NIST Special Publication 500-320

Report of the Workshop on
Software Measures and Metrics to
Reduce Security Vulnerabilities
(SWMM-RSV)

Paul E. Black
Elizabeth Fong

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.500-320

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce



NIST Special Publication 500-320

Report of the Workshop on
Software Measures and Metrics to
Reduce Security Vulnerabilities
(SWMM-RSV)

Paul E. Black

Elizabeth Fong

Software and Systems Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.500-320

November 2016

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology
Willie May, Under Secretary of Commerce for Standards and Technology and Director



Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 500-320
Natl. Inst. Stand. Technol. Spec. Publ. 500-320, 84 pages (November 2016)
CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.500-320



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

Abstract

The National Institute of Standards and Technology (NIST) workshop on Software Measures and
Metrics to Reduce Security Vulnerabilities (SWMM-RSV) was held on 12 July 2016. The goal of
this workshop is to gather ideas on how the Federal Government can identify, improve, package,
deliver, or boost the use of software measures and metrics to significantly reduce vulnerabilities.

This report contains observations and recommendations from the workshop participants. This
report also includes position statements submitted to the workshop, presentations at the
workshop, and related material. Ideas from the workshop will be included in the Dramatically
Reducing Software Vulnerabilities report, requested of NIST by the White House Office of
Science and Technology Policy in Spring 2016.

Keywords:

Measurement; metrics; software assurance; security vulnerabilities; reduce security
vulnerabilities.

Disclaimer:

This report includes position statements and presentation slides by authors who submitted their
material to the workshop. The views expressed by the authors therein do not necessarily reflect
those of the sponsors of this workshop.

Certain commercial entities, equipment, or materials may be identified in this document in order
to describe an experimental procedure or concept adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of Standards and Technology
(NIST), nor is it intended to imply that the entities, materials, or equipment are necessarily the
best available for the purpose.

Acknowledgement:

The authors thank Peggy Himes and Rose Linares of NIST for their valuable help with the
workshop and formatting this manuscript. Thanks to Simson Garfinkel for significant
contributions, which improved this report. Thanks also to the many workshop participants who
contributed, discussed, refined, and wrote up ideas.



02£-00S°dS 1SIN/8209°01/B10'10p//:sdny :wou) 8b1eyd jo aal) s|gejieAe s| uoneolgnd siy |

Contents
1. Overview

1.1 Mechanics and OrganiZation...........cccueieiiuereeresieese e see e eee e e e e e e e sae e sreeneeenes
1.2 Agenda and SCREAUIE............oiiie e
1.3 Other Ideas from Breakout SESSION .........ccoiiiiiiieiieic e
1.3.1 Consider Vulnerabilities in All Parts of the Software Life Cycle .........ccccccevvevieiiennnn,
1.3.2 Government Contracting and Procurement, Liability, and Insurance ...........c..ccco......
IR TR B =l [FTox= 11 (o] o RSP PRSTRRPRI
1.3.4 Research Projects for Security, Quality, and Few Vulnerabilities.............c.cccccevrvenenn.
1.3.5 Government FUNAEd EFFOITS .......coiiiiiiiiiicee e
1.3.6 Third Party ReVIew Of SOFtWAIE ..........ccooiiiiiiiiice e

2. Observations and ReCOMMENAATIONS .....vvveeee e eeeeeeeeee e e e e e e e e e e et eeeeeeeeeeeeeeeneennns
2. B COUR e

2.2 MOre USefUl TOOI OQULPULS .....cueeiiiiie ittt sttt
2.3 SECUNLY IMBIIICS ...ttt sttt ettt ettt e bt e e bt et e e st e e bt e be et e sreenbeeneeaneenbe e
2.4 AAAITIONAI DIFECTIONS.......veuiiiiieite ettt b bbbt e

2. R EIEINCES ... ettt e e e e e e e e e e aeaaaes
3. Position Statements and PreSentationS.........cooveeeeeeeeee e



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

1. Overview

The 2016 Federal Cybersecurity Research and Development Strategic Plan [1] seeks to
fundamentally alter the dynamics of security in the computer realm, reversing adversaries’
asymmetrical advantages. The plan calls for “sustainably secure systems development and
operation.” To achieve this, the plan describes a mid-term (3-7 years) goal of “the design and
implementation of software, firmware, and hardware that are highly resistant to malicious cyber
activities...” and reduce the number of vulnerabilities in software by orders of magnitude.

The Software Quality Group at the U.S. National Institute of Standards and Technology (NIST)
felt that measures of software can play an important role in such dramatic reductions. Industry
requires evidence to indicate how vulnerable a piece of software is, know what techniques are
most effective in developing software with far fewer vulnerabilities, determine the best places to
deploy defensive measures, or take any of a number of other actions. This evidence comes from
measuring, in the broadest sense, or assessing properties of software. If there were
comprehensive metrics, it would be straight-forward to determine which software development
technologies or methodologies lead to sustainably secure systems.

Accordingly, in Spring 2016 we decided to organize a workshop to gather ideas on how the
Federal Government can identify, improve, package, deliver, or boost the use of software
measures and metrics to significantly reduce vulnerabilities. We called for short position
statements, one to three paragraphs long, to begin to gather ideas. We asked for position
statements, rather than papers, to decrease the work required of submitters. In the call for
statements, we suggested the following subjects:

e Existing measures of software that can make a difference in three to seven years,
e Means of validating software measures or confirming their efficacy (meta-
measurements),

Quantities (properties) in software that can be measured,

Standards (in both étalon and norme senses) needed for software measurement,
Cost vs. benefit of software measurements,

Surmountable barriers to adoption of measures and metrics,

Areas or conditions of applicability (or non-applicability) of measures,

Software measurement procedures (esp. automated ones), or

Sources of variability or uncertainty in software metrics or measures.

Twenty positions statements were submitted. A program committee evaluated the submissions
for relevance to the workshop theme and potential interest. The committee invited workshop
presentations based on 10 statements.

Ideas from this workshop and other efforts will be included in the report on Dramatically
Reducing Software Vulnerabilities, requested of NIST by the White House Office of Science and
Technology Policy in Spring 2016.



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

The workshop was open to all, subject to the rules of entry to the NIST campus, and there was no
cost to attend.

1.1 Mechanics and Organization

The workshop was co-chaired by Paul E. Black and Elizabeth Fong, National Institute of
Standards and Technology and by Thomas D. Hurt, Office of the Deputy Assistant Secretary of
Defense for Systems Engineering - Joint Federated Assurance Center (JFAC) lead.

The program committee consisted of Paul E. Black, David Flater, Elizabeth Fong, D. Richard
Kuhn, and W. Timothy Polk.

The web site is https://samate.nist.gov/SWMM-RSV2016.html. In late April and early May, co-
chairs sent the call for statements to mailing lists and many individuals. Here is the timeline:

22 May: deadline to submit statements
8 June: invitations to present sent
27 June: deadline for non-citizens to register
5 July: deadline for US citizens to register
12 July: workshop
31 July: deadline for submission of revised statement or presentation

1.2 Agenda and Schedule

The workshop was held at the National Institute of Standards and Technology, Gaithersburg,
Maryland, on 12 July 2016. Over 90 people from Federal Government, software assurance tool
makers, service providers, and universities attended. The program consisted of nine presentations
invited on the basis of position statements and one breakout session. For the breakout, attendees
were randomly assigned to one of six breakout groups. All the groups had the same charge: come
up with the best ideas to use metrics to dramatically reduce software vulnerabilities in three to
five years. The agenda was as follows:

8:30 am - 9:00 am Registration

9:00 am - 9:10 am Introduction, Safety, Schedule, Charge
Paul E. Black, NIST

9:10am - 9:15am Federal Cybersecurity Research and Development Strategic
Plan

Greg Shannon, White House Office of Science and Technology
Policy

9:15am - 9:30 am Opening Remarks
William F. Guthrie, Chief, Statistical Engineering Division, NIST

9:30 am - 10:00 am Measuring Software Analyzability
Andrew Walenstein, BlackBerry

10:00 am —10:30am | Dealing with Code That is Opaque to Static Analysis
James Kupsch, University of Wisconsin-Madison



https://samate.nist.gov/SwMM-RSV2016.html

02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

10:30 am — 10:50 am | Break

10:50 am —11:10 am | Composing Processes for Secure Development Using Process
Control Measures
William Nichols, Software Engineering Institute (SEI)

11:10 am —11:30 am | Measure Early and Measure Often - SWAMP
Miron Livny, Morgridge Institute for Research

11:30am — 1:00 pm | Lunch

1:00 pm — 1:20 pm | CISQ Measures of Secure, Resilient Software
Dr. Bill Curtis, Executive Director, Consortium for IT Software
Quality (CISQ)

1:20 pm — 1:40 pm | Mostly Sunny with a Chance of Cyber-Doom
David Flater, NIST

1:40 pm - 2:00 pm | Dynamically Proving That Security Issues Exist
Dr. Andrew V. Jones, Vector Software, Inc.

2:00 pm — 2:20 pm | Breakouts

2:20 pm — 2:50 pm | Break

2:50 pm - 3:20 pm | Breakout Reports (6 reports at 5 minutes each)

3:20 pm - 3:40 pm | Toward Evidence-Based Low Defect Software Production
James Kirby, Jr., US Naval Research Laboratory

3:40 pm — 4:00 pm | Using Malware Analysis to Reduce Design Weaknesses
Carol Woody, Ph.D., Software Engineering Institute

4:00 pm — 4:20 pm | Summary — Our Next Step
Paul E. Black, NIST

Although UL was invited to present based on their position statement, there was no presentation
because of illness.

1.3 Non-Measurement Ideas from the Breakout Session

The discussions in the breakout groups were lively. Most of the groups continued their
discussions to the end of the break time. Someone from each breakout group took five minutes to
report their recommendations to the whole workshop when it reconvened. The workshop was
focused on metrics and measures of software as a product and what could be done in a moderate
time frame. Although charged to discuss ideas related to the workshop theme, every group
included ideas related to software quality, assurance, software development, and cybersecurity in
general. This section lists many of those ideas that are outside the scope of the workshop, and
thus are not in Section 2. Some came from more than one group.

When we use phrases like “workshop participants” or “some who attended,” we usually mean a
group of a dozen or so. In no case were all participants polled and a consensus, or even plurality,
determined. Ideas were often brought up by one person, discussed and elaborated by others, then
written or reported by yet others. Hence it is difficult to attribute ideas to particular people in
most cases. We thank all those who participated in the workshop and made contributions, large
and small, to the ideas noted in this report.



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

1.3.1 Consider Vulnerabilities in All Parts of the Software Life Cycle

Some who attended the workshop thought that security must be designed into the system from
the beginning. It must be a part of the requirements of the system and the architecture of the
software. Security often touches and influences many pieces of the system, from low-level
details such as how data is stored to high-level details such as a global state recording the user’s
role or whether the user has been authenticated. When security is added later on, it is typically
expensive to develop and test, difficult to use, inadequate, or all three [2].

Another caveat is that security cannot just be designed in, then forgotten. Security should be an
integrated part of the entire software development lifecycle. Analysts, coders, testers, integrators,
and operators all have vital roles into operating a secure system. Security cannot be relegated to a
quality hurdle that the development process needs to surmount then forget. If the software
development has a separate group of experts who have been thoroughly trained in cybersecurity
and in low-vulnerability software, then developing less vulnerable software should be a
partnership between the development team and the experts.

1.3.2 Government Contracting and Procurement, Liability, and Insurance

Many workshop participants felt that the Federal Government could lead a significant
improvement in software quality by requiring software quality during contracting and
procurement and by changing general expectations.

Participants felt that model contract language can include incentives for software to adhere to
higher coding and assurance standards or punitive measures for egregious violations of those
standards. The defense community [3], the financial sector, the automotive sector and the
medical sector have published sample procurement language for cybersecurity and secure
software. The focus on the lowest bidder must include provisions for “fitness for purpose” that
factor in considerations for secure software. Only products that fulfill technical acceptance
requirements should be considered. Software suppliers who have sloppy cyber hygiene should be
identified in contract bidding. All software, especially third-party open source software (OSS),
should be evaluated to substantiate that it does not have malware or known or new
vulnerabilities, as much as feasible. Software should have a “bill of materials” such that those
using it could respond to a new threat made public about some component or library in the
software.

Participants generally agreed that new exploits will be discovered after software is put into use,
hence the need for a bill of materials. They felt that companies developing software should be
contractually liable for vulnerabilities discovered after delivery. Such liability clauses might be
modeled after those used in the video game industry in the 2000s. Participants did not believe
that there should be legal liability at this time. On the other hand, the language of liability clauses
needs to be strict enough to, as one participant wrote, “hold companies accountable for sloppy
and easily-avoidable errors, flaws, and mistakes.”



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

One complicating factor is that liability includes a concept of responsible party. Responsibility
may be hard to determine in the case of “open source” or freely available software.

The Financial Services Sector Coordinating Council (FSSCC) for Critical Infrastructure
Protection and Homeland Security produced a 26-page document entitled Purchasers’ Guide to
Cyber Insurance Products defining what cyber insurance is, explaining why organizations need
it, describing how it can be procured, and giving other helpful information.

Many software assurance tool agreements include “DeWitt clauses” that prohibit the user from
publishing any evaluations or comparisons with other tools. Participants felt that such restrictions
slow the development of better techniques and make it difficult for users to determine which tool
or tools are most beneficial for them. Contract language could specify an allowance of published
evaluations, for example as suggested by Klass and Burger in “Vendor Truth Serum”.

1.3.3 Education

Many software developers are not taught the basic principles, practices, and importance of
cybersecurity or provided with resources. It was the participants’ judgement that educating a
large number of programmers in basic cybersecurity practices will significantly reduce
vulnerabilities. The Federal Government could fund broad funding of on-line or self-study
courses and work with companies to promote widely-available resources.

In addition, software developers should learn how and when to use powerful and sophisticated
tools, which are now available. Participants opined that developers need to understand that they
shouldn’t just turn off red flags raised by tools. As above, many institutions of higher education
or training organizations can offer free training, once courses are developed.

Some workshop attendees noted that educating just front-line software developers is not enough.
Managers and executives must also be educated in the risk management implications of software
vulnerabilities and the importance of investing in cybersecurity and low vulnerability software.

1.3.4 Research Projects for Security, Quality, and Few Vulnerabilities

One participant suggested a major project to provide a single forum where researchers could
share samples of code, share findings, collaborate on research, and publish results without
intellectual property restrictions. A large, open repository of source code would allow
researchers to conduct a wide range of data-driven research. Such research could lead to
improved programming practices, ways to spot poor quality or malicious code, and new and
improved software security metrics and measures. This must be independent of vendors and
model and encourage scientifically valid research. The concept would be similar to the Human
Genome Project (HGP), but for software instead of genomes. A critical difference is the
intellectual property of software.

Participants felt that there needs to be increased scientifically valid research about the strengths
and limitations of software assurance tools. Researchers and users could share their findings
through a forum such as suggested above. There might even be a list of verified tools.

5



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

Another aspect of such a project is to collect incidences of malware, dead code, and other “code
smells” so that they are available to researchers. These could augment Common Vulnerabilities
and Exposures (CVE). Along the same lines, participants felt that there should be a repository of
computer system breaches, like those mandated by the State of California. Such a repository is
analogous to those maintained by the Food and Drug Administration (FDA) for medical device
problems and the Federal Aviation Administration (FAA) for aircraft incidents.

Attendees noted that today every vulnerability is addressed with its own special, tactical
response. Some suggested that there needs to be a substantial research agenda to develop a
science of the appearance, detection, behavior, and useful responses of software vulnerabilities
instead of treating each vulnerability as a unique problem with its own measure or metric. Given
this knowledge, more generalized capabilities to counter classes of vulnerabilities could be
developed. Over time a theory of software vulnerability could be developed that provides a
larger context for the problem and systemic measures and metrics for detecting and countering
classes of vulnerabilities.

1.3.5 Government Funded Efforts

In the participants’ estimation, the Government could fund the research and publication of
business cases for secure software, including the cost of security breaches. Such studies or cases
would bolster education mentioned in Section 1.3.3.

Workshop attendees suggested that the Federal Government could test or certify the software in
widely-used or important modules, libraries, or packages. To partner with the private sector, the
Government could fund such testing, perhaps as part of procurement.

Software quality could be improved by following up the Baldridge Cybersecurity Initiative. This
may help encourage software companies, according to some participants.

1.3.6 Third Party Review of Software

Some participants felt that software and the software industry should be treated as other
industries, like automotive, tobacco, and food. The Government mandated seatbelt use. Could it
encourage the software development industry to adopt well-known techniques and practices that
industry is reluctant to adopt, because of the belief that such efforts would make them non-
competitive? Based on well-established science, the Government could issue directives, create
cybersecurity and quality standards, and even mandate compliance. The FDA could enforce
standards for medical devices, and the Federal Trade Commission (FTC) could have a role in
software apps, since it deals with deceptive advertising [4, 5].

Some participants hoped that the Government would continue to nurture the efforts to add
requirements for better security and for lower numbers of vulnerabilities to Federal Information
Security Management Act (FISMA) documents, (e.g., NIST Special Publication (SP) SP 800-
538, SP 800-64, SP 800-53 and SP 800-53a), and to Department of Defense standards and
guidelines.



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

Participants judged that software could benefit from the programs and criteria of widely-accepted
non-governmental organizations. Some possibilities are UL’s Cybersecurity Assurance Program
(CAP), Consortium for IT Software Quality (CISQ) Code Quality Standards, and Core
Infrastructure Initiative (CII) Best Practices badge.

2. Observations and Recommendations

The focus of the workshop was measures and metrics of software as a product. This section
details general observations and suggestions of workshop participants. Some participants
cautioned that software quality and security metrics may be the wrong emphasis to reduce
software vulnerabilities, that such metrics may fade in emphasis as other software metrics have,
for example cohesion and McCabe Cyclomatic Complexity.

2.1 Better Code

Participants praised two workshop presentations: Andrew Walenstein’s “Measuring Software
Analyzability” and James Kupsch’s “Dealing with Code that is Opaque to Static Analysis.” Both
stressed that code should be amenable to automatic analysis. Both presented approaches to define
what it means that code is readily analyzed, why analyzability contributes to reduced
vulnerabilities, and how analyzability could be measured and increased.

Some participants noted that there are subsets of programming languages that are designed to be
analyzable, such as SPARK, or to be less error-prone, like Less Hatton’s SaferC. Participants
generally favored using better languages, for example, functional languages such as F# or ML.
However, there was no particular suggestion of the language, or languages, of the future.

Attendees also pointed out that while code-based metrics are important, we can expect
complementary results from metrics related to the other aspects of the software. Some aspects
are the software architecture and design erosion metrics, linguistic aspects of the code,
developers’ background, and metrics related to the software requirements.

2.2 More Useful Tool Outputs

There are many powerful and useful software assurance tools available today. No single tool
meets all needs. Accordingly, users should use several tools. This is difficult because tools have
different output formats and use different terms and classes.

Participants emphasized that tool outputs should be standardized. That is, the more there is
common nomenclature, presentation, and detail, the more feasible it is for users to combine tool
results with other software assurance information and to choose a combination of tools that is
most beneficial for them.



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

As explained in Section 1.3, participants felt the need for scientifically valid research about tool
strengths and limitations, mechanisms to allow publication of third party evaluation of tools, a
common forum to share insights about tools, and perhaps even a list of verified or certified tools.

2.3 Security Metrics

Participants didn’t note any particular security or vulnerability metrics or measures. However,
many participants felt that security or vulnerability measurement (or testing or checking) must be
included in all phases of software development, as explained in more detail in Section 1.3.1.
Except for atypical approaches like Clean Room, this measurement cannot be left as a gate at the
end of the production cycle.

2.4 Additional Directions

Some workshop participants were of the opinion that there is a significant need for metrics and
measures of binaries or executables. With today’s optimizing compilers and with the dependence
on many libraries delivered in binary, solely examining source code leaves many avenues for
appearance of subtle vulnerabilities.

In the estimation of some attendees, model-based engineering opens the way to writing “source
code” at a higher conceptual level and, more importantly, to formal proofs that certain properties
are maintained.

2.5 References

[1] Federal Cybersecurity Research and Development Strategic Plan. Available at
https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016 Federal Cybersecurity
Research and Development Stratgeic Plan.pdf

[2] James P. Anderson, “Computer Security Technology Planning Study,” October 1972.
Available at http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf

[3] “Suggested Language to Incorporate Software Assurance Department of Defense Contracts,”
Department of Defense (DoD) Software Assurance (SwA) Community of Practice (CoP)
Contract Language Working Group, John R. Marien, chair, and Robert A. Martin, co-chair,
February 2016. Available at http://www.acq.osd.mil/se/docs/2016-02-26-SwA-
WorkingPapers.pdf Accessed 6 September 2016.

[4] “Mobile Health App Developers: FTC Best Practices,” April 2016. Available at
http://www.ftc.gov/tips-advice/business-center/quidance/mobile-health-app-developers-ftc-best-

practices

[5] Keith Barritt, “3 Lessons: FDA/FTC Enforcement Against Mobile Medical Apps,” January
2016. Available at http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-
mobile-medical-apps-0001



https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016_Federal_Cybersecurity_Research_and_Development_Stratgeic_Plan.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016_Federal_Cybersecurity_Research_and_Development_Stratgeic_Plan.pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72a.pdf
http://www.acq.osd.mil/se/docs/2016-02-26-SwA-WorkingPapers.pdf
http://www.acq.osd.mil/se/docs/2016-02-26-SwA-WorkingPapers.pdf
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-practices
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-practices
http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-mobile-medical-apps-0001
http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-mobile-medical-apps-0001

02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3. Position Statements and Presentations
The program committee invited some of those who submitted position statements to make
presentations at the workshop. This section allows those who were invited to publish their
position in the manner that they choose. In some cases, this is just the position statement. In other
cases, it is an extended version of the position statement. In yet other cases it is the possibly-
edited presentation given at the workshop or some combination of all of them.
Please note that the following do not necessarily represent the opinion or result of the National
Institute of Standards and Technology (NIST). The appearance here does not imply that NIST
endorses any of these ideas or products.
The order here is the original order of presentations planned for the workshop.

3.1 Federal Cybersecurity Research and Development Strategic Plan, Greg Shannon, White
House Office of Science and Technology Policy.

3.2 Opening Remarks, William F. Guthrie, Chief, Statistical Engineering Division, NIST.
3.3 Measuring Software Analyzability, Andrew Walenstein, BlackBerry.

3.4 Dealing with Code that is Opaque to Static Analysis, James Kupsch, University of
Wisconsin-Madison.

3.5 Ken Modeste, UL.

3.6 Composing processes for secure development using process control measures, William
Nichols, Software Engineering Institute.

3.7 CISQ Measures of Secure, Resilient Software, Dr. Bill Curtis, Executive Director,
Consortium for IT Software Quality (CISQ).

3.8 Mostly Sunny with a Chance of Cyber, David Flater, NIST.
3.9 Dynamical Proving That Security Issues Exist, Dr. Andrew V. Jones, Vector Software.

3.10 Toward Evidence-Based Low Defect Software Production, James Kirby Jr., US Naval
Research Laboratory.

3.11 Using Malware Analysis to Reduce Design Weaknesses, Carol Woody, Ph.D., Software
Engineering Institute.

3.12 Measure Early and Measure Often — SWAMP, Miron Livny.



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

3.1 Federal cybersecurity Research and Development Strategic Plan, Greg Shannon, White
House Office of science and Technology Policy

Federal Cybersecurity
Research and Development Strategic Plan

Ensuring Prosperity and National Security

February 2016

I'm confident we can unleash the full potential of

Federal Cybersecurity R&D Strategic Plan

» Requested by Congress

« Expands the 2011 plan, Trustworthy Cyberspace
+ Interagency writing group within NITRD

« Community input via an NSF and DHS S&T

* Released in February as part of CNAP

10



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Fundamental R&D Challenge in Cybersecurity

Make cybersecurity less onerous

while providing more-effective defenses

Evidence of Efficacy and Efficiency

Federal Cybersecurity R&D Goals

» Near-term, S&T for
effective and efficient risk management

» Mid-term S&T for
sustainably secure systems
development and operation

» Long-term S&T for
effective and efficient defensive deterrence

11



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

R&D Objectives for Defensive Elements

« Twenty-one objectives to measure progress

+ Objectives are not comprehensive

« Two examples

—Deter, near-term: Establish quantifiable metrics of
adversary level of effort needed to overcome specific
cvbersecurity defenses

—Protect, mid-term: Create tools for static and dynamic
analysis that reduce vulnerabilities by a factor of 10

Commission on Enhancing National Cybersecurity

Make detailed recommendations to strengthen
cybersecurity in both the public and private sectors

» Develop recommendations regarding: (ii1) further
investments in research and development
initiatives that can enhance cybersecurity

12



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Information Available On-line

acurity. Ee

security Science and Technology

“hallan; I s-Cyh ity

13



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

3.2 Opening Remarks, William F. Guthrie, Chief, statistical Engineering division, NIST

e

p INFORMATION
L ' TECHNOLOGY
A LABORATORY

Opening Remarks:
NIST Workshop on Software
Measures and Metrics to |
Reduce Security

Vulnerabilities

Will Guthrie, Chief

Statistical Engineering
Division

NIST’s Mission & NMI Role

* NIST's mission is to promote U.S. innovation and industrial
competitiveness by advancing measurement science,
standards, and technology in ways that enhance economic
security and improve our quality of life.

* NIST is the national metrology institute (NMI) for the
United States. As an NMI, NIST

* Maintains primary measurement standards for the seven base
units in the Sl system of units and for derived units

e Offers calibration services and measurement standards to
support international trade

* Develops new measurement technologies

14



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

- INFORMATION

TECHNOLOGY
LABORATORY

Locations

* Primary sites
* Gaithersburg, MD
* Boulder, CO

* Joint Research
Institutes/Centers

* DC/Boulder areas
* Charleston, SC
* Palo Alto, CA
* Ames, |A
* Chicago, IL

* WWV and WWVH
* Fort Collins, CO
* Kauai, HI

~ INFORMATION

';l TECHNOLOGY
: LABORATOR) NIST Documentary
and Physical Standards

FIPS PUB 202

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

SHA.3 Standard: Permutation-Based Hash and
Extendable-Output Functions

CATEGORY: COMPUTER SECURITY  SUBCATEGORY: CRYPTOGRAPHY

Informaton Technolagy Laboratory
National Instiue of Standards and Techrology
8500

STANDARD IETERENCE MATERLAL

2387
Peanut Butter

U.S. Department of Commerce
Para Prizier, Socrsimry

Mationsl Institute of Standards snd Technology
Vil My, Uor Seeperry of Conomanes for Seandiard aud Teehnciog ond Dseror

15



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

INFORMATION M|\||[$|' y
o tianal Ingtitute
TECHNOLOGY Standards and Technology
4 LABORATORY i el :

IT Standards and Research

NIST NIST Time | NIST Home | About NIST | Contact Us | A-Z Site Index

Information Technology
Public B ¥ Pro { D) A ies with NIST ¥

NIST Heme > Information Technology Portal

Select Language +* 0 sHARE EIWE

Powered by Google Translate

Information Technology Portal - Overview

Advancing the state-of-the-art in IT in such applications as cyber
security and biometrics, the National Institute of Standards and
Technology accelerates the development and deployment of systems
that are reliable, usable, interop , and secure; adval
measurement sclence through Innovations in mathematics, statistics,
and computer science; and conducts research to develop the
measurements and standards Infrastructure for emerging information
technolegies and applications.

Cybersecurity Framework >>

Cloud Computing >

Computer Security Resource Center > >
Information Technology Laboratory >

National Cybersecurity Center of Excellence (NCCoE) >>

Smart Grid >>
News And Events
Nat | Strat for Trusted Identiti Cyb NSTIC) >> hanalock
ational Strategy for Trusted Identities in Cyberspace ( ) NSCI < Mo Tod gies Tor T &
Performance
Subject Areas . B
NSCI Seminar: An Overview of High Performance 4
Biometrics Cs ing and Benchmark Changes for the Future

NIST

INFORMATION P
TECHNOLOGY Standards and Tedhnalogy
LABORATORY

IT Standards and Research

Software Testing Metrics Video PICI)'"S"

Telecommunications/Wireless

Programs and Projects 6. |Launch of the National Strategyl... =

Measurement Science for Complex Information Systems . ~ | <
This project aims to develop and evaluate a coherent set of methods to |
understand behavior in complex information systems, such as the
Internet, ... more

Lightweight Cryptography Project
NIST is investigating the need for lightweight cryptographic algorithms.
This includes looking at applications that may require lightweight ...

2y
uschamber.com

more

Video Analytics
The Multimodal Information Group's (MIG) video analytics program
includes several activities contributing to the development of

technologies that ... more Related Links
Interdisciplinary Projects Budget in Brief FY 2013 - National Strategy for Trusted Identities
Seme Multimodal Infermation Group project areas span across multiple in Cyberspace
research areas within the group or to other groups in IAD. These ...
more
Contact

Advanced Video and Signal Based Surveillance

The Second Multiple Camera Single Person Tracking Challenge Evaluation
(MCSPT) was held in conjunction with the 7th Advanced Video and Signal
... more

General Information:
301-975-NIST (6478)
inquiries@nist.gov

100 Bureau Drive, Stop 1070

Speaker and Language Recognition Projects Galthersburg, MD 20899-1070

Our Speaker and Language Recognition program includes several
activities contributing to speaker and language recognition technology 5
and metrology ... more

16



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

] INFORMATION
o m TECHNOLOGY
7] LABORATORY

Challenges in
Measuring Software

* Physical quantities
* regulated by physical laws and environments

* measurements follow “nice” probability distributions
(e.g. Gaussian, Poisson)

* Software

* largely produced in human imagination, with some
mathematical limits

* measurements not purely deterministic or random

* probability distributions may not be “nice”
(e.g. multimodal, extremely skewed)

YL
Need for Reliable Software

* Despite challenges, software has a critical impact

on the economy and government
* electronic commerce
* identification of business trends/intelligence
* delivery of health care
* tracking disease spread
* management of transportation systems
* criminal investigations
* product design
* projecting climate trends

17

hrology




eongnd siy

IBAR S| UO

INFORMATION
TECHNOLOGY
LABORATORY

NIST Workshop on Software Measures and Metrics to Reduce

Security Vulnerabilities

Purpose:
The Federal Cybersecurity Research and Development Strategic Plan seeks to
fundamentally alter the dynamics of security, reversing adversarles’ asymmetrical
advantages. Achleving this reversal Is the mid-term goal of the plan, which calls for

i secure systems and operation.” Part of the mid-term (3-7 years)

goal is "the design and implementation of software, firmware, and hardware that are highly
resistant to malicious cyber activities ..." and reduce the number of vulnerabilities in
software by orders of magnitude. Measures of software play an important role.

Industry requires evidence to tall how vulnerable a piace of software is, what technigues
are most effective in developing software with far fewer vulnerabilities, determine the best
places to deploy countermeasures, or take any of a number of other actions. This evidence
comes from measuring, In the broadest sense, or assessing properties of software, With
useful metrics, It Is stralght-forward to determine which software development technologles
or methodologies lead to sustainably secure systems.

The goal of this workshop Is to gather ideas on how the Federal Government can best use
taxpayer money to Identify, Improve, package, deliver, or boost the use of software
measures and metrics to significantly reduce vulnarabilities. We call for position statements
from one to three paragraph long. Position statements may be on any subject like the
following:

 existing measures of software that can make a difference In three to seven years,

Today’s

Workshop

NIST

National Institute of

Standards and Tachnolagy
A

ULS. Departmant

FEDERAL CYBERSECURITY
RESEARCH AND DEVELOPMENT
STRATEGIC PLAN

ENSURING PROSPERITY AND NATIONAL SECURITY

National Science and Technology Council

Networking and Information Technology

Research and Development Program

February 2016

surmountable barriers to adoption of measures and metrics,

e

aress or conditions of (or ) of measures,

means of validating software measures or confirming thelr efficacy (meta-
measurements),

software (esp. ones), or

quantities (properties) In software that can be measured,

sources of variability or uncertainty in software metrics or measures.

wouy abieyo Jo aal} a|qe|

sdpy :

02€-00S'dS" LSIN/8209 01 /610°10p//

standards (in both étalon and norme senses) needed for software measurement,

cost vs. benefit of software measurements,

The output of this workshap and other efforts is a plan for how best the Federal

Government can employ taxpayer money to

the mid-tarm.

18

curtail software




02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.3 Measuring Software Analyzability, Andrew Walenstein, BlackBerry

Measuring Software Analyzability

Andrew Walenstein
Director, Security Research & Development
Center for High Assurance Computing Excellence
BlackBerry

The views and opinions expressed in this position statement are those of the author
and do not necessarily reflect the official policy or position of BlackBerry.

The 2016 Federal Cybersecurity Research and Development Strategic Plan never directly defines
“sustainability” of secure systems development, but it is easy to read it as meaning “cost-effective.” If
so, the critical measure of any advance to secure systems development is the benefit it brings in terms
of “bang for buck”. Given the limited scalability and high costs of humans, surely this means automation
must be central to any comprehensive effort to advance sustainability of secure systems development.
How can we otherwise expect to dramatically drive improvements to the underlying economics? How
can we otherwise expect to scale? And if we're concerns more specifically on measuring software
systems so as to direct progress towards sustainable security, then it implies that software analysis
automation must be a key ingredient.

Indeed, the same federal Strategic Plan alludes to such automation and, in the case of formal methods,
it says “the applicability of these techniques is currently limited to modest programs with tens of
thousands of lines of code. Improvements in efficacy and efficiency may make it possible to apply
formal methods to systems of practical complexity.” That message is clear enough: our automation
cannot scale to our code, so the automation must be improved. However, we can also profitably view it
the other way around: given the automated capabilities we currently have, the code must be improved.
This is not a new proposition—to pick just one example, Gerard Holtzmann’s “Power of 10: Rules for
Developing Safety Critical Code” lists rules for software construction aimed at making its analysis (by
human or computer) easier. But how can we measure “software security-analyzability”?

There are some theoretical and empirical techniques available to draw upon from the software
obfuscation literature. Upon a little reflection it probably makes perfect sense why we should find it in
that literature. At BlackBerry we are just starting to explore a related notion and measure of modularity
supporting bounded model checking for security properties. For all the community’s efforts on
measuring our analysis tools---NIST’s own SAMATE workshops are a fantastic example—there seem to
be less emphasis on building measures of software analyzability. If we are aiming for sustainability
through automation, though, how heavily should we be betting that we can scale software analysis
more quickly than we can improve development techniques to yield more-analyzable software? And yet
it’s not even a race; rather, it seems prudent to try to get improvements in analysis and in software to
meet in the middle. So as a community let us make sure we adequately explore measures for “software
security-analyzability”.

19



02€-00S'dS LSIN/8209'0/610°10p//:sdny :woly abieyd jo sauy s|qe|ieAe s| uoneolignd siy |

MEASURING SOFTWARE ANALYZABILITY

ANDREW WALENSTEIN

CENTER FOR HIGH AssURANCE COMPUTER EXCELLENCE

=22 BLACKBERRY

POSITION

WE NEED TO BETTER MEASURE THE
ANALYZABILITY OF SOFTWARE

BeEcausE

WE NEED TO MEASURE THE SECURITY OF SOFTWARE BETTER.

-e
=22 BLACKBERRY

20



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

MOTIVATION AT BLACKBERRY

* Center for High Assurance Computing Excellence
» Security assurance research (collaborative)
* Have been exploring CBMC (with Oxford University)
+ CBMC = bounded model checker
* Turns checks into Boolean satisfiability problem
Read code = generate SAT formula = search for solution

C ﬁoﬁload

* Can be applied to find vulns due to integer overflow

222 BLACKBERRY 2

MODEL CHECKING FOR INTEGER OVERFLOWS

char* stagefrt( char* buffer, unsigned int count, lunsigned int| size)
{

unsigned int 1i;

unsigned int|alloc_size =|size * count; |

char®* copy = malloc( alloc_size );

for( i=0 ; i<count ;)
strncpy( copy + i*size, buffer + i*size, size );
return copy;

222 BLACKBERRY 3

21



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

CHECKABLE — ANALYZABLE

void calls() {
char buffer[1024];
unsigned int over = UINT_MAX/2 + 1;

stagefrt( buffer, 2, 2 ); < Verifies successfully using model checker
stagefrt( buffer, 2, over ); = Einds overflow

¥

=_=: BLACKBERRY 4

STILL ANALYZABLE

incl.h main.c
#define 1t void
#define 1k strncpy #include “incl.h“

#define 11 const
#define 1c char
#define 1d unsigned
#define la int

1c*11(c*1f,1d Ta 1g,1d 1a e
){1d 1a 1b;1d 1a

. 1j=Te*1g;1c*Th=Tm(13); Tu(1b=0;1
#define 11 stagefrt
#define 1m malloc b<lg;++1b) Tk(Th+1b*1e

EdeFina 1u For ,1f+1b*1e,1e);1g Th;}1a ToO{lc
1f[1024]1;11C1F,2,1p/2+1);}

#define 1q return
#define 1o main
#define 1p UINT_MAX

222 BLACKBERRY 5

22



02€-005°dS" LSIN/8Z09"01/B10°10p//:sdny :wouy 8B1eyd jo 881y o|qe|iene si uoieolqgnd siy L

void stagefrt2( char* buffer, unsigned int count, unsigned int size) {
unsigned int i;
unsigned int alloc_size;
1T ( count < size && ( size > 12 || count < 32 ) ) {
T ( size > 32 ) {
1T ( count < 3 )
|a110c_size = count * size;l}
else {
alloc_size = size;
count = 1; }}
else 1f ( size > 1024 || (count < 42 &% size > 2 ) ) {
alloc_size = size;
count = 1; }
else {
alloc_size = size;
count = 1; }

char®* copy = malloc( alloc_size );
for (i=0 ; i<count ; ++i )
strncpy( copy + i*size, buffer + i*size, size );

}

222 BLACKBERRY s

ACTUAL PROBLEMS FOR BMC

void calls() {
extern unsigned int unstated;
char buffer[1024];
unsigned int over = UINT_MAX/2 + 1;

stagefrt( buffer, 2, unstated ); S ———————————FP?

stagefrt( buffer, 2, encrypt(msg,pw)==res ? 2 : over );

}
f Hard...

222 BLACKBERRY 7

23



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

MEASURES/METRICS APPROACH

“We can’t hope to raise the cybersecurity
bar if we don’t know how to measure its

height”
David Kleidermacher, CSO BlackBerry

Theory / approach
= Measuring drives improvement and investment — objective function
= What kind of improvement do we expect?

222 BLACKBERRY s

GOALS: HEIGHT OF THE BAR

Economically
» “sustainably secure systems development and operation” — economic
viability question, not feasibility

Fantastically
» “reduce the number of vulnerabilities in software by orders of magnitude”

Urgently:
= A 3-7 year goal

222 BLACKBERRY =

24



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

GOALS — AUTOMATION

Automation is the key
» We want sustainability

« How can costly humans be the answer?
= We seek orders of magnitude improvement

« How can we do this without mobilizing orders of magnitude better
automation?

Security assurance automation

= Assurance = level of confidence that software functions as intended and is
free from vulnerabilities (Mitre)

= Focus: checking security properties — the root of all confidence

'-'5: BLACKBERRY 1o

TOOL LIMITATIONS

On formal methods: On static analysis coverage:

“the applicability of these “Static tools only see code they can follow,

techniques is currently which is why modern frameworks are so

limited to modest programs difficult for them. Libraries and third-party

with tens-of-thousands of components are too big to analyze

lines of code. Improvements statically, which results in numerous “lost

in efficacy and efficiency may sources’ and “lost sinks’ —toolspeak for “we

make it possible to apply have no idea what happened inside this

formal methods to systems library.” Static tools also silently quit

of practical complexity” analyzing when things get too complicated.”
Federal Cybersecurity R&D Strategic Plan : Why It’s Insane to Trust Static Analysis

=_=: BLACKBERRY '

25



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

“ ANALYSIS GAP

Security Check

» Gap between what we can Analysis Difficulty

automatically check and what

we need to
= We need to reduce that gap Commercially
» Common focus: height of Analysis Gap relevant
. systems we
green -- need better checking Care about
tools
= But what about asking if we .
K ft Effective
can make software more security
analyzable? assurance
automation

BLACKBERRY 12

MAKING SOFTWARE ANALYZABLE

Gerard Holzman proposed 10 coding guidelines for safety critical code.

When it really counts, ..., it may be worth going the extra mile and living
within stricter limits.. In return, we should be able to demonstrate more
convincingly that critical software will work as intended

Example Rule Rationale

Restrict all code to Simpler control flow translates into stronger

very simple control capabilities for verification... Without recursion, ...,
flow constructs - do we are guaranteed to have an acyclic function call
not use goto graph, which can be exploited by code analyzers,
statements, ... and and can directly help to prove that all executions
direct or indirect that should be bounded are in fact bounded.
recursion.

Gerard ). Holtzman — NASA/IPL — The Power of 10:
-
=22 BLACKBERRY 13

26



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

‘I APPROACH | : HEURISTIC METRICS

Recipe

1. Identify properties of code that make it hard to analyze by “typical”
analyzers

2. Define metrics that relate to those code properties

Example
= Holzmann: do not use goto statements, ...., and direct or indirect recursion
= Measure: based on observing gotos, direct and indirect recursion

Tradeoffs
= Easy to generate; might be pretty tool-independent
* No theory to guide and assess — we don’t want under- or over-restrictive

[
=22 BLACKBERRY 14

u APPROACH 2: EMPIRICALLY MEASURE

Recipe
1. For a given tool, identify ways in which analysis is weakened by code
2. Modify analysis tools to provide measures of analyzability

Example

» Tool can find data exfiltration tracking taint through some pointers, but not
all

= Modify tool to output measures relating to its success in following the taint

Tradeoffs
= Should be possible for many (all?) tools
* How usable / actionable are the reports?

»»
=22 BLACKBERRY s

27



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

‘I APPROACH 3: NEW SOFTWARE METRICS?

= Problem: code not modularized well for the purposes of checking using
CBMC
+ Difficult to set up a small checking “environment” or calling context
*  End up writing complex “drivers” and “stubs” and even modify the code
+ Notorious problem in model checking community
» Essentially a modularity problem — the wrong modularity?

* The code might be considered nicely modular in terms of “ordinary”
modularity metrics

« But from the point of analyzing the code with CBMC, it was a tangled mess
» [s it possible to define new modularity metrics that ease CBMC-analyzabilty?
= Not yet sure — ongoing research

[
=22 BLACKBERRY ]

u APPROACH 4: ADAPT OBFUSCATION THEORY?

Theory

» Obfuscation = transformations that make analyzers break

» Making software more analyzable = deobfuscation

= Approach: define metrics using available theories of obfuscation potency

Example

= Giacobazzi and Dalla Preda use Abstract Interpretation to define
obfuscation in terms of transformations that make analyzers incomplete

* Yields a theoretical madel for defining potency and camparing potency
+ Can we use this approach to define metrics on code?

»»
=22 BLACKBERRY 17

28



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

ANALYSIS GAP AND THE FUTURE

Security Check Analysis Difficulty
= What does the future hold

for automation of security
analysis?

Commercially
relevant
systems we care
about

Analysis Gap
= Where should we place our
bets for making orders of

magnitude improvement? _
Effective

security
assurance

Imaging charting the green automation

and blue peaks into the .
future.... 2016 2023 Time

[
=22 BLACKBERRY s

AUTOMATION REVOLUTION (CLOSED UNIVERSE)

= Fantastic improvement in

automated security assurance
(Henry Gordon Rice is astounded)

= Catch up to and surpass
current needs

= Effective elimination of classes
of vulnerabilities

BLACKBERRY o

29



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

“ REGRESSION (OPEN UNIVERSE)

= Analysis loses ground

= Not promising for the
future

[
=22 BLACKBERRY 20

u STASIS (FLAT UNIVERSE)

» Analyzability of software rises at
same rate as our tool abilities

= Huge improvement possible for
some systems

» Butgap is same = same lack of
assurance...have we succeeded
on our goals?

AV LN

BLACKBERRY Y

30



02€-005°dS" LSIN/8Z09"01/B10°10p//:sdny :wouy 8B1eyd jo 881y o|qe|iene si uoieolqgnd siy L

BETS?

Sustainable orders of magnitude increase in security in 5-7 years
» Where is your bet how it will most likely come to pass?

A. Non-automation

*+ Humans, processes, standards, ...
B. Improvements in automation

* Improved & cheaper formal methods, program analysis, test generation...
C. Improvements in software analyzability

« Processes and tools that generate more analyzable code

[
=22 BLACKBERRY 23

‘I RENDEZVOUS MODEL

= Automation improves slowly

» Analyzability is measured and
slowly improves analyzability of
code

BLACKBERRY 2z

31



02€-005°dS" LSIN/8Z09"01/B10°10p//:sdny :wouy 8B1eyd jo 881y o|qe|iene si uoieolqgnd siy L

‘I POSSIBLE STEPS FORWARD?

1. Defining new measures, metrics
+ We can start defining as best we can and measure their utility.
2. Modifying tools to support analyzability improvements

+ Reporting loss of completeness/precision — and highlight problem code
features?

» Automated de-obfuscators?
3. Language / framework design

+ Can we make analyzability a key design feature?
4. Process change

* Analyzability as a quality?

* Analyzability gap as a type of maintenance debt?

[
=22 BLACKBERRY 24

32



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.4 Dealing with Code that is Opaque to Static Analysis

Barton P. Millertt James A. Kupschtt Vamshi Basupallit$ Elisa Heymannt*
tComputer Sciences Department, University of Wisconsin

¥DHS Software Assurance Marketplace (SWAMP)

* Autonomous University of Barcelona

Critical to producing secure software is the need to assess that software for weaknesses (and
ultimately, vulnerabilities). A key part of such an assessment is the use of static analysis tools
for scanning that software for weaknesses. Especially for legacy languages such as C and C++,
these tools are often confounded by constructs that are too complex to analyze, leaving
significant blind spots in programs written in these languages. Notable recent exploits, such as
Heartbleed and the glibc DNS vulnerabilities, are examples where arcane (but not rare) coding
practices prevented even the best of existing tools from finding the weaknesses that allowed
the exploits. Current tools do not (and many cannot) distinguish between not finding a
weakness because it is not present and not finding it because it is too difficult to find. The
legacy programming languages will be with us for a long time, because many of our

current major operating systems, systems software, server platforms, and even applications are
written in these languages.

While there are many commonly used code metrics, our experiments have shown that these
metrics do not strongly correlate with characteristics of a program that make it opaque to static
analysis. Common metrics measure deal with shallow syntactic features including simple counts
such as number of lines of code, comments, methods or fields; complexity measures of
functions or methods computed from the simple counts such as cyclomatic complexity or
Halstead complexity; and measures of relationships of properties of a function or class to
others computed from simple counts such as cohesion or coupling. These measures do not
capture the necessary characteristics of a program that would indicate which parts of a
program can be reasonably analyzed.

We outline a research program to produce a new class of metrics, called semantic opaqueness
metrics, that identify the parts of a program for which a static analysis tool cannot come to a
firm (or perhaps even sound) conclusion that the code is demonstrably safe or unsafe. These
metrics would be based on a deeper semantic analysis of the program, using state-of-the-art
control and dataflow techniques. Such metrics would give guidance to the programmer so that
they can transform the opaque parts of the code, simplify the code structure, such that static
analysis tools can make definitive statements about the code. These metrics also will allow a
more accurate scoring of programs according to their resistance to analysis (and therefore
likely to be hiding critical weaknesses). A rapid path forward, allowing substantial progress in
the 3-7 year timeframe is to base this work on a powerful open source compiler framework
such as clang/LLVM or gcc. The broader impact of such an approach is that we can evolve

our legacy code base, and new software written in legacy languages, such that we have
effective means to assess this code.

33



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

L]

-

L]

Dealing with Code That Is
Opaque to Static Analysis

Barton P. Miller™, James A. Kupsch™,
Elisa Heymann', Vamshi Basupalli**

NIST Workshop on Software Measures and Metrics
to Reduce Security Vulnerabilities

Gaithersburg, MD

July 12, 2016

*Cnmpuber Soherces Dapartera m, Urivears ity of Wisconsin
HOHS SoMwars Assuranca Marketplase [SWERMP]
"dsAonomous Urirgersity of Barrelona

Recent Experience

Reviewed high profile vulnerabilities
— Heartbleed (CVE-2014-010)
— glibc DNS resolver (CVE-2015-7547)

Obtained vulnerable source code

Ran static code analysis tools on each
Tools failed to find the bugs

Bug was opaque to the tools

34



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

Heartbleed

At it's heart (sorry), it's just a buffer overflow...

* Failure of the OpenSSL library to validate the heartbeat packet length
field (as compared to the size of the actual message).

* Heartbeat packets are contained within TLS packets.

* The heartbeat protocol is supposed to echo back the data sent in the
request where the amountis given by the payload length.

* Since the length field is not checked, memcpy can read up to 64KB
of memaory.

memcpy (bp| [pl] payloadp:

I |
Destination, Allacated, Length field, Supplied by
used, and freed. OK. an untrusted source,

Source. Buffer with the
heartbeat record.
Improperly used.

TLS Heartbeat Protocol

|t',.rpa | version I ler |rnessaga | TLS record
type QN payload | padding Heartbeat message
Len is the total message Nalz=ad

length in bytes I
| lllegally large message len allows reading ~64KB l/

Len is the number of bytes
of the payload. Should be
constrained by the total
message length, header (3),
and minimal padding (16)

35



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Added length check to remediate:

Heartbleed

if (l+2+payload+l6 > s->s3->rrec.length)

return 0 // silently discard

And none of the current tools could fine the
problem...why?

o

Here’s the offending code, slightly redacted

2556

2563
2564
2565
2566
2587
2568
2569
2570
2571
2573
2574

2580
2581

2584
2585

@ 2586

unsigned char *p = &s->33->rrec.data[0], *pl;

n2s({p, payload);
pl = p;

if (s->msg_callback)
s->msg callback(0, s->version, TLS1 RT HEARTEEAT,
Eg->»g3->rrec.data[0], s->33->rrec.length,
s, s->»msqg callback arg):

if (hbtype == TLS1 HBE REQUEST) {
unsigned char *buffer, *bp;
int r;

buffer = OPENSSL malloc (1+2+payload+padding) ;
bp = buffer;

*bp++ = TLS1 _HE RESPONSE:

sZn(payload, bp):
memcpy (bp, pl, payload); ) *

36



02£-00S°dS 1SIN/8209°01/B10'10p//:sdny :wou) 8b1eyd jo aal) s|gejieAe s| uoneolgnd siy |

Here’s the offending code, slightly redacted

2556 unsigned char *p = gg-»>g3->rrec.datal0], #*pl;

2563 n2s(p, paylead); 1. Find the heartbeat packetin
pees & _
2565

2566 if (s->msg_callback)

2567 s->meqg callback (0, s-»>version, TLS1 RT HEARTEEAT,
2568 &g->g3->rrec.data[0], s->33->rrec,length,
2569 =, s-rmsg callback arg);

2570

2571 if (hbtype == TLE1 HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int x;

2580 buffer = OPENSSL_malloe (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1l_HE RESPONSE;
2585 s2n(payload, bp);

!@ 2586 memepy (bp, pl, payload) ; *

Here’s the offending code, slightly redacted

2556 unsigned char *p = g&s->33->rrec.datal0], *pl;
2563 n2s(p, paylead); 2. Extract user-stated payload

2564 pl = p:
2565

2566 if (s->msg_callback)

2587 s->msg callback(0, s->version, TLS1 RT HEARTEEAT,
2568 Eg->»g3->rrec.data[0], s->33->rrec.length,
2569 s, s->»msqg callback arg):

2570

2571 if (hbtype == TLE1_HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL malloc (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1 _HE RESPONSE:

2585 sZn(payload, bp):
!:@ 2586 memepy (bp, pl, payload) ; ) *

37



02£-00S°dS 1SIN/8209°01/B10'10p//:sdny :wou) 8b1eyd jo aal) s|gejieAe s| uoneolgnd siy |

Here’s the offending code, slightly redacted

2556 unsigned char *p = gs-»>33->rrec.datal0], #*pl;
2563 n2s(p, paylead): 3 pl is an alios to the heartbeat

2564 pl = p;
2565

2566 if (s->msg_callback)

2567 s->meqg callback (0, s-»>version, TLS1 RT HEARTEEAT,
2568 &g->g3->rrec.data[0], s->33->rrec,length,
2569 =, s-rmsg callback arg);

2570

2571 if (hbtype == TLE1 HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int x;

2580 buffer = OPENSSL_malloe (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1l_HE RESPONSE;
2585 s2n(payload, bp);

!@ 2586 memepy (bp, pl, payload) . *

Here’s the offending code, slightly redacted

2556 unsigned char *p = g&s->33->rrec.datal0], *pl;

2563 n2s(p, paylead); 4. Length of TLS packet that

2564 pl = p:
2566

if (s->msg_gcallback)

2587 s->msg callback(0, s->version, TLS1 RT HEARTEEAT,
2568 Ez->»g3->rrec.data[0], s->a33->rrec.length,
2569 s, s->»msqg callback arg):

2570

2571 if (hbtype == TLE1_HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL malloc (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1 _HE RESPONSE:

2585 sZn(payload, bp):
!:@ 2586 memepy (bp, pl, payload) ; ) *

38



02£-00S°dS 1SIN/8209°01/B10'10p//:sdny :wou) 8b1eyd jo aal) s|gejieAe s| uoneolgnd siy |

Here’s the offending code, slightly redacted

2556 unsigned char *p = gs-=g83->rrea.data[0], *pl;

2563 n2 . load) ;
2564 pi o R 5. payload length should be < TLS

2566

if (s=->msg_callback)

2567 s->meqg callback (0, s-»>version, TLS1 RT HEARTEEAT,
2568 &s->g3->rrec.data[0], s->33->rrec.length,
2569 =, s-rmsg callback arg);

2570

2571 if (hbtype == TLE1 HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int x;

2580 buffer = OPENSSL_malloe (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1l_HE RESPONSE;
2585 s2n(payload, bp);

!@ 2586 memepy (bp, pl, payload): *

Here’s the offending code, slightly redacted

2556 unsigned char *p = g&s->33->rrec.datal0], *pl;

2563 n2z(p, payleoad): 6

2564 pl = p: . allocate enough memory for echo
2566

if (s->msg_gcallback)
2587 s->msg callback(0, s->version, TLS1 RT HEARTEEAT,
2568 Eg->»g3->rrec.data[0], s->33->rrec.length,
2569 s, s->»msqg callback arg):
2570
2571 if (hbtype == TLE1 HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL malloc (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1 _HE RESPONSE:

2585 sZn(payload, bp):
!:@ 2586 memepy (bp, pl, payload) ; : *

39



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Here’s the offending code, slightly redacted

2556 unsigned char *p = gs-»>33->rrec.datal0], #*pl;

2563 n2s(p, paylead); 7. Copy heartbe_at data based on the

2564 pl = p;

2565

2566 if (s->msg_callback)

2567 s->meqg callback (0, s-»>version, TLS1 RT HEARTEEAT,
2568 &g->g3->rrec.data[0], s->33->rrec,length,
2569 =, s-rmsg callback arg);

2570

2571 if (hbtype == TLE1 HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int x;

2580 buffer = OPENSSL_malloe (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1l_HE RESPONSE;
2585 s2n(payload, bp);

!@ 2586 memepy (bp, pl, payload): ) *

Here’s the offending code, slightly redacted

2556 unsigned char *p = g&s->33->rrec.datal0], *pl;

2563 n2z(p, payleoad):

2564 pl = p: Need to actually know that payload
2566

if (s->msg_gcallback)

2587 s->msg callback(0, s->version, TLS1 RT HEARTEEAT,
2568 Eg->»g3->rrec.data[0], s->33->rrec.length,
2569 s, s->»msqg callback arg):

2570

2571 if (hbtype == TLE1_HE REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL malloc (1+2+payload+padding) ;
2581 bp = buffer;

2584 *bp++ = TLS1 _HE RESPONSE:

2585 siZn(payload, bp):
!@ 2586 memcepy (bp, pl, payload) : ) *

40



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

Heartbleed

Conceptually, this is just an exercise in taint analysis. We need to following
the original enclosing TLS packet from a socket, marking it as tainted.
Before disclosure:

- No tocls we tried found the bug
— Mo tools we know of found the bug

Coverity “fixed” their tool by noting that extracting the integer payload
length from a network byte-order uses a byte-swap instruction on a little
endian machine, and such a swap instruction is rare enough that thisis a
sign that the data comes from the network.

GrammaTech could do the taint analysis starting at socket buffers, but
didn’t do it because it was too slow in practice. When they turned it on for
the right section of code, it found the problem.

® - i

Difficulties for SCA Tools

* Legacy languagesinherent features
— Raw memory access
— Lack of type safety
— Manual resource management
— Pointers and pointer arithmetic

* Code complexity
— Indirection
— Large program state
— Complex control flow

) B

41



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Why SCA Tool Fail to Report

Not deducing accurate set of values or properties
(tainted, initialized, not null, ...) for variables

Not deducing correlation between variables

Using heuristics to determine likely values or
properties

Uncertain results not reported to reduce false
positives

Confidence score may point to opaque code, if
there is a report

For non-reports, no way to convey confidence

@

Dynamic Analysis Tools

We do not know of any dynamic analysis tools that
found these vulnerabilities
Difficulties:

— Generating correct bad input sequence
— Input data space is large
— Input data sequence is complex

42



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Goal: Less Opaque Code for SCA

* Two approaches

— New code:

* Use modern languages to prevents some defects
— D, Rust, modern C++

* Use (more) analyzable subset of language
— MISRA
— Checked C
— C++ Core Guidelines, GSL (guideline support library), and SCA

— Legacy co de (andto a lesser extent new code):

+ |dentify parts that are opague
* Current metrics do not identify opaque code

Common Metrics

= Metric Types
— Simple counts:
+ Lexical elements: lines of code, comments, ...
* Syntactic elements: parameters, types, operators, ...
+ Per function, file, or code base
— Calculated metrics:
+ Examples: Cyclomatic, Halsted
* Per function
— Relationships between functions, classes, ...
* Examples: Coupling, Cohesion, Connascence
+ Per pair of functions, classes, ...
* In our experience, these metrics did not correlate with
weaknesses or static analyzability

* Focus: cost to develop, maintain, test, enhance, ...

@ }‘f‘.*

43



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Proposal: Opaqueness Metric

* Develop tools that identify program complexity in
terms of opaqueness to analyzability by SCA tools
— Semantic complexity of code that reaches a tool's ability to
report due to reaching limits of the analysis algorithm's
+ Decidability
* Implementation

— Score regions of the source code with an opagueness score
— Also include rationale for poorly scoring regions

* Provide prescriptive advice to transform the code to
be less opaque to SCA (more easily and correctly
analyzable)

8 i

SCA Tool Providers Path Forward

* Best semantic code analysis is in commercial tools
* SCA tools already have much of the information

— Know where assumptions are made

— Location of assumptions are accurate

— Should be accurate for users of the tool
* Limitations

— Inherently not in their interest, reporting limitations is
bad for marketing

— Specific to the types of problems the tool finds and the
power of the tool *

44



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Broader Path Forward: Develop Tool

— Start with existing open source analysis framework
= Clang Static Analyzer
* Gcc

— Fund open source tool based on framework to score
the source code based on its opaqueness to static
analysis

— Develop prescriptive guidance on transforming source
to make code less opague

Questions

SW/IMP

Tkl A 55 LE AN T st rribol

WISCONSIN

UMIVERSITY (fF WISCONSIN-MADISON

45



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.5 UL's Position Statement:

UL believes that reducing software vulnerabilities will take considerable time, and requires a
paradigm shift in the way how organizations develop software and firmware products, and how
it can be measured. There are several ways to address software vulnerabilities. Reducing
software vulnerabilities requires at a minimum 3 measures. The following summarizes the
intent UL is proposing to both its customers and the industries involved:

1)

2)

3)

Develop a scientific methodology to assess software and provide metrics tied to how
software vulnerabilities can be identified and measured and means to address them.
This methodology must be in stages. It must look at some of the fundamental software
and environmental weaknesses that contribute to software weaknesses becoming
vulnerabilities and providing a path for industry to address. To engage this in a
methodical manner, it must be done in stages with some of the foundational problems
to be addressed in the first phase, working with industry to adopt, and then
supplementing those problems with newer more complex problems in future phases.
Industry acceptance via adoption and not by mandate is key to resolve.

Provide an independent third party means to assess industry's ability to meet the
requirements defined in phase 1. These should be driven by the procurement means of
the government and not by mandate. The procurement means can provide the incentive
to drive industry adoption.

Provide additional requirements to support industry vendors in learning how to build
security into software to reduce the vulnerabilities that can arise. Helping industry build
better software reduces the case for vulnerabilities.

UL has developed several foundational standards under the UL 2900 series under the UL
cybersecurity assurance program that can support the initiatives above. This method can
promote industry to develop better software and encourage purchasers of software to require
better software

Ken Modeste
Connected Technologies

UL LLC

Commercial & Industrial(C&l)

333 Pfingsten Road, Northbrook, IL 60062-2096 U.S.A
Phone: 847-664-2659

Cell: 847-682-9703

Ken.modeste@ul.com

46


mailto:Ken.modeste@ul.com

02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.6 William R. Nichols, Software Engineering Institute

William R. Nichols, Software Engineering Institute

A recent update to a major mobile OS included security patches to address violations of least privilege,
buffer overflows and multiple cases of memory corruption, all of which were common security problems
as long ago as the 1990s. It’s striking that after all these years, common implementation defects remain
a major source of software security vulnerabilities, including such well known examples as OpenSSL
Heartbleed and Apple “goto fail.” Research literature shows that software defect rates contribute to
these vulnerabilities, providing evidence that 1% to 3% of all released defects in the Windows and Linux
operating systems were potentially exploitable. Based on this, we at the SEI believed that 1) quality
attributes such as security are undermined by defects, 2) defective software cannot be secure, and 3)
we can estimate the number of vulnerabilities if we know the overall defect level. To test this, we
examined a small number of industry software products that have very low levels of defects. In these
products, we found proportionally lower levels of vulnerabilities or safety critical issues. What the
products had in common was a robust measurement framework supporting early and effective defect
removal; this framework allowed the system developers to manage the quality processes during
implementation. We therefore concluded that improving the quality in implementation is something
that can be and is being done right now to reduce security vulnerabilities.

While the current quality improvements are a step in the right direction, they’re only one part of making
secure software. The software development lifecycle can incorporate many tools that can statically
analyze source code, statically and dynamically analyze executables, examine for code coverage, scan
web services, implement numerous testing techniques, and so forth. We also have assurance cases,
architecture analysis and design language, architectural tradeoff methods, and design and code
inspections. But how do these processes, practices, and tools contribute to creating an affordable,
secure development process that can be implemented successfully?

Today, the real world costs and benefits of these efforts are largely a matter of expert opinion, which is
helpful but insufficient. To be successful, the development process must be both effective and efficient,
based on validated measures, so that we can determine not only how to compose the process but also
how successful the process is. Since no tool or technique is perfect, real systems will be composed of
numerous techniques for requirements, analysis, design, and implementation. We need to understand
both the benefits and costs of these techniques as they fit into a comprehensive and coherent
framework that includes measures of the product and the costs to produce it. To achieve the next level
of security, our processes must meet measures of both effectiveness and cost; studies are needed to
establish economic benchmark data for these measures, based on real world development.

47



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.7 Assessing the Cybersecurity of Federal Source Code with CISQ Measures
Bill Curtis, Executive Director, Consortium for IT Software Quality (CISQ)

Abstract:

Recent breaches compromising the confidentiality of Federal records accentuate the need for structural
analysis of cybersecurity weaknesses in the source code of Federal systems. Advances in static analysis
technology enable detection of a wide range of source code weaknesses that can be exploited to gain
unauthorized entry. The Consortium for IT Software Quality (CISQ) is chartered by its sponsors to create
standards for automating measures of software size and quality. CISQ standards have recently been
approved by the Object Management Group for Automated Function Points, Reliability, Security,
Performance Efficiency, and Maintainability. The latter four quality measures are based on definitions
of these characteristics in ISO 25010, and provide source code level measures that supplement the
largely behavioral measures in ISO 25023.

CISQ’s Security measure is calculated from assessing 22 of the Top 25 weaknesses in the Common
Weakness Enumeration repository (i.e., CWE/SANS Institute Top 25, OWASP Top 10) that can be
detected through static analysis. These weaknesses include well-known culprits such as SQL injection,
buffer overflows, and cross-site scripting. This measure provides an accurate indicator of the likelihood
an attacker can find an exploitable weakness in a Federal application. Both the Software Engineering
Institute and CAST have recently found that weaknesses causing reliability problems can in some cases
be exploited for unauthorized entry, indicated that security is bound to other aspects of software
quality. Since poor quality code is also insecure code, the overall structural integrity of Federal source
code should be assessed to insure cybersecurity. Recent analysis results from government systems will
be presented.

The continuing stream of breaches exploiting SQL injection, a weakness known since the late 1990s,
indicate that both commercial and government IT departments are not doing enough to reduce the
vulnerability of their applications. Based on recent embarrassing breaches, Federal IT needs a major
undertaking similar to the Y2K endeavor to rid Federal source code of the most easily exploited
weaknesses. Federal executives need to 1) assess the cybersecurity risk of agency systems using the
CISQ standards along with other measures, 2) enforce remedial actions based on measurement results,
and 3) develop policies to strengthen the cybersecurity of software in Federal agencies and in industries
they regulate.

48



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

CISQ Measures of Secure, Resilient Software
OMG Standards for Software Measurement

Dr, Bill Curtis
Exeoufive Diractor, CIS0

CISQ whatis cisQ?

Lot s b P Sy

f Carneie Mellon L.‘] f :"* [a

— Software Engineering Institute

QRIICT MARAGIMIAT GHDEF

Co-founders

CI5Q is chartersd to define
OoMG automatable measures of
Special software size and quality accenture @ Cognizant
that can be measured in the B - ;
Interest source code, and promote ”ﬁrllr:'?i‘#ﬁ-;'ﬁ;. 3ﬂ|[||‘5'f5
rou them to become Approved 1
Group Specifications of the OMG® R @@.

HUAMNE]

49



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

CISC] CISQ Measurement Standards

M Automated Function
= Points

~

Reliability

Performance
Efficiency

Maintainability

CISQ) Measuring the Technology Stack

o Unit Level

see g I K Dyt
+ Expressica complexity
¢+ Code decumantntinn
& sy o progeam design
+  Bamic coding siandards
+ [eyplopar lnved

e Technology Lewvel

+ Single languageftechnology layer
+ [intrastechnodogy architectsre

» Intri-layer dependencies

» Inber-program invacatian

= Seelsty vilSnerabiliGes

s Developssen team lovel

o System Lewvel

hulti-langpuage, mulb-lyer Archdeciure

= Imssguntion qualiey = [isfs access comern|
» Srchitecswal complinnes = 0K vessioning
= Higk geopagaiinn = Cabiwntion scroes
= Bpplicatics securisy (Bt tn -t
» Hegilioney checkn = |T cegonization jsveld
= Transackios iningrisy
= Fumction piss,

TR » Effcat petimation

Technology Stack

50



02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

C|SD Relating CISQ Measures to ISO

+ 180 25000 series replaces ISONEC 9126 (Parts 1-4)

« 130 25010 defines quality characteristics and sub-characteristics
+  CI5@ conforms to IS0 25010 quality characteristic definitons

« 180 25023 defines measures, but not at the source code level

+  CIS@Q supplements IS0 25023 with source code level measures

Software
Product
Quality
I 1 1 1 ’ I I ]
Functional | Reliability | Pertormsncs | Operabilny Secuiiity || Compatibiliey | Mamaine | Ponabilicy
Suitability elliciency ability
| I ! | I. | I
Furctiorsl Waterity Tirres- Ay Gonfi G Morbularty
appropraleness el by [asherviou” recognEabiy Infmeoperatuity || Rusabilliy I
Amracy Faw ind = L bokty Hmmulrl Complancs Araiyzatiiy Reﬂmw;v
Comphanca || Recovarabiity || wblsaion Earsa of usi Acoonimbdny Changaabd by Compianca
Comg Garrg P P Mo bk
Technical Compliance Tﬂiﬁp
accassibdiy wstaisdiy
Complance Comphanca

Ci50 dafined auformatabie measwes for quality characianslics highiighfed in bius

CI2Q Quality Characteristic Measures

) 22 violations
Security
(Top 25 CWEs)
Reliability 29 violations
Performance 15 violations

Efficiency

VEEG L 20 violations

Example violations of good
architectural and coding practice
that compose the CISQ measures




02€-005'dS’ LSIN/8Z09°01/B10"10p//:sd]Y :wioly oB1eyd Jo aaly ojgejiee s| uonesrgnd siy L

CISQ) security Measure— Top 22 CWEs

Lot vy b Tl w-Chasiy

- CWE-22

« CWE-T3

« CWE-T9

. CWE-89

. CWE-120
. CWE-129
. CWE-134
« CWE-252
« CWE-327
« CWE-396
. CWE-397
. CWE-434
. CWE-456
. CWE-606
« CWE-GET
« CWE-E72
« CWE-631
= CWE-TDG
. CWE-T72
. CWE-789
. CWE-798
. CWE-835

Path Traversal Improperinput Meutralization

08 Command Injection improper Input Neutralization
Cross-site Scripting Improper Input Neutralization
24aL injection Improper Input Neutralization

Buffer Copy without Checking Size of Input

Array Index Improper Input Meutralization

Format String Improperinput Neutralization

Unchecked Return Parameter of Control Element Accessing Resourcd

Brokenor Risky Cryplographic Algarithm Usage
Declaration of Catch for Generic Exception

Declaration of Throws for Generic Exception

File Upload Improperinput Meutralization

Storable and Member Data Element Missing Initialization
Unchecked Input for Loop Condition

Shared Resource ImproperLocking

Expired of Released Resource Usage

Numeric Types Incomect Conversion

Name or Reference Resolution improper Input Neutralization
Missing Release of Resource after Effective Lifetime
Uncontrolled Memory Allocation

Hard-Coded Credentials Usage for Remote Authentication
Loopwith Unreachable Exit Condition ('Infinite Loop’)

Robert Martin
MITRE

Commeon
Weakness
Enumeration

cwe.mitre.org

BlSD Issue — Quality Rule — Measure Element

il iy it Il wi-Shaiy

lssue

CWE-79: Improper
Meutralization of Input
During Web Page
Generation ['Cross-site
Scripting')

Quality Rule

Rule 1: Use a vetted library or
framework that does not allow
this wieakne 33 10 secur of
provides constructs that make
this weakness easierto avoid,
such as Microsoft's Anti-X55
library, the CWASP ESARI
Encoding module, and Apache
Wicket.

Quality Measure Element
Measure 1: # of instanceswhare
output is not using library for
nutralization

CWE-B9: Improper
Meutralization of Special
Elements usad in an SOL
Comrmand ["SOL Injection')

Rule 2: Use a vetted lbrary or
framewoork that does not allow
S0L injection to occur or provides
constructs that make this S0OL
injection easier to avoid ar use
persistence layers such as
Hibernate or Enterprise lava
Beans.

Measure 2: # of instances where
data is incleded in S0L statements
that is not passed through the
neutralization routines.

52




02€-005°dS" LSIN/8Z09"01/B10°10p//:sdny :wouy 8B1eyd jo 881y o|qe|iene si uoieolqgnd siy L

BlSD CISQ Conformance and App Certification

CIsQ Conformance ClSQ-conformant
measures assessment technology
Coar
Vendor-approved
service process

c MG Application

- only assess conformance
- do not certify applications
- pragram inibates 2016

CISQ www.it-cisq.org

il iy it Il wi-Shaiy

PUPEE S —

_Ciea e = m.w...o..; |

=N

Membershipis free
Measurement standards
White papers, blogs
Structural quality resources

b‘

Sty b 17 Bl T

|

Automated FPs  http:/iwww.omg.org/spec/AFP/

Security hitp:/lwww.omg.org/spec/ASCSMN/
Reliability http:/iwww.omg.org/spec/ASCRM/
Performance http:/iwww.oma.ora/spec/ASCPEM/

Maintainability hittp:/lwww.omg.org/spec/ASCMM/

53



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.8 Mostly Sunny with a Chance of cyber

Mostly sunny with a chance of cyber?

David Flater, NIST, 2016-05-09

Counting known vulnerabilities and correlating different factors with the vulnerability track
records of software products after the fact is obviously feasible. The harder challenge is to
produce “evidence to tell how vulnerable a piece of software is” with respect to vulnerabilities
and attack vectors that are currently unknown. This means forecasting the severity and the
rate at which currently unknown vulnerabilities will be discovered or exploited in the future,
given a candidate system and its environment.

Meteorologists can observe the present state of a weather system and assume that the future
state must evolve from it through the application of known physics. Small features that are
below the resolution of the radar are correspondingly limited in their impact, so the uncertainty
can be bounded. But for computer system vulnerabilities, there are no analogous limits. High-
impact exploits of tiny, obscure quirks that were not on anyone’s “radar” appear with
regularity. Although the resolution of that “radar” is continuously improved, the complexity of
systems is increasing faster, so the relevant details are inexorably receding into the background.

Under these conditions, our best available predictors of future vulnerabilities in systems that
were responsibly designed and implemented may be nothing more than metrics of size,
complexity, and transparency. Unexciting as it may be, there is rationality to this approach. To
develop a market for smaller, simpler, more verifiable systems would not be too modest a goal
for a large government effort to attempt.

! Disclaimer: This statement reflects only the views of the author on the topics discussed, and does not
necessarily reflect the official position that NIST may have about those topics.

54



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Mostly sunny
with a chance of cyber

David Flater
dflater@nist.gov
2016-07-06

1. This presentation reflects only the views of the author on the topics
discussed, and does not necessarily reflect the official position that MIST
may have about those topics.

2. ldentification of commercial products and entities is not intended to imply
recommendation or endorsement by MIST, nor is It intended to Imply that
the products or entities are necessarily the best available for the purposa.

| added these notes after the workshop to include important points that don't appear in the
text of the slides.

Thesis

* The nature of the challenge is not measurement,
but prediction

* Conditions are unfavorable for making a rational
prediction

* Measuring what is measurable and applying
empiricism will move us forward

* Measuring cost reveals a complication

55



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

NIST Workshop on Software Measures
and Metrics to Reduce Security
Vulnerabilities

Challenge: produce “evidence to tell how vulnerable
a piece of software is”

Software artifacts —‘ p
Development and 4
maintenance — —_— I
processes @ " N
Other artifacts hé hn

Some measurement process Some [surrogate] measure of
vulnerability expressed as a

magnitude with meaningful
units and a confidence interval

The metrology perspective is that measurement is about quantities. A quantity like 5 kg has
meaning because it is defined as 5 times a standard reference, the unit. In most cases it would
be nonsense to say that Software A is 5 times as vulnerable as Software B. Vulnerability is a
quality, not a quantity. At best we may measure some quantity that helps us to characterize it
better.

56



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Measurement vs. forecasting

* Past: correlate different factors with the vulnerability
track records of software products

* Present: count known vulnerabilities

e Abuse of scale: count=2 does not mean twice as vulnerable
as count=1; any count > 0 means go fix your stuff

<>

—_ S

* Future: forecast the severity and the rate at which
currently unknown vulnerabilities will be discovered or
exploited

* No longer determining facts based on observations
* Not causal: in theory, today's CVE could be the last
* Prediction models can be better or worse

The count of known vulnerabilities is unsuitable as a surrogate measure of vulnerability. The
future question is the most interesting one.

57



Preconditions
Conditions

Set of variables
Unseen details
Guidance
Uncertainty

Degrees of control

Prediction models

Known

Take time to evolve
Fixed

Not important
Unguided

Frequentist

Prepare, mitigate

Unknown, random
Already in place
Ever-expanding
Critically important
Precision-guided
Epistemic

Preventable, in principle?

ington_ “Bowie
 airias Alexandria

In every respect but one (controllability), cyber emergencies are less predictable than weather
emergencies. | will focus on the different impact of unseen details.

We can obtain an adequate prediction of impending weather emergencies even though the
radar misses many small details. The butterfly effects do not matter as long as we can see the
hurricane on its way with ample time to react. But for cyber emergencies it is exactly the
opposite; it is the unseen details that are most likely to create an emergency with no warning at

02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

all.

58



02£-00S°dS 1SIN/8209°01/B10'10p//:sdny :wou) 8b1eyd jo aal) s|gejieAe s| uoneolgnd siy |

Unseen details = blindside attack vectors

Where do they come from? Everywhere.

* Electrical engineers
* Memory integrity quietly declined, enabling rowhammer.js

* Implementation quirk, documented but
overlooked
* Intel implemented an x86_64 instruction in a slightly different way
than AMD had, enabling VM escape and escalate to hypervisor
(XSA-7)
* Unforeseen consequence of new feature
* Memory deduplication became a thing, enabling a much bigger side
channel than was anticipated (Bosman et al. 2016)
* Forgot about that legacy feature
* Everyone forgot about APIC register relocation or failed to see its
usefulness, enabling another escalation to SMM (Domas 2015)
* Accidentally introduced fault

* Arandom CPU erratum was discovered, enabling a remote exploit
that looks like harmless code (Kaspersky & Chang 2008)

The threat model is of finite size. The unknown universe of potential attacks may be infinitely
large. At least it is larger than our imagination, as we are consistently caught by surprise.

The idea that fully addressing the top 10 or top 25 attack vectors would cause there to be fewer
successful attacks is an untested hypothesis. Past experience suggests that there is a large

reserve of attack vectors that do not appear in the threat model. Perhaps attackers will simply
move farther down the list and never run out of attacks.

Different perspectives, different metrics: the security industry sees progress in increasing the
complexity of attacks, but the target sees no progress unless the frequency of attacks actually
goes down.

59



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

The future will not be mitigated

* An assurance case is a fixed, closed-form expression up
against an evolving, open world

* The unseen attack surface is vast and growing

=10
An Introduction to Intel® Active

Management Technology

* No opt-out

‘

Introducing Ring -3 Rootkits

Alexander Tereshkin and Rafal Wojtczulc

Even if you had complete visibility into the system as it stands, there is the problem of future-
poofing the assurance case. We are forced to upgrade in order to close the barn door on

kown vulnerabilities. Each upgrade comes with an expanded attack surface, which leads
directly to new vulnerabilities.

60



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Risk models vs. unknown unknowns

* "Risks"
* Valid to estimate based on historical data

e "Structural uncertainties"

* Follow from events that are rare or nonexistent in the
historical record

* Frequentist reasoning breaks down

* "Unknowables"
* Follow from inconceivable events
* Bayesian reasoning breaks down

Kees van der Heijden. Scenarios: The Art of Strategic Conversation.
John Wiley & Sons, 2nd edition, 2005.

A risk model cannot do justice to unknown unknowns. We cannot possibly estimate the
probability of something that, by definition, we know absolutely nothing about. Such a number
is nothing but an arbitrarily chosen safety margin.

61



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Growth models

* No evidence that security grows / vulnerability
decreases over time (?)

* "Trivial forecast has some predictive accuracy" (Timm
Grams, "Reliability Growth Models Criticized")

* Applicable to the frequency of vulnerability discovery

Yulnerabilities By Year
2005 1
a1a Mz20065
M z007 10
2008 21
2008 20
M z01060
145 M1

Mzo1266
201356
76
60 63 60 55 201476
1 5 10 21 20... 2015514
— - M zo15 148

Security may grow over time in tightly-controlled systems, but the more typical treadmill of
vulnerabilities and mitigations suggests that it does not grow over time in general. (Taking the
target's perspective that the difficulty of exploits is irrelevant if they just keep on happening.)

What is measurable?

* Known quantities
* Track record of fixed vulnerabilities
* Known unfixed vulnerabilities
* Measurable hardness of certain kinds of defenses

* Hypothesized indicators of unknown vulnerabilities
* Measures of diligence
* Test/analysis coverage
* Hardening measures
* Size & complexity
* Area of attack surface
* "Code smells" (operationalized)

* Transparency (including amenability to analysis of
whatever kind)

62



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

Inventing a metric is only the beginning. Hypotheses must be tested. Measurements must be
validated.

On measuring cost, and the problem
that this reveals

* "Price of nonconformance" (Philip Crosby) or Cost Of
Poor Quality (ASQ)

* Post-release patching is much less costly than an auto
recall

* The consequential costs of vulnerabilities in COTS software
are almost entirely paid by consumers, not producers
* "Quality is free"—not true

* "You can't afford not to test / build security in"—also
not true

* Broken economy
* Consequence: there may be no security to 'measure’

This argument is not valid for products whose primary customer is the government, for
regulated industries, or for long-lifecycle software. It applies only to the mass market.

We are familiar with studies showing that the cost of correcting defects is less if they are
detected and corrected earlier in the process. But as long as the market tolerates faulty
software, the producer's cost can be lowered further by just never correcting the defects. A lot
of software is being produced as a consumable (or as part of a consumable) rather than a
durable good. Maintenance is minimized, and after a date certain the product is simply
abandoned and the next product is rolled out.

Within the mass market, the cost of poor security may even go negative: a more secure
product may be too difficult to configure, resulting in a competitive disadvantage. Even if the
cost of building security in is reduced to marginal as the strategic plan envisions, the business
case may remain broken.

This economic problem may overwhelm and obviate the measurement problem.

63



* There is value in correlating
different factors with the
vulnerability track records of
software products after the
fact

* Hypothesized indicators
* Programming languages
+ Development techniques
« Quality processes

* Formal methods....

* Engineering wasn't invented;
it evolved

* Do what [apparently] works,
but verify and track progress

* Goal: reliable predictors, best
practices

Conclusions

* However, there also needs to

be a business case

* Redistributing risk may be

necessary to "significantly

curtail software vulnerabilities"

in the COTS market

FEDERAL TRADE COMMISSION

PROTECTING AMERICA’S CONSUMERS

ABCUTTHEFTC  NEWS &EVENTS ENFORCEMENT  POLICY

I & Evinls o Prines Fisdmses » ASUS Swllks 710 Gliarges T8 Lemcurn Soms Boalis
Fish

ASUS Settles FTC Charges That Insecure
Home Routers and “Cloud” Services Put
Consumers' Privacy At Risk

Fobiruary 23, 2016

02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Empiricism is a useful strategy when we are overwhelmed by unknowns, but it must be used
with great caution. Correlation is not causation. A good fit to past data does not ensure a good
prediction. Hypotheses must be tested. Measurements must be validated. Apply science.

64



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

"Measure what is measurable,
and stop yer lyin' about the rest”

(Misquoting Galileo)

Software Metrology
David Flater
dflater@nist.gov

Not addressed: we also need software to be sufficiently functional running at least privilege
that tricking users into granting excess permissions to trojans will no longer work.

65



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.9 Dynamical Proving That Security Issues Exist

Dynamical Proving That Security Issues Exist

Andrew V. Jones

Vector Software, Inc.

London, UK
andrew.jones@vectorcast.com

While static analyzers have given great benefit in processing and automatically checking large
swathes of code, they still suffer from a high false-positive rate that leaves security engineers
with a “needle in the haystack” when identifying the genuine vulnerabilities.

We put forward that, from a security perspective, approaches based on the “synthesis” of
executions leading to specific software issues (i.e., the automatic construction of a dynamic test
exploiting a given vulnerability), will become a unique and powerful weapon in the security
mitigation arsenal.

The key benefit here is that these approaches can generate an “executable witness” through
the code that demonstrates to a security practitioner exactly how a vulnerability can be
exercised. Being executable is also crucial for the ever-growing market of loT (internet of
things) devices and CPS (cyber-physical systems), which are commonly targeted to embedded
systems: there are real issues that may only be exploitable when run on the physical device.
Furthermore, with loT, we are seeing network-connected devices developed not using the
traditional “web stack” (e.g., PHP, Apache, etc.), where

security mitigations are commonly focused. This makes it hard to apply existing, “webstyle”

penetration tools to such embedded devices, given their development is typically done in C or
C++.

Such a “dynamic analysis” approach has two major benefits:

1. it can be used to verify that a given vulnerability has been “corrected” (in comparison to
static analysis where a “warning” being removed could be a false-negative); and

2. for any issues that are spurious or are mitigated at the system-level, the automatically
constructed and executable tests can form the documentation.

It is clear however that such dynamic approaches have a trade-off: zero false-positives (tool
correctness allowing) at the expense of false-negatives. That is, while static analysis is “noisy”
but (should) highlight all issues, a dynamic approach can only highlight what can be identified
though unit/API-level testing, and through what the tool can create a test for (c.f., the halting
problem). This is clearly a limitation, but the categories of issue detectable are still non-trivial;
e.g., buffer overflows and NULL pointer issues are easily identifiable.

66



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

It is also possible to utilize such a “security-focused dynamic testing approach” to generate
security metrics that can aid the practitioner in understanding and assessing the security of a
given system. For example, the defect density (i.e., the ratio of defects per line of code) can be
easily calculated given a set of identified vulnerabilities. Other relevant metrics include the
“exploit depth”, that is, the length in the call chain from software entry to the location of
vulnerability — a longer chain relates to more “missed opportunities” to mitigate against it.
Similarly, the “attack surface” can also be enumerated by considering the source of any data
related to the vulnerability (e.g., malicious data returned from a stub would be more serious
than a function argument set directly via the test-tool). It is also possible to correlate the
number of vulnerabilities detected with the “cyclomatic complexity” of a function. It follows
that a function with a high complexity and a high number of vulnerabilities could be a weak
point in the software that warrants further investigation.

We have demonstrated a proof-of-concept of the proposed scheme with a Tier 1 automotive
supplier in the US, and found numerous security issues that could lead to a denial-of-service
attack. These were issues at the software “product” level, where out-of-context re-use is of
greater concern, when compared to their constrained usage within a single project. The
approach was also integrated into the security review process of open source projects for a
worldwide German industrial manufacturer — the outcomes highlighted potential API (mis-)uses
that could lead to exploits “in the field”.

As always with security testing, we do not claim that dynamically executed tests are a golden

panacea for software correctness; simply that they are another useful tool in attaining and
preserving the overall (cyber)security of a given system.

67



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Dynamically Proving That Security Issues Exist

Andrew V. Jones, Vector Software, Inc.
NIST SwMM-RSY, July 2016

VECTORY

2016 Vector Software, Inc Al Rights Reserved, 1019

Focus of this talk

Chess & McGraw'04":
Good static checkers can help spot and eradicate

commaon security bugs

Therefore (for the purposes of this talk!):

- If we find an instance of a CWE, itis a vulnerahility!

- If it crashes the software, it can be a security issue
+ SIGSEGY = DoS!

1see. https: //fwww. computer.org/csdl /mags/sp/2004 /06, 76076, pdf

VECTORY

2016 Vector Software, inc. All Rights Reserved. 219

68



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Focus of this talk

ChessB8-McGraw' 04"
Good dynamic analysers can help spot and eradicate

commaon security bugs

Therefore (for the purposes of this talk!):

- If we find an instance of a CWE, itis a vulnerahility!

- If it crashes the software, it can be a security issue
+ SIGSEGY = DoS!

1see. https: //fwww. computer.org/csdl /mags/sp/2004 /06, 76076, pdf

VECTOR
software \v 2016 Vector Software, inc. All Rights Reserved. 219
A tale of two customers...
Customer A

- We have some testing of open source projects
- Canyou find any issues?
- Display issues

Customer B

- VectorCAST performed automated test-case generation
- Canyou find any issues?

- Fuzzing of test-cases

- Display issues

VECTORY

2016 Vector Software, inc. AN Rights Reserved, 309

69



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

What did they want?

The view from the trenches
- Binary — do we have any issues? Yes or nol
+ Count - how many?
- |dentification — what and where are they?

VECTORY

2016 Vector Software, inc. All Rights Reserved. 4019

So how did it work?

Crash-test generation

- Take a test that allocates a pointer
- Remove the alloc

- Run it

- Does it crash?

- If yes: potential weakness!

VECTORY

2016 Vector Software, inc. All Rights Reserved. 5019

70



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Caveat emptor

- This is white-box unit testing - not black-box “Dynamic
Application Security Testing” (DAST)!

- We can only find defects in what we can deduce a test for

< Mot trying to solve the halting problem — things can slip through
our net

- Aiming for soundness (if we say it is a bug, itis a bug). no
chance of completeness

< We can't catch every bug because some are infeasible to generate
unit tests for automatically

VECTORY

2016 Vector Software, inc. All Rights Reserved. &f19

Example from LIGHTTPD {v1.4.20: v1.418 in SATE'08)

+int buffer_copy_string buffer(buffer +b, const buffer *src) {
if (!src) return -1;

2

4 if (src-»used == 0) {

5 b->used = 0;

6 return @;

7 F

8 return buffer_copy_string_len(h, src-»>ptr, src->used - 1};
9

}

- Not detected: CPPCHECK, Facebook's INFER, UNG
- Possible error: LINT, CODEHAWK
- SIGSEGV: VectorCAST!

VECTORY

© 2016 vector Software, Inc. All Rights Reserved, 79

71



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Results from SARD

»+ Took the null pointer issues from the Software Assurance
Reference Dataset? (*vulnerable” € test-suite)

- Found & out of 7 issues

- We didn't find (null_deref_local_flow-bad.c):

1 /% SNIP +/

2

5 char k = 'a';

5 char* p = (char+)NULL;

5

5 switch (k)

7 1

8 case 0:

9 ko= #p; /+ FLAW #/
4]

1 /% SNIP +/

2see. https: //samate.nist.gov/SARD/

VECTORY

2016 Vector Softwore, inc All Rights Resenved. 8/19

Static analysis might not detect it

- False-positives are high - is it a real error?

- False-negatives exist — maybe they didn't show it?

Dynamic execution

- We don't claim to detect everything
~ "happy” to have false-negatives

- If we do find something, it is definitely an issue!

- You can fix the issue, and re-generate and re-execule that test:
if the error goes away, that issue is fixed!

< With static analysis, you might have just hidden the error under a
false-negative!

VECTORY

2016 Vector Software, Inc Al Rights Reserved, 9719

72



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Vulnerabilities of interest

Automatic identification for CWE-398 (“indication of poor code
quality™)

- Anything with “hard” errors
« Use of a null pointer (CWE-476)
- Buffer {underoverfflow (stack corruption) (CWE-124)
- Divide by zero (CWE-369)

- VectorCAST supports stubbing = detection of
< Mismeatched calls —-malloc/free, fopen/fclose,
pthread_mutex_lock/pthread_mutex_unlock
(CWE-401/404/413/415/590)
= —memcpy (CWE-120/130)
eturn —malloc (CWE-252)

VECTORY

© 206 vector Software, Inc. All Rights Reserved, 10419

What are we aiming for?

- Source of tests {pick one!)

+ Take existing tests + code coverage data

+ Symbolic execution data for test-case generation
- Source of defects (pick onel)

- Static analysis data (from $YOUR_FAVOURITE_SA_ENGINE)
+ Symbolic execution data for vulnerabilities

+ Generate

+ Fuzz'd tests or tests to cover vulnerabilities

+ Execute tests

+ Detect vulnerabilities

VECTORY

2016 Vector Software, inc All Rights Resenved, 119

73



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

What are we aiming for?

- Source of tests {pick-one!)
+ Take existing tests + code coverage data

- Symbolic execution data for test-case generation

- Source of defects (pickenet)
- Static analysis data (from $YOUR_FAVOURITE_SA_ENGINE)
+ Symbolic execution data for vulnerabilities

+ Generate

+ Fuzz'd tests or tests to cover vulnerahilities

+ Execute tests

~ Detect vulnerabilities

VECTORY

2016 Vector Software, inc All Rights Resenved, 119

| thought this was a talk on metrics?!

“actionable intelligence”

VECTORY

© 206 vector Software, Inc. All Rights Reserved, 12119

74



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Towards “application security”

Process?
1. Identify portfolio
2. Assess vulnerabilities
3. Manage risk

Some of the issues we find you might consider are “non-issues” or
are mitigated against as part of your software architecture

- That's great...

- ...be wary about software re-use across projects!

3see. https: //www. rsaconference, com/writable/presentations/file_upload/asec-w25. pdf

VECTORY

© 206 vector Software, inc. All Rights Reserved. 13119

An approach to ascertaining quickly Chess's “Marningstar for
Software Security™

- = “absence of obvious reliability issues”

The easy ones

- Defect density

- Defects/SLoC
+ Lines free from obvious issues (via code coverage)

- Confidence of “defect freedom” (but not guaranteed!)
- Ratio of security tests free of defects

+ Higher ratic = more secure

“50e: http://www, securitymetrics,org/attachments /Metricon-2-Lee-Chess-Enterprise-Metrics.ppt

VECTORY

© 206 vector Software, Inc. All Rights Reserved, 14419

75



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

More involved metrics

- Exploit depth (from how many levels can we trigger it?)
< Akinto a linear “attack graph”
+ More steps = high critically
+ Criticality (e.g., things that crash vs. things that don't)
-+ Assess the risk using CWRAF/CWSS
» SIGSEGVY = missing free
- Correlation between function complexity and number of defects
+ High complexity and number of defects = higher risk

- Percentage breakdown of metrics by type/grouping
- Attack surface® (e.g, defect via params vs. return from stub)

+ Clearly serious if it is via a stub of recv!

5see. http:/fwww. cs.cmu. edu/~pratyus,/tseld. pdf

VECTOR
software\v © 206 vector Software, Inc. All Rights Reserved, 15/19
Sample metrics for null pointer defects
Project

Metric LIGHTTPD ZLIB LIBXML?2
version 1.4.20 123 2.9.4
i files 89 16 284
SLo(® 36,605 6,726 184,179
Unique # issues 709 113 2,926
Defect density (defects/line) 1.f52 1/60 1/63
Avg. # of tests per defect 10t 7 12
Tests hitting defects 69% 28% 40%
Funct's with defects 44% 449% 29%
Funct's with vg = 20 and defects? 51% 55% 66%

Smeasured with cLoc
7Jones'oa: “[complexity] levels greater than 20 are considerad hazardous”

VECTORY

© 206 vector Software, Inc. All Rights Reserved, 16/19

76



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Future metrics

- Number of vulnerabilities that are already “suarded” (e.g., ifa
pointer passes through some pointer test but still crashes)
= Similar to disregarding issues if they are guarded by “intrusion
protection systems”®

- Build a correlation to predict the vulnerahility of a package®:
- Extract a characteristic of the software for version »
+ Extract a vulnerability metric from the software for version n
+ Use characteristics of n+ 1to predict vulnerabilities in n+ 1

Zsee: http://www. securitymetrics,org/attachments /Metricon-1-Epstein-Software. ppt

9see. http://www, securitymetrics.org/attachments Metricon-5-Massacci- Firefox-vulnerabilities, pdf

VECTORY

2016 Vector Software, inc. All Rights Reserved, 1719

Mainly: no “one size fits all” solution — use multiple tools!

- Dynamic execution can find certain vulnerabilities more
definitively

- Need to always consider DP-E ratio (damage potential vs. effort)
- A number of metrics

+ Not necessarily specific to dynamic execution — also relavant to
the output of a static analyser

- Future work: how can metrics be used to predict vulnerability

VECTORY

© 2016 vector Software, Inc. All Rights Reserved, 18/19

77



02€-00S'dS" LSIN/8209°01/610°10p//:sd)y :woy abieyd jo aaly o|qe|ieae s| uoedlignd siy |

Fin.

Questions?

andrew. jonesgvectorcast.com

VECTORY

© 2016 vector Software, (nc All Rights Reserved. 19119

78



02£-00S°dS 1SIN/8209°01/B10'10p//:sdny :wou) 8b1eyd jo aal) s|gejieAe s| uoneolgnd siy |

3.10 Toward Evidence-Based Low-Defect software production, James Kirby Jr., US Naval Research
Laboratory

Toward Evidence-Based Low-Defect
Software Production

James Kirby Jr.
Naval Research Laboratory
james.kirby@nrl.navy.mil

Introduction

It's hard to overstate the big bet that Defense, government, and industry have placed on computer
software, this critical building material of the early 21 Century. All rely on software to deliver
innovation in products and processes. Software provides as much as 90% of recent military aircraft
functionality. Many previously mechanical, radio frequency, and chemistry-based products (e.g.,
automobiles, telephones, cameras) are now implemented by complex software driving computers
embedded with sensors and actuators. [12] Much National Critical Infrastructure identified by Federal
policy [15] is software-intensive, e.g., Communications, Financial Services, Healthcare and Public Health,
Information Technology, Transportation Systems. Numerous important Federal initiatives are also
software-intensive, e.g., Health IT, the National Strategic Computing Initiative (NSCI), Smart Cities and
Connected Communities.

There is broad-based dependence on software throughout the economy. Table 1 “which lists U.S.
industry sectors employing more than 50,000 software [developers], illustrates the heterogeneous
dependence on software production of an advanced, modern economy.” [13] The “software industry,”
which includes software publishers and internet services, employs only about half of the more than
175,000 software developers employed in the Information sector and less than 10% of the more than
one million developers employed by all industry identified in Table 1. The software trade group, The App
Association, found that only 10% of software developers are employed in Silicon Valley; the vast
majority is widely spread across all 50 U.S. states. [11]

Table 1 Sectors employing more than 50,000 software [developers]

Industry Sectors Developers (thousands)
Manufacturing 147.9
Wholesale Trade 59.5
Information 175.2
Finance & Insurance 99.2
Professional, Scientific, Technical Services 530.3
Management of Companies & Enterprises 54.9
Total 1,067

Because software is a critical building material, the source of that software is likewise critical. This paper
uses the term software production to refer to three types of activities responsible for producing software:

79



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

e Software development, as widely understood.

e Software sustainment, which evolves software throughout operational life as needs, understanding,
technology, and infrastructure inevitably evolve.

e Software assurance, which develops confidence that evolving software continues to exhibit critical
properties. [13]

The economics of meeting time-to-deliver and cost objectives favor the production of defective,

vulnerable software. This paper considers the following lines from security researcher Crispin Cowan to

reflect the common wisdom of software development today:

"Perfect" (bug-free) software is impractically expensive and slow to produce, and so the vast
bulk of consumer and enterprise software products are shipped when they are "good enough"
but far from bug-free. As a consequence, there has been a constant struggle to keep attackers
from exploiting these chronically inevitable bugs. [5]

Another way of expressing this common wisdom is to say that developers and users are unable to
develop and sustain in a timely and affordable manner software exhibiting low defect rates. Many
software defects are software vulnerabilities, making them a significant obstacle to the success of
cybersecurity efforts. Too, software defects are a considerable drag on the economy. Users avoiding and
mitigating software defects may waste as much as 1% of GDP. [10]

Alternative software production technologies

Enabling developers and users to develop and sustain low-defect software in a timely and affordable
manner, which is critical to the US, requires improved software production technology guided by a
deeper, evidence-based understanding. The third strategic theme of the NSCI, “Improve HPC [High
Performance Computing] application developer productivity,” describes improved software production
technology for HPC: “new approaches to building and programming HPC systems that make it possible
to express programs at more abstract levels and then automatically map them onto specific machines.”
[6] While there is much interest in reducing software vulnerabilities, industry is more likely to adopt
technology that reduces time and effort to produce software with reduced vulnerabilities. Some
promising alternative technologies to the prevalent labor-intensive hand-coding paradigm include:

e Software product line engineering [4][14] constructs software products as instances of a family
of similar products in an effort to rapidly produce and evolve high-quality software. Developers
and users resolve decisions to identify a desired family member. The resolved decisions reflect
differences in customer needs and engineering tradeoffs.

e Model-driven development [8][9] generates software from models that specify software
behavior. Developers and users create the models.

e Synthesis formal methods [1][7] generate correct-by-construction implementations of domain-
specific high-level descriptions of desired behavior created by developers and users.

e Program transformations. [3] Developers and users guide selection of transformations of formal
designs to produce correct-by-construction code.

80



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

Improving software production technology and knowing it

To have confidence that efforts to improve software production technology are succeeding, it is
imperative to have evidence-based means to guide and evaluate them. The Goal/Question/Metric
(GQM) paradigm [2] is an evidence-based approach to achieving an understanding that can provide
guidance to fast, affordable production of low-defect software. Such an approach can help select
improved alternative software production technologies and further refine them. GQM defines
measurement in a top-down fashion based on goals. Identified goals are refined into a set of
guantifiable questions, which imply metrics that guide data collection. Collected data provides the
evidence-based view.

Goals that could lead to evidence-based, low-defect software production and some corresponding
quantifiable questions include:
e Reduce defect rate of developed and sustained software.
0 What is the software defect rate? Where are defects inserted? Removed?
e Reduce time to develop, sustain, and assure software.
0 How much time is required to develop, sustain, and assure software? Is time wasted?
e Reduce effort to develop, sustain, and assure software.

0 How much effort is required to develop, sustain, and assure software? Is effort wasted?
Is effort duplicated?

o  Widespread insertion of improved software production technology.
0 What technology are developers and users using?
0 What national investment is required to insert improved technology?

0 What software tools are available to support improved technology? Is there a healthy
market to sustain them?

Summary

Software and its production are critical to Defense, government, and the economy. The economics of
meeting time-to-deliver and cost objectives favor the production of defective, vulnerable software,
which undermines cybersecurity and imposes considerable drag on the economy. Industry is more likely
to adopt technology that reduces time and effort to produce software with reduced vulnerabilities.
Enabling developers and users to develop and sustain low-defect software in a timely and affordable
manner, which is critical to the US, requires improved software production technology. An evidence-
based approach to evaluating software production technologies can facilitate their successful selection
and refinement.

Acknowledgements
The paper has benefited from the author’s conversations with David Weiss and Sol Greenspan.

References
[1] Alur et al. "Syntax-guided synthesis.” Dependable Software Systems Engineering 40
(2015): 1-25.

81



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

[2] Basili. "Applying the Goal/Question/Metric paradigm in the experience factory." Software
Quality Assurance and Measurement: A Worldwide Perspective (1993): 21-44.

[3] Baxter and Mehlich. "Reverse engineering is reverse forward engineering.” Reverse
Engineering, 1997. Proceedings of the Fourth Working Conference on. IEEE, 1997.

[4] Campbell. "Renewing the product line vision." Software Product Line Conference, 2008.
SPLC'08. 12th International. IEEE, 2008.

[5] C. Cowan. "Reflections on Decades of Defending Imperfect Software,” NSF WATCH
Talk, 17 July 2014,

[6] “FACT SHEET: National Strategic Computing Initiative.” 29 July 2015.
[7] Kant. “Synthesis of Mathematical-Modeling Software.” IEEE Software, May 1993

[8] Kirby. “Model-Driven Agile Development of Reactive Multi-Agent Systems.” Proc. 30"
Annual Intl. Computer Software and Applications Conf. (COMPSAC 2006).

[9] Kirby. “Specifying software behavior for requirements and design.” Journal of Systemics,
Cybernetics and Informatics. Oct. 2013.

[10] National Institute of Standards & Technology. 2002. The Economic Impacts of
Inadequate Infrastructure for Software Testing. Planning Report 02-3.

[11] http://www.nextgov.com/cio-briefing/wired-workplace/2016/07/90-software-developers-
work-outside-silicon-valley/129852/

[12] K. Sullivan, private communication.

[13] Weiss, Kirby, and Lutz. "Moving Toward Evidence-Based Software Production."
Perspectives on the Future of Software Engineering. Springer Berlin Heidelberg, 2013.
275-298.

[14] Weiss and Lai. "Software product line engineering: a family based software engineering
process.” (1999).

[15] The White House, Presidential Policy Directive—Critical Infrastructure Security and
Resilience, 12 February 2013.

82


http://www.nextgov.com/cio-briefing/wired-workplace/2016/07/90-software-developers-work-outside-silicon-valley/129852/
http://www.nextgov.com/cio-briefing/wired-workplace/2016/07/90-software-developers-work-outside-silicon-valley/129852/

02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.11 Position Statement for July 12, 2016 Workshop

Carol Woody, Ph.D.

USING MALWARE ANALYSIS TO REDUCE DESIGN WEAKNESSES

Establishing that software has reduced security vulnerabilities needs to include consideration of the
implemented software as it functions within a specific system context. Lots of things can be counted, but
useful security metrics must show that the software functions as intended and only as intended. Every
acquisition and development activity is driven by requirements. If it is not in the requirements (and
requirements drive the contract which defines the acquisition) then it does not get done.

The first challenge is to establish that the requirements define the appropriate security behavior and
design addresses these security concerns. The second challenge is to establish that the completed product,
as built, fully satisfies the specifications. Measures, therefore, must address requirements, design,
construction, and test.

Requirements must include appropriate consideration of the threats the software must be able to handle
in the operational context. Malware attacks are growing alarmingly but structured mechanisms to include
data from known malware attacks into requirements and architecture processes are nonexistent. SEl
research has shown that when designs ignore these types of attacks, important security controls are
omitted. Even those rare projects today that do some form of threat modeling fail to systematically
consider prior successful exploits. Evidence indicates that projects with detailed data about successful
prior attacks are more likely to appropriately create critical mitigations. This data exists but is not
formulated in any structure that system and software engineers can understand and help stakeholders
incorporate into requirements.

Copyright 2016 Carnegie Mellon University
DM-0003850

83



02£-00G°dS 1SIN/8209°01/B10°10p//:sdny :wou) abieyo Jo aal) s|gejieAe s| uoneolignd siy |

3.12 Measure Early and Measure Often — SWAMP, Miron Livny

Measure early and Measure often — the Continuous Assurance framework of the
Software Assurance Market Place (SWAMP)

Miron Livny
Director of the SWAMP Project
Professor of Computer Science

Morgridge Institute of Research

Like any other complex system, early and frequent measurements of the properties of software artifacts
throughout the design, implementation, and deployment phases significantly increase the impact of the
obtained metrics on the quality of the observed software. The dynamic and diverse nature of software
components, the metrics needed to assess the properties of software and the measurement
technologies used to derive these metrics require a dependable and extensible framework that
effectively automates the frequent derivation of the desired metrics.

The freely available Open Source framework of the SWAMP has been developed by a joint effort of four
academic institutions and funded by the S&T division of the DHS to provide a suite of easy to use, easy
to deploy and easy to integrate continuous assurance capabilities. The framework brings together state-
of-the-art automation with the power of distributed High Throughput Computing technologies to
manage the assessment of multiple software packages with multiple tools in a secure environment that
enables controlled sharing across project boundaries. By offering a diverse collection of software
packages and easy access to the GitHub repository, the open SWAMP facility supports developers of
measurement tools who want to continuously evaluate their tools as they evolve through the design
and implementation phases.

Input and feedback from actual users and potential users has been invaluable to the effort to design and
implement the capabilities of the SWAMP. The workshop will provide us with a unique opportunity to
present the current capabilities of the SWAMP and exchange ideas, challenges, requirements and
solution with individuals who are committed to advance software security through a comprehensive
approach to the measurement and assessment of software artifacts and the processes of designing,
developing, operating and maintain complex software stacks.

84



	1. Overview
	1.1 Mechanics and Organization
	1.2 Agenda and Schedule
	1.3 Non-Measurement Ideas from the Breakout Session
	1.3.1 Consider Vulnerabilities in All Parts of the Software Life Cycle
	1.3.2 Government Contracting and Procurement, Liability, and Insurance
	1.3.3 Education
	1.3.4 Research Projects for Security, Quality, and Few Vulnerabilities
	1.3.5 Government Funded Efforts
	1.3.6 Third Party Review of Software


	2. Observations and Recommendations
	2.1 Better Code
	2.2 More Useful Tool Outputs
	2.3 Security Metrics
	2.4 Additional Directions
	2.5 References

	3. Position Statements and Presentations
	NIST.SP.500-320_back.pdf
	William R. Nichols, Software Engineering Institute
	Introduction
	Alternative software production technologies
	Improving software production technology and knowing it
	Summary
	Acknowledgements

	References




