scenario is important to Big Data security and privacy because it identifies the need
 for systematically framed exceptions to security and privacy hardening.

In healthcare standards such as Health Level Seven (HL7) Fast Healthcare Interoperability Resources
(FHIR; <u>http://hl7.org/fhir/</u>), glass-breaking may be needed to save a life in an emergency. The emergency
itself occasions a different security and privacy context, which a Big Data application may need to
recognize.

The importance of geospatial Big Data for emergency management is acknowledged [54], [55], and the
 absence of consent to single out disabled individuals in a high-rise fire point to nuanced rules around
 information access, as well as the velocity of the underlying decision support infrastructure.

An abuse-resistant glass-break mechanism for time-critical situations (such as fires, medical emergencies)
across multiple Providers may require machine learning, as policy reconfiguration for even a highly
skilled human operator would take too long, or be too easy to bypass. The mechanism must have strong
authentication and non-repudiation, with the identity, location, and motive of the initiator preserved
permanently through a cryptographic mechanism (such as blockchain).

2.4.8 BIG DATA TRANSPARENCY

For Big Data systems, a layered approach is required to provide a safe, scalable, composable security and privacy transparency fabric. The NBDIF specifies three levels of voluntary conformance to Big Data system transparency:

 Transparency Level 1 Conformance: Level 1 utilizes the System Communicator to provide online explanations to users and stakeholders. These explanations, subject to other security and privacy guidelines and constraints, include explanation of the output of system processes to include, most commonly, a natural language explanation understandable by identified target user populations. "User populations" roughly follow the definition of roles in the ISO/IEC 27000 series family of information security standards [56]. Transparency contracts and explanations shall be retained with the system, along with a record of what has been disclosed, accepted or rejected. Granularity shall be sufficient to meet the needs of the identified user populations. This shall be achieved through NBDIF Interaction Profiles at individual user granularity. Accompanying disclosure records may, for instance, include information requested but not provided due to system constraints or regulation, but Interaction Profiles are recommended at Level 1. Interaction Profiles will likely include elements derived from baselines and profiles specified in the NIST Cybersecurity Framework [57] (SP 800-53B Revision 5 control baselines [58]).

2. **Transparency Level 2 Conformance:** Level 2 specifies a domain-specific system model, along with System Communicator protocols included in Transparency Level 1. Each system domain has potentially unique roles, attributes, phases, elements and dependencies which must be modeled. In addition, Big Data Interaction Profiles are mandatory at Level 2 and shall include a full, privacy-preserving record of all transparency-related transactions with a Big Data system. Interaction Profile integrity may be ensured using Big Data techniques discussed in this document, such as blockchain. Level 2 conformance shall also include a System Learner Model for individual users [59]. This model "teaches" what a Big Data system does, what risks may be

800 801

802 803

804

805

806

807

808 809

810

811

812 813

814

815

816

817

818

819

820

821

822

823

824

involved, what impacts on privacy or security should be considered, how data may be shared and "learns" more. A continuously evolved "System Learner model" is preserved and tightly linked to the domain model of the application. While privacy is a key part of the model, the security and privacy fabric must include other facets of Big Data systems as they evolve over time and touch other aspects of their interactions with users or systems.

3. **Transparency Level 3 Conformance:** Level 3 incorporates Level 2 practices plus digital ontologies for the associated domains and learner models. Automated reasoning systems at Level 3 allow for fully traceable explanations that are system-, learner-, feature-, time- and domain-dependent. Level 3 conformance may require linkage to a natural language processing subsystem. The System Learner Models and Interaction Profiles shall permit automated reasoning, such as that specified in ISO 18629, and automation of processes outlined in NIST SP 800-162 [10] for attribute-based security. The additional capabilities enable automated escalation of system processes based upon elevated risk, safety, adjustment of user interfaces for impaired users or children, automation of notification and alerting, and ease of interoperability with legacy systems such as metadata management or compliance engines.

In the NBDPWG Big Data framework, "information" has a broader meaning that is normally associated
with systems design. Hence, transparency has a broader implication as well. For instance, transparency
may include anthropological elements [60]. Empirical methods may be needed to provide for
measurement of transparency effectiveness, so that tuning and improvements can evolve with Big Data
systems deployments in DevOps. They may incorporate empirically based *effective information design*[61]. These capabilities in turn demand measurement data which contributes both to a Big Data system's
purview, but also enlarges the scope of the security and privacy fabric.

848 Transparency may have necessary versus sufficient considerations. For instance, regulators may mandate
849 that lenders explain why credit is denied, even though credit decisions may be fully or partially supported
850 by algorithms (e.g., Fair Credit Reporting Act, 15 U.S.C. § 1681 [62]). Some Big Data transparency
851 considerations are outlined below.

- It is important to understand that data may consist of information that is fully or partially anonymized.
- It is important to recognize that data sources can include current but also legacy data sources (e.g., earlier versions of IoT devices) or systems.
- Promises regarding transparency and privacy must be retained across enterprises and original system architects.
- When data is shared, transparency and privacy data must travel with it at equivalent or better provenance and granularity.
- Stakeholders, users and data providers must be provided with risk as part of transparency. ISO 16759:2013 [23] does not address risk. Risk is highly domain-specific, thus additional metadata and modeling data will likely accompany mechanisms that support transparency.
- Transparency references should be consulted. Transparency is further discussed in NIST SP 800-37 Rev 2 [63], which asserts one goal for the NIST Risk Management Framework as "To support consistent, informed, and ongoing authorization decisions (through *continuous monitoring*), reciprocity, and the *transparency* and *traceability* of security and privacy information" ([63] Chapter 1, p. 3, December 2018, italics added). Added challenges associated with the information supply chain were also highlighted: "Effective risk decisions by authorizing officials depend on the *transparency* of controls selected and implemented by external providers and the quality and efficacy of the assessment evidence produced by those providers. *Transparency* is essential to achieve the assurance necessary to ensure adequate protection for organizational asset" ([63] Appendix G, italics added). The NBDIF specifies guidelines to support transparency, traceability, and monitoring of data, algorithms, ownership, and relevant system attributes.

• Audit records (e.g., when transparency was disclosed, to whom was it disclosed, what was disclosed) shall be retained beyond individual system life cycle design patterns. System life cycle status can be a critical component of transparency disclosures.

- Transparency should be provided for withdrawal of consent. For instance, compliance with GDPR specifies a right to be forgotten, but there will be practical or system limitations. Full transparency would include what data has been quarantined (i.e., forgotten), but as noted elsewhere in the NBDIF, Big Data will often persist beyond its originating system(s), and this process creates transparency requirements.
 - In some cases, where extensive granularity is required, support for dual privacy and transparency could require or add significantly to Big Data systems.
- Timelines must be maintained for significant transparency events, such as changes to algorithms, data ownership, increased or decreased data governance, configuration management.
- When making changes to algorithms, such as joins with geospatial or other data sources, additional transparency mandates should be expected.
- Increases or decreases in risk experienced by Big Data systems over time should be considered. For example, a small data set could be merged with a much larger data set, or when data is moved from a high security data center to a lower security data center. Shifts in risk profile shall be disclosed as part of transparency conformance.
- For machine-to-machine implementations, transparency may be best achieved by implementing domain-specific languages, which can be dynamically linked to scenarios, images, or natural language text. Ad hoc solutions will likely fail to scale in systems with Big Data variety or in specialized domains with frequent software releases or changes in the science, technology, or regulatory landscape.

Explanations will often focus on data providers and data provider processes. For example, in a clinical
setting, an explanation for why a particular medicine was prescribed could be different for the patient,
patient's family, a clinical decision support system, the primary care physician, a radiologist, a
pharmacist, public health official, or malpractice attorney. For a Big Data system, explanations of a real
time Big Data stream to a data consumer may be needed for future system implementers to understand
how that data source should be ingested. In addition, some Big Data systems will need an explanation of
the processes that include how data is being collated with other sources.

To support transparency, a Big Data system provider output should include, at a minimum, a natural language explanation that is understandable to the identified target user population(s). When the explanation is challenging to offer (e.g., explaining what a system does), the best alternative may be to explain what it is (e.g., how the process works, how the process came about) or to provide representative scenarios.

909

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889 890

891

892

893

894

895

910

911

3 EXAMPLE USE CASES FOR SECURITY AND PRIVACY

There are significant Big Data challenges in science and engineering. Many of these are described in the use cases in *NBDIF: Volume 3, Use Cases and General Requirements.* However, the primary focus of these use cases was on science and engineering applications, and therefore, security and privacy impacts on system architecture were not highlighted. Consequently, a different set of use cases, presented in this document, was developed specifically to discover security and privacy issues. Some of these use cases represent inactive or legacy applications, but were selected to demonstrate characteristic security/privacy design patterns.

919 The use cases selected for security and privacy are presented in the following subsections. The use cases 920 included are grouped to organize this presentation, as follows: retail/marketing, healthcare, cybersecurity, 921 government, industrial, aviation, and transportation. However, these groups do not represent the entire 922 spectrum of industries affected by Big Data security and privacy.

923 The security and privacy use cases, collected when the reference architecture was not mature, were 924 provided by NBD-PWG members to identify representative security and privacy scenarios thought to be 925 suitably classified as particular to Big Data. An effort was made to map the use cases to the NBDRA.

Additional security and privacy use cases were collected (in the same format as the original security and
privacy use cases) during Version 2 work, which have helped guide the development of the NBD-SPSL.
However, the need for more specific and standardized use case information lead to the creation of a new
use case template.

During Version 2 activities, the Security and Privacy Subgroup collaborated with the Use Cases and
Requirements Subgroup to develop the new Use Case Template 2, was used to collect additional use
cases. In addition to questions from the original use case template, the Use Case Template 2 contains
questions aimed at providing a comprehensive view of security, privacy, and other topics for each use
case.

935 3.1 RETAIL/MARKETING

3.1.1 Consumer Digital Media Usage

Scenario Description: Consumers, with the help of smart devices, have become very conscious of price,
convenience, and access before they decide on a purchase. Content owners license data for use by
consumers through presentation portals, such as Netflix, iTunes, and others.

940 Comparative pricing from different retailers, store location and/or delivery options, and crowd-sourced
941 rating have become common factors for selection. To compete, retailers are keeping a close watch on
942 consumer locations, interests, and spending patterns to dynamically create marketing strategies to reach
943 customers who would buy their products.

944 Current Security and Privacy Issues/Practices: Individual data is collected by several means, including
 945 smartphone GPS (global positioning system) or location, browser use, social media, and applications
 946 (apps) on smart devices.

947 948 949 950 951 952 953 954 955 956 957 958 959	 Privacy: Controls are inconsistent and/or not established to appropriately achieve the following objectives: Predictability around the processing of personal information, to give individuals a reliable sense of how their information is processed and enable them to make appropriate determinations for themselves, or prevent problems arising from actions such as unanticipated revelations about individuals Manageability of personal information, to prevent problems arising from actions such as dissemination of inaccurate information Controls may not address the inability of some consumers to access information about themselves that is available to enterprises or governments Unlinkability of information from individuals to prevent actions such as surveillance of individuals
960 961 962 963 964 965 966 967 968 969 970 971 972 973	 Security: Controls are inconsistent and/or not established appropriately to achieve the following: Isolation, containerization, and encryption of data Monitoring and detection of threats, as well as incident handling Identification of users and devices for data feed Interfacing with other data sources Anonymization of users: while some data collection and aggregation uses anonymization techniques, individual users can be re-identified by leveraging other public Big Data pools. Original digital rights management (DRM) techniques were not built to scale to meet demand for the forecasted use for the data. "DRM refers to a broad category of access control technologies aimed at restricting the use and copy of digital content on a wide range of devices [64]." DRM can be compromised, diverted to unanticipated purposes, defeated, or fail to operate in environments with Big Data characteristics—especially velocity and aggregated volume.
974 975 976	Current Research: There is limited research on enabling privacy and security controls that protect individual data (whether anonymized or non-anonymized) for consumer digital media usage settings such as these.

3.1.2 NIELSEN HOMESCAN: PROJECT APOLLO

978 Scenario Description: Nielsen Homescan is a subsidiary of Nielsen that collects family-level retail 979 transactions. Project Apollo was a project designed to better unite advertising content exposure to 980 purchase behavior among Nielsen panelists. Project Apollo did not proceed beyond a limited trial, but 981 reflects a Big Data intent. The description is a best-effort general description and is not an official 982 perspective from Nielsen, Arbitron or the various contractors involved in the project. The information 983 provided here should be taken as illustrative rather than as a historical record.

984 A general retail transaction has a checkout receipt that contains all SKUs (stock keeping units) purchased, time, date, store location, etc. Nielsen Homescan collected purchase transaction data using a statistically 985 986 randomized national sample. As of 2005, this data warehouse was already a multi-terabyte dataset. The 987 warehouse was built using structured technologies but was built to scale many terabytes. Data was maintained in-house by Homescan but shared with customers who were given partial access through a 988 989 private web portal using a columnar database. Additional analytics were possible using third-party 990 software. Other customers would only receive reports that include aggregated data, but greater granularity 991 could be purchased for a fee.

977

- 992 Then current (2005-2006) Security and Privacy Issues/Practices:
 - Privacy: There was a considerable amount of PII data. Survey participants are compensated in exchange for giving up segmentation data, demographics, and other information.
 - Security: There was traditional access security with group policy, implemented at the field level using the database engine, component-level application security, and physical access controls.
 - There were audit methods in place, but were only available to in-house staff. Opt-out data • scrubbing was minimal.

3.1.3 WEB TRAFFIC ANALYTICS

Scenario Description: Visit-level webserver logs are high-granularity and voluminous. To be useful, log data must be correlated with other (potentially Big Data) data sources, including page content (buttons, text, navigation events), and marketing-level events such as campaigns, media classification, etc. There are discussions—if not deployment—of plans for traffic analytics using complex event processing (CEP) in real time. One nontrivial problem is segregating traffic types, including internal user communities, for which collection policies and security are different.

Current Security and Privacy Issues/Practices:

- Opt-in defaults are relied upon in some countries to gain visitor consent for tracking of website visitor IP addresses. In some countries Internet Protocol (IP) address logging can allow analysts to identify visitors down to levels as detailed as latitude and longitude, depending on the quality of the maps and the type of area being mapped.
- Media access control (MAC) address tracking enables analysts to identify IP devices, which is a • form of PII.
- Some companies allow for purging of data on demand, but most are unlikely to expunge • previously collected web server traffic.
- The EU has stricter regulations regarding collection of such data, which in some countries is treated as PII. Such web traffic is to be scrubbed (anonymized) or reported only in aggregate. even for multinationals operating in the EU but based in the United States [65].

3.2 HEALTHCARE 1018

3.2.1 HEALTH INFORMATION EXCHANGE

1020 Scenario Description: Health Information Exchanges (HIEs) facilitate sharing of healthcare information 1021 that might include electronic health records (EHRs) so that the information is accessible to relevant 1022 covered entities, but in a manner that enables patient consent.

1023 HIEs tend to be federated, where the respective covered entity retains custodianship of its data. This poses 1024 problems for many scenarios, such as emergencies, for a variety of reasons that include technical (such as 1025 interoperability), business, and security concerns.

1026 Cloud enablement of HIEs is through strong cryptography and key management to meet the HIPAA requirements for protected health information (PHI). Ideally this does not require the cloud service 1027 1028 operator to sign a business associate agreement (BAA). Cloud usage would provide several benefits, 1029 including patient safety, lowered healthcare costs, and regulated accesses during emergencies.

1030 The following are some preliminary scenarios that have been proposed by the NBD PWG:

Break-the-Glass: There could be situations where the patient is not able to provide consent due to • a medical situation, or a guardian is not accessible, but an authorized party needs immediate access to relevant patient records. Cryptographically enhanced key life cycle management can

993

994

995

996

997

998

999 1000

1001

1002

1008

1009 1010

1011

1016

1017

1019

1031

1032

1034provide a sufficient level of visibility and non-repudiation that would enable tracking violations1035after the fact.

- Informed Consent: When there is a transfer of EHRs between covered entities and business associates, it would be desirable and necessary for patients to be able to convey their approval, as well as to specify what components of their EHR can be transferred (e.g., their dentist would not need to see their psychiatric records). Through cryptographic techniques, one could leverage the ability to specify the fine-grain cipher text policy that would be conveyed. (For related standards efforts regarding consent, see NIST SP 800-53 [58], Appendix J, Section IP-1; U.S. DHS Health IT Policy Committee, Privacy and Security Workgroup; and Health Level Seven (HL7) International Version 3 standards for Data Access Consent, Consent Directives.)
 - Pandemic Assistance: There will be situations when public health entities, such as the CDC and perhaps other nongovernmental organizations that require this information to facilitate public safety, will require controlled access to this information, perhaps in situations where services and infrastructures are inaccessible. A cloud HIE with the right cryptographic controls could release essential information to authorized entities through authorization and audits in a manner that facilitates the scenario requirement.
 - Cross-government and cross-industry sharing

Current Security and Privacy Issues/Practices:

- Security:
 - Lightweight but secure off-cloud encryption: There is a need for the ability to perform lightweight but secure off-cloud encryption of an EHR that can reside in any container that ranges from a browser to an enterprise server, and that leverages strong symmetric cryptography.
 - Homomorphic encryption is not widely deployed but is anticipated by some experts as a medium-term practice [66].
 - Applied cryptography: Tight reductions, realistic threat models, and efficient techniques

• Privacy:

- o Differential privacy: Techniques for guaranteeing against inappropriate leakage of PII
- o HIPAA

3.2.2 GENETIC PRIVACY

Scenario Description: A consortium of policy makers, advocacy organizations, individuals, academic centers, and industry has formed an initiative, Free the Data!, to fill the public information gap caused by the lack of available genetic information for the BRCA1 and BRCA2 genes. The consortium also plans to expand to provide other types of genetic information in open, searchable databases, including the National Center for Biotechnology Information's database, ClinVar. The primary founders of this project include Genetic Alliance, the University of California San Francisco, InVitae Corporation, and patient advocates.

This initiative invites individuals to share their genetic variation on their own terms and with appropriate
privacy settings in a public database so that their family, friends, and clinicians can better understand
what the mutation means. Working together to build this resource means working toward a better
understanding of disease, higher-quality patient care, and improved human health.

1074 Current Security and Privacy Issues/Practices:

 1075
 • Security:

 1076
 o Secure

- Secure Sockets Layer (SSL)/ Transport Layer Security (TLS)-based authentication and access control. Basic user registration with low attestation level
 - Concerns over data ownership and custody upon user death

1115

1116

- Site administrators may have access to data—strong encryption and key escrow are 0 recommended
- Privacy: •

1079

- Transparent, logged, policy-governed controls over access to genetic information 0
- Full life cycle data ownership and custody controls 0

3.2.3 PHARMA CLINICAL TRIAL DATA SHARING 1084

Scenario Description: Companies routinely publish their clinical research, collaborate with academic researchers, and share clinical trial information on public websites, atypically at three different stages: the time of patient recruitment, after new drug approval, and when investigational research programs have been discontinued. Access to clinical trial data is limited, even to researchers and governments, and no uniform standards exist.

1090 The Pharmaceutical Research and Manufacturers of America (PhRMA) represents the country's leading biopharmaceutical researchers and biotechnology companies. In July 2013, PhRMA joined with the 1091 European Federation of Pharmaceutical Industries and Associations (EFPIA) in adopting joint Principles 1092 for Responsible Clinical Trial Data Sharing [67]. According to the agreement, companies will apply these 1093 1094 Principles as a common baseline on a voluntary basis, and PhRMA encouraged all medical researchers, 1095 including those in academia and government, to promote medical and scientific advancement by adopting and implementing the following commitments: 1096

- Enhancing data sharing with researchers
- Enhancing public access to clinical study information •
- Sharing results with patients who participate in clinical trials •
- Certifying procedures for sharing trial information •
- Reaffirming commitments to publish clinical trial results
- Current Security and Privacy Issues/Practices:

PhRMA does not directly address security and privacy, but these issues were identified either by PhRMA or by reviewers of the proposal.

- Security:
 - Longitudinal custody beyond trial disposition is unclear, especially after firms merge or 0 dissolve.
 - 0 Standards for data sharing are unclear.
 - There is a need for usage audit and security. 0
 - Publication restrictions: Additional security will be required to protect the rights of 0 publishers, for example, Elsevier or Wiley.
- Privacy:
 - 0 Patient-level data disclosure—elective, per company.
 - The PhRMA mentions anonymization (re-identification), but mentions issues with small 0 sample sizes.
 - Study-level data disclosure—elective, per company. 0

3.3 CYBERSECURITY 1117

3.3.1 NETWORK PROTECTION 1118

1119 Scenario Description: Network protection includes a variety of data collection and monitoring. Existing 1120 network security packages monitor high-volume datasets, such as event logs, across thousands of servers.

1121 Improved security software will include physical data correlates (e.g., access card usage for devices as

- 1122 well as building entrance/exit) and likely be more tightly integrated with applications, which will generate
- 1123 logs and audit records of previously undetermined types or sizes. Big Data analytics systems will be
- 1124 required to process and analyze this data to deliver meaningful results. These systems could also be multi-
- 1125 tenant, catering to more than one distinct company.
- 1126 The roles that Big Data plays in protecting networks can be grouped into two broad categories:
 - Security for Big Data: When launching a new Big Data initiative, new security issues often arise, • such as a new attack surface for server clusters, user authentication and access from additional locations, new regulatory requirements due to Big Data Variety, or increased use of open source code with the potential for defaulted credentials or other risks [68].
 - Big Data for security: Big Data can be used to enhance network security. For example, a Big Data application can enhance or eventually even replace a traditional Security Information and Event Management (SIEM) [69].
- 1134 Current Security and Privacy Issues/Practices:
 - ~ • .

1135	•	Securit	у
1136		0	Big Data security in this area is under active research, and maintaining data integrity and
1137			confidentiality while data is in-motion and/or at-rest warrants constant
1138			encryption/decryption that works well for Small Data, but is still inadequate for Big Data.
1139			In addition, privacy concepts are even less mature.
1140		0	Traditional policy-type security prevails, though temporal dimension and monitoring of
1141			policy modification events tends to be nonstandard or unaudited.
1142		0	Cybersecurity apps run at high levels of security and thus require separate audit and
1143			security measures.
1144		0	No cross-industry standards exist for aggregating data beyond operating system
1145			collection methods.
1146		0	Implementing Big Data cybersecurity should include data governance, encryption/key
1147			management, and tenant data isolation/containerization.
1148		0	Volatility should be considered in the design of backup and disaster recovery for Big
1149			Data cybersecurity. The useful life of logs may extend beyond the lifetime of the devices
1150			which created them.
1151	•	Privacy	<i>/</i> :
1152		0	Need to consider enterprise practices for data release to external organizations
1153		0	Lack of protection of PII data
1154	Curren	ntly vende	ors are adopting Big Data analytics for mass-scale log correlation and incident response,

1155 such as for SIEM.

3.4 GOVERNMENT 1156

3.4.1 UNMANNED VEHICLE SENSOR DATA 1157

Scenario Description: Unmanned Aerial Vehicles (UAVs), also called Remotely Piloted Vehicles (RPVs) 1158 1159 or Unmanned Aerial Systems (UAS), can produce petabytes of data, some of it streamed, and often stored 1160 in proprietary formats. These streams, which can include what in military circles is referred to as full 1161 motion video, are not always processed in real time. UAVs are also used domestically. The Predator 1162 drone is used to patrol U.S. border areas, and sometimes flood areas; it allows authorized government 1163 workers to see real-time video and radar [70].

1164 Current Security and Privacy Issues/Practices:

1127

1128

1129

1130

1131

1132

- Military UAV projects are governed by extensive rules surrounding security and privacy • guidelines. Security and privacy requirements are further dictated by applicable service (Navy, Army, Air Force, Marines) instructions [71].
 - Not all UAV data uses are military. For example, NASA, National Oceanic and Atmospheric • Administration and the FAA may have specific use for UAV data. Issues and practices regarding the use of sensor data gathered non-DoD UAVs is still evolving, as demonstrated by a draft U.S. Department of Justice (DOJ) policy guideline produced by the DOJ Office of Legal Policy [72]. The guideline acknowledges the value of UAS data as "a viable law enforcement tool" and predicts that "UAS are likely to come into greater use." The draft reiterates that UAS monitoring must be consistent with First and Fourth Amendment guarantees, and that data "may only be used in connection with properly authorized investigations." Additional guidance addresses PII that has been collected, such that it cannot be retained for more than 180 days except when certain conditions are met. Annual privacy reviews and accountability for compliance with security and privacy regulations are prominent in the draft.
 - Collection of data gathered by UAVs outside of the United States is subject to local regulation. • For example, in the EU, guidelines are under discussion, which incorporate Remotely Piloted Aircraft Systems in the European Aviation System. The EU sponsored a report addressing potential privacy, data protection, and ethical risks related to civil Remotely Piloted Aircraft System (RPAS) applications (http://ec.europa.eu/enterprise/sectors/aerospace/uas /).

3.4.2 EDUCATION: COMMON CORE STUDENT PERFORMANCE REPORTING

Scenario Description: Forty-five states have decided to unify standards for K-12 student performance measurement. Outcomes are used for many purposes, and the program is incipient, but it will obtain longitudinal Big Data status. The datasets envisioned include student-level performance across students' entire school history and across schools and states, as well as taking into account variations in test stimuli.

Current Security and Privacy Issues/Practices:

- Data is scored by private firms and forwarded to state agencies for aggregation. Classroom, school, and district identifiers remain with the scored results. The status of student PII is unknown; however, it is known that teachers receive classroom-level performance feedback. The extent of student/parent access to test results is unclear. As set forth in the Data Quality Campaign, protecting student data is seen as a state education agency responsibility: to define "the permissible collection and uses of data by external technologies and programs used in classrooms." This source identifies additional resources for safeguarding student data and communicating with parents and staff about data and privacy rights [73].
- Privacy-related disputes surrounding education Big Data are illustrated by the reluctance of states • to participate in the InBloom initiative [74].
- According to some reports, parents can opt students out of state tests, so opt-out records must also • be collected and used to purge ineligible student records [75].

1202 Current Research:

Longitudinal performance data would have value for program evaluators and educators. Work in • this area was proposed by Deakin Crack, Broadfoot & Claxton [76] as a "Lifelong Learning Inventory," and further by Ferguson [77], whose reference to data variety observed that "Increasingly, learners will be looking for support from learning analytics outside the Virtual Learning Environment or Learning Management System, whilst engaged in lifelong learning in open, informal or blended settings. This will require a shift towards more challenging datasets and combinations of datasets, including mobile data, biometric data, and mood data. To solve the problems faced by learners in different environments, researchers will need to investigate what those problems are and what success looks like from the perspective of learners [77]."

1184 1185

1189

1190

1201

1206 1207

1208

1209

1210

1211

1165

1166

1167

1168

1169

1170

Data-driven learning [78] will involve access to students' performance data, probably more often than at test time, and at higher granularity, thus requiring more data. One example enterprise is Civitas Learning's [79] predictive analytics for student decision making.

1215 **3.5 INDUSTRIAL: AVIATION**

1216 3.5.1 SENSOR DATA STORAGE AND ANALYTICS

1217 Scenario Description: Most commercial airlines are equipped with hundreds of sensors to constantly 1218 capture engine and/or aircraft health information during a flight. For a single flight, the sensors may 1219 collect multiple GB of data and transfer this data stream to Big Data analytics systems. Several companies 1220 manage these Big Data analytics systems, such as parts/engine manufacturers, airlines, and plane 1221 manufacturers, and data may be shared across these companies. The aggregated data is analyzed for maintenance scheduling, flight routines, etc. Companies also prefer to control how, when, and with whom 1222 1223 the data is shared, even for analytics purposes. Many of these analytics systems are now being moved to infrastructure cloud providers. 1224

1225 Current Security and Privacy Issues/Practices:

- Encryption at rest: Big Data systems should encrypt data stored at the infrastructure layer so that cloud storage administrators cannot access the data.
 - Key management: The encryption key management should be architected so that end customers (e.g., airliners) have sole/shared control on the release of keys for data decryption.
- Encryption in motion: Big Data systems should verify that data in transit at the cloud provider is also encrypted.
- Encryption in use: Big Data systems will desire complete obfuscation/encryption when processing data in memory (especially at a cloud provider).
- Sensor validation and unique identification (e.g., device identity management)
- Protocols for API security, such as OAuth 2.0

Researchers are currently investigating the following security enhancements:

- Virtualized infrastructure layer mapping on a cloud provider
- Homomorphic encryption
- Quorum-based encryption
- Multiparty computational capability
- Device public key infrastructure (PKI)

3.6 TRANSPORTATION

3.6.1 CARGO SHIPPING

The following use case outlines how the shipping industry (e.g., FedEx, UPS, DHL) regularly uses Big 1244 1245 Data. Big Data is used in the identification, transport, and handling of items in the supply chain. The 1246 identification of an item is important to the sender, the recipient, and all those in between with a need to know the location of the item while in transport and the time of arrival. Currently, the status of shipped 1247 1248 items is not relayed through the entire information chain. This will be provided by sensor information, 1249 GPS coordinates, and a unique identification schema based on the new ISO 29161 [80] standards under 1250 development within the ISO joint technical committee (JTC) ISO JTC1 SC31 WG2. There are likely 1251 other standards evolving in parallel. The data is updated in near real time when a truck arrives at a depot 1252 or when an item is delivered to a recipient. Intermediate conditions are not currently known, the location 1253 is not updated in real time, and items lost in a warehouse or while in shipment represent a potential

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236 1237

1238

1239

1240

1241

1242

1254 problem for homeland security. The records are retained in an archive and can be accessed for system-1255 determined number of days.

1256 3.7 ADDITIONAL SECURITY AND PRIVACY USE CASES

The following use cases were collected to further inform the work of the Security and Privacy Subgroup.
These use cases were in the initial phases of collection when the need for the Use Case Template 2 arose.
Therefore, the use cases have not been as fully developed as the previously presented use cases that were
collected during Version 1 work. However, the information provided below contains valuable information
that guided Version 2 work, including formation of the NBD-SPSL.

1262 3.7.1 SEC Consolidated Audit Trail

The <u>SEC Consolidated Audit Trail</u> (CAT) project [81] is forecast to consume 10 terabytes of data daily (SEC Rule 613 [82]). The system's security requirements, which stemmed from a past system failure with lack of traceability, are considerable. Figure 2 [83] presents the High-Level CAT Security Requirements.

High Level CAT Security Requirements

The below represents some of the high-level security controls required by the CAT NMS Plan. Actual architecture may vary depending on the specific solution provided by the Plan Processor.

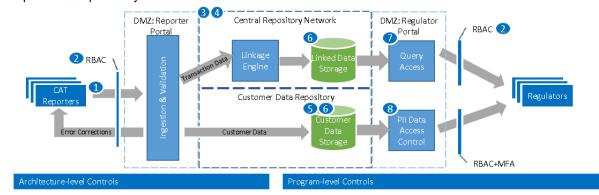


Figure 2: High-Level CAT Requirements

3.7.2 IOT DEVICE MANAGEMENT

This family of use cases involves the onboarding, decommissioning, and/or quarantining of numerous devices, such as for IoT and CPS. The sheer number of devices and the limited defenses against tampering that low-cost devices can incorporate, put Big Data systems at risk.

Safety systems incorporating voluminous sensor streams represent this family of use cases. Preliminary
research addressing IoT safety is already under way [84], [32], [85]. The latter work was reported during
an international conference now more than a decade old, the International Conference on System Safety
and Cybersecurity.

One application of IoT is in smart homes. Smart homes allow for remote monitoring through Wi-Fi
 networks and present new Big Data sources and new attack surfaces for private residences, government
 facilities, and other entities.

1279 3.7.3 STATEWIDE EDUCATION DATA PORTAL

1280 The Kauffman Foundation EdWise web resource provides public access to higher education data for

consumers, parents, support organizations, and leaders. It is a data aggregator as well as an analytics

portal [86]. The portal attempts to provide anonymized student and institutional performance data foreducational decision support.

Welcome to EdWise

What's New

EdWise-H is a tool dedicated to empowering informed decisions about higher education in Missouri. This efficient version of EdWise looks at the 27 higher education public institutions in the state of Missouri, consolidating public data and information you can't find anywhere else. Whether you want to know the average ACT score of incoming undergrads or the transfer rate of students of color, you can find it easily with EdWise-H.

EdWise-P, or EdWise-Public, provides a straight-forward, easy-to-use version of EdWise to aid decision-making about education in Missouri. EdWise-P creates a simple path to basic information with a condensed set of tools for a faster EdWise experience for education support organizations, civic and neighborhood leaders, and media.

EdWise-R allows researchers and the data literate to really dive into public Missouri education data. EdWise-R includes a sub-group analysis tool to examine the performance of a district or school across topics in three-year increments.

Figure 3: EdWise Figure

1284 1285

PRIVACY TOPICS

4 TAXONOMY OF SECURITY AND

1287

1288

1289

1290

A candidate set of topics from the Cloud Security Alliance Big Data Working Group (CSA BDWG) article, Top Ten Challenges in Big Data Security and Privacy Challenges, was used in developing these security and privacy taxonomies [16]. Candidate topics and related material used in preparing this section are provided in Appendix C.

A taxonomy for Big Data security and privacy should encompass the aims of existing useful taxonomies. While many concepts surround security and privacy, the objective in the taxonomies contained herein is to highlight and refine new or emerging principles specific to Big Data.

1296 The following subsections present an overview of each security and privacy taxonomy, along with lists of topics encompassed by the taxonomy elements. These lists are the results of preliminary discussions of the Subgroup. The focus has been predominantly on security and security-related privacy risks (i.e., risks that result from unauthorized access to personally identifiable information). Privacy risks that may result from the processing of information about individuals, and how the taxonomy may account for such considerations, is an important topic but one which the Subgroup did not have time to explore in depth.

4.1 CONCEPTUAL TAXONOMY OF SECURITY AND PRIVACY TOPICS

The conceptual security and privacy taxonomy, presented in Figure 4, contains four main groups: data confidentiality; data provenance; system health; and public policy, social, and cross-organizational topics. The first three topics broadly correspond with the traditional classification of confidentiality, integrity, and availability (CIA), reoriented to parallel Big Data considerations.

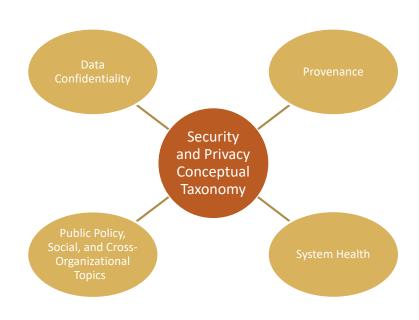


Figure 4: Security and Privacy Conceptual Taxonomy

1310	4.1.1 DATA CONFIDENTIALITY
1311	• Confidentiality of data in transit: For example, enforced by using Transport Layer Security (TLS
1312	Confidentiality of data at rest
1313	 Policies to access data based on credentials
1314	 Systems: Policy enforcement by using systems constructs such as Access Control
1315	Lists (ACLs) and Virtual Machine (VM) boundaries
1316	 Crypto-enforced: Policy enforcement by using cryptographic mechanisms, such
1317	as PKI and identity/attribute-based encryption
1318	Computing on encrypted data
1319	• Searching and reporting: Cryptographic protocols, such as Functional Encryption [87]
1320	that support searching and reporting on encrypted data—any information about the plain
1321	text not deducible from the search criteria is guaranteed to be hidden
1322	• Homomorphic encryption: Cryptographic protocols that support operations on the
1323	underlying plain text of an encryption—any information about the plain text is
1324	guaranteed to be hidden
1325	• Secure data aggregation: Aggregating data without compromising privacy
1326	Data anonymization
1327	• De-identification of records to protect privacy
1328	• Key management
1329 1330	• As noted by Chandramouli and Iorga [88], cloud security for cryptographic keys, an essential building block for security and privacy, takes on additional complexity, which
1330	can be rephrased for Big Data settings: (1) greater variety due to more cloud consumer-
1331	provider relationships, and (2) greater demands and variety of infrastructures "on which
1332	both the Key Management System and protected resources are located [88]."
1334	• Big Data systems are not purely cloud systems, but as noted elsewhere in this document,
1335	the two are closely related. One possibility is to retarget the key management framework
1336	that Chandramouli and Iorga developed for cloud service models to the NBDRA security
1337	and privacy fabric. Cloud models would correspond to the NBDRA and cloud security
1338	concepts to the proposed fabric. NIST 800-145 [89] provides definitions for cloud
1339	computing concepts, including infrastructure as a service (IaaS), platform as a service
1340	(PaaS), and software as a service (SaaS) cloud service models.
5 1341	• Challenges for Big Data key management systems (KMS) reflect demands imposed by
5 1342	Big Data characteristics (i.e., volume, velocity, variety, and variability). For example,
3 1343	relatively slow-paced data warehouse key creation is insufficient for Big Data systems
1344	deployed quickly and scaled up using massive resources. The lifetime for a Big Data
1345	KMS will likely outlive the period of employment of the Big Data system architects who
1346	designed it. Designs for location, scale, ownership, custody, provenance, and audit for
1347	Big Data key management is an aspect of a security and privacy fabric.
3 1348	4.1.2 PROVENANCE
3 1349	• End-point input validation: A mechanism to validate whether input data is coming from an
1350	authenticated source, such as digital signatures

- o Syntactic: Validation at a syntactic level
- Semantic: Semantic validation is an important concern. Generally, semantic validation would validate typical business rules such as a due date. Intentional or unintentional violation of semantic rules can lock up an application. This could also happen when using data translators that do not recognize the particular variant. Protocols and data formats may be altered by a vendor using, for example, a reserved data field that will allow their products to have capabilities that differentiate them from other products. This problem

can also arise in differences in versions of systems for consumer devices, including mobile devices. The semantics of a message and the data to be transported should be
validated to verify, at a minimum, conformity with any applicable standards. The use of
digital signatures will be important to provide assurance that the data from a sensor or
data provider has been verified using a validator or data checker and is, therefore, valid.
This capability is important, particularly if the data is to be transformed or involved in the curation of the data. If the data fails to meet the requirements, it may be discarded, and if
the data continues to present a problem, the source may be restricted in its ability to
submit the data. These types of errors would be logged and prevented from being
disseminated to consumers.

- Digital signatures will be very important in the Big Data system.
- Communication integrity: Integrity of data in transit, enforced, for example, by using TLS
- Authenticated computations on data: Ensuring that computations taking place on critical fragments of data are indeed the expected computations
 - Trusted platforms: Enforcement through the use of trusted platforms, such as Trusted Platform Modules (TPMs)
 - o Crypto-enforced: Enforcement through the use of cryptographic mechanisms
 - Granular audits: Enabling audit at high granularity
- Control of valuable assets
 - Life cycle management
 - Retention and disposition
 - o DRM

4.1.3 SYSTEM HEALTH

In a separate discussion, the interwoven notions of design, development, and management are addressed directly. A Big Data system likely requires additional measures to ensure availability, as illustrated by the unanticipated restore time for a major outage [90].

- System availability is a key element in CIA—Security against denial of service (DoS)
 - Construction of cryptographic protocols (developed with encryption, signatures, and other cryptographic integrity check primitives) proactively resistant to DoS
- System Immunity—Big Data for Security
 - o Analytics for security intelligence
 - o Data-driven abuse detection
 - o Big Data analytics on logs, cyber-physical events, intelligent agents
 - Security breach event detection
 - Forensics
 - o Big Data in support of resilience

1394 4.1.4 PUBLIC POLICY, SOCIAL AND CROSS-ORGANIZATIONAL TOPICS

The following set of topics is drawn from an Association for Computing Machinery (ACM) grouping.
[91]. Each of these topics has Big Data security and privacy dimensions that could affect how a fabric
overlay is implemented for a specific Big Data project. For instance, a medical devices project might need
to address human safety risks, whereas a banking project would be concerned with different regulations
applying to Big Data crossing borders. Further work to develop these concepts for Big Data is anticipated
by the Subgroup.

- Abuse and crime involving computers
 - Computer-related public private health systems
- Ethics (within data science, but also across professions)

1366 1367

1368

1369

1370

1371 1372

1373

1374

1375

1376

1377

1378

1379

1380 1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1402

•

l his

	1408
	1409
	1410
	1411
Τh	1411 1412
<u>N</u>	1413
duc	1414
olic	
atior	1415
si	1416
av	
ail	1417
ab	1418
e f	1419
ree	1420
e O	1421
f	1422
hai	1423
Ĵ	1424
fro	1425
om	1426
h:	1427
ttp:	1428
s://o	1429
doi.	1430
oro	1431
g/1	1.01
0.6	
02	
1/8	
Ť.	
Ч СР	
500	
4	

Ś

- Human safety
- Intellectual property rights and associated information management^c
 - Regulation

1404

1405

1406

1407

- Transborder data flows
- Use/abuse of power
- Assistive technologies for persons with disabilities (e.g., added or different security/privacy measures may be needed for subgroups within the population)
- Employment (e.g., regulations applicable to workplace law may govern proper use of Big Data produced or managed by employees)
- Social aspects of ecommerce
- Legal: Censorship, taxation, contract enforcement, forensics for law enforcement

4.2 OPERATIONAL TAXONOMY OF SECURITY AND PRIVACY TOPICS

1417 Current practice for securing Big Data systems is diverse, employing widely disparate approaches that 1418 often are not part of a unified conceptual framework. The elements of the operational taxonomy, shown in 1419 Figure 5, represent groupings of practical methodologies. These elements are classified as operational 1420 because they address specific vulnerabilities or risk management challenges to the operation of Big Data 1421 systems. These methodologies have not been incorporated as part of a cohesive security fabric. They are 1422 potentially valuable checklist-style elements that can solve specific security or privacy needs. These 1423 methodologies could be better integrated with risk management guidelines developed by others (e.g., 1424 NIST Special Publication 800-37 Revision 1, Guide for Applying the Risk Management Framework to 1425 Federal Information Systems [92], NIST Internal Report (NISTIR) 8062, An Introduction to Privacy 1426 Engineering and Risk Management in Federal Systems [93], and COBIT Risk IT Framework [94].

In the proposed operational taxonomy, broad considerations of the conceptual taxonomy appear as
recurring features. For example, confidentiality of communications can apply to governance of data at rest
and access management, but it is also part of a security metadata model [95].

1430 The operational taxonomy will overlap with small data taxonomies while drawing attention to specific 1431 issues with Big Data [96], [97].

^c For further information, see the frameworks suggested by the Association for Information and Image Management (AIIM; http://www.aiim.org /) and the MIKE 2.0 Information Governance Association

⁽http://mike2.openmethodology.org/wiki/MIKE2.0_Governance_Association).

Figure 5: Security and Privacy Operational Taxonomy

4.2.1 DEVICE AND APPLICATION REGISTRATION

- Device, User, Asset, Services, and Applications Registration: Includes registration of devices in • machine to machine (M2M) and IoT networks, DRM-managed assets, services, applications, and user roles
- Security Metadata Model •
 - The metadata model maintains relationships across all elements of a secured system. It 0 maintains linkages across all underlying repositories. Big Data often needs this added complexity due to its longer life cycle, broader user community, or other aspects.
 - A Big Data model must address aspects such as data velocity, as well as temporal aspects 0 of both data and the life cycle of components in the security model.
- **Policy Enforcement**
 - Environment build 0
 - Deployment policy enforcement 0
 - Governance model 0
 - Granular policy audit 0
 - Role-specific behavioral profiling 0

4.2.2 IDENTITY AND ACCESS MANAGEMENT 1449

• Virtualization layer identity (e.g., cloud cor	onsole, PaaS)
--	---------------

- 1451 • Trusted platforms
 - Application layer Identity •
- 1453 End-user layer identity management • 1454
 - Roles 0

1432

1433 1434

1435 1436

1437

1438

1439

1440 1441

1442 1443

1445

1446

1447

1448

1455	• Identity provider (IdP)
1456	• An IdP is defined in the Security Assertion Markup Language (SAML) [96]. In a Big
1457	Data ecosystem of data providers, orchestrators, resource providers, framework
1458	providers, and data consumers, a scheme such as the SAML/Security Token Service
1459	(STS) or eXtensible Access Control Markup Language (XACML) is seen as a helpful-but
1460	not proscriptive-way to decompose the elements in the security taxonomy.
1461	• Big Data may have multiple IdPs. An IdP may issue identities (and roles) to access data
1462	from a resource provider. In the SAML framework, trust is shared via SAML/web
1463	services mechanisms at the registration phase.
1464	• In Big Data, due to the density of the data, the user "roams" to data (whereas in
1465	conventional virtual private network [VPN]-style scenarios, users roam across trust
1466	boundaries). Therefore, the conventional authentication/authorization (AuthN/AuthZ)
1467	model needs to be extended because the relying party is no longer fully trusted-they are
1468	custodians of somebody else's data. Data is potentially aggregated from multiple resource
1469	providers.
1470	 One approach is to extend the claims-based methods of SAML to add security and
1471	privacy guarantees.
1472	Additional XACML Concepts
1473	• XACML introduces additional concepts that may be useful for Big Data security. In Big
1474	Data, parties are not just sharing claims, but also sharing policies about what is
1475	authorized. There is a policy access point at every data ownership and authoring location,
1476	and a policy enforcement point at the data access. A policy enforcement point calls a
1477	designated policy decision point for an auditable decision. In this way, the usual meaning
1478	of non-repudiation and trusted third parties is extended in XACML. Big Data presumes
1479	an abundance of policies, "points," and identity issuers, as well as data:
1480	 Policy authoring points
1481	 Policy decision points
1482	 Policy enforcement point
1483	 Policy access points
1484	4.2.3 DATA GOVERNANCE
1485	However large and complex Big Data becomes in terms of data volume, velocity, variety, and variability,
1486	Big Data governance will, in some important conceptual and actual dimensions, be much larger. Data
1487	governance refers to administering, or formalizing, discipline (e.g., behavior patterns) around the

governance refers to administering, or formalizing, discipline (e.g., behavior patterns) around management of data. Big Data without Big Data governance may become less useful to its stakeholders. 1488 To stimulate positive change, data governance will need to persist across the data life cycle at rest, in 1489 1490 motion, in incomplete stages, and transactions while serving the security and privacy of the young, the 1491 old, individuals as organizations, and organizations as organizations. It will need to cultivate economic 1492 benefits and innovation but also enable freedom of action and foster individual and public welfare. It will 1493 need to rely on standards governing technologies and practices not fully understood while integrating the 1494 human element. Big Data governance will require new perspectives yet accept the slowness or inefficacy 1495 of some current techniques. Some data governance considerations are listed below.

Big Data Apps to Support Governance: The development of new applications employing Big Data
 principles and designed to enhance governance may be among the most useful Big Data applications on
 the horizon.

- Encryption and key management
- 1500 o At rest

1501

- In memory
 - In transit

1544

1545

1546

1547

1503

1504

1505

- Isolation/containerization
- Storage security
 - Data loss prevention and detection
 - Web services gateway
 - Data transformation
 - Aggregated data management
 - Authenticated computations
 - Computations on encrypted data
 - Data life cycle management
 - Disposition, migration, and retention policies
 - PII microdata as "hazardous" [98]
 - o De-identification and anonymization
 - Re-identification risk management
 - End-point validation
 - DRM
 - Trust
 - Openness
 - Fairness and information ethics [99]

4.2.3.1 Compliance, Governance and Management as Code

The Fedramp-related initiative Open Control seizes upon the connection between increased use of automation for all facets of today's systems. Its proponents argue for the following progression:

- Software as code,
- Tests as code,
- Infrastructure as code, and
- Compliance as code.

Just as software-defined network (SDN) can be seen as a way to create and manage infrastructure with reduced manual intervention, Open Control was used by GSA's lean startup-influenced digital services agency 18F to facilitate *continuous authorization*. Continuous authorization is seen as logically similar to agile's *continuous deployment*. The 18F team employs YAML to implement a *schema* which is publicly available on GitHub.

4.2.4 INFRASTRUCTURE MANAGEMENT

Infrastructure management involves security and privacy considerations related to hardware operation and maintenance. Some topics related to infrastructure management are listed below.

- Threat and vulnerability management
 - DoS-resistant cryptographic protocols
- Monitoring and alerting
 - As noted in the NIST Critical Infrastructure Cybersecurity Framework, Big Data affords new opportunities for large-scale security intelligence, complex event fusion, analytics, and monitoring.
- Mitigation
 - Breach mitigation planning for Big Data may be qualitatively or quantitatively different.
- Configuration Management
 - Configuration management is one aspect of preserving system and data integrity. It can include the following:
 - Patch management

1548	• Upgrades
1549	• Logging
1550	• Big Data must produce and manage more logs of greater diversity and velocity. For
1551	example, profiling and statistical sampling may be required on an ongoing basis.
1552	Malware surveillance and remediation
1553	• This is a well-understood domain, but Big Data can cross traditional system ownership
1554	boundaries. Review of NIST's "Identify, Protect, Detect, Respond, and Recover"
1555	framework may uncover planning unique to Big Data.
1556	Network boundary control
1557	 Establishes a data-agnostic connection for a secure channel
1558	 Shared services network architecture, such as those specified as "secure channel
1559	use cases and requirements" in the ETSI TS 102 484 Smart Card specifications
1560	[100].
1561	 Zones/cloud network design (including connectivity)
1562	Resilience, Redundancy, and Recovery
1563	o Resilience
1564	 The security apparatus for a Big Data system may be comparatively fragile in
1565	comparison to other systems. A given security and privacy fabric may be
1566 1567	required to consider this. Resilience demands are domain-specific, but could entail geometric increases in Big Data system scale.
1568	\circ Redundancy
1569	 Redundancy within Big Data systems presents challenges at different levels.
1570	Replication to maintain intentional redundancy within a Big Data system takes
1570	place at one software level. At another level, entirely redundant systems designed
1572	to support failover, resilience or reduced data center latency may be more
1573	difficult due to velocity, volume, or other aspects of Big Data.
1574	o Recovery
1575	 Recovery for Big Data security failures may require considerable advance
1576	provisioning beyond that required for small data. Response planning and
1577	communications with users may be on a similarly large scale.
-	
1578	4.2.5 Risk and Accountability
1579	Risk and accountability encompass the following topics:
1580	
1580	 Accountability Information, process, and role behavior accountability can be achieved through various
1581	means, including:
1583	 Transparency portals and inspection points
1584	 Forward- and reverse-provenance inspection
1585	Compliance
1586	• Big Data compliance spans multiple aspects of the security and privacy taxonomy,
1587	including privacy, reporting, and nation-specific law
5 1588	• Forensics
1589	• Forensics techniques enabled by Big Data
1590	• Forensics used in Big Data security failure scenarios
1591	Business risk level
1592	• Big Data risk assessments should be mapped to each element of the taxonomy [97].

• Big Data risk assessments should be mapped to each element of the taxonomy [97]. Business risk models can incorporate privacy considerations.

1594 4.3 ROLES RELATED TO SECURITY AND PRIVACY TOPICS

1595 Discussions of Big Data security and privacy should be accessible to a diverse audience both within an 1596 organization and across supply chains. Access should include individuals who specialize in cryptography, 1597 security, compliance, or IT. In addition, the ideal audience includes domain experts and organization 1598 decision makers who understand the costs and impact of these controls. Ideally, written guidelines setting 1599 forth policy and compliance for Big Data security and privacy would be prefaced by additional 1600 information that would help specialists find the content relevant to them. The specialists could then 1601 provide feedback on those sections. Organizations typically contain diverse roles and workflows for 1602 participating in a Big Data ecosystem. Therefore, this document proposes a pattern to help identify the 1603 axis of an individual's roles and responsibilities, as well as classify the security controls in a similar manner to make these more accessible to each class. 1604

1605 4.3.1 INFRASTRUCTURE MANAGEMENT

Typically, the individual role axis contains individuals and groups who are responsible for technical
reviews before their organization is on-boarded in a data ecosystem. After the onboarding, they are
usually responsible for addressing defects and security issues.

When infrastructure technology personnel work across organizational boundaries, they accommodate
diverse technologies, infrastructures, and workflows and the integration of these three elements. For Big
Data security, these aspects typically include topics in identity, authorization, access control, and log
aggregation. This is not an exhaustive list.

1613 Their backgrounds and practices, as well as the terminologies they use, tend to be uniform, and they face 1614 similar pressures within their organizations to constantly do more with less. *Save money* is the underlying 1615 theme, and infrastructure technology usually faces pressure when problems arise.

4.3.2 GOVERNANCE, RISK MANAGEMENT, AND COMPLIANCE

1617 Data governance is a fundamental element in the management of data and data systems. Data governance 1618 refers to administering, or formalizing, discipline (e.g., behavior patterns) around the management of 1619 data. Risk management involves the evaluation of positive and negative risks resulting from the handling 1620 of Big Data. Compliance encompasses adherence to laws, regulations, protocols, and other guiding rules 1621 for operations related to Big Data. Typically, GRC is a function that draws participation from multiple 1622 areas of the organization, such as legal, human resources (HR), IT, and compliance. In some industries 1623 and agencies, there may be a strong focus on compliance, often in isolation from disciplines.

Professionals working in GRC tend to have similar backgrounds, share a common terminology, and
 employ similar processes and workflows, which typically influence other organizations within the
 corresponding vertical market or sector.

Within an organization, GRC professionals aim to protect the organization from negative outcomes that
might arise from loss of intellectual property, liability due to actions by individuals within the
organization, and compliance risks specific to its vertical market.

In larger enterprises and government agencies, GRC professionals are usually assigned to legal,
 marketing, or accounting departments or staff positions connected to the CIO. Internal and external
 auditors are often involved.

1633 Smaller organizations may create, own, or process Big Data, yet may not have GRC systems and

1634 practices in place, due to the newness of the Big Data scenario to the organization, a lack of resources, or

1635 other factors specific to small organizations. Prior to Big Data, GRC roles in smaller organizations

1636 received little attention.

1637 A one-person company can easily construct a Big Data application and inherit numerous unanticipated 1638 related GRC responsibilities. This is a new GRC scenario in which Big Data operates.

1639 A security and privacy fabric entails additional data and process workflow in support of GRC, which is 1640 most likely under the control of the System Orchestrator component of the NBDRA, as explained in 1641 Section 5.

4.3.3 INFORMATION WORKER 1642

1643 Information workers are individuals and groups who work on the generation, transformation, and 1644 consumption of content. Due to the nascent nature of the technologies and related businesses in which 1645 they work, they tend to use common terms at a technical level within a specialty. However, their roles and 1646 responsibilities and the related workflows do not always align across organizational boundaries. For example, a data scientist has deep specialization in the content and its transformation, but may not focus 1647 1648 on security or privacy until it adds effort, cost, risk, or compliance responsibilities to the process of 1649 accessing domain-specific data or analytical tools.

1650 Information workers may serve as data curators. Some may be research librarians, operate in quality 1651 management roles, or be involved in information management roles such as content editing, search 1652 indexing, or performing forensic duties as part of legal proceedings.

1653 Information workers are exposed to a great number of products and services. They are under pressure 1654 from their organizations to deliver concrete business value from these new Big Data analytics capabilities 1655 by monetizing available data, monetizing the capability to transform data by becoming a service provider, 1656 or optimizing and enhancing business by consuming third-party data.

4.4 RELATION OF ROLES TO THE SECURITY AND PRIVACY **CONCEPTUAL TAXONOMY** 1658

The next sections cover the four components of the conceptual taxonomy: data confidentiality, data provenance, system health, and public policy, social and cross-organizational topics. To leverage these three axes and to facilitate collaboration and education, a stakeholder can be defined as an individual or group within an organization who is directly affected by the selection and deployment of a Big Data solution. A ratifier is defined as an individual or group within an organization who is tasked with assessing the candidate solution before it is selected and deployed. For example, a third-party security consultant may be deployed by an organization as a ratifier, and an internal security specialist with an organization's IT department might serve as both a ratifier and a stakeholder if tasked with ongoing monitoring, maintenance, and audits of the security.

1668 The upcoming sections also explore potential gaps that would be of interest to the anticipated stakeholders and ratifiers who reside on these three new conceptual axes. 1669

1670 4.4.1 DATA CONFIDENTIALITY

IT specialists who address cryptography should understand the relevant definitions, threat models, 1671 1672 assumptions, security guarantees, and core algorithms and protocols. These individuals will likely be ratifiers, rather than stakeholders. IT specialists who address end-to-end security should have an 1673 1674 abbreviated view of the cryptography, as well as a deep understanding of how the cryptography would be integrated into their existing security infrastructures and controls. 1675

1676 GRC should reconcile the vertical requirements (e.g., HIPAA requirements related to EHRs) and the

1677 assessments by the ratifiers that address cryptography and security. GRC managers would in turn be

1678 ratifiers to communicate their interpretation of the needs of their vertical. Persons in these roles also serve

1679 as stakeholders due to their participation in internal and external audits and other workflows.

1657

1659

1660

1661 1662

1664

1665

1666

1680 **4.4.2 PROVENANCE**

Provenance (or veracity) is related in some ways to data privacy, but it might introduce information workers as ratifiers because businesses may need to protect their intellectual property from direct leakage or from indirect exposure during subsequent Big Data analytics. Information workers would need to work with the ratifiers from cryptography and security to convey the business need, as well as understand how the available controls may apply.

Similarly, when an organization is obtaining and consuming data, information workers may need to
confirm that the data provenance guarantees some degree of information integrity and address incorrect,
fabricated, or cloned data before it is presented to an organization.

Additional risks to an organization could arise if one of its data suppliers does not demonstrate the
 appropriate degree of care in filtering or labeling its data. As noted in the U.S. Department of Health and
 Human Services (DHHS) press release announcing the HIPAA final omnibus rule:

"The changes announced today expand many of the requirements to business associates of these entities that receive protected health information, such as contractors and subcontractors. Some of the largest breaches reported to HHS have involved business associates. Penalties are increased for noncompliance based on the level of negligence with a maximum penalty of \$1.5 million per violation [101]."

Organizations using or sharing health data among ecosystem partners, including mobile apps and SaaS
 providers, may need to verify that the proper legal agreements are in place. Compliance may be needed to
 ensure data veracity and provenance [102].

4.4.3 System Health Management

System health is typically the domain of IT, and IT managers will be ratifiers and stakeholders of
technologies, protocols, and products that are used for system health. IT managers will also design how
the responsibilities to maintain system health would be shared across the organizations that provide data,
analytics, or services—an area commonly known as operations support systems (OSS) in the telecom
industry, which has significant experience in syndication of services.

Security and cryptography specialists should scrutinize the system health to spot potential gaps in the
 operational architectures. The likelihood of gaps increases when a system infrastructure includes diverse
 technologies and products.

System health is an umbrella concept that emerges at the intersection of information worker and
infrastructure management. As with human health, monitoring nominal conditions for Big Data systems
may produce Big Data volume and velocity—two of the Big Data characteristics. Following the human
health analogy, some of those potential signals reflect defensive measures such as white cell count. Others
could reflect compromised health, such as high blood pressure. Similarly, Big Data systems may employ
applications like SIEM or Big Data analytics more generally to monitor system health.

Volume, velocity, variety, and variability of Big Data systems health make it different from small data 1716 1717 system health. Health tools and design patterns for existing systems are likely insufficient to handle Big 1718 Data—including Big Data security and privacy. At least one commercial web services provider has 1719 reported that its internal accounting and systems management tool uses more resources than any other 1720 single application. The volume of system events and the complexity of event interactions is a challenge 1721 that demands Big Data solutions to defend Big Data systems. Managing systems health—including 1722 security—will require roles defined as much by the tools needed to manage as by the organizational 1723 context. Stated differently, Big Data is transforming the role of the Computer Security Officer.

1692

1693

1694

1695

1696

1697

1724 For example, one aspect motivated by the DevOps movement (i.e., move toward blending tasks

1725 performed by applications development and systems operations teams) is the rapid launch,

1726 reconfiguration, redeployment, and distribution of Big Data systems. Tracking intended vs. accidental or

1727 malicious configuration changes is increasingly a Big Data challenge.

4.4.4 PUBLIC POLICY, SOCIAL, AND CROSS-ORGANIZATIONAL TOPICS 1728

1729 Roles in setting public policy related to security and privacy are established in the United States by 1730 federal agencies such as the FTC, the U.S. Food and Drug Administration (FDA), or the DHHS Office of 1731 National Coordinator. Examples of agency responsibilities or oversight are:

- DHS is responsible for aspects of domestic U.S. computer security through the activities of US-CERT (U.S. Computer Emergency Readiness Team). US-CERT describes its role as "[leading] efforts to improve the Nation's cybersecurity posture, coordinate cyber information sharing, and proactively manage cyber risks to the Nation while protecting the constitutional rights of Americans [103]."
- The Federal Trade Commission offers guidance on compliance with the Children's Online Privacy Protection Act (COPPA) via a *hot line* (CoppaHotLine@ftc.gov), with website privacy policies, and compliance with the Fair Credit Reporting Act. The Gramm-Leach-Bliley Act, Red Flags Rule, and the US-EU Safe Harbor Framework [104].
- The DHHS Office of National Coordinator offers guidance and regulations regarding health • information privacy, security and health records, including such tools as a Security Risk Assessment, HIPAA rule enforcement, and the embedding of HIPAA privacy and security requirements into Medicare and Medicaid EHR Meaningful Use requirements [105].
- Increased use of EHRs and smart medical devices has resulted in new privacy and security initiatives at the FDA related to product safety, such as the Cybersecurity of Medical Devices as related to the FDA's Medical Product Safety Network (MedSun) [106].

Social roles include the influence of nongovernmental organizations, interest groups, professional organizations, and standards development organizations. Cross-organizational roles include design patterns employed across or within certain industries such as pharmaceuticals, logistics, manufacturing, distribution to facilitate data sharing, curation, and even orchestration. Big Data frameworks will impact, and are impacted by cross-organizational considerations, possibly industry-by-industry. Further work to develop these concepts for Big Data is anticipated by the Subgroup.

4.5 ADDITIONAL TAXONOMY TOPICS

Additional topics have been identified but not scrutinized, and it is not yet clear whether these would fold into existing categories or if new categories for security and privacy concerns would need to be identified and developed. Some candidate topics are briefly described below.

4.5.1 PROVISIONING, METERING, AND BILLING

1759 Provisioning, metering, and billing are elements in typically commercial systems used to manage assets, 1760 meter their use, and invoice clients for that usage. Commercial pipelines for Big Data can be constructed 1761 and monetized more readily if these systems are agile in offering services, metering access suitably, and 1762 integrating with billing systems. While this process can be manual for a small number of participants, it 1763 can become complex very quickly when there are many suppliers, consumers, and service providers. 1764 Information workers and IT professionals who are involved with existing business processes would be 1765 candidate ratifiers and stakeholders. Assuring privacy and security of provisioning and metering data may 1766 or may not have already been designed into these systems. The scope of metering and billing data will 1767 explode, so potential uses and risks have likely not been fully explored.

1732

1733

1734 1735

1737

1738

1739 1740

1741

1742

1743

1744

1745

1746 1747

1748

1749

1750

1751

1752 1753

1754

1755 1756

1757

There are both veracity and validity concerns with these systems. GRC considerations, such as audit and recovery, may overlap with provisioning and metering.

1770 **4.5.2 DATA SYNDICATION**

A feature of Big Data systems is that data is bought and sold as a valuable asset. Free search engines rely
on users giving up information about their search terms on a Big Data scale. Search engines and social
media sites can choose to repackage and syndicate that information for use by others for a fee.

1774 Similar to service syndication, a data ecosystem is most valuable if any participant can have multiple 1775 roles, which could include supplying, transforming, or consuming Big Data. Therefore, a need exists to 1776 consider what types of data syndication models should be enabled; again, information workers and IT 1777 professionals are candidate ratifiers and stakeholders. For some domains, more complex models may be 1778 required to accommodate PII, provenance, and governance. Syndication involves transfer of risk and 1779 responsibility for security and privacy.

4.5.3 ACM TAXONOMY

Where possible, this document uses the terminology adopted by the ACM Computing Classification
System [107], [108]. The ACM 2012 CCS is accessible online [91] and can be represented in Simple
Knowledge Organization System (SKOS) format [109]. A snippet of the Security and Privacy Category
from the 2012 CSS is presented below.

- Database and storage security
 - Data anonymization and sanitation
 - o Management and querying of encrypted data
 - Information accountability and usage control
 - Database activity monitoring
- Software and application security
 - Software security engineering
 - Web application security
 - Social network security and privacy
 - Domain-specific security and privacy architectures
 - Software reverse engineering
- Human and societal aspects of security and privacy
 - Economics of security and privacy
 - Social aspects of security and privacy
 - Privacy protections
 - Usability in security and privacy

1801 A systematic taxonomy has several benefits for Big Data security and privacy. In addition to tracking new 1802 research and guidelines (e.g., software and application security snippet from the list above), standardized 1803 terminology can, in some limited contexts, allow for automated reasoning. Automated reasoning, based 1804 on cybersecurity ontologies, for example, could enable fine-grained alerts, which could elevate as the 1805 need arises, while minimizing false positives and less significant events. One approach extended a 1806 malware ontology to include elements of *upper ontologies*, which can add *utility*-domain aspects such as 1807 temporal, geospatial, person, events, and network operations [110]. Utility domains form part of the 1808 NBD-SPSL.

1809 Other taxonomies may be useful. For example, the NISTIR 8085 draft *Forming Common Platform*

- 1810 Enumeration (CPE) Names from Software Identification (SWID) Tags is designed to "support automated
- 1811 and accurate software asset management [111], p. iii.

1780

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798 1799

4.6 WHY SECURITY ONTOLOGIES MATTER FOR BIG DATA 1812

1813 Suppose an engineer inherits software and/or data from a third party. Whether it's within the organization, 1814 or across organizations, it's important to know what security components are present in the inherited

1815 system. Yet the terminology and underlying components are rarely described in terms that are readily

1816 exchanged between practitioners, much less between analysts, SMEs, testers, and users. However,

1817 standardizing the terminology is insufficient.

1818 As noted in the literature [110], systematic use of ontologies could enable information security tools to 1819 process standardized information streams from third parties, using methods such as the Security Content 1820 Automation Protocol (SCAP). This model could enable automated reasoning to address potential breaches 1821 closer to real time, or which have indirect effects on networks or applications which require a mixture of 1822 human and machine cognition.

1823 While SCAP is mainly used to facilitate alignment between configuration settings and NIST SP 800-53, 1824 this approach was not designed for the velocity or volume of Big Data security information. Attempts to 1825 integrate real-time logs with internal and external SCAP feeds are likely to encounter scalability 1826 challenges, numerous false positives, and crippling information overload from the human computer 1827 interaction (HCI) perspective.

1828 DAEDALUS-VIZ was a research project whose architects felt it necessary to build a "novel real-time 3D 1829 visualization engine called DAEDALUS-VIZ that enables operators to grasp visually and in real time a 1830 complete overview of alert circumstances [112]." Scaling these projects to Big Data dimensions would 1831 tax even the most gifted security analysts.

1832 SIEM and related tools are today relatively unsophisticated in their reasoning capabilities. Big Data 1833 demands a more sophisticated framework for security and privacy frameworks than are currently 1834 available. As Obrst et al. explain,

> "Events are entities that describe the occurrences of actions and changes in the real world. Situations represent histories of action occurrences. In this context at least, situations are not equivalent to states. Events and situations are dynamic and challenging to model in knowledge representation systems. As in the temporal and spatial domains, logic formalisms have been created for representing and reasoning about events and situations. These are the event calculus and situation calculus. Both calculi employ the notion of fluents. A fluent is a condition that can change over time. The main elements of the event calculus are fluents and actions, and for the situation calculus they are fluents, actions and situations [110]."

1844 An arguably chronic weakness in conventional databases is their ability to manage *point in time* 1845 representations. Big Data applications allow for unstructured repositories but do not themselves solve the 1846 problem of integrating temporal and spatial elements. If network topologies are analogs or even literal 1847 spatial representations, it is clear that reasoning about cyber events and situations will require ontological 1848 discipline and Big Data. While visualization is often seen as the cure-all for this, Shabtai et al. [113] 1849 referred to the real underlying need as "knowledge-based interpretation, summarization, query, 1850 visualization and interactive exploration of time-oriented data." Among other requirements, the 1851 researchers cite "a domain-specific knowledge base" as an essential component.

1852 As shown in the proposed NBD-SPSL (Appendix A), ontologies that represent knowledge of 1853 applications, domains and utility (so-called *middle* and *upper* ontologies) are likely to comprise the most effective means of processing cybersecurity Big Data. Cloud-centric work by Takahashi et al. [114] 1854 1855 demonstrated the feasibility of the approach.

1856 Additional ontologies to support privacy will be needed for some Big Data systems. While it did not 1857 result in ontologies, at least one project took a model-based systems engineering (MBSE) approach to

1835

1836

1837

1839

1840

1841

1842

- 1858 produce "a model of private information flow and a graphical notation for visualizing this flow are
- 1859 proposed. An application example of using the notation to identify privacy vulnerabilities is given [115]."

5 BIG DATA REFERENCE

PRIVACY FABRIC

1861

1862

1863

1864 Security and privacy considerations are a fundamental aspect of the NBDRA. Using the material gathered 1865 for this volume and extensive brainstorming among the NBD-PWG Security and Privacy Subgroup members and others, the proposed Security and Privacy Fabric was developed.^d This is geometrically 1866 depicted in Figure 6 by the Security and Privacy Fabric surrounding the five main components, since all 1867 components are affected by security and privacy considerations. The role of security and privacy is 1868 1869 correctly depicted in relation to the components but does not expand into finer details, which may be best 1870 relegated to a more detailed security and privacy reference architecture. The Data Provider and Data 1871 Consumer are included in the Security and Privacy Fabric since, at the least, they should agree on the security protocols and mechanisms in place. The Security and Privacy Fabric is an approximate 1872 1873 representation that alludes to the intricate interconnected nature and ubiquity of security and privacy 1874 throughout the NBDRA. The NBDIF: Volume 6, Reference Architecture document discusses in detail the 1875 other components of the NBDRA.

ARCHITECTURE AND SECURITY AND

^d The concept of a *fabric* for security and privacy has precedent in the hardware world, where the notion of a fabric of interconnected nodes in a distributed computing environment was introduced. Computing fabrics were invoked as part of cloud and grid computing, as well as for commercial offerings from both hardware and software manufacturers.

	INFORMATION VALUE CHAIN SYSTEM ORCHESTRATOR ATA APPLICATION PROVIDER Hection Preparation/ Curation Analytics Visualization Access Batch Interactive Streaming Platforms: Data Organization and Distribution Indexed Storage File Systems Infrastructures: Networking, Computing, Storage Virtual Resources Physical Resources	Resource Management curity and Privacy anagement IT VALUE CHAIN
KEY: DATA	Physical Resources Big Data Information Flow Service Use SW	

Figure 6: NIST Big Data Reference Architecture

At this time, explanations as to how the proposed security and privacy fabric concept is implemented across each NBDRA component are cursory—more suggestive than prescriptive. However, it is believed that, in time, a template will evolve and form a sound basis for more detailed iterations.

Figure 6 introduces two new concepts that are particularly important to security and privacy considerations: information value chain and IT value chain.

- *Information value chain*: While it does not apply to all domains, there may be an implied processing progression through which information value is increased, decreased, refined, defined, or otherwise transformed. Application of provenance preservation and other security mechanisms at each stage may be conditioned by the state-specific contributions to information value.
- *IT value chain*: Platform-specific considerations apply to Big Data systems when scaled-up or scaled-out. In the process of scaling, specific security, privacy, or GRC mechanism or practices may need to be invoked.

1890 5.1 RELATION OF THE BIG DATA SECURITY OPERATIONAL 1891 TAXONOMY TO THE NBDRA

Table 1 represents a preliminary mapping of the operational taxonomy to the NBDRA components. Thetopics and activities from the operational taxonomy elements (Section 4.2) have been allocated to a

1894 NBDRA component under the Activities column in Table 1. The description column provides additional
 1895 information about the security and privacy aspects of each NBDRA component.

1896

Table 1: Draft Security Operational Taxonomy Mapping to the NBDRA Components

Activities	1	Description			
System O	System Orchestrator				
Solution Solution	olicy Enforcement ecurity Metadata Model ata Loss Prevention, Detection ata Life Cycle Management hreat and Vulnerability Management litigation onfiguration Management lonitoring, Alerting lalware Surveillance and Remediation esiliency, Redundancy, and Recovery ccountability ompliance orensics usiness Risk Model	Several security functions have been mapped to the System Orchestrator block, as they require architectural level decisions and awareness. Aspects of these functionalities are strongly related to the Security Fabric and thus touch the entire architecture at various points in different forms of operational details. Such security functions include nation-specific compliance requirements, vastly expanded demand for forensics, and domain-specific, privacy-aware business risk models.			
Data Pro	vider				
R • A • E • E	evice, User, Asset, Services, Applications egistration pplication Layer Identity nd User Layer Identity Management nd Point Input Validation igital Rights Management Ionitoring, Alerting	Data Providers are subject to guaranteeing authenticity of data, and in turn require that sensitive, copyrighted, or valuable data be adequately protected. This leads to operational aspects of entity registration and identity ecosystems.			
Data Con	sumer				
• E • W • D	pplication Layer Identity nd User Layer Identity Management /eb Services Gateway igital Rights Management Ionitoring, Alerting	Data Consumers exhibit a duality with Data Providers in terms of obligations and requirements—only they face the access/visualization aspects of the Big Data Application Provider.			
	Application Provider				
• W • D • D	pplication Layer Identity Veb Services Gateway ata Transformation igital Rights Management Ionitoring, Alerting	The Big Data Application Provider interfaces between the Data Provider and Data Consumer. It takes part in all the secure interface protocols with these blocks as well as maintains secure interaction with the Big Data Framework Provider.			
	Framework Provider				
 Id E Is St N 	irtualization Layer Identity lentity Provider ncryption and Key Management solation/Containerization torage Security etwork Boundary Control Ionitoring, Alerting	The Big Data Framework Provider is responsible for the security of data/computations for a significant portion of the life cycle of the data. This includes security of data at rest through encryption and access control; security of computations via isolation/virtualization; and security of communication with the Big Data Application Provider.			

1897 5.2 SECURITY AND PRIVACY FABRIC IN THE NBDRA

Figure 7 provides an overview of several security and privacy topics with respect to some key NBDRA components and interfaces. The figure represents a beginning characterization of the interwoven nature of the Security and Privacy Fabric with the NBDRA components. It is not anticipated that Figure 6 will be further developed.

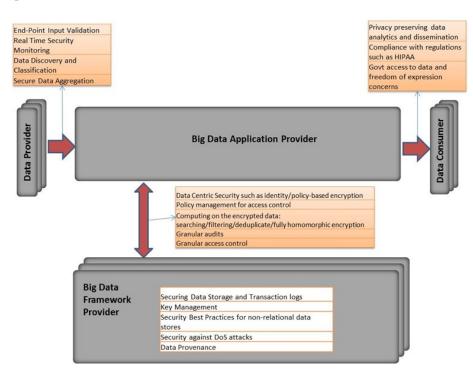


Figure 7: Notional Security and Privacy Fabric Overlay to the NBDRA

1903 The groups and interfaces depicted in Figure 7 are described below.

1904 A. INTERFACE BETWEEN DATA PROVIDERS → BIG DATA APPLICATION PROVIDER

Data coming in from data providers may have to be validated for integrity and authenticity. Incoming
 traffic may be maliciously used for launching DoS attacks or for exploiting software vulnerabilities on
 premise. Therefore, real-time security monitoring is useful. Data discovery and classification should be
 performed in a manner that respects privacy.

1909 B. INTERFACE BETWEEN BIG DATA APPLICATION PROVIDER →DATA CONSUMER

Data, including aggregate results delivered to data consumers, must preserve privacy. Data accessed by
 third parties or other entities should follow legal regulations such as HIPAA. Concerns include access to
 sensitive data by the government.

1913 C. INTERFACE BETWEEN APPLICATION PROVIDER ← → BIG DATA FRAMEWORK PROVIDER

1915 Data can be stored and retrieved under encryption. Access control policies should be in place to assure
1916 that data is only accessed at the required granularity with proper credentials. Sophisticated encryption
1917 techniques can allow applications to have rich policy-based access to the data as well as enable searching,

1918 filtering on the encrypted data, and computations on the underlying plaintext.

1919 **D. INTERNAL INTERFACE WITHIN THE BIG DATA FRAMEWORK PROVIDER**

1920 Data at rest and transaction logs should be kept secured. Key management is essential to control access

and keep track of keys. Non-relational databases should have a layer of security measures. Data

1922 provenance is essential to having proper context for security and function of the data at every stage. DoS

attacks should be mitigated to assure availability of the data. Certifications (not self-signed) should beused to mitigate man-in the-middle attacks.

1925 E. SYSTEM ORCHESTRATOR

A System Orchestrator may play a critical role in identifying, managing, auditing, and sequencing Big
Data processes across the components. For example, a workflow that moves data from a collection stage
to further preparation may implement aspects of security or privacy.

System Orchestrators present an additional attractive attack surface for adversaries. System Orchestrators
 often require permanent or transitory elevated permissions. System Orchestrators present opportunities to
 implement security mechanisms, monitor provenance, access systems management tools, provide audit
 points, and inadvertently subjugate privacy or other information assurance measures.

Appendix E contains mapping of Security and Privacy use cases to the fabric overlay described in Figure7.

1935 5.3 SECURITY AND PRIVACY FABRIC PRINCIPLES

1936 Big Data security and privacy should leverage existing standards and practices. In the privacy arena, a 1937 systems approach that considers privacy throughout the process is a useful guideline to consider when 1938 adapting security and privacy practices to Big Data scenarios. The OASIS Privacy Management 1939 Reference Model (PMRM), consisting of seven foundational principles, provides appropriate basic 1940 guidance for Big System architects. When working with any personal data, privacy should be an integral 1941 element in the design of a Big Data system. Appendix B introduces a comprehensive list of additional 1942 security and privacy concepts developed in selected existing standards. There is an intentional emphasis 1943 on privacy concepts, reflecting public and enterprise concerns about Big Data security and privacy. 1944 Although not all concepts are fully addressed in the current release of this volume, readers may identify 1945 particular notions which can focus attention for particular Big Data security and privacy implementations or domain-specific scenarios. 1946

Other privacy engineering frameworks, including the model presented in NISTIR 8062 are also under
consideration [28], [116]–[119].

Related principles include identity management frameworks such as proposed in the National Strategy for
 Trusted Identities in Cyberspace (NSTIC) [120] and considered in the NIST Cloud Computing Security
 Reference Architecture [121].

Big Data frameworks can also be used for strengthening security. Big Data analytics can be used fordetecting privacy breaches through security intelligence, event detection, and forensics.

1954 **5.4 SECURITY AND PRIVACY APPROACHES IN ANALYTICS**

1955 The introduction to the IEEE P7003 working group notes that "individuals or organizations creating

algorithms, largely in regard to autonomous or intelligent systems, [need] certification-oriented

1957 methodologies to provide clearly articulated accountability and clarity around how algorithms are

1958 targeting, assessing, and influencing the users and stakeholders of said algorithm."

1959 (https://standards.ieee.org/develop/project/7003.html)

Big Data analytical and machine learning capabilities are central goals of many Big Data systems, yet not all address the associated security and privacy issues surrounding them. Analysts and the consumers of

all address the associated security and privacy issues surrounding them. Analysts and the consumers of

conclusions reached by Big Data systems require guidance to help interpret and manage visualizationssuch as dashboards and narratives derived from Big Data systems.

1964 THE CASE OF CRISP-DM

Despite its widespread adoption for Big Data analytics, CRISP-DM has been criticized for its omission of
domain-specific processes. For example, Li, et al. [122] point out that even as Big Data has taken hold in
hospital information systems, "There are [only] a few known attempts to provide a specialized [CRISPDM] methodology or process model for applications in the medical domain ..." (p. 73).

One of the few cited attempts provides extensions for CRISP-DM, but domain specificity is rare [123]. A
 result of this lightweight coverage for domain-specific granularity is potentially weak coverage for Big
 Data security and privacy concerns that emerge from the specifics of that system.

In U.S. healthcare, disclosure of health information associated with HIV/AIDS, alcohol use, or social
status is potentially damaging to patients and can put caregivers and analysts at risk, yet CRISP-DM
models may not take these issues into account.

Securing intellectual property, reputation, and privacy are concerns for individuals, organizations as well
as governments—though the objectives are sometimes in conflict. Risks associated with loss of
algorithmic security and lack of transparency are challenges that often are associated with Big Data
systems.

1979 Transparency of such systems affects user performance, as a study by Schaffer et al. demonstrated [124].
1980 That said, achieving transparency is not a skill that most developers have attained, and for some domains,
1981 transparency has attendant risks that must also be addressed.

1982 5.5 CRYPTOGRAPHIC TECHNOLOGIES FOR DATA 1983 TRANSFORMATIONS

Security and privacy of Big Data systems are enforced by ensuring integrity and confidentiality at the datum level, as well as architectural awareness at the fabric level. Diversity of ownership, sensitivity, accuracy, and visibility requirements of individual datum is a defining characteristic of Big Data. This requires cryptographic encapsulation of the right nature at the right levels. Homomorphic, Functional, and Attribute-based Encryption are examples of such encapsulation. Data transactions respecting trust boundaries and relations between interacting entities can be enabled by distributed cryptographic protocols such as Secure MPC and Blockchain. Many of the expensive cryptographic operations can be substituted by hardware primitives with circumscribed roots of trust, but one must be aware that there are inherent limitations and dangers to such approaches.

5.5.1 CLASSIFICATION

Table 2 provides a classification of cryptographic technologies in terms of their relation to the NBDRA, the features they support, and the data visibility they enforce.

Table 2: Classification of Cryptographic Technologies

Technology	Data Provider	Application Provider	Feature	Visibility
Homomorphic Encryption	Encrypts data	Stores encrypted data	Capability to perform computations	Only at Data Provider

Technology	Data Provider	Application Provider	Feature	Visibility
Functional Encryption	Encrypts data	Stores encrypted data	Capability to perform computations	Result of allowed computations visible at Application Provider
Access Control Policy-Based Encryption	Encrypts data	Stores encrypted data	No capability to perform computations	Only for entities which have a secret key satisfying the access control policy
Secure Multi- Party Computation	Plaintext data	Stores plaintext data	Collaborative computation among multiple Application Providers	Application Providers do not learn others' inputs. They only learn the jointly computed function.
Blockchain	Plaintext or encrypted data	Decentralized	Immutable decentralized database	Transaction logging in a decentralized, untrusted environment
Hardware primitives for secure computations	Encrypts data	Stores encrypted data	Capability to perform computations. Verified execution.	Controllable visibility at Application Provider.

1997

1998 1999

2000

2001

5.5.2 HOMOMORPHIC ENCRYPTION

Scenario: Data Provider has data to be kept confidential. Application Provider is requested to do computations on the data. Data Provider gets back results from Application Provider.

2002 Consider that a client wants to send all its sensitive data to a cloud—photos, medical records, financial 2003 records, and so on. She could send everything encrypted, but this wouldn't be of much use if she wanted 2004 the cloud to perform some computations on them, such as calculating the amount she spent on movies last 2005 month. With Fully Homomorphic Encryption (FHE), a cloud can perform any computation on the 2006 underlying plaintext, all while the results are encrypted. The cloud obtains no information about the 2007 plaintext or the results [125].

Technically, for a cryptographic protocol for computation on encrypted data, the adversary should not be able to identify the corresponding plaintext data by looking at the ciphertext, even if given the choice of a correct and an incorrect plaintext. Note that this is a very stringent requirement because the adversary is able to compute the encryption of arbitrary functions of the encryption of the original data. In fact, a stronger threat model called chosen ciphertext security for regular encryption does not have a meaningful counterpart in this context - search to find such a model continues [126].

In a breakthrough result in 2009 [127], Gentry constructed the first FHE scheme. Such a scheme allows

2015 one to compute the encryption of arbitrary functions of the underlying plaintext. Earlier results [128]

2016 constructed partially homomorphic encryption schemes. Gentry's original construction of a FHE scheme

2017 used ideal lattices over a polynomial ring. Although lattice constructions are not terribly inefficient, the

2018 computational overhead for FHE is still far from practical. Research is ongoing to find simpler 2019 constructions [129], [130], efficiency improvements [131], [132], and partially homomorphic schemes

2020 [133] that suffice for an interesting class of functions.

2021 5.5.3 FUNCTIONAL ENCRYPTION

Scenario: Data Provider has data to be kept confidential. Application Provider or Data Consumer are allowed to do only a priori specified class of computations on the data and see the results.

Consider a system to receive emails encrypted under the owner's public key. However, the owner does
not want to receive spam mails. With plain public key encryption, there is no way to distinguish a
legitimate email ciphertext from a spam ciphertext. However, with recent techniques, one can give a *token*to a filter, such that the filter can apply the token to the ciphertext only deducing whether it satisfies the
filtering criteria or not. However, the filter does not get any clue about any other property of the encrypted
message [125]!

Technically, for a cryptographic protocol for searching and filtering encrypted data, the adversary should
not be able to learn anything about the encrypted data beyond whether the corresponding predicate was
satisfied. Recent research has also succeeded in hiding the search predicate itself so that a malicious entity
learns nothing meaningful about the plaintext or the filtering criteria.

Boneh and Waters [134] construct a public key system that supports comparison queries, subset queries, and arbitrary conjunction of such queries. In a recent paper [135], Cash et al. present the design, analysis, and implementation of the first sub-linear searchable symmetric encryption (SSE) protocol that supports conjunctive search and general Boolean queries on symmetrically-encrypted data and that scales to very large datasets and arbitrarily-structured data including free text search.

While with standard functional encryption, the objective is to compute a function over a single user's encrypted input, multi-input functional encryption (MIFE) is a relatively recent cryptographic primitive which allows restricted function evaluation over independently encrypted values from multiple users. It is possible to realize this primitive over the broadest class of permitted functions with a basic primitive called *indistinguishability obfuscation*, which to this date is prohibitively impractical. However, MIFE for important practical classes of functions such as vector inner products [136], equality and approximation testing and order evaluation are known using practically available tools like elliptic curves and lattices.

5.5.4 Access Control Policy-Based Encryption

Scenario: The Infrastructure Provider is part of an organization which employs many people in different roles. The requirement is to encrypt data so that only roles with the right combination of attributes can decrypt the data.

Traditionally access control to data has been enforced by systems—Operating Systems, Virtual Machines—which restrict access to data, based on some access policy. The data is still in plaintext. There are at least two problems to the systems paradigm: (1) systems can be hacked, and (2) security of the same data in transit is a separate concern [125].

The other approach is to protect the data itself in a cryptographic shell depending on the access policy. Decryption is only possible by entities allowed by the policy. One might make the argument that keys can also be hacked. However, this exposes a much smaller attack surface. Although covert side-channel attacks [137], [138] are possible to extract secret keys, these attacks are far more difficult to mount and require sanitized environments. Also encrypted data can be moved around, as well as kept at rest, making its handling uniform.

2061 Technically, for a cryptographically-enforced access control method using encryption, the adversary 2062 should not be able to identify the corresponding plaintext data by looking at the ciphertext, even if given 2063 the choice of a correct and an incorrect plaintext. This should hold true even if parties excluded by the 2064 access control policy collude among each other and with the adversary.

2065 Identity-based encryption (IBE) and attribute-based encryption (ABE) methods enforce access control 2066 using cryptography. In identity-based systems [139], plaintext can be encrypted for a given identity, and 2067 the expectation is that only an entity with that identity can decrypt the ciphertext. Any other entity will be unable to decipher the plaintext, even with collusion. Boneh and Franklin [140] came up with the first 2068 2069 IBE using pairing-friendly elliptic curves. Since then, there have been numerous efficiency and security 2070 improvements [141]-[143].

2071 ABE extends this concept to attribute-based access control. Sahai and Waters [144] presented the first 2072 ABE, in which a user's credentials is represented by a set of string called *attributes* and the access control 2073 predicate is represented by a formula over these attributes. Subsequent work [145] expanded the 2074 expressiveness of the predicates and proposed two complementary forms of ABE. In Key-Policy ABE, 2075 attributes are used to annotate the ciphertexts, and formulas over these attributes are ascribed to users' 2076 secret keys. In Ciphertext-Policy ABE, the attributes are used to describe the user's credentials and the 2077 formulas over these credentials are attached to the ciphertext by the encrypting party. The first work to 2078 explicitly address the problem of Ciphertext-Policy Attribute-Based Encryption was by Bethencourt, 2079 Sahai, and Waters [146], with subsequent improvement by Waters [147].

As an example of Ciphertext-Policy ABE, consider a hospital with employees who have some possible combination of four attributes: is a doctor, is a nurse, is an admin, and works in Intensive Care Unit (ICU). Take for instance a nurse who works in ICU—she will have the attributes is a nurse and works in *ICU*, but not the attribute *is a doctor*. The patient can encrypt his data under his access control policy of choice, such as, only a doctor OR a nurse who works in ICU can decrypt his data. Only employees who have the exact attributes necessary can decrypt the data. Even if two employees collude, who together have a permissible set of attributes, but not individually so, should not be able to decrypt the data. For example, an admin who works in the ICU and a nurse who doesn't work in the ICU should not be able to decrypt data encrypted using the above access control policy.

5.5.5 Secure Multi-Party Computations

Consider a scenario where a government agency has a list of terrorism suspects and an airline has a list of passengers. For passenger privacy, the airline does not wish to give the list in the clear to the agency, while the agency too does not wish to disclose the name of the suspects. However, both the organizations are interested to know the name of the suspects who are going to travel using the airline. Communicating all the names in each list is a breach of privacy and clearly more information than required by either. On the other hand, knowing the intersection is beneficial to both the organizations.

2096 Secure multi-party computations (MPC) are a class of distributed cryptographic protocols which address 2097 the general class of such problems. In an MPC between n entities, each entity P_i has a private input x_i and 2098 there is a joint function $f(x_1, ..., x_n)$ that everyone wants to know the value of. In the above scenario, the 2099 private inputs are the respective list of names and the joint function is the set intersection. The protocol 2100 proceeds through communication rounds between the entities, in which each message depends on the 2101 entity's own input, the result of some random coin flips and the transcript of all the previous messages. At 2102 the end of the protocol, the entities are expected to have enough information to compute f.

2103 What makes such a protocol tricky to construct is the privacy guarantee it provides, which essentially says 2104 that each entity just learns the value of the function, and nothing else about the input of the other parties. 2105 Of course, given the output of the function, one can narrow down the possibilities for the inputs of the other

2106 parties—but, that is the *only* additional knowledge that it is allowed to gain.

2107 Other examples include privacy-preserving collaborative analytics, voting protocols, medical research on 2108 private patient data, and so on. The foundations of MPC were given by Yao [148], with a long line of 2109 work described in the survey by Saia and Mahdi [149]. This is a very active area of cryptography research 2110 and some practical implementations can be found in the multi-party computation library by Zamani [150].

2111 **5.5.6 BLOCKCHAIN**

Bitcoin is a digital asset and a payment system invented by an unidentified programmer, or group of programmers, under the name of Satoshi Nakamoto [https://bitcoin.org/bitcoin.pdf]. While Bitcoin has become the most popular cryptocurrency, its core technological innovation, called the blockchain, has the potential to have a far greater impact.

The evidence of possession of a Bitcoin is given by a digital signature. While the digital signature can be efficiently verified by using a public key associated with the source entity, the signature can only be generated by using the secret key corresponding to the public key. Thus, the evidence of possession of a Bitcoin is just the secret key.

Digital signatures are well studied in the cryptographic literature. However, by itself this does not provide a fundamental characteristic of money—one should not be able to spend more than one has. A trusted and centralized database recording and verifying all transactions, such as a bank, is able to provide this service. However, in a distributed network, where many participating entities may be untrusted, even malicious, this is a challenging problem.

2125 This is where blockchain comes in. Blockchain is essentially a record of all transactions ever maintained 2126 in a decentralized network in the form of a linked list of blocks. New blocks get added to the blockchain 2127 by entities called miners. To add a new block, a miner has to verify the current blockchain for consistency and then solve a hard cryptographic challenge, involving both the current state of the blockchain and the 2128 2129 block to be added, and publish the result. When enough blocks are added ahead of a given block 2130 collectively, it becomes extremely hard to unravel it and start a different fork. As a result, once a 2131 transaction is deep enough in the chain, it's virtually impossible to remove. At a high level, the trust 2132 assumption is that the computing power of malicious entities is collectively less than that of the honest 2133 participants. The miners are incentivized to add new blocks honestly by getting rewarded with bitcoins.

The blockchain provides an abstraction for public ledgers with eventual immutability. Thus, beyond
cryptocurrency, it can also support decentralized record keeping which can be verified and accessed
widely. Examples of such applications can be asset and ownership management, transaction logging for
audit and transparency, bidding for auctions, and contract enforcement.

While the verification mechanism for the Bitcoin blockchain is tailored specifically for Bitcoin
transactions, it can in general be any algorithm such as a complex policy predicate. Recently a number of
such frameworks called Smart Contracts, such as Ethereum, have recently come to the fore. The Linux
Foundation has instituted a public working group called Hyperledger which is building a blockchain core
on which smart contracts, called chain codes, can be deployed.

As specialized blockchain platforms emerge, guidance on blockchain uses and its possible applications in
Big Data (and as Big Data) are needed. The WG is monitoring standards work under way in IEEE P2418
(Standard for the Framework of Blockchain use in IoT).

2146 Another potential Big Data blockchain influence could come from the "Digital Inclusion, Identity, Trust,

and Agency" (DIITA) Industry Connections Program [151], whose possible initiative outcomes see

2148 distributed ledger (blockchain-like) solutions as facilitating the following broad social aims:

- Have agency over our data and cyber-identity;
 - Provide the capacity to identify ourselves online in a way that protects our privacy, our right to be forgotten, and our off-line ability to have multiple personas;
 - Give a voice to the underserved and vulnerable with the creation of standards that are inclusive of their needs;
 - Encourage distributed ledger technology (e.g., Blockchain) standards that facilitate financial inclusion and other decentralized data sharing capabilities; and
 - Develop a collaborative approach to technology and policy design regarding digital inclusion, trust, personal data, agency, security, and privacy for all demographics.

5.5.7 HARDWARE SUPPORT FOR SECURE COMPUTATIONS

While sophisticated cryptographic technologies like homomorphic and functional encryption work directly on encrypted data without decrypting it, currently practical implementations remain out of reach for most applications. Secure hardware primitives, such as TPM (Trusted Platform Module) and SGX (Software Guard Extensions), provide a middle ground where the central processing unit (CPU) and a dedicated portion of the hardware contain private keys and process data after decrypting the ciphertexts communicated to these components.

The premise is that all communications within a Trusted Computing Base (TCB) is considered sensitive and is carried out using an isolated and protected segment of memory. Communications to and from the TCB with external code and memory spaces are always encrypted. This segregation of a trusted zone and the untrusted environment can be carefully engineered and leveraged to provide higher-level security guarantees.

Verifiable Confidential Cloud Computing (VC3) [152] is a recent work which is aimed at trustworthy data analytics on Hadoop using the SGX primitive. The work addresses the following two objectives in their implemented framework:

- 1. Confidentiality and integrity for both code and data (i.e., the guarantee that they are not changed by attackers and that they remain secret); and
- 2. Verifiability of execution of the code over the data (i.e., the guarantee that their distributed computation globally ran to completion and was not tampered with).

VC3's threat model includes malicious adversaries that may control the whole cloud provider's software and hardware infrastructure, except for the SGX-enabled processors. However, DoS attacks, side channels, and traffic analyses are out of scope.

2180 Advantages:

- Secure code runs competitively fast with respect to native execution of the same code.
- The only entity trusted is the CPU itself. Not even the operating system is trusted.

Disadvantages:

2188

2189

- Secure code execution is susceptible to side-channel leakage like timing, electromagnetic and power analysis attacks.
- Once secret keys embedded within the CPU are leaked, the hardware is rendered ineffective for further secure execution. If the leakage is detected, there are revocation mechanisms to invalidate the public keys for the victim. However, a compromised CPU cannot be re-provisioned with a fresh key.

2150

2151

5.5.8 CRYPTOGRAPHIC KEY ROTATION 2190

2191 To limit leakage of sensitive data, cryptographic keys should be refreshed periodically. The period

2192 depends on the security level offered by the scheme (technically, the *security parameter*), level of 2193 protection given to storing the key, sensitivity of the data being operated on by the key, and the frequency 2194 of usage of the key.

2195 The PCI-DSS (Payment Card Industry Data Security Standard, https://www.pcisecuritystandards.org) 2196 standard lists key rotation as a requirement. To quote, it requires "Cryptographic key changes for keys 2197 that have reached the end of their cryptoperiod (for example, after a defined period of time has passed 2198 and/or after a certain amount of cipher-text has been produced by a given key), as defined by the 2199 associated application vendor or key owner, and based on industry best practices and guidelines (for 2200 example, NIST Special Publication 800-57) [153]."

NIST Special Publication 800-57 [154] has a very detailed set of recommendations regarding key management in general, with a comprehensive treatment of key rotation. The recommendations are intended for a spectrum of roles in an IT environment and apply to a Big Data system orchestrator when making key management decisions about cryptographic operations to secure the following interfaces and storage:

- Communication interface between Data Consumers and Application Provider; •
- Internal storage of sensitive data in the Framework Provider; •
- Communication interface between Application Provider and Framework Provider; and •
- Communication interface between Application Provider and Data Consumer. •

The recommendations span description of cryptographic algorithms for specific goals, different types of keys that are needed, states that the keys cycle through, how long the keys need to be retained, and guidance for audit and accountability.

5.5.9 FEDERAL STANDARD FIPS140-2 ON CRYPTOGRAPHIC SYSTEMS

NIST publication FIPS140-2 [155] describes security requirements for cryptographic modules intended to handle sensitive data, in four increasing levels of stringency. The levels are intended to cater to the degree of data sensitivity required by the applications utilizing a given module. The security levels presented in FIPS 140-2 are as follows:

Security Level 1 is the lowest level which "allows the software and firmware components of a cryptographic module to be executed on a general-purpose computing system using an unevaluated operating system. Such implementations may be appropriate for some low-level security applications when other controls, such as physical security, network security, and administrative procedures are limited or nonexistent [155]." (p.1)

2223 "Security Level 2 enhances the physical security mechanisms of a Security Level 1 cryptographic module 2224 by adding the requirement for tamper-evidence, which includes the use of tamper-evident coatings or 2225 seals or for pick-resistant locks on removable covers or doors of the module. Tamper-evident coatings or 2226 seals are placed on a cryptographic module so that the coating or seal must be broken to attain physical 2227 access to the plaintext cryptographic keys and critical security parameters (CSPs) within the module. 2228 Tamper-evident seals or pick-resistant locks are placed on covers or doors to protect against unauthorized 2229 physical access. Security Level 2 requires, at a minimum, role-based authentication in which a 2230 cryptographic module authenticates the authorization of an operator to assume a specific role and perform 2231 a corresponding set of services [155]." (p. 2)

2232 Security Level 3: "In addition to the tamper-evident physical security mechanisms required at Security 2233 Level 2, Security Level 3 attempts to prevent the intruder from gaining access to CSPs [critical security 2234 parameters] held within the cryptographic module. Physical security mechanisms required at Security

2218

2235 Level 3 are intended to have a high probability of detecting and responding to attempts at physical access, 2236 use or modification of the cryptographic module. The physical security mechanisms may include the use 2237 of strong enclosures and tamper detection/response circuitry that zeroizes all plaintext CSPs [critical 2238 security parameters] when the removable covers/doors of the cryptographic module are opened. Security 2239 Level 3 requires identity-based authentication mechanisms, enhancing the security provided by the role-2240 based authentication mechanisms specified for Security Level 2. A cryptographic module authenticates 2241 the identity of an operator and verifies that the identified operator is authorized to assume a specific role 2242 and perform a corresponding set of services [155]." (p. 2)

2243 "Security Level 4 provides the highest level of security defined in this standard. At this security level, the 2244 physical security mechanisms provide a complete envelope of protection around the cryptographic 2245 module with the intent of detecting and responding to all unauthorized attempts at physical access. 2246 Penetration of the cryptographic module enclosure from any direction has a very high probability of being 2247 detected, resulting in the immediate zeroization of all plaintext CSPs [critical security parameters]. 2248 Security Level 4 cryptographic modules are useful for operation in physically unprotected environments. 2249 Security Level 4 also protects a cryptographic module against a security compromise due to 2250 environmental conditions or fluctuations outside of the module's normal operating ranges for voltage and 2251 temperature. Intentional excursions beyond the normal operating ranges may be used by an attacker to 2252 thwart a cryptographic module's defenses. A cryptographic module is required to either include special 2253 environmental protection features designed to detect fluctuations and zeroize CSPs [critical security 2254 parameters], or to undergo rigorous environmental failure testing to provide a reasonable assurance that the module will not be affected by fluctuations outside of the normal operating range in a manner that can 2255 compromise the security of the module [155]." (p. 3) 2256

These Security Levels provide a spectrum of local assurance of data protection. A consumer of these systems must remain aware that even Security Level 4 is not sufficient to provide security and privacy of sensitive data, unless the complete architecture that handles the data in consideration is analyzed with precise security and privacy guarantees that are intended.

2261 5.6 RISK MANAGEMENT

To manage risk, NIST 800-39 recommends organizing risk across "three tiers of organization, mission/business processes, and information systems [156]." To some extent, this risk framework assumes an organizational monoculture that may not be present for Big Data. Managing risk across organizations may prove to be the norm under certain CPS/ IoT scenarios.

5.6.1 PII AS REQUIRING TOXIC SUBSTANCE HANDLING

Treating certain data elements as more toxic than others is necessary to highlight risks for developers, operators, auditors, and forensics. Section 2.4.7.2 discusses toxic data elements. For instance, information associating a patient with a highly contagious disease is important from a public safety perspective, but simultaneously creates privacy risks. Protecting both demands that tagging, traceability, and detailed data communications become more widely practiced in Big Data scenarios.

2272 5.6.2 CONSENT WITHDRAWAL SCENARIOS

After a divorce, some previously provided consent must be withdrawn. In a few scenarios, this could be matter of life and death for an ex-spouse or a child, yet systematic methods for consent withdrawal are often ignored. Consent traceability through one of several means is seen as a Big Data priority for some scenarios.

5.6.3 TRANSPARENCY PORTAL SCENARIOS 2277

2278 How best to create data and algorithmic transparency is an emerging area of specialization in HCI. 2279 Several projects [98], [157], [158] are illustrative of attempts in this area, and there is even a recent 2280 formulation for an "organizational transparency model [159]." Big Data systems are more likely to spur 2281 transparency model investments for several reasons including the following:

- The element of surprise may occur when citizens realize where and how their data is being used in scenarios seemingly far afield from their original intent. Recently, increased use of automated image identification created new concerns.
 - Large scale breaches have occurred. •
 - Increased reliance on automated systems is forecast for public IoT applications, such as outdoor • parking management, environmental monitoring, precision irrigation and monitoring, traffic management, smart metering, and many other areas [160]. This reliance will expose more people to Big Data-driven solutions, as well as to the security and privacy limitations of those systems. For some, engagement will become essential to protect basic services, such as access to healthcare or convenient air travel.
 - As federated systems become more common-especially between small- and mid-size • enterprises, participants will demand greater process transparency as well as access to data. Transparency may prove essential for collaborative decision making. As noted by Grogan et al., "Design methods for federated systems must consider local incentives and interactive effects among independent decision-makers [161]." Access to shared Big Data pools is likely to be needed to fully leverage proprietary systems in-house.
 - Cross-organizational Risk Management is well understood in construction circles as best • governed by "target value design principles" and characterized by "shared risk and reward [162]." As analogous concepts coalesce in Big Data systems, transparency of algorithms, data, and processes will become as important for participating enterprises as for the sources of data (e.g., consumers, devices, other systems).

5.6.4 BIG DATA FORENSICS AND OPERATIONAL AAR

After Action Review (AAR) is an essential component to effective security in the Big Data era, AAR demands huge volumes of data to support high-fidelity replay and log analytics. Yet most Big Data systems have haphazard or nonexistent support for audit, unless regulatory bodies demand more.

Support for forensics in part derives from the need to build integrated test frameworks for continuous delivery (at least for agile projects). However, forensics scenarios often encompass broad swaths of scenarios, rather than specific test exercises. Accomplishing this in a systematic way is still beyond the reach of Big Data architects. This in turn weakens attempts to protect and anticipate risks to security and privacy.

For many organizations, the starting point may be a reconsideration of logs and dependency models. Is the data needed for AAR being captured? Can scenarios be fully replayed? ModSim may be essential in more complex settings.

5.7 BIG DATA SECURITY MODELING AND SIMULATION 2315 (MODSIM)

2317 Penetration testing is accepted as a best practice for security professionals. However, penetration testing 2318 cannot detect numerous security problems which arise. As systems become more complex and multi-2319 organizational, unitary penetration is simply not feasible. Instead, a combination of live test, desktop 2320 walkthroughs, and simulation are likely to be needed.

2304

2306

2282

2283

2286

2316

2313

2321The domain, utility, and application models recommended in the NBD-SPSL are helpful preparatory2322efforts in support of ModSim. The NBD-SPSL includes multiple features which exploit ModSim.

More than a decade ago, Nicol called for increased "emulation, in which real and virtual worlds are combined to study the interaction between malware and systems [163]." Such methods question the usual assumptions about attack surfaces; red teams typically focus on perimeter attacks. White hat efforts do not have these limitations, but lack the necessary tools to test what-if scenarios internally. ModSim, in addition to code walkthroughs and other methods, allows for security threats to complex systems to be more systematically studied.

In studies focused on specific areas such as equipment maintenance, recent work has shown that Big Data systems call for different ModSim approaches [164]. Future security and privacy Big Data scenarios are likely to include a complex mix of people, legacy software, smartphones, and multi-robotic systems [165]. Dependency models that have been used for critical infrastructure modeling and analysis [166] are equally relevant for planning the *Ops* component of DevOps within the continuous delivery paradigm that is common in Big Data systems.

Machine learning and simulation are increasingly seen as an essential element in situation awareness, leading some analysts to declare these two elements as a key enabler in the win of AlphaGo over a human Go champion [167].

2338 5.8 SECURITY AND PRIVACY MANAGEMENT PHASES

Earlier versions of this document did not clarify design-time, in-situ, and forensic (i.e., after-the-fact) considerations. This version explicitly addresses three phases for managing security and privacy in Big Data. Explicit awareness of these phases is seen as critical for security and privacy models to operate with full situation awareness.

- 1. **Build Phase**: The security and privacy Build Phase occurs when a system is being planned, or while under development (in the agile sense). In a straightforward case, the Build Phase takes place in a *greenfield* environment. However, significant Big Data systems will be designed as upgrades to legacy systems. The Build Phase typically incorporates heaviest requirements analysis, relies the most upon application domain-specific expertise, and is the phase during which most architectural decisions are made [168].
 - a. Note: This phase is roughly analogous to NIST SP 800-53 [58] planning controls.
 - b. Build phases that incorporate explicit models include the business model canvas. As Scott Shaw argued, "If architecture is the thing you want to get right from the start of your project, you should be modelling the business domain as the sequence of events that occur [169]."
 - c. At the build phase, delegated access management approaches should be designed in, using, for example, two-way TLS, OAuth, OpenID, JavaScript Object Notation (JSON) web tokens, hash message authentication code (HMAC) signing, NTLM, or other approaches. Architects must consider compatibility with the Big Data stack of choice.
 - d. The design pattern recommended for authorization is stateless, not using sessions or cookies.
- 2. *In-Situ Phase:* This phase reflects a fully deployed, operational system. An in-situ security scenario shares elements with operational intelligence and controls. In a small organization, operations management can subsume security operations. Development may be ongoing, as in an agile environment where code has been released to production. Microservices present "huge challenges with respect to performance of [an] overall integrated system [170]." Regardless of the predecessor tasks, once released into production, security challenges exist in an arena shared with operations—including issues such as performance monitoring and tuning, configuration management, and other well-understood concepts. This relationship is discussed in more detail in the *NBDIF: Volume 6, Reference Architecture* document in the Management Fabric section.

2362

2363

2364

2365

3. **Decommissioned Phase**: In its simplest form, this phase reflects a system that is no longer operational. For example, data from a (probably) decommissioned application from a bankrupt company was provided by the bankruptcy court to a third party. There is a more nuanced version of the decommissioned phase as well. *Significant* changes to an existing app could be seen as a decommissioning. Gartner's Structured Data Archiving and Application Requirement [171] contains additional discussion of decommissioning. This phase also includes design for forensics analytics.

In addition to prior work by Ruan et al. [172], the Cloud Security Alliance proposed a Cloud Forensics
Capability Maturity Model. As that Model demonstrates, more mature organizations will address phasespecific aspects of Big Data systems, rather than merely focusing on design and post-deployment
administration.

MODIFICATIONS FOR AGILE METHODOLOGIES

Agile methods may be particularly well-suited for Big Data projects, though little research has been focused solely on security and privacy aspects. Frankova et al. claim the following:

The close cooperation of managers, CIOs, the owners of the product, the development team can ... help find the right data, cleanse [data], and they can help in the decision to adopt or reject a hypothesis. In these cases, the agile iterative approach is very important because with Big Data [it] is difficult to predetermine return on investment [173] (p. 581).

Working under the assumption that agile and DevOps are mutually enabling, the IEEE P2675 workgroup is preparing a standard that will improve practices for the development of software for DevOps. The focus of that work is agile methods for building secure systems in DevOps. Integrating Big Data logging, monitoring, traceability, resource management, and safety engineering into DevOps is a challenge that the IEEE P2675 workgroup is seeking to address. Recommendations to be followed from IEEE P2675 development activities may impact the NBD-SPSL.

While its work is still under way, the following are several preliminary conclusions that can be drawn from P2675 deliberations for Big Data Systems Development Life Cycle (SDLC):

- Interlocking, multi-organizational dependency models will demand that Big Data systems scale configuration management upward.
- Continuous security can be built in using any SDLC methodology, but agile may decompose the process.
- Test engineering for Big Data requires additional attention due to the velocity of releases, the Big Data impact on operations and infrastructure, sprint frequency, and the complexity of systems being architected.
- Big Data systems are difficult to manage as well as to build, yet securing these systems requires flexible, powerful administrative capabilities that may not be initially seen as important because the impact of Big Data scale is difficult to assess.

6 DOMAIN-SPECIFIC SECURITY

The importance of domain-specific considerations was a key insight derived from the HL7 FHIR consent
workflow use case. Implementers cannot assume that genomic data should be treated using the same
practices as electric utility smart meters. Domain-specific security considerations to be investigated
further include the following:

- Identify domain-specific workflow,
- Consider domain-specific roles, and
- Investigate domain-specific share policies, content, controls.

Organizations (even including sole proprietorships) must identify which facets of Big Data systems are
sharable and to whom. For some organizations, the domain model is not significantly different from that
of the profession or industry sector; these models are in some sense, *global* utility models, and
nonproprietary. Other aspects of the domain model contain intellectual property, internal roles, execution
strategy, branding, and tools deployed; these aspects are shared only selectively.

This can be simplified to public and private *views* [174]. Using this approach, views can evolve (coevolve with code, or as code itself) over time. When it comes time to federate, a *public* view is available of a NBDRA component.

Consent has emerged as a key Big Data security and privacy element. Implementers may need to take into
 account consent traceability, withdrawal, and transferal scenarios. Aspects of consent include the
 following:

- Consent management with respect to domain-specific Big Data security and privacy;
- Consent management in healthcare across provider networks;
 - Relation to smart contracts, blockchain, and the law;
 - Smart building domain security;
 - Domain-specific provenance;
 - o Traceability; and
 - Domain-specific reasoning.

2405

2410

2411

2412

2424

2425

2426

2427

2428

2429

2430

2432

2433

2437

7 AUDIT AND CONFIGURATION MANAGEMENT

2434 Auditing fabric topology, including configuration management (CM) changes (taxonomic issues with configuration change data versus audit data). In some Big Data systems, audit, logging, and configuration 2435 2436 data—with full history—could become larger than the associated Big Data system itself.

Audit and CM across organizational entities is only lightly covered in other standards. Planning for crossorganizational data transport is a Big Data concern. Of particular concern are the following crossorganizational data transport scenarios: 2439

- Private enterprise \rightarrow government •
- Government agency \rightarrow government agency •
- Government (e.g., open data resource) \rightarrow private enterprise •
- Private enterprise \rightarrow external private enterprise •

7.1 PACKET-LEVEL TRACEABILITY / REPRODUCIBILITY 2444

An early participant in NBD-PWG proposed that a central Big Data application would keep every Transmission Control Protocol/Internet Protocol (TCP/IP) or User Datagram Protocol (UDP) packet, every binary, or every byte of firmware associated with a system. This exhaustive snapshot of system behavior would represent a fully reproducible dataset that Big Data tools could use for analytics, or if needed, to create an entire execution scenario.

7.2 AUDIT 2450

2451 SIEM applications increasingly rely on extensive log data for analytics. Similarly, log data is essential for 2452 many aspects of forensic analysis. Log data itself is increasingly Big Data. In a 2015 presentation, one of 2453 the cloud service providers stated that its largest application at the time was its self-monitoring data used 2454 for management and billing support. e

In 2006, NIST provided a set of recommendations for managing computer logs in order to preserve their integrity [175]. Big Data presents additional challenges for logging and monitoring due to scale and variety. Current InfoSec tools are beginning to take this into account but they lack the capabilities of most Big Data stacks.

2459 Incident response for Big Data has been discussed in literature. In 2006, NIST provided guidance on 2460 performing computer and network forensics in the Guide to Integrating Forensic Techniques into Incident Response [176].

7.3 MONITORING 2462

2463 While monitoring has a conventional place in the security specialist's toolbox, the associated tools may 2464 not be sized properly for Big Data systems. For example, in the cloud setting, the following is argued:

2446

2449

^e Presentation at a 2015 NYC Storm Meetup.

2465	"Monitoring demonstrates several challenges including gathering metrics
2466	from a variety of layers (infrastructure, platform, application), the need for
2467	fast processing of this data to enable efficient elasticity and the proper
2468	management of this data in order to facilitate analysis of current and past
2469	data and future predictions. In this work, we classify monitoring as a big
2470	data problem and propose appropriate solutions in a layered, pluggable and
2471	extendable architecture for a monitoring component [177]."

Big Data security and privacy support for audit and logging for monitoring and management is critical,
but security operations must be able to scale along with associated Big Data applications. In addition,
monitoring must be appropriate for both the utility, domain, and application models involved. This
requires a close collaboration between application designers and security and privacy teams that is often
not achieved.

2478 8 STANDARDS, BEST PRACTICES AND 2479 GAPS

2480 8.1 NIST CYBERSECURITY FRAMEWORK

During 2017, NIST published two drafts of proposed updates to the 2014 Cybersecurity Framework [178]. Since its introduction in 2014, the framework [95] has seen considerable de facto adoption and mention across a variety of industries. In addition to its appearance in the DHS Critical Infrastructure Cyber Community C³ Voluntary Program [179], the NIST Cybersecurity Framework [57] appears in numerous job descriptions. Its appearance in cybersecurity hiring actions and its adaptation for other standards (e.g., SABSA's SENC project [180]) further reflect the importance of the NIST Cybersecurity Framework.

2488 8.2 CONFIGURATION MANAGEMENT FOR BIG DATA

2489 8.2.1 Emergence of DevSecOps

The Point in Time, temporally qualified nature of Big Data configuration management creates numerous challenges for security operations. This has contributed to the development of a movement in industry called DevSecOps, which applies DevOps concepts to security operations (SecOps). Big Data is increasingly part of this, but DevSecOps may also be essential to keep InfoSec tools abreast of fast-moving, fast-changing Big Data.

For instance, one cloud provider "lets sys admins track the state of resources in their account via
configuration items. These configuration items can be used in two different ways: They can produce a
timeline of events using configuration item states to tell a story about the life cycle of a specific instance.
And administrators can report and react to compliance problems using a rule engine called 'ConfigRules,' creating true DevSecOps [181]."

2500 More sophisticated notions of configuration management, and federated CMDB's with semantic web and 2501 domain-specific model connections are on the horizon.

A recent *lessons learned* piece by Textor et al. argues for a standards-based ontology as essential to integrating technology with less technical counterparts in risk or cost management:

> "We present a solution for the semantic information integration of different domain models in the context of automated IT management. For that, we formulate a core ontology based on the COBIT IT governance framework for integration on a conceptual level and discuss features of an extensible knowledge-based runtime system. We present a case study that integrates models from storage management, virtual machine management and a billing model [182]."

In the meantime, smaller-scale tools are expected to struggle with the pace of change brought about both by Big Data and left shift. This will challenge SecOps. Few SecOps organizations are structured to leverage model-based approaches. Reliance on utility models, such as perimeter threat, has already

2513 proven to have diminished usefulness for Big Data applications, or in data centers hosting these apps.

2514 DevSecOps will likely encompass notions that are already part of NIST SP 800-190, Application

2515 Container Security Guide [183].

2516 8.2.2 DEPENDENCY MODELS

Dependency models that encompass software bills of resources are less widely used than some standards suggest. In manufacturing, a standard feature of a Bill of Material is the *Where Used* capability, which allows for instant identification of everywhere a part is used, along with its revision level at the time of assembly. Software project management and build / quality management resources such as Apache Maven and other tools attempt to provide similar capabilities, and build tools must provide this at release time. However, Big Data demands a longitudinal perspective on the *Where Used* aspect that preserves all the components of a build for security traceability.

The use of data traceability is even less widely implemented, and the *infrastructure as code*, *left shift* trend means that data traceability may follow a similar, gradualist path. There are statistical and methodological problems with using some data gathered for one purpose in another setting. Tracing data from its original source, a provenance challenge, is also needed to understand constraints on the contexts where Big Data can be used appropriately.

The format that the dependency model takes and how it is integrated into the development, operations, and forensics setting for Big Data security and privacy requires further research. In HL7, for example, models are exchanged using the Model Interchange Format. Predictive analytical models can be exchanged using the Predictive Model Markup Language (PMML). OMG offers XML Metadata Interchange (XMI) and XML Metadata Interchange Diagram Interchange XMI[DI] as document formats to exchange models and diagrams between applications.

The use of security models and a standardized language to express constraints and access are essential for Big Data scalability and interoperability between organizations.

8.3 BIG DATA SDLC STANDARDS AND GUIDELINES

Today's developers operate under SDLC frameworks including agile [184], waterfall [185], and spiral [186], as well as other models. A significant number of developers operate under less explicit frameworks organized around GitHub practices—and this practice dominates in components used in many a Big Data stack. A convenient method of integrating for instance with the Integrated Development Environment (IDE) tool is essential to foster reuse of libraries, assurance tools, and test environments, yet standards for this have yet to be adopted.

8.3.1 BIG DATA SECURITY IN DEVOPS

The concept of DevSecOps was introduced by Gartner as an emerging principle in DevOps in 2012, shortly before this NIST working group began its work. Progress has been slow. Gartner, in a 2016 report noted the following:

"... We estimate that fewer than 20% of enterprise security architects have engaged with their DevOps initiatives to actively and systematically incorporate information security into their DevOps initiatives; and fewer still have achieved the high degrees of security automation required to qualify as DevSecOps [187]."

A deeper understanding, with solid technical underpinnings, is needed to specify how DevSecOps teams ought to operate in a Big Data development setting. For example, how should the DevOps pattern described by Cockroft for a major Big Data streaming service be applied to Big Data more generally [188]? This document recognizes the increasing importance of DevOps. DevOps enables small teams to create Big Data systems with much reduced effort—and potentially, much reduced oversight for security and privacy. DevOps does not preclude quality software [189], but it can reduce the importance of traditional checks and balances afforded by others in a larger organization. 2560 The notion of *Infrastructure as Code* is enabled by DevOps and other principally cloud computing 2561 technologies [190]. The concept needs additional Big Data treatment to help foster security and privacy

2562 best practices in DevOps.

2563 The potential dilution, while not disappearance, of requirements phases and traceability in the agile 2564 development paradigm creates challenges for a security-aware SDLC. For instance, while a *technology*-2565 agnostic process termed Secure Development Life Cycle (SDL-IT) was developed at Microsoft to improve its management of security and privacy processes [191], adoption is hardly widespread. Attempts 2566 such as Secure-SDLC (S-SDLC) and the Software Assurance Maturity Model (OpenSAMM, which 2567 2568 became part of OWASP) are not integrated into IDE in ways that foster secure practices. For Big Data 2569 systems, developers rarely receive automated alerts as to practices which could create privacy risks, or 2570 which require additional, perhaps standards-based, attention to coding, administrative, and deployment 2571 practices.

8.3.1.1 Application Life Cycle Management 2572

2573 Both the application life cycle and the data life cycle must be managed, although they can be delinked in Big Data scenarios as data flows outside an organization. Nolle argues that "DevOps emerged for app 2574 2575 developers to communicate deployment and redeployment rules into the operations processes driving application life cycle management [192]." 2576

8.3.1.2 Security and Privacy Events in Application Release Management 2577

2578 Recent focus on release management has been identified as Application Release Management (ARM). Contributions are sought to help identify Big Data ARM practices, especially as they apply to DevOps 2579 2580 and agile processes more generally.

8.3.1.3 Orchestration

Nolle insists that DevOps and orchestration are two different concepts in the cloud context, but that orchestration has a loftier aim: "In the long run, what separates DevOps and orchestration may not be their ALM-versus-cloud starting point, but that orchestration is actually a more general and future-proof approach [192]." Noelle cites TOSCA [193] as leading this charge.

A Big Data adaptation of TOSCA-like concepts is needed that extends beyond cloud computing. NBDIF: Volume 8, Reference Architecture Implementation contains further discussion of this topic.

8.3.1.4 API-First

2589 API-first is a concept that was advocated by several industry leaders. In part, it reflected the reality of web 2590 practice. Many startups developed business models around which services they would consume, and 2591 which they would provide—through Application Programming Interfaces (APIs). Thus, the business 2592 model referred to as API-First came into existence [194].

2593 API-first also addresses scalability challenges in domains such as healthcare. In the OpenID HEART 2594 major use case, the project team writes that, "The architecture of prior provider-to-provider technologies 2595 have not been able to scale naturally to patient and consumer environments. This is where an API-first 2596 approach has an edge."

2597 In the NBDRA, at the conceptual level, this specifies that application providers and consumers operate 2598 through defined APIs which can provide additional safety. A recent example of an API that implements 2599 domain-specific resources is the HL7 FHIR Health Relationship Trust Profile for FHIR OAuth 2.0 2600 Scopes. Resources in the scope of this trust profile include patients, medication requests, medication 2601 dispensing, medication administration, and clinical observations. This is a design pattern for API-first— 2602 API's are designed to operate in tandem with domain-specific resources.

2581

Further work is needed to identify which controls are most effective, but commercial services are already
 available which monitor API calls and can react to API threats in real time by throttling or closing
 services.

2606 8.3.2 MODEL DRIVEN DEVELOPMENT

Big Data systems potentially entail multiple models from multiple disciplines implemented across diverse
platforms, and often across different organizations. Previous attempts to share information across
organizations have not fared well. Sharing of database schemas is a minimal starting point. Appendix A
provides a number of citations for this topic.

METAMODEL PROCESSES IN SUPPORT OF BIG DATA SECURITY AND PRIVACY

ISO 33001 [195] offers additional guidance on the use of models and information sharing. Project examples of working domain models include the following:

- OpenBIM, a domain model for construction and facilities management (as in smart buildings) (ISO 16739:2013) Refer to [196];
- The Facility Smart Grid Information Model developed by ASHRAE/NEMA 201;
- HVAC Engineering Standards for Smart Buildings; and
- Automotive engineering models (SPICE).

An approach taken by Atkinson et al. [197] and further developed by Burger offers methods which place domain models firmly inside the SDLC.

"This provides a simple metaphor for integrating different development paradigms and for leveraging domain specific languages in software engineering. Development environments that support OSM essentially raise the level of abstraction at which developers interact with their tools by hiding the idiosyncrasies of specific editors, storage choices and artifact organization policies. The overall benefit is to significantly simplify the use of advanced software engineering methods [197]."

Model-based approaches also provide more elastic approaches to Big Data security and privacy than is available through traditional methods like Role-based Access Control (RBAC) or explicit role-permission assignments (EPA). The authors of one approach, called Contextual Integrity, claim that its:

"... norms focus on who personal information is about, how it is transmitted, and past and future actions by both the subject and the users of the information. Norms can be positive or negative depending on whether they refer to actions that are allowed or disallowed. Our model is expressive enough to capture naturally many notions of privacy found in legislation [198]."

Leveraging domain-specific concepts from healthcare, related research demonstrated that EHR privacy
 policy could be, "... formalized as a logic program [and] used to automatically generate a form of access
 control policy used in Attribute-Based Encryption [199].

Such recommendations must be carried further to promote security and privacy practices in development.Models such as these are not generally part of the Big Data system architect's apprenticeship.

2641 8.3.3 OTHER STANDARDS THROUGH A BIG DATA LENS

2642 8.3.3.1 ISO 21827:2008 and SSE-CMM

The International Systems Security Engineering Association (ISSEA) promoted a standard referred to as the Systems Security Engineering Capability Maturity Model (SSE-CMM). SSE-CMM was developed in

2611 2612

2613 2614

2615

2616

2617

2618

2619

2620

2621

2622

2623 2624

2625

2626

2627

2628

2629

2630

2631

2632

2633 2634

collaboration with more than 40 partner organizations, and is codified in the ISO/IEC 21827:2008
standard. Its roots date to the mid-1990s; it predated Big Data.

2647 8.3.3.2 ISO 27018: Protection of PII in Public Clouds Acting as PII Processors

ISO 27018 is a recent standard that addresses protection of PII for cloud computing. ISO 27018 is based
 on ISO 27002 and adapted to public cloud considerations. Because much of today's Big Data is cloud based, this standard addresses concerns that many system owners with *toxic* PII face.

2651 2652 2653 2654	Consent: CSPs (Cloud Service Providers) must not use the personal data they receive for advertising and marketing unless expressly instructed to do so by the customer. Moreover, a customer must be able to use the service without submitting to such use of its private information.
2655	Control: Customers have explicit control of how their personal data is used.
2656 2657	Transparency: CSPs must inform customers where their personal data resides and make clear commitments as to how that data is handled.
2658 2659 2660	Accountability: ISO/IEC 27018 asserts that any breach of information security should trigger a review by the service provider to determine if there was any loss, disclosure, or alteration of personal data.
2661 2662	Communication: In case of a breach, CSPs should notify customers, and keep clear records of the incident and the response to it.
2663 2664 2665 2666 2667	Independent and yearly audit: A successful third-party audit (see e.g., <u>AWS</u> <u>CertifyPoint</u>) of a CSP's compliance documents the service's conformance with the standard, and can then be relied upon by the customer to support their own regulatory obligations. To remain compliant, a CSP must subject itself to yearly third-party reviews. (Adapted from [200])

8.3.4 BIG DATA TEST ENGINEERING

Techniques such as the ETSI Test Description Language can be employed to exercise an application to test for secure performance under test. For instance, which external sites and URLs should a web application access?

Test engineering is important in software assurance because complex systems cannot be fully tested by developers, or even developer teams without automation assistance. In a recent report, a vice president of product marketing estimated that some 33 exabytes of data had been generated to date. In the same report, a powertrain simulation and tools research leader estimated that their company generates about 500GB of data daily [201].

A fraction of this data is directly relevant to security and privacy, but even at 1%, this represents a daunting challenge.

2679 8.3.5 API-FIRST AND MICROSERVICES

2680 The notion of microservices has evolved from service-oriented architecture (SOA) and object-oriented 2681 practices, but is relevant to Big Data because it represents a convergence of several trends. A recent NIST draft NIST SP 800-180 [202] attempts to put forth a standard definition. As explained in the draft, 2682 2683 "Applications are decomposed into discrete components based on capabilities as opposed to services and placed into application containers with the resulting deployment paradigm called a Microservices 2684 2685 Architecture. This Microservices Architecture, in turn, bears many similarities with SOAs in terms of 2686 their modular construction and hence formal definitions for these two terms are also needed in order to 2687 promote a common understanding among various stakeholders ... " (Preface, p. v)

2668 2669

2670 2671

2672

2673

2674

2675 2676

2677

2688 A full discussion of the approach is presented in greater detail elsewhere [203], but microservices offer 2689 applications designers, data center managers, and forensics specialists greater detail and thus control over 2690 relevant Big Data security and privacy system events.

2691 At a somewhat higher level in the stack, some have suggested frameworks to support microservices 2692 visible to users, as well as lower-level developer-centric services. This was the notion proposed by 2693 Versteden et al. in a scheme that supports discovery of semantically interconnected single-page web 2694 applications [204].

8.3.6 APPLICATION SECURITY FOR BIG DATA 2695

2696 8.3.6.1 RBAC, ABAC, and Workflow

2697 Initial work by NIST evolved to an ANSI / INCITS standard 369-2004 for RBAC [205]. According to a 2698 later report, the "Committee CS1.1 within the International Committee for Information Technology 2699 Standards (INCITS) has initiated a revision with the goal of extending its usefulness to more domains, 2700 particularly distributed applications" [206]. Kuhn et al. outline potential benefits of an alternative 2701 approach, Attribute-Based Access Control (ABAC), though no reference model had emerged. In the same 2702 paper, a combination of ABAC and RBAC is suggested.

2703 In 2015, NIST published a description of ABAC in NIST SP 800-162 [10].

2704 Beyond RBAC improvements, Big Data systems must incorporate workflow standards, if not formalisms, 2705 to transfer roles and policies along with data (or application / data bundles) between organizations. 2706 Previous work has studied ways to extend traditional RBAC to enterprise registries [207], or to include 2707 geospatial attributes [208].

Because XACML does not support RBAC directly, Ferrini and Bertino note that while XACML profiles extended the original XACML to include RBAC, "the current RBAC profile does not provide any support for many relevant constraints, such as static and dynamic separation of duty [209]." Ferrini and Bertino recommended expanding the XACML framework to include OWL. More nuanced access control decision processes can be supported by leveraging the reasoning potential of OWL.

"It is also important to take into account the semantics of role hierarchies with respect to the propagation of authorizations, both positive and negative, along the role inheritance hierarchies. Supporting such propagation and, at the same time, enforcing constraints requires some reasoning capabilities. Therefore, the main issue with respect to the XACML reference architecture and the engine is how to integrate such reasoning *capabilities* [209]. " (p. 145)

Integrating workflow into the RBAC framework has also been studied. Sun et al. argued that adding workflow to RBAC would better, "support the security, flexibility and expansibility" of RBAC [210]. Workflow-specific as well as time-limited access improves not only controls for audit and forensics, but can help to limit the impact of insider threat.

8.3.6.2 'Least Exposure' Big Data Practices 2723

2724 Just as legacy and software key fobs have rotating authorization keys, Big Data systems should enforce 2725 time windows during which data can be created or consumed.

2726 The increased use of massive identity management servers offers economy of scale and improved

efficiency and usability through single sign-on. When breached, these datasets are massive losses 2727

2728 affecting millions of users. A best practice is obviously to control access to Identity Access Management

2729 (IAM) servers, but more importantly to utilize distributed datasets with temporally restricted access.

2708

2709

2710

2711

2712

2714

2715

2716

2717

2718

2720

Big Data should cause system architects to reconsider the entire notion of *admin* and *superuser* in favor of

2731 more nuanced domain-specific models. Using those models, Big Data systems can be designed to 2732 minimize the size of a breach by segmenting identity, PII and other datasets and limited access to

2733 controlled time windows that are *leased*.

2734 8.3.6.3 Logging

2735 The following logging standards are applicable to Big Data security and privacy:

- NIST SP 800-92 [175],
- NIST SP 800-137 [211], and
- DevOps Logging.

Logging standards should be reviewed carefully because some recommendations in existing standards
may not scale, or may create untenable risks due to Big Data variety. For Big Data logging to scale
properly, domain, application and utility models must come into play. For instance, an array of a thousand
IoT sensors sending thousands of samples per second may or may not need to be logged. Logging must
often be correlated with other events, which is why complex event processing can be useful for IoT
security [212]. Application developers typically have a clearer understanding of the HCI aspects of their
logs, but other model considerations also apply. In most cases, IoT security and privacy requires explicit
models for sensors and their interfaces [213].

IEEE P2675 is developing a standard that addresses the role of logging in DevOps agile projects. Big
Data logs require additional metadata about themselves and the setting in which logs are collected,
because the logs may persist far beyond the current infrastructure and could be used in settings outside the
current enterprise.

Logs will also be needed to supply data for ModSim, which many think will be key to self-managed
infrastructure in the *left shift* movement.

For an example of the scope of today's thinking about logging, refer to The Art of Monitoring, which devotes more than 500 pages to the subject. Add Big Data and domain-specific models to the mix, and the complexity is no less prevalent [214].

8.3.6.4 Ethics and Privacy by Design

The following standards are related to ethics and privacy by design and could be applicable to Big Data systems:

- IEEE P7000 [46],
- IEEE P7002 [47],
- IEEE P7003 [48],
- IEEE P7007 [49],
- ISO 27500 [45],
- ISO 9241 [215],
- FAIR, and
- NIST IR 8062 [93].

The IEEE initiative to address ethical consideration in systems design, paired with ISO 27500 [45], will provide future guidance in this area important to public consumers of Big Data. As documents are released from the IEEE working groups, this work should be surveyed for the needs of Big Data builders, managers, and consumers.

In an overview of ISO 27500 [45], Tom Stewart summarizes the standard's goal as: "... ISO 27500 The
 Human-centered Organization. Aimed at corporate board members, the standard explains the values and

- beliefs that make an organization human-centered, the significant business and operational benefits that
- arise, and the policies they need to put in place to achieve this [216]."
- 2775 Big Data is a part of this larger need to address organizational values and to trace how these are
- implemented in practice [216]. Some work in this area is motivated by international cooperation aroundFAIR [217]. Others are driven by regulation [218].

2778 8.4 BIG DATA GOVERNANCE

Big Data Governance is characterized by cross-organizational governance, cross-border considerations,
federation, marketplaces, and supply chain frameworks. What is different about Big Data systems in
comparison to other systems is that reliance on manual processes is no longer possible. Governance as a
separate function of oversight and audit may not always be feasible. Governance must be designed in,
hence the need to understand Big Data governance requirements in depth.

<u>Apache Atlas</u> is in incubation as of this writing, but aims to address compliance and governance needs for Big Data applications using Hadoop.

2786 8.5 EMERGING TECHNOLOGIES

8.5.1 NETWORK SECURITY FOR BIG DATA

Protecting virtual machines is the subject of guidelines, such as those in the *NIST Secure Virtual Network Configuration for Virtual Machine (VM) Protection* Special Publication [219]. Virtual machine security also figures in PCI guidelines [220]. Wider adoption may be possible in many data centers, but the technique is currently poorly integrated with developer and asset management capabilities. Refer to the work of IEEE P1915.1 [221] for emerging standards work on secure network function virtualization.

Big data challenges are converging with the 5G wireless standard, which will add velocity and volume stresses on telecommunications infrastructure. Representative of current thinking in this area is work on self-organizing networks (SONs) at a recent systems modeling conference. These investigators proposed, "… novel Proactive SON methodology based on the Big Data framework to enable the shift in the SON paradigm. In this article, we present a comprehensive Big Data-based SON framework involving innovative Machine Learning techniques which would cater to scalability and programmability of 5G networks with respect to availability, reliability, speed, capacity, security and latency [222]."

Architecture Standards for IoT, such as IEEE P2413 [223], are also of importance for Big Data network security.

8.5.2 Machine Learning, AI, and Analytics for Big Data Security and Privacy

AI and Big Data analytics are critical topics in Big Data, and are the focus of work such as IEEE P7003 [48], IEEE P7007 [49], and ISO 27500 [45]. Possible use cases could include conclusions from Medicare End-Stage Renal Disease, Dialysis Facility Compare (ESRD DFC, <u>http://data.medicare.gov/data/dialysis-</u> facility-compare). Additional investigations into machine learning, AI, and analytics with respect to Big Data security and privacy are needed and could include details on the following:

- Risk / opportunity areas for enterprises,
- Risk / opportunity areas for consumers, and
- Risk / opportunities for government.

2811 2812

2809

Appendix A: NIST Big Data Security and Privacy Safety Levels

Version 2 of *NBDIF: Volume 4, Security and Privacy* was principally informed by the introduction of the NIST Big Data Security and Privacy Safety Levels (NBD-SPSL). Using the NBD-SPSL, organizations can identify specific elements to which their systems conform. Readers are encouraged to study the NBD-SPSL, presented in this appendix, before launching into the body of this document. Appendix A is designed to be a stand-alone, readily transferred artifact that can be used to share concepts that can improve Big Data security and privacy safety engineering.

Table A-1: Appendix A: NIST Big Data Security and Privacy Safety Levels

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3	
"Where-is" monitoring and discovery of human touch points				
System is self-aware of its human touchpoints and is capable of maintaining a persistent safety framework that can identify and monitor where human interactions occur that involve risk for the affected domain.	Traditional "role" artifacts, such as CRT screen or mobile phone UI specifications.	UML, SysML identification of touchpoints within a domain model.	System incorporates awareness of touch points. Automated alerts, escalation when risk profile changes.	

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
'I-Oriented and API-first Safety			
As was the case with the SOA movement, the definition of clear interfaces is a key element of Big Data systems. Some argue that the numerous cloud-centric applications that have been built in the last decade have increasingly relied on pub-sub design patterns. In particular, designers may consider API characteristics early in the design of Big Data systems. Once established, multiple APIs can enhance security and privacy.	API-first designs in the enterprise take into account safety levels as part of design, management and forensics. APIs are used not just for risk, but also management and creating an ecosystem around the API. Using checklists and other methods, ABAC and RBAC elements are incorporated into APIs. Usage is routinely onboarded into enterprise tools.	Level 2 adds: automated API testing, traceability to SnP design patterns in use within teams and across SnP utility models (e.g., SSO, database encryption, encryption in transit). Third-party and InfoSec tools provide alerts and monitor for scalability and resilience.	Add to Level 2: direct link to domain, app and utility models. Include awareness of dependencies on a potentiall increasing pool of third-party APIs. (See Dependency Model).
L. Xavier, A. Hora, and M. T. Valente, "Why do	we break APIs? first answers from de	velopers," in 2017 IEEE 24th Intern	national Conference on
L. Xavier, A. Hora, and M. T. Valente, "Why do Software Analysis, Evolution and Reengineering http://dx.doi.org/10.1109/SANER.2017.7884640 R. Malcolm, C. Morrison, T. Grandison, S. Thou data systems via a common services API," in 20 http://dx.doi.org/10.1109/BigData.2014.7004319 V. Srivastava, M. D. Bond, K. S. McKinley, and in Proceedings of the 32Nd ACM SIGPLAN Co	g (SANER), Feb. 2017, pp. 392-396. [6) rpe, K. Christie, A. Wallace, D. Green, 14 IEEE International Conference on E 9 1 V. Shmatikov, "A security policy orac	Dnline]. Available: J. Jarrett, and A. Campbell, "Increa Big Data (Big Data), Oct. 2014, pp. cle: Detecting security holes using r	asing the accessibility to big 883-892. [Online]. Available: nultiple API implementations,
Software Analysis, Evolution and Reengineering http://dx.doi.org/10.1109/SANER.2017.7884644 R. Malcolm, C. Morrison, T. Grandison, S. Thor data systems via a common services API," in 20 http://dx.doi.org/10.1109/BigData.2014.7004319 V. Srivastava, M. D. Bond, K. S. McKinley, and in Proceedings of the 32Nd ACM SIGPLAN Co ACM, 2011, pp. 343-354. [Online]. Available: h	g (SANER), Feb. 2017, pp. 392-396. [6) rpe, K. Christie, A. Wallace, D. Green, 14 IEEE International Conference on F 9 I V. Shmatikov, "A security policy orac onference on Programming Language D	Dnline]. Available: J. Jarrett, and A. Campbell, "Increa Big Data (Big Data), Oct. 2014, pp. cle: Detecting security holes using r Design and Implementation, ser. PLI	asing the accessibility to big 883-892. [Online]. Available: nultiple API implementations,
Software Analysis, Evolution and Reengineering http://dx.doi.org/10.1109/SANER.2017.7884640 R. Malcolm, C. Morrison, T. Grandison, S. Thor data systems via a common services API," in 20 http://dx.doi.org/10.1109/BigData.2014.7004310 V. Srivastava, M. D. Bond, K. S. McKinley, and in Proceedings of the 32Nd ACM SIGPLAN Co	g (SANER), Feb. 2017, pp. 392-396. [6) rpe, K. Christie, A. Wallace, D. Green, 14 IEEE International Conference on F 9 I V. Shmatikov, "A security policy orac onference on Programming Language D	Dnline]. Available: J. Jarrett, and A. Campbell, "Increa Big Data (Big Data), Oct. 2014, pp. cle: Detecting security holes using r Design and Implementation, ser. PLI	asing the accessibility to big 883-892. [Online]. Available: nultiple API implementations,

M. Borek, K. Stenzel, K. Katkalov, and W. Reif, "Abstracting security-critical applications for model checking in a model-driven approach," in 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Sep. 2015, pp. 11-14. [Online]. Available: http://dx.doi.org/10.1109/ICSESS.2015.7338996

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Authority to collect data			
Long-lived or PII-intensive Big Data systems must capture and maintain transparency for data collection authority. This may be point in time.	XML or equivalent for authority, capture terms of service, legal authorities, versioning information within overall enterprise governance.	Use digital cert associated with collection. Written policies surrounding enterprise handling for PII, but tend to be limited to a single enterprise.	Same as Level 1, but with controls designed for transferability to third parties, especially in supply chain settings. Authority data is tracked using Big Data technologies, detail, audit, traceability.

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3	
g Data Security Fabric "Communicator"				
A central concern of public institutions and citizenry places Big Data systems in a special, if not unique category. As a consequence of this heightened concern, the safety framework includes a Big Data System Communicator. The System Communicator may include internal artifacts, but its principal audience is a potentially wide spectrum of stakeholders whose concerns it might allay, in part, through transparency and interactivity.	Big Data system implement a portal for users, developers and managers to access system artifacts, FAQs and other relevant information connected to risk, privacy, security and enterprise practices. Content and management is manual.	System Communicator is partially connected to the actual Big Data system SnP apparatus, including partial connectivity with the domain, app and utility models involved. The Communicator hosts resources such as consent management, traceable requirements, limitations, changes in terms of use, and historical tracking.	System Communicator fully integrated: domain model- aware, persists when data moves outside organizations, self-updating. Potentially agent-based or functionally similar to agent-based. Full awareness of data life cycle for PII / PCI components, relevant covenants and consent.	
Selected References A. Garcia Frey, "Self-explanatory user interface Interactive Computing Systems, ser. EICS '10. N http://doi.acm.org/10.1145/1822018.1822076	New York, NY, USA: ACM, 2010, pp.	341-344. [Online]. Available:		
J.Preece and Rombach, "A taxonomy for combin framework," International Journal of Human-Co http://linkinghub.elsevier.com/retrieve/pii/S107	omputer Studies, vol. 41, no. 4, pp. 553			
C. R. Sugimoto, H. R. Ekbia, and M. Mattioli, B http://ieeexplore.ieee.org/xpl/articleDetails.jsp?a		016. [Online]. Available:		
ig Data Forensics Playbooks				
Pre-Big Data forensics could fail operate properly at Big Data scale.	Manual playbooks identify both in- house and third-party (e.g., regulator) forensics. Playbooks encompass risk management, transparency, traceability, and whether monitoring is sufficient to support forensics.	Playbooks are directly linked to software releases, with functional capabilities added or removed from playbooks with each release. Playbooks are a well-defined mix of manual and automated processes, and are exercised with periodic forensic "red team" operations.	Add to Level 2: Playbooks and directly linked to domain, app and utility models. Playbooks self-configure based on changes to models. Playbooks are complemented by self- maintaining properties of test frameworks. Red teams operate with real or simulated data to fully exercise playbooks, and are provided with tooling and access to perform these functions.	

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
iness continuity (BC)			1
Business Continuity in the event of Big Data System failure can result in a wide range of scenarios, but could include breaches, lowered privacy shields, or inability to perform customary authentication.	Written BC plan, but most processes are manual. Explicit references to domain and utility models with cross-reference to application models.	Partially automated BC plans which leverage domain, utility and application models.	Fully automated dependency model, transition to/from alternative processing platforms, and support for post-failure forensics. Test, verification, audit systems are pre-instrumented for BC configurations.
 R. Thomas and P. McSharry, Big Data Revolu Wiley, Mar. 2015, Chapter 20. F. Miksa, R. Mayer, M. Unterberger, and A. R Conference on Information Integration and We Online]. Available: http://doi.acm.org/10.114; acity management for Security Open 	auber, "Resilient web services for timele eb based Applications & Services, ser. ii 5/2684200.2684281	ess business processes," in Proceed	ings of the 16th International
Big Data SnP support for audit and logging for nonitoring and management is critical, but security operations must be able to scale along	Big Data SnP framework exists within current platforms as	Partially scalable implementation of plans to strengthen Security Operations	Failover or other plans, fully tested, for interruptions or pollution of streamed data

Andreolini, M. Colajanni, M. Pietri, and S. Tosi, "Adaptive, scalable and reliable monitoring of big data on clouds," Journal of Parallel and Distributed Computing, vol. 79, pp. 67-79, 2015, special Issue on Scalable Systems for Big Data Management and Analytics. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S074373151400149X

	Safety Level 1	Safety Level 2	Safety Level 3
sent Interoperability, traceability			
Big Data Systems add a layer of complexity for consent management (think terms of service, for instance, across decades and multiple data custodians). The Big Data Safety Framework recommends a traceable consent management system that addresses both compliance and privacy safety.	Big Data framework for the application includes consent tracking where applicable, with written policies to manage, administer and support forensics.	Adds partial automation with domain models to consent, and supports consent transference and withdrawal through a mix of manual and automated methods.	Consent traceability fully integrated with domain model. "Smart contracts" represent one possible approach to traceability, but specific requirements are domain-specific, automatically resolved by consulting the domain model(s).
A. T. Gjerdrum, H. D. Johansen, and D. Johans Principles and practices," in 2016 IEEE First In (CHASE), Jun. 2016, pp. 107-112. [Online]. Av M.Benchoufi, R. Porcher, and P. Ravaud, "Bloc approved, 1 not approved]," F1000Research, vo	ternational Conference on Connected H vailable: http://dx.doi.org/10.1109/CHA ekchain protocols in clinical trials: Tran bl. 6, no. 66, 2017. [Online]. Available:	lealth: Applications, Systems and E SE.2016.39 sparency and traceability of consen http://dx.doi.org/10.12688/f1000re	ngineering Technologies t [version 1; referees: 1 search.10531.1
E. Luger, "Consent reconsidered; reframing con Computing, ser. UbiComp '12. New York, NY,			
tinuous delivery of SnP components		•	•
As Big Data and its support software shifts	Periodic Big Data dev team	Periodic reviews plus library	

T. Margaria and B. Steffen, "Continuous Model-Driven engineering," Computer, vol. 42, pp. 106-109, 2009. [Online]. Available: http://dx.doi.org/10.1109/MC.2009.315 M. Sicker. (2017, Apr.) why use a microservice architecture. MuSigma. Chicago IL. [Online]. Available: http://musigma.org/architecture/2017/04/20/microservices.html

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
pendency and federation model	1		
Dependency models for Big Data SnP must take into account variety, volume, and velocity as scalability and diversity stresses on integrity and governance. Sometimes Big Data systems will span organizations, thus requiring related federation standards, which are needed for SnP continuity at scale. A dependency model takes into account the desired safety level; some Big Data systems will be deployed with high risk out of necessity, in which case dependency models are critical.	Implements a dependency model that is largely manual but addresses the mandatory human and computer elements in place to protect this particular Big Data system and deliver the stated safety levels.	Automated dependency model that incorporates interoperating information security tools (e.g., SIEM) and addresses dependencies outside the enterprise, including suppliers of data (cross-industry advisories) and software updates. Limited connectivity to domain and app models.	All capabilities of Level 2, buinclude greater automation and live connections to domain, app and utility dependencies. Greenfield and maintenance software occurs with dependency constraints provided within IDEs.
Selected References Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Proceedings of the 2016 ACM SIGSAC Confere 504-516. [Online]. Available: http://doi.acm.org vOps Pipeline Safety Engineering	ence on Computer and Communication		
Big Data systems are increasingly built using DevOps pipelines. The Big Data DevOps pipeline incorporates safety concerns.	DevOps teams are provided with indoctrination for enterprise-wide safety frameworks for SnP. Scrum masters and product owners recognize which products and services are typically associated with the safety concerns of the enterprise.	DevOps teams routinely incorporate safety elements in scrums and refer to the Big Data SnP Elements by name. Elements can be tested and releases can be failed by citing safety thresholds by element.	Add to Level 2: DevOps CD pipeline integrates safety constraints, violation detection, monitoring, transparency, operational resource simulation.
<u>Selected References</u> A. Froehlich, "Your big data strategy needs Dev data/your-big-data-strategy-needs-devops/a/d-id saster Planning and Information Shari	Ops," Information Week, Feb. 2017. [(/1328184	Online]. Available: http://www.info	rmationweek.com/big-
The focus for disaster planning writ in general	Community-level collaboration, such as generator-sharing,	Explicit model for DR and information sharing across	Fully tested environment for digital information sharing,
tends to be returning to full availability. Big		domains, especially geospatial.	e.g., XchangeCore, but fully

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3		
saster Recovery (DR)					
Recovering from a Big Data system outage can require measures beyond those required for smaller systems, as demonstrated by a 2017 AWS outage. In addition, DR plans must include remediation of weakened or lost privacy, notification of affected parties, and mandated regulatory actions.	Written DR plan which encompasses human and computing infrastructure. Loosely connected to domain and utility models.	Same as Level 3 but only partially automated.	Complete integration of DR plan with automated connections to resilience apparatus, human and computing infrastructure. Domain and utility models an part of system creation.		
<u>Selected References</u> Amazon_Web_Services, "Summary of the amaz	zon s3 service disruption in the norther.	n Virginia (US-EAST-1) region," A	Amazon Web Services Blog,		
Mar. 2017. [Online]. Available: https://aws.ama	zon.com/message/41926/				
main model interoperability					
Big Data tends to move across organizational,	Ability to produce SnP metrics,	Partial automation of domain-	Fully automated and		

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
xplicit, reusable design patterns for SnP	process orchestration		
Big Data systems may employ automated orchestration practices. When used, orchestration is enhanced by SnP design patterns that script, test, and audit orchestration using Big Data infrastructure, often mirroring underlying domain structures.	Enterprise standards are in place to identify how SnP is to be orchestrated when containers or other methods are used to deploy computing resources. Processes are largely manual or checklist- oriented.	Orchestration processes incorporate SnP practices that are integrated with infrastructure management (service management) as well as IDEs. Test engineering verifies compliance post-deployment.	Same as Level 2, but with live references to domain, app and utility models.
Luo and M. B. Salem, "Orchestration of softwar (ICC), May 2016, pp. 436-441. [Online]. Availa	ble: http://dx.doi.org/10.1109/ICCW.2	016.7503826	*
 B. Pariseau, "EBay to bottle its special sauce for http://searchitoperations.techtarget.com/news/45 N. Rathod and A. Surve, "Test orchestration a fr Pervasive Computing (ICPC), Jan. 2015, pp. 1-5 posure-limiting risk operations 	50419112/EBayto-bottle-its-special-sau	ice-for-Kubernetes-management	International Conference on

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Fully leveraged network layer SnP, inclue	ding SDN		,
A property of Big Data systems is that they tend to be challenging to back up using the usual methods. Thus, their storage requirements tend to favor network layer isolation practices to enhance SnP. Applications vary, but the method is being studied for 5G networks and vehicular networks, for instance.	Using traditional data center governance, leverages network filtering and DMZ to restrict, monitor, scale, manage access. Limited if any use of SDN itself.	Partial use of SDN to limit access, especially for SnP data elements and when OpenStack is an option. Maturing collaboration between application and infrastructure teams to plan resilience and secure platforms for apps.	SDN microsegmentation fully integrated with SDLC, design, test, resilience, forensics. SDN is leveraged to isolate code and data and is used both by app teams and infrastructure specialists together rather than separately, relying on common domain, app and utility models.
 <u>Selected References</u> S. Marek, "How does Micro-Segmentation help https://www.sdxcentral.com/sdn/network-virtua L. Cui, F. R. Yu, and Q. Yan, "When big data m pp. 58-65, Jan. 2016. [Online]. Available: http:// 	lization/definitions/how-does-microsegneets software-defined networking: SD /dx.doi.org/10.1109/MNET.2016.7389	gmentation-help-security-explanation	
Information Assurance resilience enginee	ering		
Engineering Big Data systems for resilience is required to provide the Assurance dimension of Big Data information safety. For instance, full redundancy may not be affordable or feasible for some systems, whereas other Big Data systems can leverage sharded cloud/premise storage.	Fallback plan(s) with written playbooks for Big Data breaches or loss of service. Plans are principally manual with checklists and not subject to automated test.	Same as Level 3 but only partially automated.	Automated playbooks fully integrated with domain and utility models. Some assurance claims can be tested using continuously deployed test frameworks on Big Data platforms. HCI includes a transparent fully enumerated mix of machine and human test points.

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Integration of domain- and utility SnP mo	odels		
Domain models are specific to subjects such as healthcare or education scenarios. Utility models address cross-domain practices such as storage management, passwords, containers, access tokens, keys, certificates, DRM, encryption at rest/in transit. Safety improves as these two types are integrated.	Models used for domain and/or cross-domain utilities (e.g., help desk, SAN representation) but are not cross-linked	Same as Level 3 but only partially automated.	Complete integration of the Big Data safety system with domain and utility models. Advanced systems utilize ontologies or other explicit model representations of security and privacy concepts through methods such as Domain Driven Development. Domain Specific Languages, or other techniques in support of domain-aware safety engineering. Integrated with test and management systems including simulation and DevOps continuous deployment processes for security and privacy frameworks.

Selected References

D. Zage, K. Glass, and R. Colbaugh, "Improving supply chain security using big data," in 2013 IEEE International Conference on Intelligence and Security Informatics, Jun. 2013, pp. 254-259. [Online]. Available: http://dx.doi.org/10.1109/ISI.2013.6578830

L. Obrst, P. Chase, and R. Markeloff, "Developing an ontology of the cyber security domain," in Proceedings of the Seventh International Conference on Semantic Technologies for Intelligence, Defense, and Security, P. C. G. Laskey and K. B. Laskey, Eds. CEUR, Oct. 2012, pp. 49-56. [Online]. Available: http://ceur-ws.org/Vol-966/

S. Fenz, "Ontology-based generation of IT-security metrics," in Proceedings of the 2010 ACM Symposium on Applied Computing, ser. SAC '10. New York, NY, USA: ACM, 2010, pp. 1833-1839. [Online]. Available: http://dx.doi.org/10.1145/1774088.1774478

	Brief Deceription Sefety Level 1 Sefety Level 2 Sefety Level 3						
	Brief Description	Safety Level 1	Safety Level 2	Safety Level 3			
In	tegration of IoT scenarios, models						
	IoT scenarios vary greatly from smart city designs to wearable medical devices. IoT Big Data, poised to become one of the Biggest of Big Data, requires integration of sensor and processing models.	Using traditional governance frameworks, an IoT model for the system has been designed with separate models for sensors, transducers, relays, protocols, and other elements.	Loosely coupled IoT SnP models allowing for partial integration with domain-specific and utility models for the big data application.	IoT SnP model fully integrated with domain and utility models.			
	<u>Selected References</u> D. Geneiatakis, I. Kounelis, R. Neisse, I. Nai-Fo International Convention on Information and Co [Online]. Available: http://dx.doi.org/10.23919/1	mmunication Technology, Electronics					
	M. A. Underwood, Big Data Complex Event Pro Nov. 2016, ch. 8. [Online]. Available: http://ww						
	M. Underwood, M. Gruninger, L. Obrst, K. Bacl networked systems and societies." Applied Onto trier.de/db/journals/ao/ao10.html#UnderwoodG	logy, vol. 10, no. 3-4, pp. 355-365, 20					
	C. Jouvray, S. Gerard, F. Terrier, S. Bouaziz, and Intelligent Vehicles Symposium, 2004, Jun. 2004						
	N. Foukia, D. Billard, and E. Solana, "PISCES: Trust (PST), Dec. 2016, pp. 706-713. [Online].			nce on Privacy, Security and			

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
tegration of key management practices	with domain models		,
Tokenization and key management practices are frequently central to managing proper access to systems and data, especially across enterprises. The Big Data safety framework advises the use of workflow-specific, domain- specific, least-privilege distributed access patterns, using the temporally restricted ('leased") permissions with full audit and traceability.	Adoption of key management practices to manage federated entities with manual transparency and audit.	Key management is partially integrated with domain, app and utility models.	Fully integrated key management with domain, app and utility models. Testing is automated when continuous deployment is practiced using Big Data frameworks.
Selected References			
	nt of risk factor management method for	or federation of clouds," in 2014 Inte	ernational Conference on
R. Alguliyev and F. Abdullayeva, "Developmer Connected Vehicles and Expo (ICCVE), Nov. 2			
R. Alguliyev and F. Abdullayeva, "Developmer Connected Vehicles and Expo (ICCVE), Nov. 2	2014, pp. 24-29. [Online]. Available: ht	tp://dx.doi.org/10.1109/ICCVE.201	4.7297548
R. Alguliyev and F. Abdullayeva, "Development	2014, pp. 24-29. [Online]. Available: ht S. E. Ponta, Assisting the Deployment	tp://dx.doi.org/10.1109/ICCVE.201 of Security-Sensitive Workflows by	4.7297548 y Finding Execution Scenarios
R. Alguliyev and F. Abdullayeva, "Developmer Connected Vehicles and Expo (ICCVE), Nov. 2 D. R. dos Santos, S. Ranise, L. Compagna, and Cham: Springer International Publishing, 2015,	2014, pp. 24-29. [Online]. Available: ht S. E. Ponta, Assisting the Deployment pp. 85-100. [Online]. Available: http://	tp://dx.doi.org/10.1109/ICCVE.201 of Security-Sensitive Workflows by	4.7297548 y Finding Execution Scenarios
R. Alguliyev and F. Abdullayeva, "Developmen Connected Vehicles and Expo (ICCVE), Nov. 2D. R. dos Santos, S. Ranise, L. Compagna, and	2014, pp. 24-29. [Online]. Available: ht S. E. Ponta, Assisting the Deployment pp. 85-100. [Online]. Available: http://	tp://dx.doi.org/10.1109/ICCVE.201 of Security-Sensitive Workflows by	4.7297548 y Finding Execution Scenarios
 R. Alguliyev and F. Abdullayeva, "Developmer Connected Vehicles and Expo (ICCVE), Nov. 2 D. R. dos Santos, S. Ranise, L. Compagna, and Cham: Springer International Publishing, 2015, tegration of risk models with CMDB at By definition, Big Data systems at scale may persist longer and accrue complexity at a faster pace than other computation. Risk models can be integrated with domain and utility models to accommodate configuration changes, especially in federation, key 	2014, pp. 24-29. [Online]. Available: ht S. E. Ponta, Assisting the Deployment pp. 85-100. [Online]. Available: http://	tp://dx.doi.org/10.1109/ICCVE.201 of Security-Sensitive Workflows by	4.7297548 y Finding Execution Scenarios
R. Alguliyev and F. Abdullayeva, "Developmer Connected Vehicles and Expo (ICCVE), Nov. 2 D. R. dos Santos, S. Ranise, L. Compagna, and Cham: Springer International Publishing, 2015, tegration of risk models with CMDB at By definition, Big Data systems at scale may persist longer and accrue complexity at a faster pace than other computation. Risk models can be integrated with domain and utility models to accommodate configuration changes, especially in federation, key management, resilience strategies. <u>Selected References</u>	2014, pp. 24-29. [Online]. Available: ht S. E. Ponta, Assisting the Deployment pp. 85-100. [Online]. Available: http:// t scale Mature risk management, mature configuration management automated CMDB practices, but separately maintained from other models.	tp://dx.doi.org/10.1109/ICCVE.201 of Security-Sensitive Workflows by /dx.doi.org/10.1007/978-3-319-208 Deployed CMDB, with semi- automated connectivity / interoperability with domain and utility models	4.7297548 y Finding Execution Scenarios 10-7_6 Fully integrated CMDB, rist domain and utility models across IDE, management, administration, and forensic
 R. Alguliyev and F. Abdullayeva, "Developmer Connected Vehicles and Expo (ICCVE), Nov. 2 D. R. dos Santos, S. Ranise, L. Compagna, and Cham: Springer International Publishing, 2015, tegration of risk models with CMDB at By definition, Big Data systems at scale may persist longer and accrue complexity at a faster pace than other computation. Risk models can be integrated with domain and utility models to accommodate configuration changes, especially in federation, key management, resilience strategies. 	2014, pp. 24-29. [Online]. Available: ht S. E. Ponta, Assisting the Deployment pp. 85-100. [Online]. Available: http:// t scale Mature risk management, mature configuration management automated CMDB practices, but separately maintained from other models.	tp://dx.doi.org/10.1109/ICCVE.201 of Security-Sensitive Workflows by /dx.doi.org/10.1007/978-3-319-208 Deployed CMDB, with semi- automated connectivity / interoperability with domain and utility models	4.7297548 y Finding Execution Scenarios 10-7_6 Fully integrated CMDB, rist domain and utility models across IDE, management, administration, and forensic

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Iodel-based simulation to assess security	y and risk at Big Data scale		
Big Data safety systems should incorporate simulation capabilities so that SnP considerations with deployment—not excluding HCI—can be simulated.	ModSim is employed to identify issues with usability, scalability, manageability, and interoperability of an app's SnP capabilities.	ModSim is used for both infrastructure planning and management as part of DevOps. Simulations are used to forecast additional requirements for new applications, infrastructure changes, mergers and acquisitions, and staffing reductions.	Simulation processes fully integrated into Phase D and L and referencing domain and utility models. Interoperabilit with third-party models for environmental, geospatial, biomedical (e.g., SNOMED) models is practiced.

no. 5-6, pp. 311-330, May 2010. [Online]. Available: http://dx.doi.org/10.1177/0037549709340730

D. D. Dudenhoeffer, M. R. Permann, and E. M. Sussman, "General methodology 3: a parallel simulation framework for infrastructure modeling and analysis," in WSC '02: Proceedings of the 34th conference on Winter simulation. Winter Simulation Conference, 2002, pp. 1971-1977.

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
del-based systems engineering (MBSE) development practices		
MBSE is an approach to software engineering which relies on abstract representations of code. Security and privacy concepts for Big Data are best integrated with models vs. add- on, sandbox and "perimeter defense" methods—though it does not exclude other software-building methods even within the same system.	Post hoc models of legacy applications, with views created by SMEs. Models are not directly interoperable or communicating.	Hybrid: some legacy, some greenfield microservices design patterns constructed using model-based systems engineering practices. Models are implemented with partial integration across domain, utility, application models.	Defensive, surveillance, other measures fully integrated into domain, utility and application models. Forensics IDE, test frameworks, SnP fully interoperable and live.
Selected References M. Borek, K. Stenzel, K. Katkalov, and W. Reif, IEEE International Conference on Software Eng http://dx.doi.org/10.1109/ICSESS.2015.7338996	ineering and Service Science (ICSESS		
Estefan, J. 2008. Survey of Candidate Model-Ba Systems Engineering (INCOSE). INCOSE-TD-2 http://www.omgsysml.org/MBSE_Methodology	2007-003-02. Accessed April 13, 2015		SA: International Council on
A. Ross, "Interactive Model-Centric systems eng Systems Engineering Institute, Dec. 2014. D. C. Feb. 2006. [Online]. Available: http://dx.doi.org.	Schmidt, "Guest editor's introduction:		
	sh, "Modeling in big data environment	s," in Proceedings of the 2014 Wor	kshop on Human Centered Big
A. Endert, S. Szymczak, D. Gunning, and J. Ger Data Research, ser. HCBDR '14. New York, NY			

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
dels for Big Data provenance			
Whether for machine learning classifiers, data lineage, or other notions of provenance, Big Data systems may require representations that track data sources, transport. Some have proposed that this must encompass retaining the binaries and network traffic for entire collection events.	Provides explicit organizational guidance about the use of ML tools and training datasets.	Provenance is built into the SDLC process through reusable libraries and requirements engineering. Test frameworks check for provenance flow and integrity and exception detection is an objective of Big Data monitoring. Monitoring in this setting applies primarily to SnP elements.	Employ tools such as PROV- O to manage and trace provenance. For IoT, integration with the W3C PROV family of provenance metadata. Directly incorporates domain, app, and utility models where applicable, and leverages results from industry- or domain-wide simulations.
<u>Selected References</u> K. Taylor, R. Woodcock, S. Cuddy, P. Thew, ar [Online]. Available: http://dx.doi.org/10.1007/9		Nodel. Cham: Springer Internationa	1 Publishing, 2015, pp. 1-18.
P. Missier, K. Belhajjame, and J. Cheney, "The International Conference on Extending Database http://dx.doi.org/10.1145/2452376.2452478			
L. Moreau, J. Freire, J. Futrelle, R. Mcgrath, J. M	Avera and D. Daulson "The open prov	11.4	
Available: http://dx.doi.org/10.1007/978-3-540-		enance model: An overview," 2008.	, pp. 323-326. [Online].
	89965-5_31	enance model: An overview," 2008.	, pp. 323-326. [Online].
Available: http://dx.doi.org/10.1007/978-3-540- odSim for security operations scalabilit Use of Modeling and Simulation (ModSim) for assessing the impact of scaling SnP Big Data systems. For DevOps, this has a more specialized meaning.	89965-5_31	Plans are deployed which routinely employ ModSim to estimate and forecast security operations as new applications, data centers, and technologies are onboarded.	Same as Level 2, but with liv connections to domain, application, and utility models. Application onboarding includes planning for ModSim support infrastructure including HR.
dSim for security operations scalabilit Use of Modeling and Simulation (ModSim) for assessing the impact of scaling SnP Big Data systems. For DevOps, this has a more	89965-5_31 Y Occasional use of ModSim to support Big Data security operations. AcLean, "A knowledge sharing framew	Plans are deployed which routinely employ ModSim to estimate and forecast security operations as new applications, data centers, and technologies are onboarded.	Same as Level 2, but with liv connections to domain, application, and utility models. Application onboarding includes plannin for ModSim support infrastructure including HR. g and simulation," in

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
PII identification practices			
Transparent, adaptable practices for Big Data identification of PII should address safety by allowing for remediation (misidentification), continuous improvement of identification process, and Big Data records retention.	Provides a user portal for submitting claims of error or misinformation with manual methods for remediation.	Systematic approach to PII error with automated and manual methods to detect error or spillage of misinformation outside system boundaries.	In addition to Level 2, adds self-checking and self- correcting methods with audit. Remediation is supported with forwarding to downstream data consumers.
<u>Selected References</u> R. Herschel and V. M. Miori, "Ethics & big data http://www.sciencedirect.com/science/article/pii		31-36, 2017. [Online]. Available:	
PII vulnerability management			
PII (or "privacy") vulnerability management adopts principles from software vulnerability detection and remediation, plus other techniques, and applies them to protecting PII.	CFO designated with internal privacy controls and guidelines for federated entities. No separate Vulnerability Management for PII resource.	Enterprise has implemented a PII/PCI vulnerability management resource on a par with its traditional VM SecOps and software assurance capabilities.	Using Big Data or other tools to test for PII leakage, including external nonfederated entities. Same as Level 2, but integrated with domain, app, and utility models to accelerate risk detection.
<u>Selected References</u> N. J. King and J. Forder, "Data analytics and con Review, vol. 32, no. 5, pp. 696-714, 2016. [Onli			
B. Austin, "When to use PII discovery in the aud https://www.solarwindsmsp.com/blog/when-to-	1 · · ·	14. [Online]. Available:	

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
II/PCI isolation		1	I
For some Big Data systems, safety engineering requires separation of PII/PCI from other data elements. Separation can be achieved through a variety of technologies, including SDN.	Separate "files" or tables for designated PII data and code.	Separation is integrated with test and assurance frameworks with regular "penetration" testing using Big Data variety techniques. Partial integration with domain models.	Workflow model controls time windows, total exposure to PII using a Geiger counter style avoidance model. Self- monitoring according to embedded models. Automate testing using domain-specific test and assurance framework in continuous deployment. Some advanced safety frameworks may support use configured privacy protections and notifications.
Selected References M. Li, W. Zang, K. Bai, M. Yu, and P. Liu, "My Annual Computer Security Applications Confer http://doi.acm.org/10.1145/2523649.2523680			0
II/PCI Toxicity orientation and traceab	ility		
The Big Data SnP safety framework positions PII/PCI data to be handled with information systems analog to the chemical industry's Material Safety Data Sheets. Traceability is required, just as chain of custody is traced for certain class of prescription medications.	Written policies and procedures are in place, which treat PII/PCI disclosure as safety risks. Automation is minimal.	PII/PCI toxicity concept is fully integrated into the security culture, but crosswalk to domain, app, and utility models is not automated. MSDS for data elements are integrated into enterprise business glossaries, data catalogs.	Big Data analytics used to "penetration-test" aggregated data with automated alerts. Automated crosswalk of toxic data elements in domain, app and utility models with MSDS-like processes fully automated.
Selected References M. Benchoufi, R. Porcher, and P. Ravaud, "Blow	alcahoin protocolo in alinical triala. Tra	anonon or d the cochility of concer	

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
icies for data or performance uncertai	inty, error and quality manage	ement for Big Data	
The ability to ingest massive amounts of data ensures that the absolute number of erroneous or faulty data will also be ingested. The safety framework requires inclusion of policies to address management of uncertainty and error.	Rough measures of uncertainty / error communicated to providers and consumers. Can be integrated with quality management systems. Largely manual, using checklists.	Explicit, software-based alerts for error and data quality assurance. Some level of self- healing processes is in place that operates in tandem with data quality metrics and stewardship.	Automated alerts are raised when tools (e.g., machine learning) attempt to make inferences that violate statistical or regulatory guidelines and are alerted according to protocols and importance determined by domain, app, and utility models delivered in automated format.
Selected References J. Bendler, S. Wagner, T. Brandt, and D. Neuma 279-288, Oct. 2014. [Online]. Available: http://d			ngineering, vol. 6, no. 5, pp.
J. R. Busemeyer, "Decision making under uncer		lity, fixed-sample, and sequential-sa	
J. R. Busemeyer, "Decision making under uncer Learn Mem Cogn, vol. 11, no. 3, pp. 538-564, Ju fety Orientation		lity, fixed-sample, and sequential-sa	

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Semantic Web / Linked Data Awareness			
Some Big Data systems, arguably all, should map their elements to the semantic web using canonical structures such as ontologies. The semantic web supports artificial intelligence through inductive reasoning as well as machine learning. Big Data architects and users should consider safety aspects of these technologies	A knowledge engineering framework, typically manually maintained through tagging or concept trees, is provided to allow for recognition of SnP components. May or may not be implemented using semantic web standards; could be COTS or open source but idiosyncratic.	Adds to Level 1: Use of RDC or OWL to represent SnP and related components. Allows for automated reasoners and other AI tools to be employed to manage knowledge about SnP issues in the Big Data system.	Adds direct links to domain- specific and upper ontologies so that reasoning, for instance, about which test scenarios test which sorts of aspects of the SnP design, can be automatically interrogated and scheduled.
<u>Selected References</u> Y. Pandey and S. Bansal, "Safety check: A semi Semantic Big Data, ser. SBD '17. New York, N			

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
P for Location-based Services			
Big Data Variety can facilitate deanonymization. Often Variety comes from mobile device-enabled geospatial data sources. Some applications must mitigate and educate regarding the impact of geospatial Big Data. Other applications may require geospatial Big Data as an essential resource, such as Emergency Management.	Checklists and other manual processes are in place to support risks and/or planned usage of geospatial data. Includes Big Data variety and current or potential mobile data sources.	Protections and monitoring capabilities are in place to manage geospatial data sources, including those used by third parties, customers, or partners to perform unauthorized deanonymization.	Geospatial reasoning integrated into Big Data IDE SDLC with live links to domain, utility, and app models. Proactive detection and advisories identify risk areas for users, developers, and managers through proce and automated links to domain, app, and utility models.
Selected References UN-GGIM, "A guide to the role of standards in Management, Aug. 2015. [Online]. UN-GGIM, Global Geospatial Information Management, Au	"A guide to the role of standards in Ge	ospatial information management,"	al Geospatial Information
UN-GGIM, "A guide to the role of standards in Management, Aug. 2015. [Online]. UN-GGIM,	"A guide to the role of standards in Ge ag. 2015. [Online]. Available: http://kb spatial big-data in emergency managen se of GIS in Emergency Management,	ospatial information management," ros.co/2ulVyQv nent: Some perspectives," in Procee	al Geospatial Information UN Committee of Experts on dings of the 1st ACM
UN-GGIM, "A guide to the role of standards in Management, Aug. 2015. [Online]. UN-GGIM, Global Geospatial Information Management, Au K. Liu, Y. Yao, and D. Guo, "On managing geos SIGSPATIAL International Workshop on the Us	"A guide to the role of standards in Ge ig. 2015. [Online]. Available: http://kb spatial big-data in emergency managem se of GIS in Emergency Management, 2835614 abi, "Towards migrating security polici n Network Softwarization (NetSoft), A	ospatial information management," ros.co/2ulVyQv nent: Some perspectives," in Procee ser. EM-GIS '15. New York, NY, U ies of virtual machines in software of	al Geospatial Information UN Committee of Experts on dings of the 1st ACM JSA: ACM, 2015. [Online]. lefined networks," in

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Support for user annotation, notification,	advisories		
To address user and enterprise safety concerns, a Big Data system should support consumer, "user," subscriber natural language annotations, notifications, and explanations. Notifications should be treated by analogy with food recall and safety notices, but survive according to Big Data planning horizons.	Web-based resources with annotation resources which persist across user sessions.	Annotations are connected to the domain and app models. Notifications can be user and system-managed and respond to internal and external SnP threat or warnings.	Annotation capabilities are connected with domain, app, and utility models. Data collected is used for SnP process improvement / refactoring. Notifications and self-managed with support for multiple channels. Must also support consent forwarding, persistence, transfer, withdrawal.

S. Szymczak, D. J. Zelik, and W. Elm, "Support for big data's limiting resource: Human attention," in Proceedings of the 2014 Workshop on Human Centered Big Data Research, ser. HCBDR 14. New York, NY, USA: ACM, 2014. [Online]. Available: http://doi.acm.org/10.1145/2609876.2609887

J. Schaffer, P. Giridhar, D. Jones, T. Höllerer, T. Abdelzaher, and J. O'Donovan, "Getting the message? A study of explanation interfaces for microblog data analysis," in Proceedings of the 20th International Conference on Intelligent User Interfaces, ser. IUI '15. New York, NY, USA: ACM, 2015, pp. 345-356. [Online]. Available: http://dx.doi.org/10.1145/2678025.2701406

E. U. Weber, "Risk attitude and preference," Wiley Interdisciplinary Reviews: Cognitive Science, vol. 1, no. 1, pp. 79-88, 2010. [Online]. Available: http://dx.doi.org/10.1002/wcs.5

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
stem "Read-In" Process			
In intelligence circles, being "read into" a program formalizes the training associated with a compartmented program. This feature serves an analogous purpose for Big Data systems: people are read into the Big Data risks and guidelines of the program when they are onboarded to the project.	Persistent, career-long record of individual employee access to Big Data resources. Explicit read-in as part of employee and team member onboarding. Exit interviews include offboarding, such as cautions against unauthorized information sharing.	Level 1 plus: spans multiple employers and tracks roles assigned to employees (e.g., infrastructure, project manager, scrum master, developer, QA) within a Big Data System. Adds "read out" when employees leave that changes the Big Data configuration beyond mere password expiration.	Big Data identity management, RBAC, ABAC fully integrated with "Where used" functionality, use of M or AI to detect insider threat at the application level. Offboarding process is part of the IDE and app teams regularly build ABAC-awar onboarding and offboarding roles as part of app domain. Domain and utility models a
Calastad Deferences			utilized in real time.
<u>Selected References</u> S. Zehra Haidry, K. Falkner, and C. Szabo, "Ide Conference on Innovation and Technology in C Available: http://doi.acm.org/10.1145/3059009. S. Link, P. Hoyer, T. Kopp, and S. Abeck, "A M	omputer Science Education, ser. ITiCS 3059032	E '17. New York, NY, USA: ACM,	n Proceedings of the 2017 AC 2017, pp. 206-211. [Online].
S. Zehra Haidry, K. Falkner, and C. Szabo, "Ide Conference on Innovation and Technology in C Available: http://doi.acm.org/10.1145/3059009.	omputer Science Education, ser. ITiCS 3059032 Iodel-Driven development approach fo	E '17. New York, NY, USA: ACM,	n Proceedings of the 2017 ACI 2017, pp. 206-211. [Online].
 S. Zehra Haidry, K. Falkner, and C. Szabo, "Ide Conference on Innovation and Technology in C Available: http://doi.acm.org/10.1145/3059009. S. Link, P. Hoyer, T. Kopp, and S. Abeck, "A M 	omputer Science Education, ser. ITiCS 3059032 Iodel-Driven development approach fo 96, 2009.	E '17. New York, NY, USA: ACM, cusing human interaction," Internat	n Proceedings of the 2017 AC, 2017, pp. 206-211. [Online]. ional Conference on Advance
 S. Zehra Haidry, K. Falkner, and C. Szabo, "Ide Conference on Innovation and Technology in C Available: http://doi.acm.org/10.1145/3059009. S. Link, P. Hoyer, T. Kopp, and S. Abeck, "A M in Computer-Human Interaction, vol. 0, pp. 90-9 Y. Takahashi, T. Abiko, E. Negishi, G. Itabashi, 	omputer Science Education, ser. ITiCS 3059032 Iodel-Driven development approach fo 96, 2009. , Y. Kato, K. Takahashi, and N. Shirato	E '17. New York, NY, USA: ACM, cusing human interaction," Internat	n Proceedings of the 2017 AC. 2017, pp. 206-211. [Online]. ional Conference on Advance:

Selected References C. Dincer, G. Akpolat, and E. Zeydan, "Security issues of big data applications served by mobile operators," in 2017 25th Signal Processing and Communications Applications Conference (SIU), May 2017, pp. 1-4. [Online]. Available: http://dx.doi.org/10.1109/SIU.2017.7960253

	Safety Level 1	Safety Level 2	Safety Level 3		
	mporal authority traceability				
assumption for Big Data systems is rsists, might be never archived, and steady trend toward limitless, orage. Thus, traceability for Big ng authority for design, use, and ve policies must span re in ways that non-Big Data not.		Integrated point-in-time authority traceability capturing authority metadata and events using Big Data infrastructure.	Full point-in-time and replay capability (may imply full packet and EXE capture). Traceability expands beyond single enterprises, and is integrated with domain, app and utility models.		
Selected References S. Maro, A. Anjorin, R. Wohlrab, and JP. Steghöfer, "Traceability maintenance: Factors and guidelines," in Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ser. ASE 2016. New York, NY, USA: ACM, 2016, pp. 414-425. [Online]. Available: http://doi.acm.org/10.1145/2970276.2970314					
ering for Big Data is needed to SnP measures can scale across (taking into account human and	Test engineering for SnP includes manual checklists (e.g., NIST Cybersecurity Framework) plus scripts to test compliance with SnP requirements.	Enterprise-wide SDLC practices support test engineering. Developers routinely create test frameworks for SnP components using both off-the- shelf, reusable components and app-specific tools.	In addition to Level 2, adds ability to automatically creat test scripts for SnP elements within the IDE, directly referencing domain, app, an utility models to guide test behavior. Test engineering		
onstraints) and computer (See also Big Data Dev Ops and Deployment.)		app speeme took			

N. Garg, S. Singla, and S. Jangra, "Challenges and techniques for testing of big data," Procedia Computer Science, vol. 85, pp. 940-948, 2016, international Conference on Computational Modelling and Security (CMS 2016). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877050916306354

N. Rathod and A. Surve, "Test orchestration a framework for continuous integration and continuous deployment," in 2015 International Conference on Pervasive Computing (ICPC), Jan. 2015, pp. 1-5. [Online]. Available: http://dx.doi.org/10.1109/PERVASIVE.2015.7087120

Brief Description	Safety Level 1	Safety Level 2	Safety Level 3
Use ABAC to improve safety			
Expanded use of ABAC, alone or in conjunction with traditional RBAC, as part of domain model integration.	SDLC process explicitly states that ABAC is to be used in conjunction with RBAC. Use of "admin" design is deprecated. ABAC is manually tied to enterprise metadata management catalogs. Insider threat receives only light attention at Level 1 of ABAC implementation.	ABAC is built into IDEs. Developers routinely identify appropriate RBAC metadata for SnP as well as for monitoring and management. ABAC and RBAC are parts of a merging continuum. Level 2 sees a heavy reliance on domain experts to set ABAC requirements. ABAC requirements include some insider threat consideration in requirements development.	Add to Level 2: ABAC is directly linked to domain, app, and utility models. Test frameworks exercise ABAC attribute defense and vulnerabilities. Mature scenarios exist for insider threat which are tied to the use of Big Data systems to detect as well as to mitigate risk.

V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone, "Guide to attribute based access control (ABAC) definition and considerations," NIST, Gaithersburg, MD, Tech. Rep. SP 800-162, Jan. 2014. [Online]. Available: http://dx.doi.org/10.6028/NIST.SP.800-162D.

R. Kuhn, E. J. Coyne, and T. R. Weil, "Adding attributes to Role-Based access control," Computer, vol. 43, no. 6, pp. 79-81, Jun. 2010. [Online]. Available: http://dx.doi.org/10.1109/MC.2010.155

J. Longstaff and J. Noble, "Attribute based access control for big data applications by query modification," in 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), Mar. 2016, pp. 58-65. [Online]. Available: http://dx.doi.org/10.1109/BigDataService.2016.35

Value Chain TraceabilityIn Big Data systems, the value chain should be preserved with the same priority that is given requirements traceability, e.g., the specialized code associated with "under test" scenarios in the VW emissions software should be traceable to the original specifications and specifiers.Explicit, readily available checklist of values baked into the Big Data system requirements that enable users and managers to trace system features to intentional SnP risks afforded given the value proposition. For citizens, specificAdd to Level 1: Value Requirements are present within software traceability schemes within the enterprise SDLC, e.g., encryption and intentional aggregation, classifiers in ML are directly traceable to the proposition. So that trade-Add to Level 2: direct domain, app and utili models.
preserved with the same priority that is given requirements traceability, e.g., the specialized code associated with "under test" scenarios in the VW emissions software should be traceable to the original specifications and specifiers. domain, app and utility of values baked into the Big Data system requirements that enable users and managers to trace system features to intentional SnP risks and the levels of protection specifiers. afforded given the value domain, app and utility software traceability schemes within the enterprise SDLC, e.g., encryption and intentional aggregation, classifiers in ML are directly traceable to the
statements of value with a plain explanation of the benefits should inform documents such as Terms of Service.offs and risks are visible.

Appendix B: Existing Standards in Relation to the Security and Privacy Fabric

The following table introduces concepts developed in selected existing standards. There is an intentional emphasis on privacy concepts, reflecting public and enterprise concerns about Big Data security and privacy. The third column, *Security and Privacy Fabric*, is directional and notional rather than definitive at this stage of the effort. The objective is to identify Security and Privacy Fabric-specific elements of the standards and the associated concepts cited.

Table B-1: Terms and Standards in Relation to the Security and Privacy Fabric

Term	Sources	Security and Privacy Fabric	Comments
Privacy disassociability	NIST IR 8062	Privacy fabric for purposes of this analysis	Needs refinement. "Enabling the processing of PII or events without association to individuals or devices beyond the operational requirements of the system."
Privacy subsystem predictability	NISTIR 8062		Needs refinement for Big Data
Privacy subsystem manageability	NISTIR 8062	TBD	Needs refinement for Big Data
Role: privacy subsystem oversight			
Role: privacy subsystem operations			
Role: privacy subsystem design		Architect responsibilities call-out	NISTIR 8062 groups ops & design. Separation is indicated.
Personal information			"For the purpose of risk assessment, personal information is considered broadly as any information that can uniquely identify an individual as well as any other information, events, or behavior that can be associated with an individual. Where agencies are conducting activities subject to specific laws, regulation, or policy, more precise definitions may apply."
Privacy risk			Roughly, adverse impact X likelihood of occurrence, scoped

Term	Sources	Security and Privacy Fabric	Comments
Privacy controls: administrative			
Privacy controls: technical			
Privacy controls: physical			
Adverse privacy event			
Privacy context: system			
Privacy engineering	NISTIR 8062	Use for narrative only. May not have normative value beyond describing collection of system features, workflow elements. Operationalizing domain-specific privacy is critical.	"A specialty discipline of systems engineering focused on achieving freedom from conditions that can create problems for individuals with unacceptable consequences that arise from the system as it processes PII."
NIST privacy risk model	NISTIR 8062 Section 3.2		
Privacy metasystem issues			Draft NISTIR 8062 used "Summary Issues." "Initial contextual analyses about data actions that may heighten or decrease the assessment of privacy risk."
Privacy attack vector			Attack against Personal Information, a privacy subsystem, role, etc.
Owner/originator			System component, role or individual originating a data element.
Access*	NISTIR 7298r2, NIST SP 800-32	Includes access to workflow, orchestration	
Role: Access authority*	CNSSI-4009		Person or software
Access Control	FIPS 201		
ACL*	FIPS 201, CNSSI- 4009	Consider local vs. global Big Data ACLs. How should this be integrated with ABAC?	

Term	Sources	Security and Privacy Fabric	Comments
Access control mechanism*	CNSSI-4009		
Access type*			
Accountability	NISTIR 7298		Grouped subprocesses: traceability, non-repudiation, deterrence, fault isolation, intrusion detection, intrusion prevention, after-action recovery, legal action.
Active content	NISTIR 7298r2		"Electronic documents that can carry out or trigger actions automatically on a computer platform without the intervention of a user. "
Active/passive security testing		Big data exchanges will often entail passively tested, or passive assurance for exchanges between componentsf	
Administrative Safeguards	NISTIR 7298r2		Focus on mobile and inter- organizational safeguards.
Advisory		Big Data may require a "new" grouping of advisories	"Notification of significant new trends or developments regarding the threat to the information systems of an organization. This notification may include analytical insights into trends, intentions, technologies, or tactics of an adversary targeting information systems."
Privacy agent		Program acting on behalf of person or organization to automate a privacy-related process	There are some commercial startups that use agent-based approaches.

^f For example, identifying where there is no active testing available (e.g., encryption assurance).

Term	Sources	Security and Privacy Fabric	Comments
Allocation	NIST SP 800-37	Useful for workflow in determining privacy responsibilities: design-time, governance-time	The process an organization employs to determine whether security controls are defined as system-specific, hybrid, or common. The process an organization employs to assign security controls to specific information system components responsible for providing a particular security capability (e.g., router, server, remote sensor).
Application	NIST SP 800-37	How would a NBDRA app be different? Refer to the application model concept in the NBD-SPSL.	
Assessment	NIST SP 800-53A	Apply to NBDRA privacy (also sec?). How different from audit? Refer to audit in the NBD- SPSL.	Grouping of terms: findings, method, object, objective, procedure, Security Control Assessor
Assurance	NIST SP 800-27, NIST SP 800-53A, CNSSI-4009	Is it possible to map to Privacy Assurance (i.e., map to analogous goals?)	"Grounds for confidence that the other four security goals (integrity, availability, confidentiality, and accountability) have been adequately met by a specific implementation. "Adequately met" includes (1) functionality that performs correctly, (2) sufficient protection against unintentional errors (by users or software), and (3) sufficient resistance to intentional penetration or by-pass."
Assurance Case (for privacy)		Is it possible to map to Privacy Assurance (i.e., map to analogous goals?). Also see below.	"A structured set of arguments and a body of evidence showing that an information system satisfies specific claims with respect to a given quality attribute. "
Assured Information sharing		Analogy for privacy sharing	"The ability to confidently share information with those who need it, when and where they need it, as determined by operational need and an acceptable level of security risk."

Term	Sources	Security and Privacy Fabric	Comments
Attack, sensing, warning; attack signature (for privacy)g		Attack signature for privacy is not the same as a general attack	"Detection, correlation, identification, and characterization of intentional unauthorized activity with notification to decision makers so that an appropriate response can be developed. "
Audit, audit data, audit log, reduction tools, audit review, audit trail		Subset created for privacy. Could be a smaller problem to solve, or a larger one, depending.h	
Authentication (various terms)		Could be needed to allow "owner" of privacy data to see or correct their own data.	
Authority		Centralized vs. decentralized authority. See blockchain as a decentralization of authority. See federation. In most applications, highly domain- specific but there are cross- functional "authorities."	
Authenticity			Provenance
Authorization			Time-limited authorization to access, or use privacy data
Authorization to operate			Interop issues for Big Data concerning privacy data
Automated privacy monitoring		To Do	Use of automated procedures to ensure that privacy controls are not circumvented or the use of these tools to track actions taken by subjects suspected of misusing the information system.

^g Useful: Notion of a privacy attack vector is a useful big data discriminator, and may be highly system-specific.

^h Audit for privacy could entail audit for a small subset of a larger database, or audit intended to verify that security or privacy controls are being enforced.

Term	Sources	Security and Privacy Fabric	Comments
Back door (privacy)		Use of Big Data variety to circumvent privacy safeguards	
Baseline security (for privacy controls)			The minimum privacy controls required for safeguarding an IT system based on its identified needs for confidentiality, integrity, and/or availability protection.
Behavioral outcome (for privacy fabric training)		Useful for cross- org privacy	
Biometric information		Special concern for privacy in any system?	
Body of Evidence (for security and privacy controls adherence)			"The set of data that documents the information system's adherence to the security controls applied. The BoE will include a Requirements Verification Traceability Matrix (RVTM) delineating where the selected security and privacy controls are met and evidence to that fact can be found. The BoE content required by an Authorizing Official will be adjusted according to the impact levels selected. Refer to NIST 800-52 Section 2.3 (Rev 4)."
Boundary; boundary protection		Boundaries may need to be clarified in the NBDRA	
Browsing (for identity info)			
Business impact assessment (for privacy fabric)			"An analysis of an information system's requirements, functions, and interdependencies used to characterize system contingency requirements and priorities in the event of a significant disruption."
Certificate (esp. identity certificate)	CNSSI-4009	No different meaning vs. security, but perhaps more urgent context?	Certificate management may be different in privacy fabric when individual citizens (including children) are involved.

Term	Sources	Security and Privacy Fabric	Comments
Certification (see also baseline), certifier		Identify a baseline point at which privacy fabric controls were applied & certified as operational	"A comprehensive assessment of the management, operational, and technical security controls in an information system, made in support of security accreditation, to determine the extent to which the controls are implemented correctly, operating as intended, and producing the desired outcome with respect to meeting the security requirements for the system."
Chain of Custody		IoT plus Big Data for privacy	"A process that tracks the movement of evidence through its collection, safeguarding, and analysis life cycle by documenting each person who handled the evidence, the date/time it was collected or transferred, and the purpose for the transfer."
Chain of Evidence		IoT plus Big Data for privacy. Same, but applied to privacy data subset	"A process and record that shows who obtained the evidence; where and when the evidence was obtained; who secured the evidence; and who had control or possession of the evidence. The "sequencing" of the chain of evidence follows this order: collection and identification; analysis; storage; preservation; presentation in court; return to owner."
Chief Privacy Officer		To be adapted from other standards	
Classified information (*privacy subset)	NIST SP 800-60, EO 13292, CNSSI-4009	Adapt meaning from U.S. mil to apply to privacy subset	
Classified (privacy) data spillage			

Term	Sources	Security and Privacy Fabric	Comments
Clearance for access to privacy data or tools (both?)		Useful to identify fabric roles permitted to access privacy data, or to use re-identifying tools. Obvious: Data access, tools access aren't the same. See access, authorization.	"Formal certification of authorization to have access to classified information other than that protected in a special access program (including SCI). Clearances are of three types: confidential, secret, and top secret. A top-secret clearance permits access to top secret, secret, and confidential material; a secret clearance, to secret and confidential material; and a confidential clearance, to confidential material."
Common Control / Security Control Inheritance / Common criteria		Across app and data providers possibly spanning organizations. "Common criteria" is a document for privacy fabric requirements	"A security control that is inherited by one or more organizational information systems."
Common Control Provider (role for privacy)		Role responsible for inherited privacy controls	"An organizational official responsible for the development, implementation, assessment, and monitoring of common controls (i.e., security controls inherited by information systems)."
Common Misuse Scoring System for Privacy		A rough metric for potential privacy fabric weaknesses	"A set of measures of the severity of software feature misuse vulnerabilities. A software feature is a functional capability provided by software. A software feature misuse vulnerability is a vulnerability in which the feature also provides an avenue to compromise the security of a system."
Community of Interest for privacy data		A CoI may be a class of users in the privacy fabric (e.g., tribal, disabled, genetic abnormalities, high medical cost)	"A collaborative group of users who exchange information in pursuit of their shared goals, interests, missions, or business processes, and who therefore must have a shared vocabulary for the information they exchange. The group exchanges information within and between systems to include security domains."

Term	Sources	Security and Privacy Fabric	Comments
Community risk for privacy		Add – privacy fabric	"Probability that a particular vulnerability will be exploited within an interacting population and adversely impact some members of that population."
Compartmentalization (see DHHS meaning)			"A nonhierarchical grouping of sensitive information used to control access to data more finely than with hierarchical security classification alone."
Compromise – As applied to privacy		Especially re- identification	"Disclosure of information to unauthorized persons, or a violation of the security policy of a system in which unauthorized intentional or unintentional disclosure, modification, destruction, or loss of an object may have occurred."
Compromising Emanations (for privacy data)			"Unintentional signals that, if intercepted and analyzed, would disclose the information transmitted, received, handled, or otherwise processed by information systems equipment."
CND		Different for privacy fabric?	
Confidentiality	NIST SP 800-53, NIST SP 800-53A, NIST SP 800-18, NIST SP 800-27, NIST SP 800-60, NIST SP 800-37, FIPS 200, FIPS 199, 44 U.S.C., Section 3542	Traditional meaning for privacy embodied in numerous standards, despite its problems.	"Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information."
Contamination		Scenario: a de- identified DB is placed into a system containing potentially re- identifying resources	"Type of incident involving the introduction of data of one security classification or security category into data of a lower security classification or different security category."

Term	Sources	Security and Privacy Fabric	Comments
Continuous monitoring (of privacy fabric)			"The process implemented to maintain a current security status for one or more information systems or for the entire suite of information systems on which the operational mission of the enterprise depends. The process includes: 1) the development of a strategy to regularly evaluate selected IA controls/metrics, 2) recording and evaluating IA relevant events and the effectiveness of the enterprise in dealing with those events, 3) recording changes to IA controls, or changes that affect IA risks, and 4) publishing the current security status to enable information-sharing decisions involving the enterprise."
Controlled interface		Control at the NBDRA interface for privacy fabric (different?)	"A boundary with a set of mechanisms that enforces the security policies and controls the flow of information between interconnected information systems."
Covert testing (of privacy fabric)			
Credential, credential service provider			"A trusted entity that issues or registers Subscriber tokens and issues electronic credentials to Subscribers. The CSP may encompass Registration Authorities (RAs) and Verifiers that it operates. A CSP may be an independent third party, or may issue credentials for its own use."
Criticality, criticality level		Not all privacy data elements or tools may be equal	
Cryptographic binding			"Associating two or more related elements of information using cryptographic techniques."
Conformance to privacy fabric XXX			
Data integrity (privacy corruption)		Mis-identification (e.g., TSA list)	
Default classification (for privacy data, or privacy tooling)			

Term	Sources	Security and Privacy Fabric	Comments
Digital forensics		As applied to privacy fabric: still emerging; check academic lit	
End-to-end privacy XXX		TBD	
Ethics in Design	IEEE P7000, IEEE P7002, IEEE P7007, ISO 27500		Traceability of ethics and value chain are seen as no less feasible than requirements tracing, but no more straightforward either.
Event (privacy)	CNSSI-4009	Subset of events appropriate to privacy	"Any observable occurrence in a system and/or network. Events sometimes provide indication that an incident is occurring."
External provider, external network	NIST SP 800-37, NIST SP 800-53	Critical for privacy data/controls preservation in Big Data across clouds, across organizations	"A provider of external information system services to an organization through a variety of consumer- producer relationships, including but not limited to: joint ventures; business partnerships; outsourcing arrangements (i.e., through contracts, interagency agreements, lines of business arrangements); licensing agreements; and/or supply chain exchanges."
False Acceptance		Mis-identification (?)	Biometric domain in 800-76
Hacker – Identity hacker			
Health Information Exchange	NIST IR 7497	Important as a de facto Big Data Variety source for re-identification due to U.S. ubiquity. See also UnitedHealthCare Optum	"A health information organization that brings together healthcare stakeholders within a defined geographic area and governs health information exchange among them for the purpose of improving health and care in that community."
Identification	NIST SP 800-47	TBD – Needs refinement	"The process of verifying the identity of a user, process, or device, usually as a prerequisite for granting access to resources in an IT system."

Term	Sources	Security and Privacy Fabric	Comments
Identifier	FIPS 201, CNSSI- 4009	Identifiers can be automated, e.g., biometric theft, or photo recognition	"A data object - often, a printable, non-blank character string - that definitively represents a specific identity of a system entity, distinguishing that identity from all others."
Identity		Note: Review for consistent usage.	"The set of attribute values (i.e., characteristics) by which an entity is recognizable and that, within the scope of an identity manager's responsibility, is sufficient to distinguish that entity from any other entity."
Identity-based Security Policy			
Identity Binding			
Identity-based access control			
Identity proofing			
Identity token			
Identity validation			
Identity verification			
Impact, impact level, impact value	NIST SP 800-60, CNSSI-4009, NIST SP 800-34, NIST SP 800-30	Same concepts but mapped to privacy fabric	
Incident		Same meaning, covered under "confidentiality"	"An occurrence that actually or potentially jeopardizes the confidentiality, integrity, or availability of an information system or the information the system processes, stores, or transmits or that constitutes a violation or imminent threat of violation of security policies, security procedures, or acceptable use policies."
Incident handling for privacy incidents		Subset, but could be different from superset	
Indicator		Recognized signal that an adversary might be attempting to compromise privacy fabric	

Term	Sources	Security and Privacy Fabric	Comments
Information assurance for privacy			"Measures that protect and defend information and information systems by ensuring their availability, integrity, authentication, confidentiality, and non-repudiation. These measures include providing for restoration of information systems by incorporating protection, detection, and reaction capabilities."
Information Domain		Needs to be enlarged for BD privacy fabric	"A three-part concept for information sharing, independent of, and across information systems and security domains that 1) identifies information sharing participants as individual members, 2) contains shared information objects, and 3) provides a security policy that identifies the roles and privileges of the members and the protections required for the information objects."
Information Operations (as applied to identity disruption)	CNSSI-4009		"The integrated employment of the core capabilities of electronic warfare, computer network operations, psychological operations, military deception, and operations security, in concert with specified supporting and related capabilities, to influence, disrupt, corrupt, or usurp adversarial human and automated decision- making process, information, and information systems while protecting our own."
Information owner			
Information sharing environment		Highlight as a potential area for variety-enabled identification	"ISE in its broader application enables those in a trusted partnership to share, discover, and access controlled information."
Information Security Architect (sub: privacy)	NIST SP 800-39	Identifies design- time role. Architecture refers to the design.	
Information Steward (for confidential data, tools)			"An agency official with statutory or operational authority for specified information and responsibility for establishing the controls for its generation, collection, processing, dissemination, and disposal."

Term	Sources	Security and Privacy Fabric	Comments
IS Resilience		Does this notion apply to identity attacks specifically?	
IS Security Risks (privacy subset)			"Information system-related security risks are those risks that arise through the loss of confidentiality, integrity, or availability of information or information systems and consider impacts to the organization (including assets, mission, functions, image, or reputation), individuals, other organizations, and the Nation."
Information Value			"A qualitative measure of the importance of the information based upon factors such as: level of robustness of the Information Assurance controls allocated to the protection of information based upon: mission criticality, the sensitivity (e.g., classification and compartmentalization) of the information, releasability to other countries, perishability/longevity of the information (e.g., short-life data versus long-life intelligence source data), and potential impact of loss of confidentiality and integrity and/or availability of the information."
Insider threat for confidentiality breaches		E.g., access to personnel records, authentication systems, ACLs	
Intellectual property		Especially IP connected to or owned by a person, but also IP treated the same way as "privacy" data. Further study.i	
Interconnection Security Agreement	NIST SP 800-47, CNSSI-4009		

ⁱ IP protections, defenses, risks are similar but also different from individual human privacy.

Term	Sources	Security and Privacy Fabric	Comments
Interface Control Document		Different for privacy?	
Internal network privacy controls		Use cases are different	
IT privacy awareness and training program			
IT privacy policy (three + types)	NIST SP 800-12	Program policy; issue (context specific) policies; system- or device- or app-specific policies	 "1) Program Policy—high-level policy used to create a Program policy - organization's IT security program, define its scope within the organization, assign implementation responsibilities, establish strategic direction, and assign resources for implementation. 2) Issue-Specific Policies—address specific issues of concern to the organization, such as contingency planning, the use of a particular methodology for systems risk management, and implementation of new regulations or law. These policies are likely to require more frequent revision as changes in technology and related factors take place. 3) System-Specific Policies—address individual systems, such as establishing an access control list or in training users as to what system actions are permitted. These policies may vary from system to system within the same organization. In addition, policy may refer to entirely different matters, such as the specific managerial decisions setting an organization's electronic mail (email) policy or fax security policy."
Key terminology: list, loader, management, logger, exchange, escrow, etc.		TBD—Map to confidentiality- specific logging for a specific domain.	See also utility domains, e.g., ubiquitous O.S. logging, or packet capture.
Least trust		Metrics needed for trust components & disclosed to originator/owner	"The principal that a security architecture should be designed in a way that minimizes 1) the number of components that require trust, and 2) the extent to which each component is trusted."

Term	Sources	Security and Privacy Fabric	Comments
Line-of-business privacy guidelines	OMB, NIST SP 800- 60, OMB Business Reference Model FEA V2.3	Domain- or discipline-specific privacy best practicesj	Lengthy discussion best framed through HL7 FHR domain model use case.
List-oriented object privacy protection	CNSSI-4009		
Major / Minor application (for privacy)	OMB Circular A-130 Appendix III, NIST SP 800-18	What makes it major / minor in the NBDRA? Not resolved in V2.	
Masquerading privacy data (see identity)	NIST SP 800-19		
Biometric match event	FIPS 201, CNSSI- 4009		Possible paradigmatic event exemplar for Big Data
Media (wearable, implanted digital device)	FDA, adapted from NIST SP 800-53		
Memorandum of Understanding for Privacy data (MOUP)	Simple MOU was NIST SP 800-47		Critical for Big Data Variety
Minor application (susceptible to privacy concerns)	NIST SP 800-18		Identify aspect of a larger application that applies to privacy
Mission/business segment*	NIST SP 800-30		Identify segment associated with business processes that collect PII or other privacy data at risk
Multilevel security (for privacy data)	CNSSI-4009		Applies MLS to privacy data subset
Mutual suspicion	CNSSI-4009		As applicable to privacy data, e.g., consider privacy data across organizational boundaries
National security system (US)	FIPS 200		Use to identify possible exclusions or variations from otherwise universal guidelines or practices. Nation- specific.
Need to know determination	CNSSI-4009		Need to know for PII.
Needs assessment for privacy (policy, risk, etc.)	NIST SP 800-50		"The results of a needs assessment can provide justification to convince management to allocate adequate resources to meet the identified awareness and training needs."

^j LOB or Domain-specific privacy. See also incidents, events, etc. Needs improved definition and examples.

Term	Sources	Security and Privacy Fabric	Comments
Privacy data resilience	Adapted from CNSSI- 4009		Ability to sustain business operations after privacy data attack (e.g., partial leak)
Non-organizational user	NIST SP 800-53		
Network sponsor (for privacy components)	CNSSI-4009		"Individual or organization responsible for stating the security policy enforced by the network, designing the network security architecture to properly enforce that policy, and ensuring that the network is implemented in such a way that the policy is enforced."
Non-repudiation (for PII)	CNSSI-4009		As applied to sender/recipient of PII
Operational controls (for PII)	NIST SP 800-53		"The security controls (i.e., safeguards or countermeasures) for an information system that primarily are implemented and executed by people (as opposed to systems)."
Operations Security (OPSEC, for PII)	CNSSI-4009		"Systematic and proven process by which potential adversaries can be denied information about capabilities and intentions by identifying, controlling, and protecting generally unclassified evidence of the planning and execution of sensitive activities. The process involves five steps: identification of critical information, analysis of threats, analysis of vulnerabilities, assessment of risks, and application of appropriate countermeasures."
Organizational information security continuous monitoring	NIST SP 800-137		"Ongoing monitoring sufficient to ensure and assure effectiveness of security controls related to systems, networks, and cyberspace, by assessing security control implementation and organizational security status in accordance with organizational risk tolerance – and within a reporting structure designed to make real-time, data-driven risk management decisions."
Organizational Registration Authority	CNSSI-4009		"Entity within the PKI that authenticates the identity and the organizational affiliation of the users."

Term	Sources	Security and Privacy Fabric	Comments
Overt testing for privacy	NIST SP 800-115		"Security testing performed with the knowledge and consent of the organization's IT staff."
Partitioned security mode	CNSSI-4009		"Information systems security mode of operation wherein all personnel have the clearance, but not necessarily formal access approval and need-to- know, for all information handled by an information system."
Path histories	NIST SP 800-19		"Maintaining an authenticatable record of the prior platforms visited by a mobile software agent, so that a newly visited platform can determine whether to process the agent and what resource constraints to apply."
Pen testing (for variety attacks)	NIST SP 800-53A		Applies principles of pen testing to attempts to re-identify or identify PII
Periods processing	CNSSI-4009		"The processing of various levels of classified and unclassified information at distinctly different times. Under the concept of periods processing, the system must be purged of all information from one processing period before transitioning to the next."
Personal Identity Verification	CNSSI-4009		Applies U.S. Federal ID standard to other organizations
Personal Identity Verification Authorization Official (role)	See related definitions in FIPS 201		Person in an org responsible for issuing identity credentials
РП			"Information which can be used to distinguish or trace an individual's identity, such as their name, social security number, biometric records, etc., alone, or when combined with other personal or identifying information which is linked or linkable to a specific individual, such as date and place of birth, mother's maiden name, etc."
Personnel Registration Manager (role)			"Management role that is responsible for registering human users."

Term	Sources	Security and Privacy Fabric	Comments
PII Confidentiality Impact Level	NIST SP 800-122		"The PII confidentiality impact level— low, moderate, or high—indicates the potential harm that could result to the subject individuals and/or the organization if PII were inappropriately accessed, used, or disclosed."
Policy-based Access, Certifier, etc.	Set of concepts around POA&M		Use broad framework to help organizations identify responsibilities for managing PII policies associated with a system.
Potential (privacy) impact	CNSSI-4009		""The loss of confidentiality, integrity, or availability that could be expected to have a limited (low) adverse effect, a serious (moderate) adverse effect, or a severe or catastrophic (high) adverse effect on organizational operations, organizational assets, or individuals."
Privacy	NIST SP 800-32		"Restricting access to subscriber or Relying Party information in accordance with federal law and agency policy."
Privacy Impact Assessment	NIST SP 800-53		"An analysis of how information is handled: 1) to ensure handling conforms to applicable legal, regulatory, and policy requirements regarding privacy; 2) to determine the risks and effects of collecting, maintaining, and disseminating information in identifiable form in an electronic information system; and 3) to examine and evaluate protections and alternative processes for handling information to mitigate potential privacy risks."
Privacy system	CNSSI-4009		"Commercial encryption system that affords telecommunications limited protection to deter a casual listener, but cannot withstand a technically competent cryptanalytic attack."
Privilege Management	NIST IR 7657		"The definition and management of policies and processes that define the ways in which the user is provided access rights to enterprise systems. It governs the management of the data that constitutes the user's privileges and other attributes, including the storage, organization and access to information in directories."

Term	Sources	Security and Privacy Fabric	Comments
Profiling (of people)	NIST SP 800-61		"Measuring the characteristics of expected activity so that changes to it can be more easily identified."
Proprietary information (owned by people versus organizations)			"Material and information relating to or associated with a company's products, business, or activities, including but not limited to financial information; data or statements; trade secrets; product research and development; existing and future product designs and performance specifications; marketing plans or techniques; schematics; client lists; computer programs; processes; and know-how that has been clearly identified and properly marked by the company as proprietary information, trade secrets, or company confidential information. The information must have been developed by the company and not be available to the government or to the public without restriction from another source."
Pseudonym	NIST SP 800-63		"A name other than a legal name."
Residual risk (e.g., after PII breach)	NIST SP 800-33		"The remaining potential risk after all IT security measures are applied. There is a residual risk associated with each threat."
Risk	NIST SP 800-53		"Information system-related security risks are those risks that arise from the loss of confidentiality, integrity, or availability of information or information systems and consider the adverse impacts to organizational operations (including mission, functions, image, or reputation), organizational assets, individuals, other organizations, and the Nation."
Risk-Adaptable Access Control	CNSSI-4009		
Risk Analysis	NIST SP 800-27		
Risk Management Framework, Risk Model, Monitoring, Response, Response Measure, Tolerance, Executive	NIST SP 800-30, NIST SP 800-53A, NIST SP 800-37, CNSSI-4009, FIPS 200, NIST SP 800-34, NIST SP 800-82		Suite of risk-related taxonomy

Term	Sources	Security and Privacy Fabric	Comments
Risk Assessor	NIST SP 800-30		"The individual, group, or organization responsible for conducting a risk assessment."
Role	NIST SP 800-95		"A group attribute that ties membership to function. When an entity assumes a role, the entity is given certain rights that belong to that role. When the entity leaves the role, those rights are removed. The rights given are consistent with the functionality that the entity needs to perform the expected tasks."
Role-based Access Control (RBAC)	NIST SP 800-95		
Rule-Based Security (Privacy) Policy	NIST SP 800-33, CNSSI-4009		"A security policy based on global rules imposed for all subjects. These rules usually rely on a comparison of the sensitivity of the objects being accessed and the possession of corresponding attributes by the subjects requesting access. Also known as discretionary access control (DAC)."
Security Category	FIPS 200, FIPS 199, NIST SP 800-18		"The characterization of information or an information system based on an assessment of the potential impact that a loss of confidentiality, integrity, or availability of such information or information system would have on organizational operations, organizational assets, individuals, other organizations, and the Nation."
Security (Privacy) Domain	NIST SP 800-27		"A collection of entities to which applies a single security policy executed by a single authority." – Concept modified to reflect privacy only.
Security (Privacy) Engineering	CNSSI-4009		Need to reconcile with Oasis standard
Security (privacy) filter	CNSSI-4009		"A secure subsystem of an information system that enforces security policy on the data passing through it."
Security (privacy) incident		Fabric-specific	

Term	Sources	Security and Privacy Fabric	Comments
Security (privacy) label	NIST SP 800-53, FIPS 188	Important for provenance	"A marking bound to a resource (which may be a data unit) that names or designates the security attributes of that resource."
Security (privacy) level	FIPS 188	NBDRA adaptation	"A hierarchical indicator of the degree of sensitivity to a certain threat. It implies, according to the security policy being enforced, a specific level of protection."
Security (privacy) marking	NIST SP 800-53		"Human-readable information affixed to information system components, removable media, or output indicating the distribution limitations, handling caveats, and applicable security markings."
Security (privacy) plan	NIST SP 800-53, NIST SP 800-53A, NIST SP 800-37, NIST SP 800-18		"Formal document that provides an overview of the security requirements for an information system or an information security program and describes the security controls in place or planned for meeting those requirements."
Security (privacy) policy		Needs to be greatly enlarged as it includes both practice and colloquial uses	"Set of criteria for the provision of security services."
Security (privacy) posture	CNSSI-4009		"The security status of an enterprise's networks, information, and systems based on IA resources (e.g., people, hardware, software, policies) and capabilities in place to manage the defense of the enterprise and to react as the situation changes."
Security (privacy) impact analysis	CNSSI-4009		
Security (privacy) program plan	CNSSI-4009		
Security (privacy) range	CNSSI-4009		"Highest and lowest security levels that are permitted in or on an information system, system component, subsystem, or network."

Term	Sources	Security and Privacy Fabric	Comments
Security (privacy)- relevant change or event	CNSSI-4009		"Any change to a system's configuration, environment, information content, functionality, or users which has the potential to change the risk imposed upon its continued operations."
Security (privacy) requirements	CNSSI-4009		Mandated privacy requirements
Security (privacy) requirements traceability matrix	CNSSI-4009		
Security (Privacy) Safeguards	CNSSI-4009		
Security (privacy) service	NIST SP 800-27		"A capability that supports one, or many, of the security goals. Examples of security services are key management, access control, and authentication."
Security (privacy) tag	FIPS 188		"Information unit containing a representation of certain security- related information (e.g., a restrictive attribute bit map)."
Security (privacy) test, evaluation, assess, etc.	CNSSI-4009		
Sensitivity (for privacy data) label	CNSSI-4009		"Information representing elements of the security label(s) of a subject and an object. Sensitivity labels are used by the trusted computing base (TCB) as the basis for mandatory access control decisions. See Security Label."
SLA for Privacy		TBD	
Signed data (applied to privacy)	CNSSI-4009		
Privacy Spillage	CNSSI-4009		"Security incident that results in the transfer of classified or CUI information onto an information system not accredited (i.e., authorized) for the appropriate security level."
Status (for privacy components) monitoring	NIST SP 800-137	Person or s/w agent	"Monitoring the information security metrics defined by the organization in the information security ISCM strategy."

Term	Sources	Security and Privacy Fabric	Comments
Suppression measure (applied to privacy)	CNSSI-4009		"Action, procedure, modification, or device that reduces the level of, or inhibits the generation of, compromising emanations in an information system."
Privacy Integrity	NIST SP 800-27		Adapt from System Integrity?
Privacy subsystem Interconnect	NIST SP 800-47, CNSSI-4009	What contexts?	
System of Records	NIST SP 800-122		"A group of any records under the control of any agency from which information is retrieved by the name of the individual or by some identifying number, symbol, or other identifying particular assigned to the individual."
Privacy System owner		Adapt from System Owner?	"Person or organization having responsibility for the development, procurement, integration, modification, operation and maintenance, and/or final disposition of an information system."
Technical Privacy Security Controls	CNSSI-4009	See also Technical Reference Model adapted for Privacy	"Security controls (i.e., safeguards or countermeasures) for an information system that are primarily implemented and executed by the information system through mechanisms contained in the hardware, software, or firmware components of the system."
Privacy – Threat definition, analysis, assessment, event, scenario, source	NIST SP 800-27, CNSSI-4009		
Tracking cookie	NIST SP 800-83		
Traffic Analysis	NIST SP 800-24, NIST SP 800-98	Highly applicable to privacy in IoT	"A form of passive attack in which an intruder observes information about calls (although not necessarily the contents of the messages) and makes inferences, e.g., from the source and destination numbers, or frequency and length of the messages."
Trusted Agent TBD	See trusted identification forwarding and related terms	Earliest or most responsible (TBD) direct digital connection to a person whose data is private	

Term	Sources	Security and Privacy Fabric	Comments
Unauthorized disclosure (privacy data)	FIPS 191		
Privacy data not identified as such by a system			
User ID	CNSSI-4009		
User Registration	NIST SP 800-57		
User Representation			
Vulnerability assessment (for privacy)			

2835

2836

2837

2838

2839

2840 2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

Appendix C: Internal Security Considerations within Cloud Ecosystems

Many Big Data systems will be designed using cloud architectures. Any strategy to implement a mature security and privacy framework within a Big Data cloud ecosystem enterprise architecture must address the complexities associated with cloud-specific security requirements triggered by the cloud characteristics. These requirements could include the following:

- Broad network access
- Decreased visibility and control by consumer
- Dynamic system boundaries and comingled roles/responsibilities between consumers and providers
- Multi-tenancy
- Data residency
- Measured service
- Order-of-magnitude increases in scale (on demand), dynamics (elasticity and cost optimization), and complexity (automation and virtualization)

These cloud computing characteristics often present different security risks to an agency than the traditional information technology solutions, thereby altering the agency's security posture.

2852 To preserve the security-level after the migration of their data to the cloud, organizations need to identify 2853 all cloud-specific, risk-adjusted security controls or components in advance. The organizations must also 2854 request from the cloud service providers, through contractual means and service-level agreements, to have 2855 all identified security components and controls fully and accurately implemented.

2856 The complexity of multiple interdependencies is best illustrated by Figure C-1 (Fang Liu, 2011).

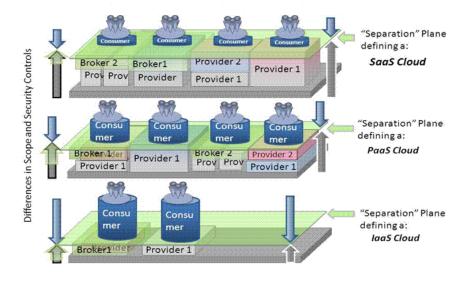


Figure C-1: Composite Cloud Ecosystem Security Architecture

When unraveling the complexity of multiple interdependencies, it is important to note that enterprisewide access controls fall within the purview of a well thought out Big Data and cloud ecosystem risk
management strategy for end-to-end enterprise access control and security (AC&S), via the following five
constructs:

- Categorize the data value and criticality of information systems and the data custodian's duties and responsibilities to the organization, demonstrated by the data custodian's choice of either a discretionary access control policy or a mandatory access control policy that is more restrictive. The choice is determined by addressing the specific organizational requirements, such as, but not limited to the following:
 - a. GRC; and
 - b. Directives, policy guidelines, strategic goals and objectives, information security requirements, priorities, and resources available (filling in any gaps).
 - 2. Select the appropriate level of security controls required to protect data and to defend information systems.
 - 3. Implement access security controls and modify them upon analysis assessments.
 - 4. Authorize appropriate information systems.
 - 5. Monitor access security controls at a minimum of once a year.

To meet GRC and CIA regulatory obligations required from the responsible data custodians—which are directly tied to demonstrating a valid, current, and up-to-date AC&S policy—one of the better strategies is to implement a layered approach to AC&S, comprised of multiple access control gates, including, but not limited to, the following infrastructure AC&S via:

- Physical security/facility security, equipment location, power redundancy, barriers, security patrols, electronic surveillance, and physical authentication
- Information Security and residual risk management
- Human resources (HR) security, including, but not limited to, employee codes of conduct, roles and responsibilities, job descriptions, and employee terminations
- Database, end point, and cloud monitoring
- Authentication services management/monitoring
- Privilege usage management/monitoring
- Identify management/monitoring
- Security management/monitoring
- Asset management/monitoring

Despite the fact that cloud computing is driving innovation in technologies that support Big Data, some Big Data projects are not in the cloud. However, because of the resurgence of the cloud, considerable work has been invested in developing cloud standards to alleviate concerns over its use. A number of organizations, including NIST, are diligently engaged in standards work around cloud computing. Central among these for Big Data Security and Privacy is NIST SP 800-144 (Jansen & Grance, 2011), which included a then-current list of related standards and guides, which is reproduced in Table C-1.

Table C-1: Standards and Guides Relevant to Cloud Computing

Publication	Title
FIPS 199	Standards for Security Categorization of Federal Information and Information Systems
FIPS 200	Minimum Security Requirements for Federal Information and Information Systems
NIST SP 800-18, Revision 1	Guide for Developing Security Plans for Federal Information Systems

Publication	Title	
NIST SP 800-34, Revision 1	Contingency Planning Guide for Federal Information Systems	
NIST SP 800-37, Revision 1	Guide for Applying the Risk Management Framework to Federal Information Systems: A Security Life Cycle Approach	
NIST SP 800-39	Managing Information Security Risk: Organization, Mission, and Information System View	
NIST SP 800-53, Revision 4	Recommended Security Controls for Federal Information Systems and Organizations	
NIST SP 800-53, Appendix J	Privacy Control Catalog	
NIST SP 800-53A, Revision 4	Guide for Assessing the Security Controls in Federal Information Systems	
NIST SP 800-60, Revision 1	Guide for Mapping Types of Information and Information Systems to Security Categories	
NIST SP 800-61, Revision 2	Computer Security Incident Handling Guide	
NIST SP 800-64, Revision 2	Security Considerations in the System Development Life Cycle	
NIST SP 800-86	Guide to Integrating Forensic Techniques into Incident Response	
NIST SP 800-88, Revision 1	Guidelines for Media Sanitization	
NIST SP 800-115	Technical Guide to Information Security Testing and Assessment	
NIST SP 800-122	Guide to Protecting the Confidentiality of Personally Identifiable Information (PII)	
NIST SP 800-137	Information Security Continuous Monitoring for Federal Information Systems and Organizations	

The following section revisits the traditional access control framework. The traditional framework identifies a standard set of attack surfaces, roles, and trade-offs. These principles appear in some existing best practices guidelines. For instance, they are an important part of the Certified Information Systems Security Professional (CISSP) body of knowledge.^k

2902 Access Control

Access control is one of the most important areas of Big Data. There are multiple factors, such as
mandates, policies, and laws that govern the access of data. One overarching rule is that the highest
classification of any data element or string governs the protection of the data. In addition, access should
be granted only on a need-to-know/-use basis that is reviewed periodically in order to control the access.

Access control for Big Data covers more than accessing data. Data can be accessed via multiple channels,
networks, and platforms—including laptops, cell phones, smartphones, tablets, and even fax machines—
that are connected to internal networks, mobile devices, the Internet, or all of the above. With this reality
in mind, the same data may be accessed by a user, administrator, another system, etc., and it may be

2898

2899

2900

^k CISSP is a professional computer security certification administered by (ISC)).². (<u>https://www.isc2.org/cissp/default.aspx</u>)

2911 accessed via a remote connection/access point as well as internally. Therefore, visibility as to who is

2912 accessing the data is critical in protecting the data. The trade-offs between strict data access control versus 2913 conducting business requires answers to questions such as the following.

- How important/critical is the data to the lifeblood and sustainability of the organization?
- What is the organization responsible for (e.g., all nodes, components, boxes, and machines within the Big Data/cloud ecosystem)?
- Where are the resources and data located?
- Who should have access to the resources and data?
- Have GRC considerations been given due attention?

Very restrictive measures to control accounts are difficult to implement, so this strategy can be considered impractical in most cases. However, there are best practices, such as protection based on classification of the data, least privilege, (Anderson, 2011) and separation of duties that can help reduce the risks.

The following measures are often included in Best Practices lists for security and privacy. Some, and perhaps all, of the measures require adaptation or expansion for Big Data systems.

- Least privilege—access to data within a Big Data/cloud ecosystem environment should be based on providing an individual with the minimum access rights and privileges to perform their job.
- If one of the data elements is protected because of its classification (e.g., PII, HIPAA, PCI), then all the data that it is sent with it inherits that classification, retaining the original data's security classification. If the data is joined to and/or associated with other data that may cause a privacy issue, then all data should be protected. This requires due diligence on the part of the data custodian(s) to ensure that this secure and protected state remains throughout the entire end-to-end data flow. Variations on this theme may be required for domain-specific combinations of public and private data hosted by Big Data applications.
 - If data is accessed from, transferred to, or transmitted to the cloud, Internet, or another external entity, then the data should be protected based on its classification.
- There should be an indicator/disclaimer on the display of the user if private or sensitive data is being accessed or viewed. Openness, trust, and transparency considerations may require more specific actions, depending on GRC or other broad considerations of how the Big Data system is being used.
- All system roles (i.e., accounts) should be subjected to periodic meaningful audits to check that they are still required.
- All accounts (except for system-related accounts) that have not been used within 180 days should be deactivated.
- Access to PII data should be logged. Role-based access to Big Data should be enforced. Each role should be assigned the fewest privileges needed to perform the functions of that role.
- Roles should be reviewed periodically to check that they are still valid and that the accounts assigned to them are still appropriate.

User Access Controls

- Each user should have their personal account. Shared accounts should not be the default practice in most settings.
- A user role should match the system capabilities for which it was intended. For example, a user account intended only for information access or to manage an Orchestrator should not be used as an administrative account or to run unrelated production jobs.

2954 System Access Controls

- There should not be shared accounts in cases of system-to-system access. "Meta-accounts" that operate across systems may be an emerging Big Data concern.
- Access for a system that contains Big Data needs to be approved by the data owner or their representative. The representative should not be infrastructure support personnel (e.g., a system administrator), because that may cause a separation of duties issue.
 - Ideally, the same type of data stored on different systems should use the same classifications and rules for access controls to provide the same level of protection. In practice, Big Data systems may not follow this practice, and different techniques may be needed to map roles across related but dissimilar components or even across Big Data systems.

Administrative Account Controls

- System administrators should maintain a separate user account that is not used for administrative purposes. In addition, an administrative account should not be used as a user account.
- The same administrative account should not be used for access to the production and nonproduction (e.g., test, development, and quality assurance) systems.

2955

2956

2957

2958

2959

2960

2961

2962 2963

2964 2965

2966

2967

2970

2971

2972

2973

2974

2975

2976

2977 2978

Appendix D: Big Data Actors and Roles—Adaptation to Big Data Scenarios

SOAs were a widely discussed paradigm through the early 2000s. While the concept is employed less often, SOA has influenced systems analysis processes, and perhaps to a lesser extent, systems design. As noted by Patig and Lopez-Sanz et al., actors and roles were incorporated into Unified Modeling Language so that these concepts could be represented within as well as across services. (Patig, 2008) (M. López-Sanz, 2008) Big Data calls for further adaptation of these concepts. While actor/role concepts have not been fully integrated into the proposed security fabric, the Subgroup felt it important to emphasize to Big Data system designers how these concepts may need to be adapted from legacy and SOA usage.

2979 Similar adaptations from Business Process Execution Language, Business Process Model and Notation 2980 frameworks offer additional patterns for Big Data security and privacy fabric standards. Ardagna et al. 2981 [224] suggest how adaptations might proceed from SOA, but Big Data systems offer somewhat different 2982 challenges.

2983 Big Data systems can comprise simple machine-to-machine actors, or complex combinations of persons 2984 and machines that are systems of systems.

2985 A common meaning of actor assigns roles to a person in a system. From a citizen's perspective, a person 2986 can have relationships with many applications and sources of information in a Big Data system.

The following list describes a number of roles, as well as how roles can shift over time. For some systems, roles are only valid for a specified point in time. Reconsidering temporal aspects of actor security is salient for Big Data systems, as some will be architected without explicit archive or deletion policies.

- A retail organization refers to a person as a consumer or prospect before a purchase; afterwards, • the consumer becomes a customer.
- A person has a customer relationship with a financial organization for banking services. •
- A person may have a car loan with a different organization or the same financial institution. •
- A person may have a home loan with a different bank or the same bank. •
- A person may be *the insured* on health, life, auto, homeowners, or renters insurance. •
- A person may be the beneficiary or future insured person by a payroll deduction in the private sector, or via the employment development department in the public sector.
- A person may have attended one or more public or private schools. •
- A person may be an employee, temporary worker, contractor, or third-party employee for one or • more private or public enterprises.
- A person may be underage and have special legal or other protections. •
 - One or more of these roles may apply concurrently. •

3004 For each of these roles, system owners should ask themselves whether users could achieve the following:

- 3005 Identify which systems their PII has entered; •
- 3006 • Identify how, when, and what type of de-identification process was applied;
- Verify integrity of their own data and correct errors, omissions, and inaccuracies; 3007

2987

2988

2989

2990

2991

2992

2993

2994

2995

2997

2998

2999

3000

3001

3002

- Request to have information purged and have an automated mechanism to report and verify removal;
 - Participate in multilevel opt-out systems, such as will occur when Big Data systems are federated; and
 - Verify that data has not crossed regulatory (e.g., age-related), governmental (e.g., a state or nation), or expired ("I am no longer a customer") boundaries.

3014 **OPT-IN REVISITED**

3015 While standards organizations grapple with frameworks, such as the one developed here, and until an 3016 individual's privacy and security can be fully protected using such a framework, some observers believe 3017 that the following two simple protocols ought to govern PII Big Data collection in the meantime.

3018 **Suggested Protocol One**: An individual can only decide to opt-in for inclusion of their personal data 3019 manually, and it is a decision that they can revoke at any time.

Suggested Protocol Two: The individual's privacy and security opt-in process should enable each
 individual to modify their choice at any time, to access and review log files and reports, and to establish a
 self-destruct timeline (similar to the EU's *right to be forgotten*).

3023

3010

3011

3012

3026

3027

3028

Appendix E: Mapping Use Cases to NBDRA 3025

In this section, the security- and privacy-related use cases presented in Section 3 are mapped to the NBDRA components and interfaces explored in Figure 7, Notional Security and Privacy Fabric Overlay to the NBDRA.

E.1 Retail/Marketing 3029

E.1.1 Consumer Digital Media Use 3030

3031 Content owners license data for use by consumers through presentation portals. The use of consumer 3032 digital media generates Big Data, including both demographics at the user level and patterns of use such as play sequence, recommendations, and content navigation. 3033

	Constitution of Defension Transit	Hee Const Manufact
NBDRA	Security and Privacy Topic	Use Case Mapping
Component and		
Interfaces		
Data Provider \rightarrow	End-point input validation	Varies and is vendor-dependent. Spoofing is
Application		possible. For example, protections afforded by
Provider		securing Microsoft Rights Management Services
		[225]. Secure/Multipurpose Internet Mail
		Extensions (S/MIME)
	Real-time security monitoring	Content creation security
	Data discovery and classification	Discovery/classification is possible across
	-	media, populations, and channels.
	Secure data aggregation	Vendor-supplied aggregation services—security
		practices are opaque.
Application	Privacy-preserving data analytics	Aggregate reporting to content owners
Provider \rightarrow Data	Compliance with regulations	PII disclosure issues abound
Consumer	Government access to data and	Various issues; for example, playing terrorist
	freedom of expression concerns	podcast and illegal playback
Data Provider ↔	Data-centric security such as	Unknown
Framework	identity/policy-based encryption	
Provider	Policy management for access	User, playback administrator, library
	control	maintenance, and auditor
	Computing on the encrypted data:	Unknown
	searching/ filtering/ deduplicate/	
	FHE	
	Audits	Audit DRM usage for royalties
Framework	Securing data storage and	Unknown
Provider	transaction logs	
	Key management	Unknown

 Table E-1: Mapping Consumer Digital Media Usage to the Reference Architecture

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
	Security best practices for non- relational data stores	Unknown
	Security against DoS attacks	N/A
	Data provenance	Traceability to data owners, producers, consumers is preserved
Fabric	Analytics for security intelligence	Machine intelligence for unsanctioned use/access
	Event detection	"Playback" granularity defined
	Forensics	Subpoena of playback records in legal disputes

E.1.2 Nielsen Homescan: Project Apollo

Nielsen Homescan involves family-level retail transactions and associated media exposure using a statistically valid national sample. A general description [226] is provided by the vendor. This project description is based on a 2006 Project Apollo architecture (Project Apollo did not emerge from its prototype status).

NBDRA	Security and Privacy Topic	Use Case Mapping
Component and		
Interfaces		
Data Provider \rightarrow	End-point input validation	Device-specific keys from digital sources;
Application		receipt sources scanned internally and
Provider		reconciled to family ID (Role issues)
	Real-time security monitoring	None
	Data discovery and classification	Classifications based on data sources (e.g., retail
		outlets, devices, and paper sources)
	Secure data aggregation	Aggregated into demographic crosstabs. Internal
		analysts had access to PII.
Application	Privacy-preserving data analytics	Aggregated to (sometimes) product-specific,
Provider \rightarrow Data		statistically valid independent variables
Consumer	Compliance with regulations	Panel data rights secured in advance and
		enforced through organizational controls.
	Government access to data and	N/A
	freedom of expression concerns	
Data Provider ↔	Data-centric security such as	Encryption not employed in place; only for data-
Framework	identity/policy-based encryption	center-to-data-center transfers. XML cube
Provider		security mapped to Sybase IQ and reporting
		tools
	Policy management for access	Extensive role-based controls
	control	
	Computing on the encrypted data:	N/A
	searching/filtering/deduplicate/	
	FHE	
	Audits	Schematron and process step audits

	Table E-2: Mapping	Nielsen Homesca	n to the Reference	Architecture
--	--------------------	-----------------	--------------------	--------------

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
Framework	Securing data storage and	Project-specific audits secured by infrastructure
Provider	transaction logs Key management	team. Managed by project chief security officer (CSO). Separate key pairs issued for customers and internal users.
	Security best practices for non- relational data stores	Regular data integrity checks via XML schema validation
	Security against DoS attacks	Industry-standard webhost protection provided for query subsystem.
	Data provenance	Unique
Fabric	Analytics for security intelligence	No project-specific initiatives
	Event detection	N/A
	Forensics	Usage, cube-creation, and device merge audit records were retained for forensics and billing

E.1.3 Web Traffic Analytics 3043

Visit-level webserver logs are of high granularity and voluminous. Web logs are correlated with other sources, including page content (buttons, text, and navigation events) and marketing events such as campaigns and media classification.

Table E-3: Mapping Web Traffic Analytics to the Reference Architecture

	~	
NBDRA	Security and Privacy Topic	Use Case Mapping
Component and		
Interfaces		
Data Provider \rightarrow	End-point input validation	Device-dependent. Spoofing is often easy
Application	Real-time security monitoring	Web server monitoring
Provider	Data discovery and classification	Some geospatial attribution
	Secure data aggregation	Aggregation to device, visitor, button, web
		event, and others
Application	Privacy-preserving data analytics	IP anonymizing and time stamp degrading.
Provider \rightarrow Data		Content-specific opt-out
Consumer	Compliance with regulations	Anonymization may be required for EU
		compliance. Opt-out honoring
	Government access to data and	Yes
	freedom of expression concerns	
Data Provider ↔	Data-centric security such as	Varies depending on archivist
Framework	identity/policy-based encryption	
Provider	Policy management for access	System- and application-level access controls
	control	
	Computing on the encrypted data:	Unknown
	searching/filtering/deduplicate/	
	FHE	
	Audits	Customer audits for accuracy and integrity are
		supported

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
Framework Provider	Securing data storage and transaction logs	Storage archiving—this is a big issue
	Key management	CSO and applications
	Security best practices for non- relational data stores	Unknown
	Security against DoS attacks	Standard
	Data provenance	Server, application, IP-like identity, page point- in-time Document Object Model (DOM), and point-in-time marketing events
Fabric	Analytics for security intelligence	Access to web logs often requires privilege elevation.
	Event detection	Can infer; for example, numerous sales, marketing, and overall web health events
	Forensics	See the SIEM use case

E.2 Healthcare

E.2.1 Health Information Exchange

Health information exchange (HIE) data is aggregated from various data providers, which might include covered entities such as hospitals and contract research organizations (CROs) identifying participation in clinical trials. The data consumers would include emergency room personnel, the CDC, and other authorized health (or other) organizations. Because any city or region might implement its own HIE, these exchanges might also serve as data consumers and data providers for each other.

3054

3055

Table E-4: Mapping HIE to the Reference Architecture

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
Data Provider → Application Provider	End-point input validation [227]	Strong authentication, perhaps through X.509v3 certificates, potential leverage of SAFE (Signatures & Authentication for Everything [227]) bridge in lieu of general PKI
	Real-time security monitoring	Validation of incoming records to assure integrity through signature validation and to assure HIPAA privacy through ensuring PHI is encrypted. May need to check for evidence of informed consent.
	Data discovery and classification	Leverage Health Level Seven (HL7) and other standard formats opportunistically, but avoid attempts at schema normalization. Some columns will be strongly encrypted while others will be specially encrypted (or associated with cryptographic metadata) for enabling discovery and classification. May need to perform column

NBDRA Component and	Security and Privacy Topic	Use Case Mapping
Interfaces		
		filtering based on the policies of the data source
		or the HIE service provider.
	Secure data aggregation	Combining deduplication with encryption is
		desirable. Deduplication improves bandwidth
		and storage availability, but when used in
		conjunction with encryption, presents particular
		challenges (Reference here). Other columns may
		require cryptographic metadata for facilitating
		aggregation and deduplication. The HL7
		standards organization is currently studying this
		set of related use cases. (Weida, 2014)
Application	Privacy-preserving data analytics	Searching on encrypted data and proofs of data
Provider \rightarrow Data		possession. Identification of potential adverse
Consumer		experience due to clinical trial participation.
		Identification of potential professional patients.
		Trends and epidemics, and co-relations of these
		to environmental and other effects.
		Determination of whether the drug to be
		administered will generate an adverse reaction,
		without breaking the double blind. Patients will
		need to be provided with detailed accounting of
		accesses to, and uses of, their EHR data.
	Compliance with regulations	HIPAA security and privacy will require
		detailed accounting of access to EHR data.
		Facilitating this, and the logging and alerts, will
		require federated identity integration with data
		consumers. Where applicable, compliance with
		U.S. FDA CFR Title 21 Part 56 on Institutional
		Review Boards is mandated.
	Government access to data and	CDC, law enforcement, subpoenas and warrants.
	freedom of expression concerns	Access may be toggled based on occurrence of a
		pandemic (e.g., CDC) or receipt of a warrant
		(e.g., law enforcement).
Data Provider \leftrightarrow	Data-centric security such as	Row-level and column-level access control
Framework	identity/policy-based encryption	
Provider	Policy management for access	Role-based and claim-based. Defined for PHI
	control	cells
	Computing on the encrypted data:	Privacy-preserving access to relevant events,
	searching/filtering/deduplicate/	anomalies, and trends for CDC and other
	FHE	relevant health organizations
	Audits	Facilitate HIPAA readiness and HHS audits
Framework	Securing data storage and	Need to be protected for integrity and privacy,
Provider	transaction logs	but also for establishing completeness, with an
		emphasis on availability.
	Key management	Federated across covered entities, with the need
		to manage key life cycles across multiple
		covered entities that are data sources

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
	Security best practices for non- relational data stores	End-to-end encryption, with scenario-specific schemes that respect min-entropy to provide richer query operations without compromising patient privacy
	Security against distributed denial of service (DDoS) attacks	A mandatory requirement: systems must survive DDoS attacks
	Data provenance	Completeness and integrity of data with records of all accesses and modifications. This information could be as sensitive as the data and is subject to commensurate access policies.
Fabric	Analytics for security intelligence	Monitoring of informed patient consent, authorized and unauthorized transfers, and accesses and modifications
	Event detection	Transfer of record custody, addition/modification of record (or cell), authorized queries, unauthorized queries, and modification attempts
	Forensics	Tamper-resistant logs, with evidence of tampering events. Ability to identify record- level transfers of custody and cell-level access or modification

3061

3062

E.2.2 Pharmaceutical Clinical Trial Data Sharing

Under an industry trade group proposal, clinical trial data for new drugs will be shared outside intraenterprise warehouses.

NBDRA	Security & Privacy Topic	Use Case Mapping
Component and		
Interfaces		
Data Provider \rightarrow	End-point input validation	Opaque—company-specific
Application	Real-time security monitoring	None
Provider	Data discovery and classification	Opaque—company-specific
	Secure data aggregation	Third-party aggregator
Application	Privacy-preserving data analytics	Data to be reported in aggregate but preserving
Provider \rightarrow Data		potentially small-cell demographics
Consumer	Compliance with regulations	Responsible developer and third-party custodian
	Government access to data and	Limited use in research community, but there
	freedom of expression concerns	are possible future public health data concerns.
		Clinical study reports only, but possibly
		selectively at the study- and patient-levels
Data Provider \leftrightarrow	Data-centric security such as	TBD
	identity/policy-based encryption	

NBDRA Component and Interfaces	Security & Privacy Topic	Use Case Mapping
Framework Provider	Policy management for access control	Internal roles; third-party custodian roles; researcher roles; participating patients' physicians
	Computing on the encrypted data: searching/filtering/deduplicate/ FHE	TBD
	Audits	Release audit by a third party
Framework	Securing data storage and	TBD
Provider	transaction logs	
	Key management	Internal varies by firm; external TBD
	Security best practices for non- relational data stores	TBD
	Security against DoS attacks	Unlikely to become public
	Data provenance	TBD—critical issue
Fabric	Analytics for security intelligence	TBD
	Event detection	TBD
	Forensics	

3064 E.3 Cybersecurity

3065 E.3.1 Network Protection

SIEM is a family of tools used to defend and maintain networks.

Table E-6: Mapping Network Protection to the Reference Architecture

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
Data Provider → Application Provider	End-point input validation	Software-supplier specific; refer to commercially available end point validation [228].
	Real-time security monitoring	
	Data discovery and classification	Varies by tool, but classified based on security semantics and sources
	Secure data aggregation	Aggregates by subnet, workstation, and server
Application	Privacy-preserving data analytics	Platform-specific
Provider \rightarrow Data Consumer	Compliance with regulations	Applicable, but regulated events are not readily visible to analysts
	Government access to data and freedom of expression concerns	Ensure that access by law enforcement, state or local agencies, such as for child protection, or to aid locating missing persons, is lawful.
Data Provider ↔ Framework	Data-centric security such as identity/policy-based encryption	Usually a feature of the operating system
Provider	Policy management for access control	For example, a group policy for an event log

3063

3066

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
	Computing on the encrypted data: searching/filtering/deduplicate/ FHE	Vendor and platform-specific
	Audits	Complex—audits are possible throughout
Framework Provider	Securing data storage and transaction logs	Vendor and platform-specific
	Key management	Chief Security Officer and SIEM product keys
	Security best practices for non- relational data stores	TBD
	Security against DDoS attacks	Big Data application layer DDoS attacks can be mitigated using combinations of traffic analytics, correlation analysis.
	Data provenance	For example, how to know an intrusion record was actually associated with a specific workstation.
Fabric	Analytics for security intelligence	Feature of current SIEMs
	Event detection	Feature of current SIEMs
	Forensics	Feature of current SIEMs

3071

3072

3073

3074

3069 E.4 Government

3070 E.4.1 Unmanned Vehicle Sensor Data

Unmanned vehicles (drones) and their onboard sensors (e.g., streamed video) can produce petabytes of data that should be stored in nonstandard formats. The U.S. government is pursuing capabilities to expand storage capabilities for Big Data such as streamed video.

 Table E-7: Mapping Military Unmanned Vehicle Sensor Data to the Reference Architecture

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
Data Provider → Application Provider	End-point input validation	Need to secure the sensor (e.g., camera) to prevent spoofing/stolen sensor streams. There are new transceivers and protocols in the pipeline and elsewhere in federal data systems. Sensor streams will include smartphone and tablet sources.
	Real-time security monitoring	Onboard and control station secondary sensor security monitoring
	Data discovery and classification	Varies from media-specific encoding to sophisticated situation-awareness enhancing fusion schemes
	Secure data aggregation	Fusion challenges range from simple to complex. Video streams may be used [229] unsecured or unaggregated.

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
Application Provider \rightarrow Data Consumer	Privacy-preserving data analytics	Geospatial constraints: cannot surveil beyond Universal Transverse Mercator (UTM). Secrecy: target and point of origin privacy
	Compliance with regulations	Numerous. There are also standards issues.
	Government access to data and freedom of expression concerns	For example, the Google lawsuit over Street View
Data Provider ↔ Framework	Data-centric security such as identity/policy-based encryption	Policy-based encryption, often dictated by legacy channel capacity/type
Provider	Policy management for access control	Transformations tend to be made within contractor-devised system schemes
	Computing on the encrypted data: searching/filtering/deduplicate/ FHE	Sometimes performed within vendor-supplied architectures, or by image-processing parallel architectures
	Audits	CSO and Inspector General (IG) audits
Framework Provider	Securing data storage and transaction logs	The usual, plus data center security levels are tightly managed (e.g., field vs. battalion vs. headquarters)
	Key management	CSO—chain of command
	Security best practices for non- relational data stores	Not handled differently at present; this is changing, e.g., see the DoD Cloud Computing
		Strategy [230].
	Security against DoS attacks	Anti-jamming e-measures
	Data provenance	Must track to sensor point in time configuration and metadata
Fabric	Analytics for security intelligence	Security software intelligence—event driven and monitoring—that is often remote
	Event detection	For example, target identification in a video stream infers height of target from shadow. Fuse data from satellite infrared with separate sensor stream [231].
	Forensics	Used for after action review (AAR)—desirable to have full playback of sensor streams

E.4.2 Education: Common Core Student Performance Reporting

Cradle-to-grave student performance metrics for every student are now possible—at least within the K-12 community, and probably beyond. This could include every test result ever administered.

Table E-8: Mapping Common	Core K-12 Student Reporting to	o the Reference Architecture
---------------------------	--------------------------------	------------------------------

NBDRA	Security and Privacy Topic	Use Case Mapping
Component and		
Interfaces		
Data Provider \rightarrow	End-point input validation	Application-dependent. Spoofing is possible
Application	Real-time security monitoring	Vendor-specific monitoring of tests, test-takers,
Provider		administrators, and data
	Data discovery and classification	Unknown

NBDRA Component and Interfaces	Security and Privacy Topic	Use Case Mapping
	Secure data aggregation	Typical: Classroom-level
Application Provider \rightarrow Data	Privacy-preserving data analytics	Various: For example, teacher-level analytics across all same-grade classrooms
Consumer	Compliance with regulations	Parent, student, and taxpayer disclosure and privacy rules apply.
	Government access to data and freedom of expression concerns	Yes. May be required for grants, funding, performance metrics for teachers, administrators, and districts.
Data Provider ↔ Framework	Data-centric security such as identity/policy-based encryption	Support both individual access (student) and partitioned aggregate
Provider	Policy management for access control	Vendor (e.g., Pearson) controls, state-level policies, federal-level policies; probably 20-50 different roles are spelled out at present.
	Computing on the encrypted data: searching/filtering/deduplicate/ FHE	Proposed [232]
	Audits	Support both internal and third-party audits by unions, state agencies, responses to subpoenas
Framework Provider	Securing data storage and transaction logs	Large enterprise security, transaction-level controls—classroom to the federal government
	Key management	CSOs from the classroom level to the national level
	Security best practices for non- relational data stores	
	Security against DDoS attacks	Standard
	Data provenance	Traceability to measurement event requires capturing tests at a point in time, which may itself require a Big Data platform.
Fabric	Analytics for security intelligence	Various commercial security applications
	Event detection	Various commercial security applications
	Forensics	Various commercial security applications

3082

E.5 Transportation

3083 E.5.1 Cargo Shipping

This use case provides an overview of a Big Data application related to the shipping industry for which standards may emerge in the near future.

Table E-9: Mapping Cargo Shipping to the Reference Architecture

NBDRA Component and	Security and Privacy Topic	Use Case Mapping
Interfaces		
Data Provider \rightarrow	End-point input validation	Ensuring integrity of data collected from sensor
Application	Real-time security monitoring	Sensors can detect abnormal
Provider		temperature/environmental conditions for
		packages with special requirements. They can
		also detect leaks/radiation.
	Data discovery and classification	
	Secure data aggregation	Securely aggregating data from sensors
Application	Privacy-preserving data analytics	Sensor-collected data can be private and can
Provider \rightarrow Data		reveal information about the package and geo-
Consumer		information. The revealing of such information
		needs to preserve privacy.
	Compliance with regulations	
	Government access to data and	The U.S. Department of Homeland Security
	freedom of expression concerns	may monitor suspicious packages moving
	-	into/out of the country [233].
Data Provider \leftrightarrow	Data-centric security such as	
Framework	identity/policy-based encryption	
Provider	Policy management for access	Private, sensitive sensor data and package data
	control	should only be available to authorized
		individuals. Third-party commercial offerings
		may implement low-level access to the data.
	Computing on the encrypted data:	See above section on "Transformation."
	searching/filtering/deduplicate/	
	FHE	
	Audits	
Framework	Securing data storage and	Logging sensor data is essential for tracking
Provider	transaction logs	packages. Sensor data at rest should be kept in
		secure data stores.
	Key management	For encrypted data
	Security best practices for non-	The diversity of sensor types and data types ma
	relational data stores	necessitate the use of non-relational data stores
	Security against DoS attacks	
	Data provenance	Metadata should be cryptographically attached
		to the collected data so that the integrity of
		origin and progress can be assured. Complete
		preservation of provenance will sometimes
		mandate a separate Big Data application.
Fabric	Analytics for security intelligence	Anomalies in sensor data can indicate
		tampering/fraudulent insertion of data traffic.
	Event detection	Abnormal events such as cargo moving out of
		the way or being stationary for unwarranted
		periods can be detected.
	Forensics	Analysis of logged data can reveal details of
		incidents after they occur.

Appendix F: Version 2 Changes and New Topics

The current version of the *NBDIF: Volume 4*, *Security and Privacy* document reflects changes in the technology environment (e.g., as well as ongoing work within the NBD-PWG). For Version 2, the Security and Privacy Subgroup considered the following topics:

- 1. See Cryptographic Technologies for Data Transformations. The latest document is updated to reflect recent cryptology practices.
- 2. The NBD-SPSL is introduced, suitable for use by unaffiliated citizens, Big Data software architects, and IT managers. (Refer to related IEC standards 61508, 61671, 62046, SC22 WG 23.)
- 3. Provided levels of conformance to Big Data security and privacy practices. Low, medium and high conformance levels were added. (See related work in "Conformity Assessment" of the "NIST Roadmap for Improving Critical Infrastructure Cybersecurity.") The approach taken is similar to NIST 800-53.
- 4. Improved descriptions of security and privacy dependency frameworks that interoperate across enterprises, applications, and infrastructure are cited in the NBD-SPSL.
- 5. The current version reflects the growing importance of security and privacy aspects to the APIfirst and microservices design pattern.
- 6. The NBD-SPSL directly addresses security and privacy issues with geospatial and mobile data [234].
- 7. The NBD-SPSL includes security hardening through software-defined networks and other virtual network security concepts, as in IEEE P1915.1 and NIST 800-125B [235].
- 8. This document now provides references to third-party references on risks, verifiability, and provenance for analytics that affect security and privacy.

3112 Appendix G: Acronyms

	2112		After Action Deview
	3113 3114	AAR	After Action Review Attribute Based Access Control
	3114	ABAC	
-	3115	ABE	Attribute-Based Encryption
This		AC&S	Access Control and Security Access Control List
D	3117	ACL	
publication	3118	ACM	Association for Computing Machinery
lica	3119	AI	Artificial Intelligence
atic	3120	API	Application Programming Interface
	3121	ARM	Application Release Management
<u>v</u> .	3122	AuthN/AuthZ	Authentication/Authorization
SAE	3123	BAA	Business Associate Agreement
aila	3124	BYOD	Bring Your Own Device
available	3125	CADF	Cloud Auditing Data Federation
Ť	3126	CAT	SEC Consolidated Audit Trail
free	3127	CDC	U.S. Centers for Disease Control and Prevention
<u>O</u>	3128	CEP	Complex Event Processing
9	3129	CFR	Code of Federal Regulations
charge	3130	CIA	Confidentiality, Integrity, and Availability
ge	3131	CIO	Chief Information Officer
fro	3132	CISSP	Certified Information Systems Security Professional
m	3133	CM	Configuration Management
	3134	COPPA	Children's Online Privacy Protection Act
tp:	3135	CPE	Common Platform Enumeration
S://	3136	CPS	Cyber-Physical System
do	3137	CPU	Central Processing Unit
.0	3138	CSA BDWG	Cloud Security Alliance Big Data Working Group
from: https://doi.org/10.6028/NIST.SP	3139	CSP	Cloud Service Provider
10	3140	DevOps	a clipped compound of software DEVelopment and information technology OPerationS
60	3141	DevSecOps	Security and Safety Engineering in DevOps
28	3142	DHHS	U.S. Department of Health and Human Services
Z	3143	DISA	Defense Information Systems Agency
Ŋ	3144	DoD	U.S. Department of Defense
S	3145	DoS	Denial of Service
	3146	DR	Disaster Recovery
S	3147	DRM	Digital Rights Management
Ģ	3148	EDM	Enterprise Data Management
00-4r2	3149	EFPIA	European Federation of Pharmaceutical Industries and Associations
	3150	EHR	Electronic Health Record
	3151	EPA	Explicit role-permission Assignments
	3152	ETSI	European Telecommunications Standards Institute
	3153	EU	European Union
	3154	FAA	Federal Aviation Administration
	3155	FDA	U.S. Food and Drug Administration
	3156	FERPA	Family Educational Rights and Privacy Act
	3157	FHE	Fully Homomorphic Encryption

	3158	FHIR	Fast Healthcare Interoperability Resources
	3159	FIBO	Financial Industry Business Ontology
	3160	FTC	Federal Trade Commission
	3161	GPS	Global Positioning System
	3162	GRC	Governance, Risk management, and Compliance
	3163	HCI	Human Computer Interaction
	3164	HIE	Health Information Exchange
	3165	HIPAA	Health Insurance Portability and Accountability Act
_	3166	HPC	High Performance Computing
Sid	3166 3167	HR	Human Resources
D	3168	HTML	HyperText Markup Language
	3168 3169 3170 3171 3172 3173	IA	Information Assurance
Ca	3170	IaaS	Infrastructure as a Service
tio	3171	IAM	Identity Access Management
□.	3172	IBE	Identity-Based Encryption
ഗ ഡ	3173	IDE	Integrated Development Environment
~	3174	IdP	Identity provider
<u>a</u>	3175	IEEE	Institute of Electrical and Electronics Engineers
	3176	INCITS	International Committee for Information Technology Standards
		IoT	Internet of Things
0 0	3177 3178	ISO	International Organization for Standardization
<u>o</u> f	3179	ISSEA	International Systems Security Engineering Association
<u>C</u>	3180	IT	Information Technology
	3180	ITL	Information Technology Laboratory at NIST
charge from:	3181	KMS	Key Management Systems
fro	3182	M2M	Machine to Machine
Ĕ	2104	MAC	Media Access Control
<u>_</u>	3184 3185 3186 3187 3188 3189 3190 3191 3192	MBSE	Model-based Systems Engineering
fb	2196	MIFE	Multi-input Functional Encryption
5	2197	ModSim	Modeling and Simulation
0 0	2100		Multi-party Computations
0	2100	MPC	
	2100	NBDIF	NIST Big Data Interoperability Framework
0	3190	NBD-PWG	NIST Big Data Public Working Group
6	2102	NBDRA	NIST Big Data Reference Architecture
22	3192 3193 3194 3195 3196 3197 3198 3199 3200	NBD-SPSL	NIST Big Data Security and Privacy Safety Levels
Ž	2104	NSTIC	National Strategy for Trusted Identities in Cyberspace
<u>v</u>	3194	OASIS	Organization for the Advancement of Structured Information Standards
	3195	OECD	Organisation for Economic Co-Operation and Development
Ú	3196	OMG	Object Management Group
5	3197	OSS	Operations Support Systems
00	3198	PaaS	Platform as a Service
4	3199	PCI	Payment Card Industry
Ń	3200	PCI-DSS	Payment Card Industry Data Security Standard
	3201	PHI	Protected Health Information
	3202	PhRMA	Pharmaceutical Research and Manufacturers of America
	3203	PII	Personally Identifiable Information
	3204	PKI	Public Key Infrastructure
	3205	PMML	Predictive Model Markup Language
	3206	PMRM	Privacy Management Reference Model
	3207	RBAC	Role-based Access Control
	3208	RDF	Resource Description Framework

3209	RPAS	Remotely Piloted Aircraft System
3210	RPV	Remotely Piloted Vehicle
3211	SaaS	Software as a Service
3212	SAML	Security Assertion Markup Language
3213	SCAP	Security Content Automation Protocol
3214	SDLC	Systems Development Life Cycle
3215	SDL-IT	Secure Development Life Cycle
3216	SDN	Software-Defined Network
3217 3218	SEC	U.S. Securities and Exchange Commission
5 3218	SGX	Software Guard Extensions
3219	SIEM	Security Information and Event Management
3220	SKOS	Simple Knowledge Organization System
3221	SKUs	Stock Keeping Units
3219 3220 3221 3222 3223 3224 3225 3226 3227	SOA	Service-oriented architectures
3223	SON	Self-Organizing Networks
3224	S-SDLC	Secure-SDLC
3225	SSE	Searchable Symmetric Encryption
3226	SSE-CMM	Systems Security Engineering Capability Maturity Model
	SSL	Secure Sockets Layer
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239	STS	Security Token Service
3229	SWID	Software Identification
3230	TCB	Trusted Computing Base
<u>5</u> 3231	TCP/IP	Transmission Control Protocol/Internet Protocol
3232	TLS	Transport Layer Security
^D 3233	TOSCA	Topology and Orchestration Specification for Cloud Applications
3234	TPM	Trusted Platform Module
3235	TSA	Transportation Security Administration
3236	UAS	Unmanned Aerial Systems
3237	UAV	Unmanned Aerial Vehicle
3238	UDP	User Datagram Protocol
	US ¬CERT	U.S. Computer Emergency Readiness Team
3240	VC3	Verifiable Confidential Cloud Computing
3241	VM	Virtual Machine
3242	VPN	Virtual Private Network
3243	XACML	eXtensible Access Control Markup Language
§ 3244	XML	eXtensible Markup Language
3240 3241 3242 3243 3243 3244 3245 3245 3246	XMPP	Extensible Messaging and Presence Protocol
0		

3247 Appendix H: Bibliography

3248 3249 3250 3251	[1]	W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 1, Big Data Definitions (NIST SP 1500-1 VERSION 3)," Gaithersburg MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-1r2
3252 3253 3254 3255	[2]	W. L. Chang (Co-Chair), N. Grady (Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 2, Big Data Taxonomies (NIST SP 1500-2 VERSION 3)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-2r2
3256 3257 3258 3259	[3]	W. L. Chang (Co-Chair), G. Fox (Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 3, Big Data Use Cases and General Requirements (NIST SP 1500-3 VERSION 3)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-3r2
3260 3261 3262 3263	[4]	W. Chang and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 5, Architectures White Paper Survey (SP1500-5)," 2015 [Online]. Available: https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-5- architectures-white-paper-survey
3264 3265 3266 3267	[5]	W. L. Chang (Co-Chair), D. Boyd (Subgroup Co-chair), O. Levin (Version 1 Subgroup Co-Chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 6, Big Data Reference Architecture (NIST SP 1500-6 VERSION 3)," Gaithersburg MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-6r2
3268 3269 3270 3271 3272	[6]	W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), D. Boyd (Version 1 Subgroup Co- chair), C. Buffington (Version 1 Subgroup Co-chair), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 7, Big Data Standards Roadmap (NIST SP 1500-7 VERSION 3)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-7r2
3273 3274 3275 3276	[7]	W. L. Chang (Co-Chair), G. von Laszewski (Editor), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 8, Big Data Reference Architecture Interfaces (NIST SP 1500-9 VERSION 2)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-9r1
3277 3278 3279 3280	[8]	W. L. Chang (Co-Chair), R. Reinsch (Subgroup Co-chair), C. Austin (Editor), and NIST Big Data Public Working Group, "NIST Big Data Interoperability Framework: Volume 9, Adoption and Modernization (NIST SP 1500-10 VERSION 2)," Gaithersburg, MD, Sep. 2019 [Online]. Available: https://doi.org/10.6028/NIST.SP.1500-10r1
3281 3282	[9]	T. White House Office of Science and Technology Policy, "Big Data is a Big Deal," <i>OSTP Blog</i> , 2012. [Online]. Available: http://www.whitehouse.gov/blog/2012/03/29/big-data-big-deal.

	3283		[Accessed: 21-Feb-2014]
	3284 3285 3286	[10]	V. Hu <i>et al.</i> , "NIST SP 800-162: Guide to Attribute Based Access Control (ABAC) Definition and Considerations," <i>NIST Spec. Publ.</i> 800-162, vol. 800, no. 162, 2014 [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-162/final
Thie	3287 3288 3289	[11]	M. Abramson <i>et al.</i> , "Data Residency Challenges: A Joint Paper with the Object Management Group," Cloud Standards Customer Council, Needham Heights, MA OR - Cloud Standards Customer Council, May 2017 [Online]. Available: citeulike-article-id:14395964
s nublication is	3290 3291 3292 3293	[12]	Cloud Security Alliance, "Expanded Top Ten Big Data Security and Privacy Challenges," <i>Cloud Security Alliance</i> , 2013. [Online]. Available: https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_Big_Data_Security_and_Privacy_Challenges.pdf
מעמ	3294	[13]	"IBM, Subgroup correspondence with James G Kobielus." 2014.
ailahle free	3295 3296 3297	[14]	D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler, and G. J. Sussman, "Information accountability," <i>Commun. ACM</i> , vol. 51, no. 6, pp. 82–87, 2008 [Online]. Available: http://dl.acm.org/ft_gateway.cfm?id=1349043&type=html
of charge from	3298 3299 3300 3301	[15]	M. Altman, D. O'Brien, S. Vadhan, and A. Wood, "Can You Have Privacy and Big Data Too? — Comments for the White House," <i>MIT Libraries: Program on Information Science</i> , 2014. [Online]. Available: http://informatics.mit.edu/blog/2014/03/can-you-have-privacy-and-big-data-too-—-comments-white-house
n https://doi	3302 3303 3304	[16]	Cloud Security Alliance Big Data Working Group, "Top 10 Challenges in Big Data Security and Privacy," 2012 [Online]. Available: https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Top_Ten_v1.pdf
ora/10	3305 3306 3307	[17]	B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, "Privacy-preserving data publishing: A Survey of Recent Developments," <i>ACM Comput. Surv.</i> , vol. 42, no. 4, pp. 1–53, 2010 [Online]. Available: http://portal.acm.org/citation.cfm?doid=1749603.1749605
N/8C	3308	[18]	C. Dwork, "Differential privacy," Proc. 33rd Int. Colloq. Autom. Lang. Program., pp. 1-12, 2006.
R/NIST SP 1500-	3309 3310 3311	[19]	L. SWEENEY, "k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY," Int. J. Uncertainty, Fuzziness Knowledge-Based Syst., vol. 10, no. 05, pp. 557–570, 2002 [Online]. Available: http://www.worldscientific.com/doi/abs/10.1142/S0218488502001648
2 3.	3312 3313	[20]	A. Narayanan and V. Shmatikov, "Robust de-anonymization of large sparse datasets," in <i>Proceedings - IEEE Symposium on Security and Privacy</i> , 2008, pp. 111–125.
	3314 3315 3316	[21]	J. Wang, D. Crawl, S. Purawat, M. Nguyen, and I. Altintas, "Big data provenance: Challenges, state of the art and opportunities," in <i>2015 IEEE International Conference on Big Data (Big Data)</i> , 2015, pp. 2509–2516.
	3317 3318	[22]	S. S. Sahoo, A. Sheth, and C. Henson, "Semantic provenance for eScience: Managing the deluge of scientific data," <i>IEEE Internet Comput.</i> , vol. 12, no. 4, pp. 46–54, 2008.

3319 [23] ISO 16759:2013 Graphic technology — Quantification and communication for calculating the 3320 carbon footprint of print media products. International Organization for Standardization, 2013 3321 [Online]. Available: https://www.iso.org/standard/57615.html 3322 [24] G. O'Malley, "Click Fraud Costs Marketers \$11B, IAB Issues Key Report," MediaPost, Jan. 3323 2014. 3324 [25] R. Shields, "AppNexus CTO On The Fight Against Ad Fraud," Exch. Wire, vol. October, no. 29, 3325 2014 [Online]. Available: https://www.exchangewire.com/blog/2014/10/29/appnexus-cto-on-the-3326 fight-against-ad-fraud/ 3327 [26] D. Lazer, R. Kennedy, G. King, and A. Vespignani, "The Parable of Google Flu: Traps in Big 3328 Data Analysis," Science (80-.)., vol. 343, no. 6176, pp. 1203–1205, 2014 [Online]. Available: 3329 http://www.sciencemag.org/cgi/doi/10.1126/science.1248506 3330 [27] P. Chen, B. Plale, and M. S. Aktas, "Temporal representation for mining scientific data 3331 provenance," Futur. Gener. Comput. Syst., vol. 36, pp. 363-378, 2014. 3332 [28] W. Jansen and T. Grance, "NIST SP 800-144: Guidelines on Security and Privacy in Public Cloud 3333 Computing," Dec. 2011 [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-3334 144/SP800-144.pdf 3335 [29] ETSI, "Cloud Standards Coordination. Final Report.," 2013 [Online]. Available: 3336 http://www.etsi.org/images/files/Events/2013/2013_CSC_Delivery_WS/CSC-Final_report-013-3337 CSC_Final_report_v1_0_PDF_format-.PDF%5Cnhttps://ec.europa.eu/digital-single-3338 market/news/etsi-delivers-report-cloud-computing-standards 3339 [30] DISA, "Department of Defense (DoD) Cloud Computing Security Requirements Guide (SRG)," 3340 Fort Meade, MD, 2015 [Online]. Available: http://iase.disa.mil/cloud security/Documents/u-3341 cloud_computing_srg_v1r1_final.pdf 3342 [31] CIO Council, "Recommendations for Standardized Implementation of Digital Privacy Controls," Washington, DC, 2012 [Online]. Available: https://cio.gov/wp-3343 3344 content/uploads/downloads/2012/12/Standardized_Digital_Privacy_Controls.pdf 3345 [32] J. Draeger, "A roadmap to a unified treatment of safety and security," in 10th IET System Safety 3346 and Cyber-Security Conference 2015, 2015, pp. 1–6 [Online]. Available: citeulike-article-3347 id:14395992 3348 [33] M. Finnegan, "Boeing 787s to create half a terabyte of data per flight, says Virgin Atlantic," 3349 Comput. UK, Mar. 2013 [Online]. Available: citeulike-article-id:14396257 3350 [34] T. Larsen, "Cross-platform aviation analytics using big-data methods," in 2013 Integrated 3351 Communications, Navigation and Surveillance Conference (ICNS), 2013, pp. 1–9. 3352 [35] L. Piètre-Cambacédès and M. Bouissou, "Cross-fertilization between safety and security 3353 engineering," Reliab. Eng. Syst. Saf., vol. 110, pp. 110-126, Feb. 2013. 3354 [36] J. Voas, "NIST SP 800-183: Networks of 'Things," NIST Special Publication 800-183. 2016.

3355 3356 3357	[37]	K. Stouffer, J. Falco, and K. Scarfone, "Guide to Industrial Control Systems (ICS) Security (NIST SP 800-82)," May 2015 [Online]. Available: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
3358 3359	[38]	International Electrotechnical Commission and ISA, IEC 62443x: Industrial Automation and Control Systems Security. International Electrotechnical Commission.
3360 3361 3362	[39]	P. K. Das, A. Joshi, and T. Finin, "Capturing policies for fine-grained access control on mobile devices," in <i>Proceedings - 2016 IEEE 2nd International Conference on Collaboration and Internet Computing, IEEE CIC 2016</i> , 2017, pp. 54–63.
3363 3364 3365	[40]	K. Lenz and A. Oberweis, "Inter-organizational business process management with XML nets," <i>Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)</i> , vol. 2472, pp. 243–263, 2003.
3366 3367	[41]	I. Hickson, "HTML Microdata," <i>W3C Work. Gr. Note</i> 29, pp. 1–29, 2013 [Online]. Available: https://www.w3.org/TR/microdata/
3368 3369	[42]	I. Hickson, G. Kellogg, J. Tenisson, and I. Herman, "Microdata to RDF – Second Edition," <i>W3C</i> , 2014. [Online]. Available: http://www.w3.org/TR/microdata-rdf/
3370 3371 3372 3373	[43]	R. Ross, M. McEvilley, and J. C. Oren, "NIST SP 800-160: Systems Security Engineering," <i>NIST Special Publication</i> , Gaithersburg MD, p. 245, Sep-2016 [Online]. Available: https://csrc.nist.gov/csrc/media/publications/sp/800-160/archive/2016-09-22/documents/sp800_160_final-draft.pdf
3374 3375 3376 3377	[44]	ISO/IEC/IEEE 15288:2015 Systems and software engineering — System life cycle processes. International Organization for Standardization / International Electrotechnical Commission / Institute of Electrical and Electronics Engineers, 2015 [Online]. Available: https://www.iso.org/standard/63711.html
3378 3379 3380	[45]	ISO 27500:2016 The human-centred organization — Rationale and general principles. International Organization for Standardization, 2016 [Online]. Available: https://www.iso.org/standard/64239.html
3381 3382	[46]	IEEE P7000 - Model Process for Addressing Ethical Concerns During System Design. IEEE, 2016 [Online]. Available: https://standards.ieee.org/project/7000.html
3383 3384	[47]	IEEE P7002 - Data Privacy Process. IEEE, 2016 [Online]. Available: https://standards.ieee.org/project/7002.html
3385 3386	[48]	<i>IEEE P7003 - Algorithmic Bias Considerations</i> . IEEE, 2017 [Online]. Available: https://standards.ieee.org/project/7003.html
3387 3388	[49]	IEEE P7007 - Ontological Standard for Ethically Driven Robotics and Automation Systems. IEEE, 2017 [Online]. Available: https://standards.ieee.org/project/7007.html
3389 3390	[50]	Z. Khayyat et al., "BigDansing: A System for Big Data Cleansing," in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data SE - SIGMOD '15, 2015, pp.

- 3391 1215–1230 [Online]. Available: citeulike-article-id:14396286
- [51] L. A. Pachano, T. M. Khoshgoftaar, and R. Wald, "Survey of Data Cleansing and Monitoring for
 Large-Scale Battery Backup Installations," in 2013 12th International Conference on Machine
 Learning and Applications, 2013, vol. 2, pp. 478–484 [Online]. Available: citeulike-article id:14396282
- M. Fazio and A. Puliafito, "Virtual Resource Management Based on Software Transactional Memory," in 2011 First International Symposium on Network Cloud Computing and Applications, 2011, pp. 1–8 [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84856349781&partnerID=tZOtx3y1
- A. Celesti, M. Fazio, and M. Villari, "SE CLEVER: A secure message oriented Middleware for
 Cloud federation," in *Proceedings International Symposium on Computers and Communications*,
 2013, pp. 35–40.
- W. Jun, Z. Di, L. Meng, X. Fang, S. Hu-Lin, and Y. Shu-Feng, "Discussion of Society FireFighting Safety Management Internet of Things Technology System," in 2014 Fifth International *Conference on Intelligent Systems Design and Engineering Applications*, 2014, pp. 422–425.
- K. Liu, Y. Yao, and D. Guo, "On Managing Geospatial Big-data in Emergency Management:
 Some Perspectives," in *Proceedings of the 1st ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management SE EM-GIS '15*, 2015 [Online]. Available: citeulikearticle-id:14394474
- International Organization for Standardization, "ISO/IEC 27001 Information security management (ISO/IEC 27000 series webpage)," 2019. [Online]. Available: https://www.iso.org/isoiec-27001information-security.html
- 3413 [57] NIST, "NIST Cybersecurity Framework." [Online]. Available:
 3414 https://www.nist.gov/cyberframework
- 3415 [58] NIST, "Draft NIST SP 800-53: Security and Privacy Controls forInformation Systems and
 3416 Organizations (Rev. 5)," Aug. 2017 [Online]. Available:
 3417 https://csrc.nist.gov/CSRC/media//Publications/sp/800-53/rev-5/draft/documents/sp800-53r53418 draft.pdf
- 3419 [59] B. Knijnenburg, "Privacy Support for the Total Learning Architecture: Operational
 3420 Characteristics." 2017.
- 3421 [60] A. Ballestero, "Transparency," in *The International Encyclopedia of Anthropology*, American
 3422 Cancer Society, 2018, pp. 1–4 [Online]. Available:
 3423 https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118924396.wbiea1505
- 3424 [61] O. Seizov, A. J. Wulf, and J. Luzak, "The Transparent Trap: A Multidisciplinary Perspective on
 3425 the Design of Transparent Online Disclosures in the EU," *J. Consum. Policy*, vol. 42, no. 1, pp.
 3426 149–173, Mar. 2019 [Online]. Available: https://doi.org/10.1007/s10603-018-9393-0
- 3427 [62] Fair Credit Reporting Act, 15 U.S.C. § 1681 et seq. [Online]. Available:

	3428 3429		https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/fair-credit-reporting-act
	3430 3431 3432	[63]	NIST, "NIST SP 800-37: Risk Management Framework for Information Systems and Organizations: A System Life Cycle Approach for Security and Privacy," Dec. 2018 [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-37/rev-2/final
	3433 3434	[64]	X. Zhang and R. J. (editor), "A Survey of Digital Rights Management Technologies," 2015. [Online]. Available: http://www.cse.wustl.edu/~jain/cse571-11/ftp/drm/. [Accessed: 09-Jan-2015]
	3435 3436 3437 3438	[65]	V. Bael, "European Union: ECJ Confirms that IP Addresses are Personal Data," <i>Mondaq</i> , 2012. [Online]. Available: http://www.mondaq.com/x/162538/Copyright/ECJ+Confirms+That+IP+Addresses+Are+Personal +Data
	3439	[66]	Personal Correspondence, "Cloud homomorphic encryption service." 2015.
	3440 3441 3442 3443	[67]	Pharma and European Federation of Pharmaceutical Industries and Associations, "Principles for Responsible Clinical Trial Data Sharing," 2013 [Online]. Available: http://phrma- docs.phrma.org/sites/default/files/pdf/PhRMAPrinciplesForResponsibleClinicalTrialDataSharing. pdf
	3444 3445 3446	[68]	P. Wood, "How to tackle big data from a security point of view," <i>ComputerWeekly.com</i> , 2013. [Online]. Available: http://www.computerweekly.com/feature/How-to-tackle-big-data-from-a-security-point-of-view
	3447 3448	[69]	B. Rossi, "Big security: big data and the end of SIEM," <i>Information Age</i> , 29-May-2014. [Online]. Available: http://www.information-age.com/big-security-big-data-and-end-siem-123458055/
120:000/10	3449 3450 3451	[70]	D. Gunderson, "Drone patrol: Unmanned craft find key role in U.S. border security," <i>Minnesota Public Radio News</i> , Grand Forks, ND, 19-Feb-2015 [Online]. Available: https://www.mprnews.org/story/2015/02/19/predator-drone
í.	3452 3453 3454 3455	[71]	Deputy Under Secretary of the Navy, "Naval security enterprise," <i>Nav. Secur. Enterp.</i> , vol. 2nd Quarte, p. 11, 2015 [Online]. Available: http://www.secnav.navy.mil/dusnp/Security/news/Documents/NavalSecurityEnterpriseNewsletter 2ndFY15.pdf
	3456 3457	[72]	U.S. Department of Justice, "Guidance on Domestic Use of Unmanned Aircraft Systems." [Online]. Available: https://www.justice.gov/file/441266/download
222	3458 3459	[73]	Data Quality Campaign, "Roadmap to Safeguarding Student Data," 2015 [Online]. Available: https://dataqualitycampaign.org/resource/roadmap-safeguarding-student-data/
	3460 3461 3462	[74]	J. Campbell, "Cuomo panel: State should cut ties with inBloom," <i>Albany Bureau, Iohud</i> , 2014 [Online]. Available: http://www.lohud.com/story/news/education/2014/03/10/cuomo-panel-wants-cut-ties-inbloom/6279081/
	3463	[75]	L. Fleisher, "Before Tougher State Tests, Officials Prepare Parents," Wall Str. J., vol. April 15,

3464 2013 [Online]. Available: https://blogs.wsj.com/metropolis/2013/04/15/before-tougher-state-tests-3465 officials-prepare-parents/ 3466 [76] R. D. Crick, P. Broadfoot, and G. Claxton, "Developing an Effective Lifelong Learning Inventory: 3467 the ELLI Project," Assess. Educ. Princ. Policy Pract., vol. 11, no. 3, pp. 247–272, 2004 [Online]. 3468 Available: http://www.tandfonline.com/doi/abs/10.1080/0969594042000304582 3469 [77] R. Ferguson, "Learning analytics: drivers, developments and challenges," Int. J. Technol. Enhanc. 3470 Learn., vol. 4, no. 5/6, p. 304, 2012 [Online]. Available: 3471 http://www.inderscience.com/link.php?id=51816 3472 [78] D. Donston-Miller, "Common Core Meets Aging Education Technology," InformationWeek, vol. 3473 July 22, 2013 [Online]. Available: https://www.informationweek.com/policy/common-core-meets-3474 aging-education-technology/d/d-id/1110849? 3475 [79] Civitas Learning, "About," 2016. [Online]. Available: https://www.civitaslearning.com/about/ 3476 [80] ISO/IEC 29161:2016 Information technology — Data structure — Unique identification for the 3477 Internet of Things. International Organization for Standardization / International Electrotechnical 3478 Commission, 2016 [Online]. Available: https://www.iso.org/standard/45240.html Consolidated Audit Trail, "Consolidated Audit Trail Home Page," 2019. [Online]. Available: 3479 [81] 3480 https://www.catnmsplan.com/ U.S. Securities and Exchange Commission, "Rule 613 (Consolidated Audit Trail)," 2019. 3481 [82] 3482 [Online]. Available: https://www.sec.gov/divisions/marketreg/rule613-info.htm 3483 [83] Consolidated Audit Trail LLC, "High Level CAT Security Requirements Summary" [Online]. 3484 Available: https://www.catnmsplan.com/wp-3485 content/uploads/2017/03/cat_nms_security_requirements_032416.pdf M. Alam, S. Katsikas, O. Beltramello, and S. Hadjiefthymiades, "Augmented and virtual reality 3486 [84] 3487 based monitoring and safety system: A prototype IoT platform," J. Netw. Comput. Appl., vol. 89, 3488 pp. 109–119, 2017 [Online]. Available: citeulike-article-id:14395975 3489 M. StJohn-Green, R. Piggin, J. A. McDermid, and R. Oates, "Combined security and safety risk [85] 3490 assessment #x2014; What needs to be done for ICS and the IoT," in 10th IET System Safety and 3491 Cyber-Security Conference 2015, 2015, pp. 1–7 [Online]. Available: citeulike-article-id:14395989 [86] 3492 Kauffman Foundation, "Welcome to EdWise - Education Data for Missouri." Kauffman 3493 Foundation, Kansas City, MO, Sep-2016 [Online]. Available: citeulike-article-id:14169722 3494 D. Boneh, A. Sahai, and B. Waters, "Functional Encryption: Definitions and Challenges," in [87] 3495 Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, 3496 USA, March 28-30, 2011. Proceedings, Y. Ishai, Ed. Berlin, Heidelberg: Springer Berlin 3497 Heidelberg, 2011, pp. 253–273. 3498 [88] R. Chandramouli, M. Iorga, and S. Chokhani, "NIST IR 7956: Cryptographic key management 3499 issues & challenges in cloud services," 2013 [Online]. Available:

	3500		http://dx.doi.org/10.6028/NIST.IR.7956
	3501 3502 3503	[89]	P. Mell and T. Grance, "NIST SP 800-145: The NIST Definition of Cloud Computing," 2011 [Online]. Available: http://www.mendeley.com/research/the-nist-definition-about-cloud- computing/
This publication	3504 3505 3506	[90]	Anonymous, "Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region," <i>Amaz. Web Serv. Blog</i> , Mar. 2017 [Online]. Available: citeulike-article-id:14313016
	3507 3508 3509	[91]	Association for Computing Machinery, "The 2012 ACM Computing Classification System." Association for Computing Machinery, 2012 [Online]. Available: http://www.acm.org/publications/class-2012
	3510 3511	[92]	NIST, "NIST SP 800-37: Guide for Applying the Risk Management Framework to Federal Information Systems," 2010.
ilable free	3512 3513 3514	[93]	S. Brooks, M. Garcia, N. Lefkovitz, S. Lightman, and E. Nadeau, "NIST IR 8062: An Introduction to Privacy Engineering and Risk Management in Federal Systems," 2017 [Online]. Available: https://csrc.nist.gov/publications/detail/nistir/8062/final
	3515 3516	[94]	ISACA, "The Risk IT Framework," 2009 [Online]. Available: http://www.isaca.org/Knowledge- Center/Research/ResearchDeliverables/Pages/The-Risk-IT-Framework.aspx
No from ht	3517 3518 3519	[95]	NIST, "Framework for Improving Critical Infrastructure Cybersecurity," 2014 [Online]. Available: http://www.nist.gov/cyberframework/upload/cybersecurity-framework-021214-final.pdf
oc.//doi	3520 3521	[96]	OASIS, "SAML V2.0 Standard," <i>SAML Wiki</i> , 2005. [Online]. Available: https://wiki.oasis- open.org/security/FrontPage#SAML_V2.0_Standard. [Accessed: 09-Jan-2015]
ora/10 2002/NICT CD	3522 3523 3524	[97]	J. J. Cebula and L. R. Young, "A Taxonomy of Operational Cyber Security Risks," <i>Carnegie-Mellon Univ Pittsburgh Pa Softw. Eng. Inst</i> , no. December, pp. 1–47, 2010 [Online]. Available: https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15200.pdf
	3525 3526 3527	[98]	HC. Kum and S. Ahalt, "Privacy-by-Design: Understanding Data Access Models for Secondary Data.," <i>AMIA Jt. Summits Transl. Sci. Proc. AMIA Summit Transl. Sci.</i> , vol. 2013, pp. 126–30, Jan. 2013.
1700 Arg	3528 3529 3530	[99]	J. Rawls, "Justice as Fairness: Political not Metaphysical," <i>Philos. Public Aff.</i> , vol. 14, no. 3, pp. 223–251, 1985 [Online]. Available: http://philosophyfaculty.ucsd.edu/faculty/rarneson/Philosophy 167/Rawlsjusticeasfairness.pdf
	3531 3532 3533	[100]	ETSI, "Smart Cards: Secure channel between a UICC and an end-point terminal (Release 7)," 2007 [Online]. Available: http://www.etsi.org/deliver/etsi_ts/102400_102499/102484/07.00.00_60/ts_102484v070000p.pdf
	3534 3535	[101]	U.S. Department of Health & Human Services, "New rule protects patient privacy, secures health information," 17-Jan-2013 [Online]. Available:

3536	http://www.hhs.gov/news/press/2013pres/01/20130117b.html
3537 [102] 3538 3539	D. F. Sittig and H. Singh, "Legal, Ethical, and Financial Dilemmas in Electronic Health Record Adoption and Use," <i>Pediatrics</i> , vol. 127, no. 4, pp. e1042–e1047, 2011 [Online]. Available: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2010-2184
3540 [103] 3541	US-CERT, "About US-CERT," 2015. [Online]. Available: https://www.us-cert.gov/about-us. [Accessed: 01-Jan-2015]
3542 [104] 3543 3544	U.S. Federal Trade Commission, "Protecting Your Child's Privacy Online," <i>Consumer</i> <i>Information</i> , Jul-2013. [Online]. Available: https://www.consumer.ftc.gov/articles/0031- protecting-your-childs-privacy-online
3545 [105] 3546	U.S. Department of Health & Human Services, "Health Information Privacy, Security, and your EHR," <i>HealthIT.gov, Privacy and Security</i> , 13-Apr-2015.
3547 [106] 3548 3549	U.S. Food and Drug Administration, "Medical Device Safety Network (MedSun)," <i>Medical Device Safety</i> , 08-May-2017. [Online]. Available: https://www.fda.gov/medicaldevices/safety/medsunmedicalproductsafetynetwork/default.htm
3550 [107] 3551 3552	B. Mirkin, S. Nascimento, and L. M. Pereira, "Representing a computer science research organization on the ACM computing classification system," in <i>CEUR Workshop Proceedings</i> , 2008, vol. 354, pp. 57–65.
3553 [108] 3554 3555	X. Lin, M. Zhang, H. Zhao, and J. Buzydlowski, "Multi-view of the ACM classification system," in <i>Proceedings of the 12th ACM/IEEE-CS joint conference on Digital Libraries - JCDL '12</i> , 2012, p. 397 [Online]. Available: http://dl.acm.org/citation.cfm?doid=2232817.2232909
3556 [109] 3557 3558 2550	A. Miles and S. Bechhofer, "SKOS Simple Knowledge Organization System Reference," <i>W3C</i> <i>Recommendation 18 August 2009</i> . pp. 1–40, 2009 [Online]. Available: http://www.w3.org/TR/2009/REC-skos-reference- 20000818/tteencerta@/5Cnneners21//aukliastion/wiid/67B625A0_CD7E_48A0_8720
3559 3560	20090818/#concepts%5Cnpapers2://publication/uuid/67B635A0-CD7E-48A0-8730- EC86DB6CC3A1
3561 [110] 3562 3563	L. Obrst, P. Chase, and R. Markeloff, "Developing an Ontology of the Cyber Security Domain," in <i>Proceedings of the Seventh International Conference on Semantic Technologies for Intelligence, Defense, and Security</i> , 2012, pp. 49–56.
3564 [111] 3565 3566 3567	D. Waltermire and B. A. Cheikes, "NIST IR8085: Forming Common Platform Enumeration (CPE) Names from Software Identification (SWID) Tags," <i>NIST Special Publication</i> , Gaithersburg, MD, Dec-2015 [Online]. Available: https://csrc.nist.gov/csrc/media/publications/nistir/8085/draft/documents/nistir_8085_draft.pdf
3568 [112] 3569 3570 3571	D. Inoue, M. Eto, K. Suzuki, M. Suzuki, and K. Nakao, "DAEDALUS-VIZ: Novel Real-time 3D Visualization for Darknet Monitoring-based Alert System," in <i>Proceedings of the Ninth International Symposium on Visualization for Cyber Security SE - VizSec '12</i> , 2012, pp. 72–79 [Online]. Available: citeulike-article-id:14395580

3572 [113] A. Shabtai, D. Klimov, Y. Shahar, and Y. Elovici, "An intelligent, interactive tool for exploration

3573 3574 3575		and visualization of time-oriented security data," in <i>VizSEC '06: Proceedings of the 3rd international workshop on Visualization for computer security</i> , 2006, pp. 15–22 [Online]. Available: citeulike-article-id:7801543
3576 3577 3578	[114]	T. Takahashi, Y. Kadobayashi, and H. Fujiwara, "Ontological Approach Toward Cybersecurity in Cloud Computing," in <i>Proceedings of the 3rd International Conference on Security of Information and Networks SE - SIN '10</i> , 2010, pp. 100–109 [Online]. Available: citeulike-article-id:14395578
3579 3580 3581	[115]	G. Yee, "Visualization for privacy compliance," in <i>VizSEC '06: Proceedings of the 3rd international workshop on Visualization for computer security</i> , 2006, pp. 117–122 [Online]. Available: citeulike-article-id:2883612
3582 3583 3584 3585 3586	[116]	C. Brodie, CM. Karat, J. Karat, and J. Feng, "Usable Security and Privacy: A Case Study of Developing Privacy Management Tools," in <i>Proceedings of the 2005 symposium on Usable</i> <i>privacy and security - SOUPS '05</i> , 2005, pp. 35–43 [Online]. Available: http://dl.acm.org/citation.cfm?id=1073001.1073005%5Cnhttp://portal.acm.org/citation.cfm?doid= 1073001.1073005
3587 3588 3589 3590	[117]	 W. Carey, J. Nilsson, and S. Mitchell, "Persistent security, privacy, and governance for healthcare information," in <i>Proceedings of the 2nd USENIX Conference on Health Security and Privacy</i>, 2011 [Online]. Available: https://www.usenix.org/legacy/events/healthsec11/tech/final_files/carey-healthsec11.pdf
3591 3592 3593 3594	[118]	P. Dunphy <i>et al.</i> , "Understanding the Experience-Centeredness of Privacy and Security Technologies," in <i>Proceedings of the 2014 workshop on New Security Paradigms Workshop -</i> <i>NSPW '14</i> , 2014, pp. 83–94 [Online]. Available: http://dl.acm.org/citation.cfm?doid=2683467.2683475
3595 3596 3597 3598	[119]	E. A. Oladimeji, L. Chung, H. T. Jung, and J. Kim, "Managing security and privacy in ubiquitous eHealth information interchange," in <i>Proceedings of the 5th International Confernece on Ubiquitous Information Management and Communication - ICUIMC '11</i> , 2011, p. 1 [Online]. Available: http://portal.acm.org/citation.cfm?doid=1968613.1968645
3599 3600 3601 3602	[120]	B. Obama, "National Strategy for Trusted Identities in Cyberspace," <i>The White House</i> , p. 25, 2011 [Online]. Available: https://www.whitehouse.gov/sites/default/files/rss_viewer/NSTICstrategy_041511.pdf%5Cnhttp:// www.whitehouse.gov/sites/default/files/rss_viewer/international_strategy_for_cyberspace.pdf
3603 3604 3605	[121]	National Institute of Standards and Technology (NIST), "NIST Cloud Computing Security Reference Architecture," <i>Spec. Publ. 500-299</i> , 2013 [Online]. Available: https://csrc.nist.gov/publications/detail/sp/500-299/draft
3606 3607 3608 3609	[122]	JS. Li, YF. Zhang, and Y. Tian, "Medical Big Data Analysis in Hospital Information System," in <i>Big Data on Real-World Applications</i> , 2016 [Online]. Available: http://www.intechopen.com/books/big-data-on-real-world-applications/medical-big-data-analysis- in-hospital-information-system
3610	[123]	O. Niakšu, "CRISP Data Mining Methodology Extension for Medical Domain," Balt. J. Mod.

3611		Comput., vol. 3, no. 2, pp. 92–109, 2015.
3612 3613 3614	[124]	J. Schaffer, H. Tobias, D. Jones, and J. O. Donovan, "Getting the Message? A Study of Explanation Interfaces for Microblog Data Analysis," <i>IUI 2015 Proc. 20th Int. Conf. Intell. User Interfaces</i> , pp. 345–356, 2015.
3615 3616 3617	[125]	Cloud Security Alliance, "CSA Big Data Security and Privacy Handbook," 2016 [Online]. Available: https://downloads.cloudsecurityalliance.org/assets/research/big- data/BigData_Security_and_Privacy_Handbook.pdf
3618 3619 3620	[126]	J. Loftus, A. May, N. P. Smart, and F. Vercauteren, "On CCA-secure somewhat homomorphic encryption," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</i> , 2012, vol. 7118 LNCS, pp. 55–72.
3621 3622	[127]	C. Gentry, "A Fully Homomorphic Encryption Scheme," Stanford University, Stanford, CA, USA, 2009.
3623 3624 3625	[128]	D. Boneh, EJ. Goh, and K. Nissim, "Evaluating 2-DNF Formulas on Ciphertexts," in <i>Proceedings of the Second International Conference on Theory of Cryptography SE - TCC'05</i> , 2005, pp. 325–341.
3626 3627 3628	[129]	M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, "Fully homomorphic encryption over the integers," <i>Adv. Cryptology– EUROCRYPT '10</i> , pp. 24–43, 2010 [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-642-13190-5_2
3629 3630 3631	[130]	JS. Coron, A. Mandal, D. Naccache, and M. Tibouchi, "Fully Homomorphic Encryption over the Integers with Shorter Public Keys," in <i>Advances in Cryptology CRYPTO 2011</i> , 2011, pp. 487–504.
3632 3633 3634	[131]	C. Gentry, S. Halevi, and N. P. Smart, "Fully homomorphic encryption with polylog overhead," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics</i>), 2012, vol. 7237 LNCS, pp. 465–482.
3635 3636 3637	[132]	C. Gentry, S. Halevi, and N. P. Smart, "Homomorphic evaluation of the AES circuit," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics</i>), 2012, vol. 7417 LNCS, pp. 850–867.
3638 3639 3640	[133]	M. Naehrig, K. Lauter, and V. Vaikuntanathan, "Can homomorphic encryption be practical?," in <i>Proceedings of the 3rd ACM workshop on Cloud computing security workshop - CCSW '11</i> , 2011, p. 113 [Online]. Available: http://dl.acm.org/citation.cfm?doid=2046660.2046682
3641 3642 3643	[134]	D. Boneh and B. Waters, "Conjunctive, Subset, and Range Queries on Encrypted Data," <i>TCC 2007 Theory Cryptogr.</i> , vol. 4392, pp. 535–554, 2007 [Online]. Available: http://www.springerlink.com/content/370086k273w1587t/%5Cnhttp://eprint.iacr.org/2006/287
3644 3645 3646 3647	[135]	D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Roşu, and M. Steiner, "Highly-scalable searchable symmetric encryption with support for Boolean queries," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics</i>), 2013, vol. 8042 LNCS, no. Advances in Cryptology-CRYPTO 2013, PART 1,

3648		pp. 353–373.
3649 3650 3651	[136]	P. Datta, R. Dutta, and S. Mukhopadhyay, "Functional encryption for inner product with full function privacy," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</i> , 2016, vol. 9614, pp. 164–195.
3652 3653 3654	[137]	C. Percival, "Cache missing for fun and profit," <i>BSDCan 2005</i> , pp. 1–13, 2005 [Online]. Available: http://pdos.csail.mit.edu/6.858/2011/readings/ht- cache.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.872
3655 3656	[138]	J. Seifert, Ç. Koç, and O. Aciiçmez, "Predicting Secret Keys Via Branch Prediction," in <i>Ct-Rsa</i> , 2007, vol. 4377, no. October 2016, pp. 225–242.
3657 3658 3659	[139]	A. Shamir, "Identity-Based Cryptosystems and Signature Schemes," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics</i>), 1985, vol. 196 LNCS, pp. 47–53.
3660 3661 3662	[140]	D. Boneh and M. Franklin, "Identity-Based Encryption from the Weil Pairing," <i>SIAM J. Comput.</i> , vol. 32, no. 3, pp. 586–615, 2003 [Online]. Available: http://epubs.siam.org/doi/10.1137/S0097539701398521
3663 3664 3665	[141]	B. Waters, "Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</i> , 2009, vol. 5677 LNCS, pp. 619–636.
3666 3667 3668	[142]	J. Chen and H. Wee, "Fully, (almost) tightly secure IBE and dual system groups," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics</i>), 2013, vol. 8043 LNCS, no. PART 2, pp. 435–460.
3669 3670 3671 3672	[143]	C. S. Jutla and A. Roy, "Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces," in <i>Part I of the Proceedings of the 19th International Conference on Advances in Cryptology - ASIACRYPT 2013 - Volume 8269</i> , 2013, pp. 1–20 [Online]. Available: http://dx.doi.org/10.1007/978-3-642-42033-7_1
3673 3674	[144]	A. Sahai and B. Waters, "Fuzzy Identity Based Encryption," <i>Eurocrypt</i> '05, pp. 457–473, 2005 [Online]. Available: http://eprint.iacr.org/2004/086
3675 3676 3677 3678	[145]	V. Goyal, O. Pandey, A. Sahai, and B. Waters, "Attribute-based encryption for fine-grained access control of encrypted data," in <i>Proceedings of the 13th ACM conference on Computer and communications security - CCS '06</i> , 2006, p. 89 [Online]. Available: http://portal.acm.org/citation.cfm?doid=1180405.1180418
3679 3680 3681	[146]	J. Bethencourt, A. Sahai, and B. Waters, "Ciphertext-Policy Attribute-Based Encryption," in <i>Proceedings of the 2007 IEEE Symposium on Security and Privacy SE - SP '07</i> , 2007, pp. 321–334.
3682 3683 3684	[147]	B. Waters, "Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization," in <i>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</i> , 2011, vol. 6571 LNCS, pp. 53–70.

3685 [148] A. C. Yao, "Protocols for secure computations," in 23rd Annual Symposium on Foundations of 3686 Computer Science (sfcs 1982), 1982, pp. 160–164 [Online]. Available: 3687 http://ieeexplore.ieee.org/document/4568388/

- 3688 [149] J. Saia and M. Zamani, "Recent Results in Scalable Multi-Party Computation," SOFSEM 2015 3689 Theory Pract. Comput. Sci., no. 8939, pp. 24–44, 2015 [Online]. Available: 3690 http://link.springer.com/10.1007/978-3-662-46078-8 3
- 3691 [150] M. Zamani, "A Multi-Party Computation Library," GitHub, 2015. [Online]. Available: 3692 https://github.com/mahdiz/mpclib
- 3693 [151] IEEE, "'Digital Inclusion, Identity, Trust, and Agency' (DIITA) Industry Connections Program," 3694 2019. [Online]. Available: https://standards.ieee.org/industry-connections/diita/index.html
- [152] F. Schuster et al., "VC3 : Trustworthy Data Analytics in the Cloud," Mar. 2015 [Online]. 3695 3696 Available: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/vc3-MSR-TR-3697 2014-39.pdf
- 3698 [153] PCI Security Standards Council, "The Prioritized Approach to Pursue PCI DSS Compliance," PCI 3699 DSS Prioritized Approach PCI DSS 3.2, 2016 [Online]. Available: 3700 https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf
- 3701 [154] E. Barker, "Recommendation for Key Management – Part 1: General (Revision 4), NIST Special 3702 Publication 800-57," Jan. 2016 [Online]. Available: 3703 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
- 3704 [155] R. Brown and J. Burrows, "FIPS PUB 140-2 Security Requirements For Cryptographic Modules," 3705 Change, vol. 46, no. 2, p. 69, 2001 [Online]. Available: 3706 http://csrc.nist.gov/publications/fips/fips140-3707
 - 2/fips1402.pdf%5Cnhttp://ukpmc.ac.uk/abstract/CIT/148081
- 3708 [156] NIST, "NIST SP 800-39, Managing Information Security Risk Organization, Mission, and 3709 Information System View," 2011 [Online]. Available: 3710 http://csrc.nist.gov/publications/nistpubs/800-39/SP800-39-final.pdf
- 3711 [157] T. Pasquier and D. Eyers, "Information Flow Audit for Transparency and Compliance in the 3712 Handling of Personal Data," in 2016 IEEE International Conference on Cloud Engineering 3713 Workshop (IC2EW), 2016, pp. 112–117 [Online]. Available: 3714 http://dx.doi.org/10.1109/IC2EW.2016.29
- 3715 [158] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Leveraging Transparency," IEEE Softw., vol. 30, 3716 no. 1, pp. 37–43, Jan. 2013.
- 3717 [159] K. Benjamin, C. Cappelli, and G. Santos, "Organizational Transparency Maturity Assessment 3718 Method," in Proceedings of the 18th Annual International Conference on Digital Government 3719 Research SE - dg.o '17, 2017, pp. 477–484 [Online]. Available: citeulike-article-id:14396325

3720 [160] E. Theodoridis, G. Mylonas, and I. Chatzigiannakis, "Developing an IoT Smart City framework," 3721 in IISA 2013, 2013, pp. 1-6.

- [161] P. T. Grogan, K. Ho, A. Golkar, and O. L. de Weck, "Multi-Actor Value Modeling for Federated
 Systems," *IEEE Syst. J.*, vol. PP, no. 99, pp. 1–10, 2017.
- 3724 [162] G. Ballard *et al.*, "How to Make Shared Risk and Reward Sustainable," *23rd Annu. Conf. Int. Gr.*3725 *Lean Constr.*, 2015.
- 3726 [163] D. M. Nicol, "Modeling and simulation in security evaluation," *Secur. Privacy, IEEE*, vol. 3, no.
 3727 5, pp. 71–74, 2005 [Online]. Available: http://dx.doi.org/10.1109/msp.2005.129
- [164] V. Volovoi, "Simulation of maintenance processes in the Big Data era," in *2016 Winter Simulation Conference (WSC)*, 2016, pp. 1872–1883 [Online]. Available: citeulike-article-id:14396317
- [165] R. G. Lang, Silva, and R. A. F. Romero, "Development of Distributed Control Architecture for
 Multi-robot Systems," in 2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and
 Robocontrol, 2014, pp. 163–168 [Online]. Available: citeulike-article-id:14396321
- 3733 [166] D. Dudenhoeffer, M. Permann, and E. Sussman, "General methodology 3: a parallel simulation
 3734 framework for infrastructure modeling and analysis," in *WSC '02: Proceedings of the 34th*3735 *conference on Winter simulation*, 2002, pp. 1971–1977.
- I. Paik, "Situation awareness based on big data analysis," in 2016 International Conference on
 Machine Learning and Cybernetics (ICMLC), 2016, vol. 2, pp. 911–916.
- J. Ryoo, R. Kazman, and P. Anand, "Architectural analysis for security," *IEEE Secur. Priv.*, vol.
 13, no. 6, pp. 52–59, 2015.
- [169] G. Lea, "Notes from YOW! 2014: Scott Shaw on 'Avoiding Speedbumps on the Road to
 Microservices." Graham Lea, p. 1, 02-Mar-2015 [Online]. Available: citeulike-article id:14169875
- R. Dhall, "Performance Patterns in Microservices based Integrations," *Comput. Now*, 2016
 [Online]. Available: citeulike-article-id:14166626%5Cnhttps://www.computer.org/web/the-clearcloud/content?g=7477973&%5Cntype=blogpost&%2338%5CnurlTitle=performance-patternsin-microservices-based-integrations
- 3747 [171] G. Landers, A. Dayley, and J. Corriveau, "Magic Quadrant for Structured Data Archiving and
 3748 Application Retirement," *Gartner.com*, 2016. [Online]. Available:
 3749 https://www.gartner.com/doc/reprints?id=1-39B7753&ct=160613&st=sb
- K. Ruan and J. Carthy, "Cloud Forensic Maturity Model," in *Digital Forensics and Cyber Crime*,
 M. Rogers and K. C. Seigfried-Spellar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
 pp. 22–41 [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-642-39891-9_2
- [173] P. Franková, M. Drahošová, and P. Balco, "Agile Project Management Approach and its Use in
 Big Data Management," *Procedia Comput. Sci.*, vol. 83, pp. 576–583, 2016.

[174] E. Burger, *Flexible views for view-based model-driven development*. Karlsruhe. Deutschland: KIT Scientific Publishing, 2014 [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2 s2.0-84958701302&partnerID=40&md5=52a94f4dba6d117f5bbc7a5cf105cf68

3758 3759 3760 3761	[175]	K. Kent and M. Souppaya, "NIST SP 800-92: Guide to Computer Security Log Management," <i>Natl. Inst. Stand. Technol.</i> , pp. 1–72, 2006 [Online]. Available: http://logrhythm.com/Portals/0/resources/NIST Guide Log Mgmt SP800- 92.pdf%5Cnhttp://m.sagedatasecurity.com/pdfs/SP800-92-NIST-Guide-to-Log-Management.pdf
3762 3763 3764	[176]	K. Kent, S. Chevalier, T. Grance, and H. Dang, "NIST SP 800-86: Guide to Integrating Forensic Techniques Into Incident Response," NIST, Gaithersburg MD OR - NIST, Sep. 2006 [Online]. Available: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
3765 3766 3767	[177]	S. Zareian, M. Fokaefs, H. Khazaei, M. Litoiu, and X. Zhang, "A Big Data Framework for Cloud Monitoring," in <i>Proceedings of the 2Nd International Workshop on BIG Data Software Engineering SE</i> - <i>BIGDSE</i> '16, 2016, pp. 58–64.
3768 3769 3770	[178]	E. Chabrow, "NIST Plans Cybersecurity Framework Update - GovInfoSecurity," <i>Government Information Security</i> , 2016. [Online]. Available: http://www.govinfosecurity.com/interviews/nist-considers-cybersecurity-framework-update-i-3199#.V1jIbRyMY7E.twitter
3771 3772	[179]	DHS, "Critical Infrastructure Cyber Community or C ³ Voluntary Program," US-CERT, 2014. [Online]. Available: https://www.us-cert.gov/ccubedvp. [Accessed: 14-Aug-2016]
3773 3774	[180]	E. Gonzalez, "SENC Project: SABSA Enhanced NIST Cybersecurity Framework," <i>SABSA</i> , 2015. [Online]. Available: http://www.sabsa.org/node/176. [Accessed: 15-Aug-2015]
3775 3776	[181]	S. Zurier, "6 Things To Know For Securing Amazon Web Services," <i>Dark Read.</i> , Aug. 2016 [Online]. Available: citeulike-article-id:14396487
3777 3778 3779	[182]	A. Textor, R. Kroeger, and K. Geihs, "Semantic models for bridging domains in automated IT management: Lessons learned," in 2017 International Conference on Networked Systems (NetSys), 2017, pp. 1–8.
3780 3781	[183]	NIST, "NIST SP 800-190: Application Container Security Guide," Sep. 2017 [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-190/final
3782 3783 3784 3785 3786	[184]	E. G. Aydal, R. F. Paige, H. Chivers, and P. J. Brooke, "Security Planning and Refactoring in Extreme Programming," in <i>Extreme Programming and Agile Processes in Software Engineering:</i> <i>7th International Conference, XP 2006, Oulu, Finland, June 17-22, 2006. Proceedings</i> , P. Abrahamsson, M. Marchesi, and G. Succi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 154–163 [Online]. Available: https://doi.org/10.1007/11774129_16
3787 3788 3789	[185]	M. Iqbal and M. Rizwan, "Application of 80/20 rule in Software Engineering Waterfall Model," in <i>Information and Communication Technologies</i> , 2009. <i>ICICT '09. International Conference on</i> , 2009 [Online]. Available: http://ieeexplore.ieee.org/document/5267186/
3790 3791 3792	[186]	B. Boehm, J. A. Lane, S. Koolmanojwong, and R. Turner, <i>The Incremental Commitment Spiral Model: Principles and Practices for Successful Systems and Software</i> , 1st ed. Addison-Wesley Professional, 2014.
3793 3794	[187]	N. MacDonald and I. Head, "DevSecOps: How to Seamlessly Integrate Security Into DevOps SE - G00315283," Gartner Group, Stamford CT OR - Gartner Group, Sep. 2016.

3795 3796	[188]	A. Cockroft, "Evolution of Microservices (video presentation)," <i>ACM</i> . Association for Computing Machinery, New York, NY, 20-Jul-2016 [Online]. Available: citeulike-article-id:14337247
3797 3798	[189]	J. Roche, "Adopting DevOps practices in quality assurance," <i>Commun. ACM</i> , vol. 56, no. 11, pp. 38–43, 2013 [Online]. Available: http://dl.acm.org/citation.cfm?doid=2524713.2524721
3799 3800 3801 3802	[190]	Tom Nolle, "Infrastructure as code complicates hybrid, multiple cloud management (Part 2 of 2)," <i>Search Cloud Computing</i> , 2016 [Online]. Available: http://searchcloudcomputing.techtarget.com/tip/Infrastructure-as-code-complicates-hybrid- multiple-cloud-management
3803 3804 3805	[191]	J. Steer and A. Popli, "Building secure business applications at Microsoft," <i>Inf. Secur. Tech. Rep.</i> , vol. 13, no. 2, pp. 105–110, May 2008 [Online]. Available: http://dx.doi.org/10.1016/j.istr.2008.04.001
3806 3807 3808 3809	[192]	Tom Nolle, "Separating DevOps from the future-driven cloud orchestration," <i>Search Cloud Computing</i> , 2016. [Online]. Available: http://searchcloudcomputing.techtarget.com/tip/Separating-DevOps-from-the-future-driven-cloud-orchestration
3810 3811 3812	[193]	R. Qasha, J. Cala, and P. Watson, "Towards Automated Workflow Deployment in the Cloud Using TOSCA," in <i>Proceedings - 2015 IEEE 8th International Conference on Cloud Computing</i> , <i>CLOUD 2015</i> , 2015, pp. 1037–1040.
3813 3814 3815 3816	[194]	 P. Chambakara, "API-First Design: Dawn Of New Era In App Development," <i>Digital Doughnut</i>. 2015 [Online]. Available: citeulike-article- id:14074448%5Cnhttps://www.digitaldoughnut.com/articles/2015/november/api-first-design- dawn-of-new-era-in-app-developme
3817 3818 3819	[195]	ISO/IEC 33001:2015 Information technology — Process assessment — Concepts and terminology. International Organization for Standardization / International Electrotechnical Commission, 2015 [Online]. Available: https://www.iso.org/standard/54175.html
3820 3821 3822	[196]	G. Chen and Y. Luo, "A BIM and ontology-based intelligent application framework," in 2016 <i>IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)</i> , 2016, pp. 494–497 [Online]. Available: citeulike-article-id:14396492
3823 3824 3825	[197]	C. Atkinson, D. Stoll, and P. Bostan, "Orthographic software modeling: A practical approach to view-based development," in <i>Communications in Computer and Information Science</i> , 2010, vol. 69 CCIS, pp. 206–219.
3826 3827 3828	[198]	A. Barth, A. Datta, J. Mitchell, and H. Nissenbaum, "Privacy and Contextual Integrity: Framework and Applications," in <i>Proceedings of the 2006 IEEE Symposium on Security and Privacy SE - SP</i> '06, 2006, pp. 184–198.
3829 3830 3831	[199]	P. Lam, J. Mitchell, A. Scedrov, S. Sundaram, and F. Wang, "Declarative privacy policy: finite models and attribute-based encryption," in <i>Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium SE - IHI '12</i> , 2012, pp. 323–332.

- J. Wilson, "THE CLOUD, REGULATIONS, AND PII," *Iconic*, Jan-2016 [Online]. Available:
 https://www.ionic.com/blog/the-cloud-regulations-and-pii/
- R. Nelson, "Big data analytics becomes strategic test tool," *Eval. Eng.*, Dec. 2015 [Online].
 Available: citeulike-article-id:14169892
- [202] A. Karmel, R. Chandramouli, and M. Iorga, "DRAFT Special Publication 800-180, NIST
 Definition of Microservices, Application Containers and System Virtual Machines," *NIST Spec. Publ. 800-180*, vol. 800180, 2016 [Online]. Available: http://csrc.nist.gov/publications/drafts/800 180/sp800-180_draft.pdf
- S. Newman, "Building microservices : designing fine-grained systems." O'Reilly Media,
 Sebastopol CA, 2015 [Online]. Available: http://www.worldcat.org/isbn/9781491950357
- 3842 [204] A. Versteden, E. Pauwels, and A. Papantoniou, "An Ecosystem of User-facing Microservices
 3843 supported by Semantic Models," *USEWOD-PROFILES@ESWC*, vol. 1362, pp. 12–21, 2015.

3844 [205] American National Standards Institute, "ANSI INCITS 359-2004 Role Based Access Control
 3845 Information Technology Industry Council," 2004 [Online]. Available:
 3846 http://profsandhu.com/journals/tissec/ANSI+INCITS+359-2004.pdf

- [206] D. R. Kuhn, E. J. Coyne, and T. R. Weil, "Adding attributes to role-based access control,"
 Computer (Long. Beach. Calif)., vol. 43, no. 6, pp. 79–81, 2010.
- [207] D. F. Ferraiolo, G. J. Ahn, R. Chandramouli, and S. I. Gavrila, "The role control center: Features
 and case studies," in *Proceedings of ACM Symposium on Access Control Models and Technologies (SACMAT 2002)*, 2003, pp. 12–20.
- [208] E. Bertino and B. Catania, "GEO-RBAC: a spatially aware RBAC," *Proc. tenth ACM Symp. Access Control Model. Technol.*, pp. 29–37, 2005 [Online]. Available:
 http://dl.acm.org/citation.cfm?id=1063985
- R. Ferrini and E. Bertino, "Supporting RBAC with XACML+OWL," in *Proceedings of the 14th ACM symposium on Access control models and technologies SE SACMAT '09*, 2009, pp. 145–
 154.
- 3858 [210] Y. Sun, X. Meng, S. Liu, and P. Pan, "An approach for flexible RBAC workflow system," in
 3859 *Computer Supported Cooperative Work in Design, 2005. Proceedings of the Ninth International*3860 *Conference on*, 2005, vol. 1, pp. 524-529 Vol. 1 [Online]. Available: citeulike-article3861 id:1204995%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1504134
- [211] NIST, "NIST SP 800-137: Information Security Continuous Monitoring (ISCM) for Federal
 Information Systems and Organizations," Sep. 2011 [Online]. Available:
 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-137.pdf

3865 [212] M. Underwood, "Big Data Complex Event Processing for Internet of Things Provenance: Benefits 3866 for Audit, Forensics and Safety," in *Cyber-Assurance for the Internet of Things*, T. Brooks, Ed. 3867 Hoboken NJ: Wiley, 2016.

- 3868 [213] M. Underwood *et al.*, "Internet of things: Toward smart networked systems and societies," *Appl.*3869 *Ontol.*, vol. 10, no. 3–4, pp. 355–365, Sep. 2015.
- J. Turnbull, *The Art of Monitoring*. New York, NY: James Turnbull, 2016 [Online]. Available:
 citeulike-article-id:14395588
- 3872 [215] International Organization for Standardization, "ISO Home Page," 2019. [Online]. Available:
 3873 https://www.iso.org/home.html
- 3874 [216] T. Stewart, "Human after all," *IoSH Mag.*, Jun. 2016 [Online]. Available: citeulike-article 3875 id:14396478
- 3876 [217] M. Wilkinson *et al.*, "The FAIR Guiding Principles for scientific data management and
 3877 stewardship," *Sci. Data*, vol. 3, p. 160018, Mar. 2016 [Online]. Available:
 3878 http://dx.doi.org/10.1038/sdata.2016.18
- 3879 [218] C. J. Hoofnagle, "How the Fair Credit Reporting Act Regulates Big Data," pp. 1–6, Sep. 2013.
- R. Chandramouli, "NIST SP 800-125B: Secure Virtual Network Configuration for Virtual
 Machine (VM) Protection," *NIST Spec. Publ.*, vol. 800, no. 125B, p. 23, 2016 [Online]. Available:
 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
- 3883 [220] PCI Security Standards Council, "PCI DSS Virtualization Guidelines," 2011 [Online]. Available:
 3884 https://www.pcisecuritystandards.org/documents/Virtualization_InfoSupp_v2.pdf
- 3885 [221] IEEE P1915.1 Standard for Software Defined Networking and Network Function Virtualization
 3886 Security. IEEE, 2015 [Online]. Available: https://standards.ieee.org/project/1915_1.html
 - [222] B. Keshavamurthy and M. Ashraf, "Conceptual design of proactive SONs based on the Big Data framework for 5G cellular networks: A novel Machine Learning perspective facilitating a shift in the SON paradigm," in *2016 International Conference System Modeling Advancement in Research Trends (SMART)*, 2016, pp. 298–304.
- [223] IEEE 2413-2019 IEEE Approved Draft Standard for an Architectural Framework for the
 Internet of Things (IoT). IEEE, 2019 [Online]. Available: https://standards.ieee.org/content/ieee standards/en/standard/2413-2019.html
- [224] D. Ardagna, L. Baresi, S. Comai, M. Comuzzi, and B. Pernici, "A service-based framework for
 flexible business processes," *IEEE Softw.*, vol. 28, no. 2, pp. 61–67, 2011.
- 3896 [225] Microsoft, "Deploying Windows Rights Management Services at Microsoft," 2013. [Online].
 3897 Available: http://technet.microsoft.com/en-us/library/dd277323.aspx
- 3898 [226] The Nielsen Company, "Consumer Panel and Retail Measurement," 2015. [Online]. Available:
 3899 www.nielsen.com/us/en/nielsen-solutions/nielsen-measurement/nielsen-retail-measurement.html
- 3900 [227] SAFE-BioPharma Association, "Welcome to SAFE-BioPharma." [Online]. Available:
 3901 http://www.safe-biopharma.org/
- 3902 [228] Microsoft, "How to set event log security locally or by using Group Policy in Windows Server

3888

3889

3903		2003," 07-Jan-2017. [Online]. Available: http://support.microsoft.com/kb/323076
3904 3905	[229]	DefenseSystems, "UAV video encryption remains unfinished job," 31-Oct-2012. [Online]. Available: http://defensesystems.com/articles/2012/10/31/agg-drone-video-encryption-lags.aspx
3906 3907	[230]	Department of Defense Memorandum from DoD CIO, "Department of Defense Cloud Computing Strategy," Jul. 2012 [Online]. Available: http://1.usa.gov/1E0UTXT
3908 3909	[231]	A. Sanna and F. Lamberti, "Advances in target detection and tracking in forward-looking infrared (FLIR) imagery," <i>Sensors (Switzerland)</i> , vol. 14, no. 11, pp. 20297–20303, 2014.
3910	[232]	K. A. G. Fisher et al., "Quantum computing on encrypted data," Nat. Commun., vol. 5, 2014.
3911 3912 3913	[233]	J. Cartledge, "US Lawmakers Pledge to Close Air Cargo Security 'Loophole,'" <i>Post and Parcel</i> , 01-Nov-2010. [Online]. Available: http://postandparcel.info/35115/news/us-lawmakers-pledge-to-close-air-cargo-security-"loophole"/
3914 3915 3916 3917	[234]	S. Captain, "With Mapbox Deal, IBM Watson Will Learn A Lot More About Where Things Are Happening Fast Company Business + Innovation," <i>Fast Company</i> , 2016. [Online]. Available: http://www.fastcompany.com/3062635/with-mapbox-deal-ibm-watson-will-know-where-things- are-happening
3918 3919 3920	[235]	R. Chandramouli, "Secure Virtual Network Configuration for Virtual Machine (VM) Protection (NIST SP 800-125B)," 2016 [Online]. Available: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
3921		