

NIST Special Publication 800-204

Security Strategies for
Microservices-based Application

Systems

Ramaswamy Chandramouli

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204

C O M P U T E R S E C U R I T Y

NIST Special Publication 800-204

Security Strategies for
Microservices-based Application

Systems

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-204

August 2019

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines,
including minimum requirements for federal information systems, but such standards and guidelines shall
not apply to national security systems without the express approval of appropriate federal officials
exercising policy authority over such systems. This guideline is consistent with the requirements of the
Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of
Commerce, Director of the OMB, or any other federal official. This publication may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States.
Attribution would, however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-204
Natl. Inst. Stand. Technol. Spec. Publ. 800-204, 50 pages (August 2019)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus,
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of
these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: sp800-204-comments@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:sp800-204-comments@nist.gov

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in
Federal information systems. The Special Publication 800-series reports on ITL’s research,
guidelines, and outreach efforts in information system security, and its collaborative activities
with industry, government, and academic organizations.

Abstract

Microservices architecture is increasingly being used to develop application systems since its
smaller codebase facilitates faster code development, testing, and deployment as well as
optimization of the platform based on the type of microservice, support for independent
development teams, and the ability to scale each component independently. Microservices
generally communicate with each other using Application Programming Interfaces (APIs), which
requires several core features to support complex interactions between a substantial number of
components. These core features include authentication and access management, service
discovery, secure communication protocols, security monitoring, availability/resiliency
improvement techniques (e.g., circuit breakers), load balancing and throttling, integrity assurance
techniques during induction of new services, and handling of session persistence. Additionally,
the core features could be bundled or packaged into architectural frameworks such as API
gateways and service mesh. The purpose of this document is to analyze the multiple
implementation options available for each individual core feature and configuration options in
architectural frameworks, develop security strategies that counter threats specific to
microservices, and enhance the overall security profile of the microservices-based application.

Keywords

microservices; load balancing; circuit breaker; Application Programming Interface (API); API
gateway; service mesh; proxy.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Acknowledgements

The author, Ramaswamy Chandramouli wishes to thank David Bohannon, Travis Biehn, John
Tapp and Jamie Boote from Synopsys and Simon Moffatt of Forgerock for detailed comments on
various topics. He also wishes to convey his thanks to Saa Edward Fillie of Wangoh Dynamics
Technologies, Carlo de Guzman of DSD Laboratories, and Wei Lien Dang of StackRox. Special
thanks to Doug McDorman of T-Mobile for valuable in-line comments and for providing
additions to bibliography. Last but not the least, he expresses his thanks to Isabel Van Wyk of
G2-Inc for her detailed editorial review.

Patent Disclosure Notice

NOTICE: NIST’s Information Technology Laboratory (ITL) has requested that holders of patent
claims whose use may be required for compliance with the guidance or requirements of this
publication disclose such patent claims to ITL. However, holders of patents are not obligated to
respond to ITL calls for patents and ITL has not undertaken a patent search in order to identify
which, if any, patents may apply to this publication.

As of the date of publication and following call(s) for the identification of patent claims whose use
may be required for compliance with the guidance or requirements of this publication, no such
patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Executive Summary

The microservices paradigm is being increasingly used for designing and deploying large-scale
application systems in both cloud-based and enterprise infrastructures. The resulting application
system consists of relatively small, loosely coupled entities or components called microservices
that communicate with each other using lightweight communication protocols.

Incentives to design and deploy a microservices-based application system include: (a) agility in
development due to relatively small and less complex codebases since each one typically
implements a single business function; (b) independence among teams in the development
process thanks to the loosely coupled nature of microservices; and (c) availability of deployment
tools that provide infrastructure services such as authentication, access control, service discovery
and communication, and load balancing.

Despite several facilitating technologies (e.g., orchestration), there are many challenges to be
addressed in the development and deployment of a microservices-based application. Network
security, reliability, and latency are critical factors since every transaction implemented using
this type of system will involve the transmission of messages across a network. Further, the
presence of multiple microservices exposes a large attack surface.

The goal of this document is to outline strategies for the secure deployment of a microservices-
based application by analyzing implementation options for state of practice core features,
configuration options for architectural frameworks such as Application Programming Interface
(API) gateway and service mesh, and countermeasures for microservices-specific threats.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Table of Contents
Executive Summary ... iv

1 Introduction .. 1

1.1 Scope .. 1

1.2 Audience ... 1

1.3 Relationship to other NIST Guidance Documents .. 1

1.4 Methodology and Organization ... 2

2 Microservices-based Application Systems: Technology Background 3

2.1 Microservices: A Conceptual View .. 3

2.2 Microservices: Design Principles .. 3

2.3 Business Drivers ... 4

2.4 Building Blocks ... 4

2.5 Microservices: Interaction Styles... 5

2.6 Microservices: State of the Practice Core Features 7

2.7 Microservices: Architectural Frameworks ... 9

 API Gateway .. 9

 Service Mesh .. 11

2.8 Comparison with Monolithic Architecture .. 11

2.9 Comparison with Service-Oriented Architecture (SOA) 12

2.10 Advantages of Microservices .. 12

2.11 Disadvantages of Microservices ... 13

3 Microservices: Threat Background .. 14

3.1 Review of Threat Sources Landscape .. 14

3.2 Microservices-specific Threats .. 15

 Service Discovery Mechanism Threats .. 15

 Internet-based Attacks .. 15

 Cascading Failure... 16

4 Security Strategies for Implementing Core Features and Countering Threats
 17

4.1 Strategies for Identity and Access Management ... 17

4.2 Strategies for Service Discovery Mechanism .. 19

4.3 Strategies for Secure Communication Protocols .. 21

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

4.4 Strategies for Security Monitoring ... 22

4.5 Availability/Resiliency Improvement Strategies ... 22

 Analysis of Circuit Breaker implementation options 23

 Strategies for Load Balancing .. 24

 Rate Limiting (Throttling) .. 24

4.6 Integrity Assurance Strategies .. 25

4.7 Countering Internet-based Attacks.. 26

5 Security Strategies for Architectural Frameworks in Microservices 27

Appendix A— Differences between Monolithic Application and Microservices-
based Application ... 29

A.1 Design and Deployment Differences ... 29

A.1.1 An Example Application to Illustrate the Design and Deployment
differences ... 30

A.2 Run-time Differences .. 31

Appendix B— Traceability of Security Strategies to Microservices Architectural
Features ... 33

Appendix C— References .. 41

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

1 Introduction

Application systems are increasingly developed and deployed using the microservices paradigm
due to advantages such as agility, flexibility, scalability, and availability of tools for automating
the underlying processes. However, the tremendous increase in the number of components in a
microservices-based application system combined with complex network environments
comprised of various interaction styles among components call for several core infrastructure
features to be implemented either alone or bundled/packaged into architectural frameworks, such
as Application Programming Interface (API) gateway and service mesh. The objective of this
document is to perform an analysis of the implementation options for core features, configuration
options for architectural frameworks, and countermeasures for microservice-specific threats and
outline security strategies.

1.1 Scope

This document will not discuss the various tools used in the deployment of microservices-based
application systems. Discussion of core features and architectural frameworks will be limited to
highlighting issues relevant to secure implementation. The core focus is on the methodology to
develop security strategies for microservices-based applications through the following three
fundamental steps:

• Study of the technology behind microservices-based application systems focusing on
design principles, basic building blocks, and associated infrastructure.

• Focused review of the threat background specific to the operating environment of
microservices.

• Analysis of implementation options related to state of practice core features,
configuration options related to architectural frameworks such as API gateway and
service mesh and countermeasures for microservices-specific threats for developing
security strategies.

1.2 Audience

The target audience for the security strategies discussed in this document includes:

• Chief Security Officer (CSO) or Chief Technology Officer (CTO) of an IT department in a
private enterprise or government agency who wishes to develop enterprise
infrastructures to host distributed systems based on microservices architecture; and

• Application architects who wish to design a microservices-based application system.

1.3 Relationship to other NIST Guidance Documents

This guidance document focuses on a class of application based on a specific architecture.
However, since an essential architectural component—the microservice—can be implemented
inside a container, the security guidance and recommendations related to application container
technology may also serve as relevant security strategies for the application architecture
discussed in this document. Such guidance includes:

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

• NIST Special Publication (SP) 800-190, Application Container Security Guide; and
• NIST Interagency or Internal Report (NISTIR) 8176, Security Assurance Requirements

for Linux Application Container Deployments.

1.4 Methodology and Organization

Since microservices-based application systems encompass diverse technologies (e.g., server
virtualization, containers, cloud middleware), the focus here is on core features of this
application class and the architectural frameworks that bundle or package them. The threat
analysis approach involves taking a macro view of the entire deployment stack of microservices-
based application systems and the layer at which these core features are located. The threats
specific to those features are identified, and the overall approach for developing security
strategies is to analyze the multiple implementations for core features and the architectural
frameworks as well as ensure that those implementation options counter microservices-specific
threats. The roadmap for the materials used in this methodology is as follows:

• Review of all state of practice core features that form the infrastructure for microservices
(Sec. 2.6);

• Review of the layers in the deployment stack, location of the core features in those layers,
and identification of microservices-specific threats (Sec. 3);

• Analysis of all different implementation options for these core features and outline
security strategies based on these implementation options for core features (Sec. 4); and

• Review of all architectural frameworks that bundle several core features as a single
product and outline security strategies based on configuration options for those
frameworks (Sec. 5).

A slightly more detailed summarization of the contents of the various sections in this document
is as follows:

• Section 2 provides a high-level but expansive overview of microservices-based
application systems, starting with a conceptual view followed by design principles,
business drivers, building blocks, component interaction styles, state of practice core
features, and architectural frameworks;

• Section 3 provides a stack level view of the threat background and some threats that are
specific to the microservices environment;

• Section 4 contains analysis information pertaining to various state of practice core
features for supporting a microservices-based application and outlines the security
strategies for implementing the core features based on analysis of implementation
options; and

• Section 5 contains analysis information pertaining to architectural frameworks that
bundle core features needed in the infrastructure for microservices-based applications and
outlines the security strategies for configuring the architectural frameworks.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

2 Microservices-based Application Systems: Technology Background

In this section, the technology behind the development and deployment of a microservices-based
application system will be described using the underlying design drivers or principles, the
artifacts that constitute the building blocks, and the different ways the building blocks can be
configured to produce different deployment options. This is not meant to be a comprehensive
description of the technology but provides sufficient information about components and concepts
to facilitate the identification of security threats and the development of secure implementation
strategies for a microservices-based application system.

2.1 Microservices: A Conceptual View

A microservices-based application system consists of multiple components (microservices) that
communicate with each other through synchronous remote procedure calls or an asynchronous
messaging system. Each microservice typically implements one (rarely more) distinct business
process or functionality (e.g., storing customer details, storing and displaying a product catalog,
customer order processing etc.). Each microservice is a mini-application that has its own
business logic and various adapters for carrying out functions such as database access and
messaging. Some microservices would expose a Representational State Transfer (REST)ful API
[1] that is consumed by other microservices or by the application’s clients [2]. Other
microservices might implement a web User Interface (UI). At runtime, a microservice instance
may be configured to run as a process in an application server, in a virtual machine (VM), or in a
container.

Though a microservices-based application can be implemented purely as an enterprise
application and not as a cloud service, it is often identified as a cloud-native application with a
service-based architecture, application programming interface (API)-driven communications,
container-based infrastructure, and a bias for DevOps (Combination of Development and
Operations) processes such as continuous improvement, agile development, continuous delivery,
and collaborative development among developers, quality assurance teams, security
professionals, IT operations, and line-of-business stakeholders [3]. Part of the reason for this
perspective is due to the fact that on-premises software development and deployment relies on a
server-centric infrastructure with tightly integrated application modules rather than on loosely
coupled, services-based architectures with API-based communications.

2.2 Microservices: Design Principles

The design of a microservice is based on the following drivers [4]:

• Each microservice must be managed, replicated, scaled, upgraded, and deployed
independently of other microservices.

• Each microservice must have a single function and operate in a bounded context (i.e.,
have limited responsibility and dependence on other services).

• All microservices should be designed for constant failure and recovery and must
therefore be as stateless as possible.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

• One should reuse existing trusted services (e.g., databases, caches, directories) for state
management.

These drivers, in turn, result in the following design principles for a microservice:

• Autonomy,
• Loose coupling,
• Re-use,
• Composability,
• Fault tolerance,
• Discoverability, and
• APIs alignment with business processes.

2.3 Business Drivers

Though the business drivers for deployment of microservices-based application systems are only
marginally related to the theme of this document, it is useful to identify and state those that are
relevant from the point of view of user and organizational behavior [5]:

• Ubiquitous access: users want access to applications from multiple client devices (e.g.,
browsers, mobile devices).

• Scalability: applications must be highly scalable to maintain availability in the face of an
increasing number of users and/or increased rate of usage from the existing user base.

• Agile development: organizations want frequent updates to quickly respond to
organizational (process and structural) changes and market demands.

2.4 Building Blocks

Microservices-based applications (e.g., distributed enterprise or web applications [1]) are built
using an architectural style or design pattern that is not restricted to any specific technology and
is comprised of small independent entities (end points) that communicate with each other using
lightweight mechanisms. These end points are implemented using well-defined APIs. There are
several types of API endpoints, such as Simple Object Access Protocol (SOAP) or REST (
Hypertext Transfer Protocol (HTTP) protocol). Each of the small independent entities provides a
distinct business capability called a “service” and may have its own data store or repository.
Access to these services is provided by various platforms or client types, such as web browsers
or mobile devices, using a component called the “client.” Together, the component services and
the client form the complete microservices-based application system. The services in such a
system may be classified as:

• Application-functionality services.
• Infrastructure services (called “core features” in this document) implemented either as

stand-alone features or bundled into architectural frameworks (e.g., API gateway, service
mesh). These include, but are not limited to, authentication and authorization, service
registration and discovery, and security monitoring.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

In a microservices-based application system, each of the multiple, collaborative services can be
built using different technologies. This promotes the concept of technical heterogeneity, which
means that each service in a microservices-based application system may be written in a different
programming language, development platform, or using different data storage technologies. This
concept enables developers to choose the right tool or language depending on the type of service.
Thus, in a single microservices-based application system, the constituting services may be built
using different languages (e.g., Ruby, Golang, Java) and may be hosting different stores (e.g.,
document datastore, graphical Database (DB), or multimedia DB). Each component service is
developed by a team–a microservice or DevOps team—which provides all of the development
and operational requirements for that service with a high degree of autonomy regarding
development and deployment techniques so long as the service functionality or service contract
is agreed upon [6].

Services in microservices are separately deployed on different nodes. The communication
between them is transformed from a local function call to a remote call, which could affect
system performance due to inherent latency in network communication. Thus, a lightweight
communication infrastructure is required.

Scaling can be applied selectively on those services that have performance bottlenecks due to
insufficient Central Processing Unit (CPU) or memory resources, while other services can
continue to be run using smaller, less expensive hardware. The functionality associated with such
a service may be consumed in different ways for different purposes, thereby promoting
reusability and composability. One example includes a customer database service, the contents of
which are used both by shipping departments for preparing bills of lading and by accounts
receivable or the billing department to send invoices.

2.5 Microservices: Interaction Styles

In monolithic applications, each component (i.e., a procedure or function) invokes another using
a language-level call, such as a method or function. In microservices-based applications, each
service is typically a process running in its own distinct network node that communicates with
other services through an inter-process communication mechanism (IPC) [7]. Additionally, a
service is defined using an interface definition language (IDL) (e.g., Swagger/OpenAPI),
resulting in an artifact called the application programming interface (API). The first step in the
development of a service involves writing the interface definition, which is reviewed with client
developers and iterated multiple times before the implementation of the service begins. Thus, an
API serves as a contract between clients and services.

The choice of the IPC mechanism dictates the nature of the API [7]. Table 1provides the nature
of API definitions for each IPC mechanism.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Table 1: IPC Mechanisms and API Types

IPC Mechanism Nature of API Definition
Asynchronous, message-based

(e.g., Advanced Message Queuing
Protocol (AMQP) or Simple (or

Streaming) Text Oriented Messaging
Protocol. (STOMP))

Made up of message channels and message types

Synchronous request/response
(e.g., HTTP-based REST or Thrift)

Made up of Uniform Resource Locators (URLs) and
request and response formats

There can be different types of message formats used in IPC communication: text-based and
human-readable, such as JavaScript Object Notation (JSON) or Extensible Markup Language
(XML), or of a purely machine-readable binary format, such as Apache Avro or Protocol buffers.

The principle of autonomy described earlier may call for each microservice to be a self-contained
entity that delivers all of the functions of an application stack. However, for a microservices-
based application that provides multiple business process capabilities (e.g., an online shopping
application that provides business processes such as ordering, shipping, and invoicing), a
component microservice is always dependent, in some fashion, on another microservice (e.g.,
data). In the context of our example, the shipping microservice is dependent upon “unfulfilled
orders” data in the ordering microservice to perform its function of generating a shipping or bill
of lading record. Hence, there is always the need to couple microservices while still retaining
autonomy. The various approaches to creating the coupling, which are often dictated by business
process and IT infrastructure needs, include interaction patterns, messaging patterns, and
consumption modes. In this document, the term “interaction pattern” is used, and the primary
interaction patterns are as follows.

Request-reply: Two distinct types of requests include queries for the retrieval of information
and commands for a state-changing business function [2]. In the first type, a microservice makes
a specific request for information or to take some action and functionally waits for a response.
The purpose of the request for information is retrieval for presentation purposes. In the second
type, one microservice asks another to take some action involving a state-changing business
function (e.g., a customer modifying their personal profile or submitting an order). In the
request-reply pattern, there is a strong runtime dependency between the two microservices
involved, which manifests in the following two ways:

• One microservice can execute its function only when the other microservice is available.
• The microservice making the request must ensure that the request has been successfully

delivered to the target microservice.

Because of the nature of communication in the request-reply protocol, a synchronous
communication protocol, such as HTTP, is used. If the microservice is implemented with a
REST API, the messages between the microservices become HTTP REST API calls. The REST
APIs are often defined using a standardized language, such as RAML (RESTful API Modeling

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Language), which was developed for microservice interface definition and publication. HTTP is
a blocking type of communication wherein the client that initiates a request can continue its task
only when it receives a response.

Publish-Subscribe: This pattern is used when microservices need to collaborate for the
realization of a complex business process or transaction. This is also called a business domain
event-driven approach or domain event subscription approach. In this pattern, a microservice
registers itself or subscribes to business domain events (e.g., interested in specific information or
being able to handle certain requests), which are published to a message broker through an event-
bus interface. These microservices are built using event-driven APIs and use asynchronous
messaging protocols, such as Message Queuing Telemetry Transport (MQTT), Advanced
Message Queuing Protocol (AMQP), and Kafka Messaging, which enable support for
notifications and subscriptions. In asynchronous protocols, the message sender does not typically
wait for a response but simply sends the message to a message agent (e.g., RabbitMQ queue).
One of the use cases for this approach is the propagation of data updates to multiple
microservices based on certain events [8].

2.6 Microservices: State of the Practice Core Features

The criticality of the communication infrastructure in a microservices-based application
environment calls for several sophisticated capabilities to be provided as core features in many
deployments. As already stated, many of these features can be implemented either stand-alone or
bundled together in architectural frameworks such as an API gateway or service mesh. Even
within the API gateway, these features can be implemented through service composition or direct
implementation within the code base. These features include but are not limited to
authentication, access control, service discovery, load balancing, response caching, application-
aware health checks, and monitoring [2]. A brief description of these features [5] includes:

• Authentication and access control: Authentication and access policy may vary depending
on the type of APIs exposed by microservices—some may be public APIs; some may be
private APIs; and some may be partner APIs, which are available only for business
partners.

• Service Discovery: In legacy distributed systems, there are multiple services configured
to operate at designated locations (IP address and port number). In the microservices-
based application, the following scenario exists and calls for a robust service discovery
mechanism:
a) There are a substantial number of services and many instances associated with each

service with dynamically changing locations.
b) Each of the microservices may be implemented in VMs or as containers, which may

be assigned dynamic IP addresses, especially when they are hosted in an
Infrastructure as a Service (IAAS) or Software as a Service (SAAS) cloud service.

c) The number of instances associated with a service can vary based on the load
fluctuations using features such as autoscaling.

• Security monitoring and analytics – To detect attacks and identify factors for degradation
of services (which may impact availability), it is necessary to monitor network traffic into

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

and out of microservices with analytics capabilities in addition to routine logging
features.

An API gateway or micro-gateway is generally used for implementing the following core
features:

• Optimized endpoint: This involves several capabilities.
a) Request and response collapsing: Most business transactions will involve calls to

multiple microservices, often in a pre-determined sequence. An API gateway can
simplify the situation for clients by exposing an endpoint that will automatically make
all the needed multiple requests (calls) and return a single, aggregated response to the
client.

b) API Transformation: The API gateway can provide a public interface to the client
which is different from the individual APIs it has to call to cater to a given request.
This feature is called API transformation and enables:
i) Changing the implementation and even the API interface for individual

microservices; and
ii) Transitioning from an initial, monolithic application to a microservices-based

application by enabling continued access to clients through the API gateway
while progressively splitting the monolithic application, creating microservice
APIs in the background, and changing the API transformation configuration
accordingly.

c) Protocol Translation: Calls from clients to microservices entry points may be in web
protocols, such as Hypertext Transfer Protocol Secure (HTTPS), while microservices
communicate among themselves using synchronous protocols, such as Remote
Procedure Call (RPC)/Thrift, or asynchronous protocols, such as AMQP. The
necessary protocol translation in client requests is typically carried out by the API
gateway.

• Circuit breaker: This is a feature to set a threshold for the failed responses to an instance
of a microservice and cut off proxying requests to that instance when the failure is above
the threshold. This avoids the possibility of a cascaded failure, allows time to analyze
logs, implement the necessary fix, and push an update for the failing instance.

• Load balancing: There is a need to have multiple instances of the same service, and the
load on these instances must be evenly distributed to avoid delayed responses or service
crashes due to overload.

• Rate limiting (throttling): The rate of requests coming into a microservice must be limited
to ensured continued availability of service for all clients.

• Blue/green deployments: When a new version of a microservice is deployed, requests
from customers using the old version can be redirected to the new version since the API
gateway can be programmed to be aware of the locations of both versions.

• Canary releases: Only a limited amount of traffic is initially sent to a new version of a
microservice since the correctness of its response or performance metric under all

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

operating scenarios is not fully known. Once sufficient data is gathered about its
operating characteristics, then all of the requests can be proxied to the new version of the
microservice.

2.7 Microservices: Architectural Frameworks

The two main architectural frameworks for bundling or packaging core features that primarily
ensure reliable, resilient, and secure communication in a microservices-based application are:

• API gateway, augmented with or without micro gateways; and
• Service mesh.

The role of these frameworks in the operating environment of a microservices-based
application system are given in Table 2 [4]:

Table 2: Role of Architectural Frameworks in Microservices Operations

Architectural Framework Role in the Overall Architecture
API gateway, augmented with or without
micro gateways

Used for controlling north-south and east-west traffic

Service mesh Deployed for purely east-west traffic when
microservices are implemented using containers but
can also be used in situations where microservices
are housed in VMs or application servers.

Typical functions in both architectural frameworks include: service discovery, load balancing,
failure detection, failure response, and attack monitoring.

2.7.1 API Gateway

The API gateway is a popular architectural framework for microservices-based application
systems. Unlike a monolithic application where the endpoint may be a single server, a
microservices-based application consists of multiple fine-grained endpoints. Hence, it makes
sense to provide a single entry point for all clients to multiple component microservices of the
application. Another situation where an API gateway is deployed is to act as a front-end (that
matches the legacy enterprise software) to back-end services when an organization is migrating
from a monolithic enterprise application by gradually replacing its components with independent
microservices over time. Direct communication of clients to multiple endpoints results in too
many point-to-point connections.

The primary function of the API gateway is to always route inbound requests to the correct
down-stream services, optionally perform protocol translation (i.e., translation between web
protocols, such as HTTP and WebSocket, and web-unfriendly protocols that are used internally,
such as AMQP and Thrift binary RPC) and sometimes compose requests. In some rare instances,
they are used as part of a Backend for Frontend (BFF), thus enabling support for clients with
different form factors (e.g., browser, mobile device). All requests from clients first go through

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

the API gateway, which then routes requests to the appropriate microservice. The API gateway
will often handle a request by invoking multiple microservices and aggregating the results.

The multiple APIs or microservices accessible through the API gateway can be specified as part
of the input port definition of the gateway (e.g., mobileAPI or MobileService) or be specified
dynamically through a deploy operation of the API gateway service with a request parameter that
contains the name of the service that should be embedded with the requested service [9]. Thus,
the API gateway, located between clients and microservices, represents a pattern wherein a
proxy aggregates multiple services. Many API gateway implementations can support APIs
written in different languages, such as Jolie, JavaScript, or Java.

Since the API gateway is the entry point for microservices, it should be equipped with the
necessary infrastructure services (in addition to its main service of request shaping), such as
service discovery, authentication and access control, load balancing, caching, providing custom
APIs for each type of client, application-aware health checks, service monitoring, attack
detection, attack response, security logging and monitoring and circuit breakers. These additional
features may be implemented in the API gateway in two ways:

• By composing the specific services developed for respective functionality (e.g., service
registry for service discovery); and

• Implementing these functionalities directly inside the codebase that utilizes the API
gateway.

Gateway implementations

To prevent the gateway from having too much logic to handle request shaping for different client
types, it is divided into multiple gateways [8]. This multiple gateway pattern is called BFF. In
BFF, each client type is given its own gateway (e.g., web app BFF, mobile app BFF) as a
collection point for service requests. The respective backend is closely aligned with the
corresponding front end (client) and is typically developed by the same team. The functionality
provided by BEF can also be provided by GraphQL which allows the client to shape responses in
their requests by specifying what parts of a data-type are required in a response.

API management for a microservices-based application can be implemented through either a
monolithic API gateway architecture or a distributed API gateway architecture. In the monolithic
API gateway architecture, there is only one API gateway that is typically deployed at the edge of
the enterprise network (e.g., Demilitarized Zone (DMZ)) and provides all services to the API at
the enterprise level. In the distributed API gateway architecture, there are multiple instances of
microgateways, which are deployed closer to microservice APIs [10]. A microgateway is
typically a low footprint, scriptable API gateway that can be used to define and enforce
customized policies and is therefore suitable for microservices-based applications, which must be
protected through service-specific security policies.

The microgateway is typically implemented as a stand-alone container using development
platforms such as Node.js. It is different from a sidecar proxy of the service mesh architecture
(refer to Section 2.7.2), which is implemented at the API endpoint itself. There are a number of

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

ways the security policies can be encoded and input in a gateway. One approach is to encode
policies using JSON format and input them through a graphical policy management interface.
The microgateway should contain policies for both application requests and responses. When
policies and their enforcement are implemented as a container, they are immutable and thus
provide a degree of protection against accidental and unintended modifications which may result
in security breaches or conflicts. In other words, these types of modifications are prevented when
the microgateway is implemented as a container since any security policy update will require
redeployment of the microgateway. It is essential that the microgateway deployed for any
microservice instance communicate with service registry and monitoring modules to keep track
of the operational status of the microservice it is designed to protect.

2.7.2 Service Mesh

A service mesh is a dedicated infrastructure layer that facilitates service-to-service
communication through service discovery, routing and internal load balancing, traffic
configuration, encryption, authentication and authorization, metrics, and monitoring. It provides
the capability to declaratively define network behavior, node identity, and traffic flow through
policy in an environment of changing network topology due to service instances coming and
going offline and continuously being relocated. It can be looked upon as a networking model
that sits at a layer of abstraction above the transport layer of the Open System Interconnection
(OSI) model (e.g., Transport Control Protocol/Internet Protocol (TCP/IP)) and addresses the
service’s session layer (Layer 5 of the OSI model) concerns [11]. However, fine-grained
authorization may still need to be performed at the microservice since that is the only entity
that has the full knowledge of the business logic. A service mesh conceptually has two
modules—the data plane and the control plane. The data plane carries the application request
traffic between service instances through service-specific proxies. The control plane configures
the data plane, provides a point of aggregation for telemetry, and provides APIs for modifying
the behavior of the network through various features, such as load balancing, circuit breaking,
or rate limiting.

Service meshes create a small proxy server instance for each service within a microservices
application. This specialized proxy car is sometimes called a “sidecar proxy” in service mesh
parlance [12]. The sidecar proxy forms the data plane, while the runtime operations needed for
enforcing security (access control, communication-related) are enabled by injecting policies
(e.g., access control policies) into the sidecar proxy from the control plane. This also provides
the flexibility to dynamically change policies without modifying the microservices code.

2.8 Comparison with Monolithic Architecture

To fully compare the microservice architecture with the monolithic architecture used for all
legacy applications, it is necessary to compare the features of applications developed using these
architectural styles as well as provide an example of an application under both architectures for a
specific business process. A detailed discussion involving these aspects is provided in Appendix
A.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

2.9 Comparison with Service-Oriented Architecture (SOA)

The architectural style of microservices shares many similarities with service-oriented
architecture (SOA) due to the following common technical concepts [13]:

• Services: The application system provides its various functionalities through self-
contained entities or artifacts called services that may have other attributes such as being
visible or discoverable, stateless, reusable, composable, or have technological-diversity.

• Interoperability: A service can call any other service using artifacts such as an enterprise
service bus (ESB) in the case of SOA or through a remote procedural call (RPC) across a
network as in the case of a microservices environment.

• Loose coupling: There is minimal dependency between services such that the change in
one service does not require a change in another service.

In spite of the three common technical concepts described above, technical opinion on the
relationship between an SOA and microservices environment falls along the following three lines
[13]:

• Microservices are a separate architectural style,
• Microservices represent one SOA pattern, and
• A microservice is a refined SOA.

The most prevalent opinion is that the differences between SOA and microservices do not
concern the architectural style except in its concrete realization, such as development or
deployment paradigms and technologies [2].

2.10 Advantages of Microservices

• For large applications, splitting the application into loosely coupled components enables
independence between the developer teams assigned to each component. Each team can
then optimize by choosing its own development platform, tools, language, middleware,
and hardware based on their appropriateness for the component being developed.

• Each of the components can be scaled independently. The targeted allocation of resources
results in maximum utilization of resources.

• If components have HTTP RESTful interfaces, implementation can be changed without
disruption to the overall function of the application as long as the interface remains the
same.

• The relatively smaller codebase involved in each component enables the development
team to produce updates more quickly and provide the application with the agility to
respond to changes in business processes or market conditions.

• The loose coupling between the components enables containment of the outage of a
microservice such that the impact is restricted to that service without a domino effect on
other components or other parts of the application.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

• When components are linked together using an asynchronous event-handling mechanism,
the impact of a component’s outage is temporary since the required functions will
automatically execute when the component begins running again, thus maintaining the
overall integrity of the business process.

• By aligning the service definition to business capabilities (or by basing the decomposition
logic for the overall application functionality based on business processes or capabilities),
the overall architecture of the microservices-based system is aligned with the
organizational structure. This promotes an agile response when business processes
associated with an organizational unit change and consequently require that associated
service to be modified and deployed.

• The independent functional nature of a microservice promotes better reusability of the
code across applications.

2.11 Disadvantages of Microservices

• Multiple components (microservices) must be monitored instead of one single
application. A central console is needed to obtain the status of each component and the
overall state of the application. Therefore, an infrastructure must be created with
distributed monitoring and centralized viewing capabilities.

• The presence of multiple components creates an availability problem since any
component may cease functioning at any time.

• A component may have to call the latest version of another component for some clients
and call the previous version of the same component for another set of clients (i.e.,
version management).

• Running an integration test is more difficult since a test environment is needed wherein
all components must be working and communicating with each other.

• When interactions within a microservices-based application are designed as API calls, all
the necessary processes required for secure API management must be implemented.

• The microservices architecture can break down the practice of defense in depth. Many
architectures have a web server running in a DMZ that is expected to be compromised,
then a backend service which the web server talks to, and then finally a database that the
backend service talks to. The backend service can act as a more hardened layer between
the exposed web server and the sensitive data in the database. The microservice
architecture tends to collapse this and now the web server and back end service are
broken down into microservices potentially more exposed than in the previous model.
This can result in fewer layers of protection between the caller and sensitive data. Hence
it is critical to securely design and implement the microservices themselves as well as the
service mesh or API gateway deployment model.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

3 Microservices: Threat Background

The threat background for a microservices-based application system should be treated as a
continuation of the technology background provided in Section 2. The following approach has
been adopted to review the threat background:

• Consider all layers in the deployment stack of a typical microservices-based application
and identify typical potential threats at each layer.

• Identify the distinct set of threats exclusive to microservices-based application systems.

3.1 Review of Threat Sources Landscape

Six layers are present in the deployment stack of a typical microservices-based application as
suggested in [13]: hardware, virtualization, cloud, communication, service/application, and
orchestration. This document considers these layers to be threat sources, and several of the
security concerns affiliated with them are described below to provide an overview of the threat
background in a microservices-based application. It is important to remember that many of the
possible threats are common to other application environments and not specific to a
microservices-based application environment.

• Hardware layer: Though hardware flaws, such as Meltdown and Spectre [8], have been
reported, such threats are rare. In the context of this document, hardware is assumed to be
trusted, and threats from this layer are not considered.

• Virtualization layer: In this layer, threats to microservices or hosting containers originate
from compromised hypervisors and the use of malicious or vulnerable container images
and VM images. These threats are addressed in other NIST documents and are therefore
not discussed here.

• Cloud environment: Since virtualization is the predominant technology used by cloud
providers, the same set of threats to the virtualization layer applies. Further, there are
potential threats within the networking infrastructure of the cloud provider. For example,
hosting all microservices within a single cloud provider may result in fewer network-
level security controls for inter-process communication as opposed to controls for
communication between external clients and the microservices hosted within the cloud.
Security threats within a cloud infrastructure are considered in several other NIST
documents and are therefore not addressed here.

• Communication layer: This layer is unique to microservices-based applications due to the
sheer number of microservices, adopted design paradigms (loose coupling and API
composition), and different interaction styles (synchronous or asynchronous) among
them. Many of the core features of microservices pertain to this layer, and the threats to
these core features are identified under microservices-specific threats in Sec. 3.2.

• Service/application layer: In this layer, threats are the results of malicious or faulty code.
As this falls under secure application development methodologies, it is outside of the
scope of this document.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

• Orchestration layer: An orchestration layer may come into play if the microservices
implementation involves technologies such as containers. The threats in this layer pertain
to the subversion of automation or configuration features, especially related to scheduling
and clustering of servers, containers, or VMs hosting the services, and are therefore
beyond the scope of this document.

3.2 Microservices-specific Threats

Most state-of-practice core features refer to the communication layer in the deployment stack of
microservices-based applications. Hence, the overall security strategies for microservices-based
applications should involve choosing the right implementation options, identifying the
architectural frameworks packaging those core features, identifying microservice-specific
threats, and providing coverage for countering those threats in the implementation options.

However, it should be pointed out that microservices-based applications are still susceptible to
most attacks that web applications are susceptible to, including injection, encoding and
serialization attacks, cross site scripting (XSS), Cross-Site Request Forgery (CSRF), and HTTP
verb tempering [20]. And many of the controls to prevent these attacks still need to be
implemented in the microservice code so you need to ensure that developers are not under the
impression that an API gateway or service mesh will provide all security for their microservice.

3.2.1 Service Discovery Mechanism Threats

The basic functions in a service discovery mechanism are:

• Service registration and de-registration.
• Service discovery.

The potential security threats to the service discovery mechanism include:

• Registering malicious nodes within the system, redirecting communication to them, and
subsequently compromising service discovery.

• Corruption of the service registry database leading to redirection of service requests to
wrong services and resulting in denial of services; also, redirection to malicious services
resulting in compromise of the entire application system.

3.2.2 Internet-based Attacks

Though all networked or distributed applications are vulnerable to internet-based attacks,
microservices-based applications are more vulnerable to this type of attacks due to the following:

• Unlike a monolithic application that exposes a smaller set of IP-addressable remote
procedure call interfaces, a microservices architecture will almost always expose a larger
set of IP-addressable remote procedure call interfaces. This is due to the fact that
monolithic applications favor single-component implementation of a range of business
functions and typically expose a consolidated interface to them all. Applications

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

employing a microservices architecture feature many smaller components that coordinate
or connect over many interfaces.

• Microservices-based applications have increased risks due to inadvertent exposure of
internal functionality, when security controls implemented for upstream components are
skipped by directly accessing downstream components. The overall increased complexity
of the system increases the chances a developer may omit a check because they can't
reason about what conditions the caller has been subjected to.

This class of attacks includes botnet attacks. Though not the only means or being the only class
of systems subject to botnet attacks, damage to microservices-based applications could include
credential stuffing/abuse, accounts takeover, page scraping and harvesting data, and distributed
denial of service.

3.2.3 Cascading Failure

The presence of multiple components in a microservices-based application enhances the
probability of a failure of a service. Though the components are designed to be loosely coupled
from the point of view of deployment, there is a logical or functional dependency since many
business transactions require the execution of multiple services in sequence to deliver the
required outputs. Therefore, if a service that is upstream in the processing logic of a business
transaction fails, other services that depend upon it may become unresponsive as well. This
phenomenon is known as cascading failure.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

4 Security Strategies for Implementing Core Features and Countering Threats

Security strategies for the design and deployment of microservices-based application systems
will span the following:

Analysis of implementation options for core features: (Some significant core state of practice
features are shown in Appendix B).

a) Identity and access management,
b) Service discovery,
c) Secure communication protocols,
d) Security monitoring,
e) Resiliency or availability improvement techniques, and
f) Integrity assurance improvement techniques.

Countering microservices-specific threats:

a) Threats to service discovery mechanism,
b) Internet-based attacks, and
c) Cascading failures.

Note that service discovery is a core feature in microservices, and analysis of the implementation
options will also take into consideration threats to service discovery mechanisms. Similarly,
implementation options for resiliency or availability improvement will also address the counter
measures for cascading failures. As such, there will not be separate security strategies for these
items.

4.1 Strategies for Identity and Access Management

Since microservices are packaged as APIs, the initial form of authentication to microservices
involves the use of API keys (cryptographic). Authentication tokens encoded in Security
Assertion Markup Language (SAML) or through OpenID connect under the OAuth 2.0
framework provide an option for enhancing security [14]. For authorization, a centralized
architecture for provisioning and enforcement of access policies governing access to all
microservices is required due to the sheer number of services, the implementation of services
using APIs, and the need for service composition to support real-world business transactions
(e.g., customer order processing and shipping). A standardized, platform-neutral method for
conveying authorization decisions through a standardized token (e.g., JSON web tokens (JWT),
some of which can be OAuth 2.0 access tokens encoded in JSON format [15]) is also required
since each of the microservices may be implemented in a different language or platform
framework. Policy provisioning and computation of access decisions require the use of an
authorization server.

The disadvantage to implementing access control policies at the access point of each
microservice is that additional effort is required to ensure that cross-cutting (common) policies
applicable to all microservice APIs are implemented uniformly. Any discrepancy in security

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

policy implementation among APIs will have security implications for the entire microservices-
based application, although this applies only to coarse grained policies since fine grained policies
can only be specified closer to the microservice or in the microservice itself. Further, the
footprint for implementing access control in each microservices node can result in performance
issues in some nodes. Since multiple microservices nodes collaborate to perform a transaction,
performance problems associated with any node can quickly cascade across multiple services.
Taking into consideration these requirements, the strategies for secure identity and access
management to microservices are outlined below.

Security strategies for authentication (MS-SS-1):

• Authentication to microservices APIs that have access to sensitive data should not be
done simply by using API keys. Access to such APIs should require authentication tokens
that have either been digitally signed (e.g., client credentials grant) or is verified with an
authoritative source. Additionally, some services may require either single-use tokens or
short-lived tokens (tokens that expire after a short time period) to limit the damage a
compromised token can cause.

• Authentication tokens should be handle-based (where initially a token reference is sent to
Relying party (RP)), cryptographically signed, or protected by an Hash-based Method
Authentication Code (HMAC) scheme.

• Every API Key that is used in the application should have restrictions specified both for
the applications (e.g., mobile app, IP address) and the set of APIs where they can be used.

• The restriction scope for functionality of every API Key should be commensurate with
the level of assurance provided during identity proofing, whether it be machine or human
driven identity proofing.

• When stateless authentication tokens (e.g., JSON Web Tokens (JWT)) are used by
implementing shared libraries associated with a microservice, the following security
precautions must be observed: (a) the token expiry times should be as short as possible
since they determine the duration of the session and an active session cannot be revoked,
and (b) the token secret key must not be a part of the library code; it must be a dynamic
variable represented by an environmental variable or specified in an environment data file.
The key value should be stored in a data vault solution.

• If standards-based techniques such as OAuth or OpenID connect are implemented, they
must be deployed securely [19].

Security strategies for access management (MS-SS-2):

• Access policies to all APIs and their resources should be defined and provisioned to an
access server. Access policies at a coarse level of granularity say “Permit to Call for a
given set of addressable functionalities” should be defined and enforced at the initial API
gateway while authorizations at the finer level of granularity (e.g., related to domain of
the particular microservices’ business logic) should be defined and enforced closer to the

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

location of the microservices (e.g., at the micro gateway) or sometimes at the
microservice itself.

• Caching Mechanism: It may be appropriate to allow microservices to cache policy data;
this cache should be only relied upon when an access server is unavailable and should
expire after a duration appropriate for the environment/infrastructure.

• The access server should be capable of supporting fine-grained policies.
• Access decisions from the access server should be conveyed to individual and sets of

microservices through standardized tokens encoded in a platform-neutral format (e.g.,
OAuth 2.0 token encoded in JSON format). The token can be either a handle-based token
or an assertion bearing token.

• The scope of internal authorization tokens appended by the micro gateway or decision
point to each request should be carefully controlled; for example, in a request for
transaction, the internal authorization token should be limited in scope to only involve the
API endpoints that must be accessed for that transaction.

• The API gateway can be leveraged to centralize enforcement of authentication and access
control for all downstream microservices, eliminating the need to provide authentication
and access control for each of the individual services. If this design is chosen, any
component suitably positioned on the network can make anonymous connections to the
services bypassing the API gateway and its protections. Mitigating controls such as
mutual authentication should be leveraged to prevent direct, anonymous connections to
the services.

4.2 Strategies for Service Discovery Mechanism

Microservices may have to be replicated and located anywhere in the enterprise or cloud
infrastructure for optimal performance and load balancing reasons. In other words, services
could be frequently added or removed and dynamically assigned to any network location.
Hence, it is inevitable in a microservices-based application architecture to have a service
discovery mechanism, which is typically implemented using the service registry. The service
registry service is used by microservices that are coming online to publish their locations in a
process called service registration and is also used by microservices seeking to discover
registered services. The service registry must therefore be configured with confidentiality,
integrity, and availability considerations.

In service-oriented architectures (SOA), service discovery is implemented as part of the
centralized enterprise service bus (ESB). However, in microservices architecture—where the
business functions are packaged and deployed as services within containers and communicate
with each other using API calls—it is necessary to implement a lightweight message bus that
can implement all three interaction styles mentioned in Section 2.5. Additionally, alternatives
to the ways in which service registry service can be implemented span two dimensions: (a) the
way clients access the service registry service and (b) centralized versus distributed service
registry. Clients can access the service registry service using two primary methods: client-side
discovery pattern and server-side discovery pattern [9].

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Analysis of the client-side service discovery pattern

The client-side option consists of building registry-aware clients. The client queries the service
registry for the location of all services needed to make requests. It then contacts the target service
directly. Though simple, this implementation option for service discovery requires the discovery
logic (querying the service registry) to be implemented for each programming language and/or
framework that is used for client implementations.

Analysis of the service-side service discovery pattern

The service-side discovery has two implementations: one pattern delegates the discovery logic to
a dedicated router service set at a fixed location, while the other utilizes a server in front of each
microservice with the functionality of a dynamic Domain Name System (DNS)-resolver (which
works with a Domain Name System Security Extensions (DNSSSEC) authoritative server)). In
the dedicated router option, the client makes all service requests to this dedicated router service,
which in turn queries the service registry for the location of the client-requested service and
forwards that request to the discovered location. This removes the tight coupling between an
application service and an infrastructure service such as the service registry service. In the DNS
resolver pattern, each microservice completes its own service discovery using its built-in DNS
resolver to query the service registry. The DNS resolver maintains a table of available service
instances and their endpoint locations (i.e., IP addresses). To keep the table up to date, the
asynchronous, nonblocking DNS resolver queries the service registry regularly—perhaps every
few seconds—using DNS Service records (e.g., Service Resource Records (SRV RRs)) for
service discovery. Since the service discovery function through the DNS resolver runs as a
background task, the endpoints (URLs) for all peer microservices are instantly available when a
service instance needs to make a request [2].

A good strategy would be to use a combination of the service-side service discovery pattern
and the client-side service discovery pattern [9]. The former can be used for providing access
to all public APIs, while the latter can allow clients to access all cluster-internal interactions.

Centralized versus distributed service registry

In a centralized service registry implementation, all services wishing to publish their service
register at a single point, and all services seeking these services use the single registry to
discover them. The security disadvantage of this pattern is the single point of failure [13].
However, data consistency will not be an issue. In the decentralized service registry, there may
be multiple service registry instances, and services can register with any of the instances. In the
short term, the disadvantage is that there will be data inconsistency between the various service
registries. Eventually, consistency among these various instances of service registry is
achieved either through broadcasting from one instance to all others or by propagation from
one node to all others via attached data in a process called piggybacking.

Regardless of the pattern used for service discovery, secure deployment of service discovery
functions should meet the following service registry configuration requirements.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security strategies for service registry configuration (MS-SS-3)

• Service registry capabilities should be provided through servers that are either dedicated
or part of a service mesh architecture.

• Service registry services should be in a network that has been configured with certain
Quality of Service (QoS) parameters to ensure its availability and resilience.

• Communication between an application service and a service registry should occur
through a secure communication protocol such as HTTPS or Transport Layer Security
(TLS).

• Service registry should have validation checks to ensure that only legitimate services are
performing the registration, refresh operations, and database queries to discover services.

• The bounded context and loose coupling principle for microservices should be observed
for the service registration/deregistration functions. In other words, the application
service should not have tight coupling with an infrastructure service, such as a service
registry service, and service self-registration/deregistration patterns should be avoided.
When an application service crashes or is running but unable to handle requests, its
inability to perform deregistration affects the integrity of the whole process. Therefore,
registration/deregistration of an application service should be enabled using a third-party
registration pattern, and the application service should be restricted to querying the
service registry for service location information as described under the client-side
discovery pattern.

• If a third-party registration pattern is implemented, registration/deregistration should only
take place after a health check on the application service is performed.

• Distributed service registry should be deployed for large microservices applications, and
care should be taken to maintain data consistency among multiple service registry
instances.

4.3 Strategies for Secure Communication Protocols

Secure communication between clients and services (north-south traffic) and between services
(east-west traffic) is critical for the operation of a microservices-based application.

However, certain strategies for security services—such as authentication or the establishment of
secure connections—can be handled at the individual microservices nodes. For example, in the
fabric model, each microservice instance has the capability to function as an Secure Sockets
Layer (SSL) client and SSL server (i.e., each microservice is an SSL/TLS endpoint). Thus, a
secure SSL/TLS connection is possible for interservice or inter-process communication from an
overall application perspective. These connections can be created dynamically (i.e., before each
interservice request) or be created as a keep-alive connection. In the keep-alive connection
scheme, a “service A” creates a connection after a full SSL/TLS handshake—the first time an
instance of that service makes a request to an instance of a “service B.” However, neither service
instances terminate the connection after a response returns for that request from service B.
Rather, the same connection is reused in future requests. The advantage of this scheme is that the
costly overhead involved in performing the initial SSL/TLS handshake can be avoided during

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

each request, and an existing connection can be reused for thousands of following interservice
requests. Thus, a permanent secure interservice network connection is available for all instances
of requests.

Security strategies for secure communication (MS-SS-4)

• Clients should not be configured to call target services directly but rather to point to the
single gateway URL.

• Client to API gateway as well as Service to Service communication should take place
after mutual authentication and be encrypted (e.g., using mutual TLS (mTLS) protocol).

• Frequently interacting services should create keep-alive TLS connections.

4.4 Strategies for Security Monitoring

Compared to monitoring a monolithic application which runs in a server (or some replicas for
load balancing), a microservices-based system must monitor a large number of services, each
running in different servers possibly hosted on heterogeneous application platforms. Further, any
meaningful transaction in the system will involve at least two or more services.

Security strategies for security monitoring (MS-SS-5)

• Security monitoring should be performed at both the gateway and service level to detect,
alert and respond to inappropriate behavior, for example a bearer token reuse attack and
injection attacks. Further, input validation errors and extra parameters errors, crashes and
core dumps must be logged. A class of software that can accomplish this is the Open
Webapplication Service Project ((OWASP). AppSensor which could be potentially
implemented in the gateway, service mesh and microservice itself.

• A central dashboard displays the status of various services and the network segments that
link them. At a minimum, the dashboard should show security parameters such as input
validation failures and unexpected parameters that are obvious signs of injection attack
attempts.

• A baseline for normal, uncompromised behavior in terms of the outcome of business
logic decisions, contact attempts, and other behavior should be created. The placement
and capabilities of Intrusion Detection System (IDS) nodes should be such that deviations
from this baseline can be detected.

4.5 Availability/Resiliency Improvement Strategies

In microservices-based applications, targeted efforts that improve the availability or resiliency of
certain critical services are needed to enhance the overall security profile of the application.
Some technologies that are commonly deployed include:

• Circuit breaker function,
• Load balancing, and
• Rate limiting (throttling).

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

4.5.1 Analysis of Circuit Breaker implementation options

A common strategy for preventing or minimizing cascading failures involves the use of circuit
breakers, which prohibits the delivery of data to the component (microservice) that is failing
beyond a specified threshold. This is also known as the fail fast principle. Since the errant service
is quickly taken offline, incidences of cascading failures are minimized while the errant
component’s logs are analyzed, required fixes are performed, and microservices are updated.
There are three options for deploying circuit breakers [9]: directly inside the client, on the side of
services, or in proxies that operate between clients and services.

Client-side circuit breaker option: In this option, each client has a separate circuit breaker
for each external service that the client calls. When the circuit breaker in a client has
decided to cut off calls to a service (called “open state” with respect to that service), no
message will be sent to the service, and communication traffic in the network is
subsequently reduced. Moreover, the circuit breaker functionality need not be
implemented in the microservice, which frees valuable resources for efficient
implementation of that service. However, locating the circuit breaker in the client carries
two disadvantages from a security point of view. First, a great deal of trust must be
placed in the client that the circuit breaker code executes properly. Second, the overall
integrity of the operation is at risk since knowledge of the unavailability of the service is
very much local to the client, a status that is determined based on the frequency of calls
from that client to the service rather than on the combined response status received by all
clients against that service.

Server-side circuit breaker option: In this option, an internal circuit breaker in the
microservice processes all client invocations and decides whether it should be allowed to
invoke the service or not. The security advantages of this option are that clients need not
be trusted to implement the circuit breaker function, and since the service has a global
picture of the frequency of all invocations from all clients, it can throttle requests to a
level which it can conveniently handle (e.g., temporarily lighten the load).

Proxy circuit breaker option: In this option, circuit breakers are deployed in a proxy
service, located between clients and microservices, which handles all incoming and
outgoing messages. Within this, there may be two options: one proxy for each target
microservice or a single proxy for multiple services (usually implemented in API
gateway) that includes both client-side circuit breakers and service-side circuit breakers
existing within that proxy. The security advantage of this option is that neither the client
code nor the services code needs to be modified, which avoids trust and integrity
assurance issues associated with both these categories of code as well as the circuit
breaker function. This option also provides additional protections such as making clients
more resilient to faulty services, and shielding services from cases in which a single
client sends too many requests [9], resulting in some type of denial of service to other
clients that use that service.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security strategies for implementing circuit breakers (MS-SS-6)

• A proxy circuit breaker option should be deployed to limit the trusted component to the
proxy. This avoids the need to place the trust on the clients and microservices (e.g.,
setting thresholds and cutting off requests based on the set threshold) since they are
multiple components.

4.5.2 Strategies for Load Balancing

Load balancing is an integral functional module in all microservices-based applications, and its
main purpose is to distribute loads to services. A service name is associated with a namespace
that supports multiple instances of the same service. In other words, many instances of the
same service would use the same namespace [13]. To balance the service load, the load
balancer chooses one service instance in the request namespace using an algorithm such as the
round-robin algorithm—a circular pattern to assign the request to a service instance.

Security strategies for load balancing (MS-SS-7)

• All programs supporting the load balancing function should be decoupled from individual
service requests. For example, the program that performs health checks on services to
determine the load balancing pool should run asynchronously in the background.

• Care must be taken to protect the network connection between the load balancer and the
microservice platform.

• When a DNS resolver is deployed in front of a source microservice to provide a table of
available target microservice instances, it should work in tandem with the health check
program to present a single list to the calling microservice.

4.5.3 Rate Limiting (Throttling)

The primary goal of rate limiting is to ensure that a service is not oversubscribed impacting
availability. That is, when one client increases the rate of requests, the service continues its
response to other clients. This is achieved by setting a limit on how often a client can call a
service within a defined window of time. When the limit is exceeded, the client—rather than
receiving an application-related response—receives a notification that the allowed rate has been
exceeded as well as additional data regarding the limit number and the time at which the limit
counter will be reset for the requestor to resume receiving responses. A secondary goal of rate
limiting is to mitigate the impact of Denial of Service attacks. Closely related to the concept of
rate limiting is quota management or conditional rate limiting where limits are determined based
on application requirements rather than infrastructure limitations or requirements.

Security strategies for rate limiting (MS-SS-8)

• Quotas or limits for application usage should be based on both infrastructure and
application-related requirements.

• Limits should be determined based on well-defined API usage plans.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

• For high security microservices, replay detection must be implemented. Based on the
risk, this feature can be configured to detect replays 100 % of the time or perform random
detection.

4.6 Integrity Assurance Strategies

Integrity assurance requirements in the context of microservices-based applications arise under
two contexts:

• When new versions of microservices are inducted into the system.
• For supporting session persistence during a transaction.

Monitored induction of new releases: Whenever a newer version of a microservice is released, its
induction must be a gradual process since (a) all clients may not be ready to use the new version,
and (b) the behavior of the new version for all scenarios and use cases may not meet the business
process expectation despite extensive testing. To address this situation, a technique called canary
release is often adopted [4]. Under this technique, only a limited number of requests are routed to
the new version after it is brought online, and the rest are routed to the existing operational
version. After a period of observation provides assurance that the new version meets
performance and integrity metrics, all of the requests are routed to the new version.

Security (integrity assurance) strategies for the induction of new versions of microservices
(MS-SS-9):

• The traffic to both the existing version and the new version of the service should be
routed through a central node, such as an API gateway, to monitor that the blue/green
transition occurs in a controlled manner and to monitor the risk associated with a canary
release. Security monitoring should cover nodes hosting both the existing and newer
versions.

• Usage monitoring of the existing version should steadily increase traffic to the new
version.

• The performance and functional correctness of the new version should be factors in
increasing traffic to the new version.

• Client preference for the version (existing or new) should be taken into consideration
while designing a canary release technique.

Session persistence: It is critical to send all requests in a client session to the same upstream
microservice instance since clients execute a complete transaction through multiple requests to a
specific service, and the target of all requests should be to the same upstream service instance in
that session. This requirement is called session persistence. A situation that could potentially
break this requirement is one wherein the microservice stores its state locally, and the load
balancer handling individual requests forwards a request from an in-progress user session to a
different microservice server or instance. One of the methods for implementing session
persistence is sticky cookie. In this method, there is a mechanism to add a session cookie to the
first response from the upstream microservice group to a given client, identifying (in an encoded
fashion) the server that generated the response. Subsequent requests from the client include the
cookie value, and the same mechanism uses it to route the request to the same upstream server
[16].

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security (integrity assurance) strategies for handling session persistence (MS-SS-10):

• The session information for a client must be stored securely.
• The artifact used for conveying the binding server information must be protected.
• Internal authorization tokens must not be provided back to the user, and the user's session

tokens must not be passed beyond the gateway for use in policy decisions.

4.7 Countering Internet-based Attacks

Though it is impossible to protect against all types of Internet-based attacks including botnets,
microservice APIs must be provided with detection and prevention capabilities against
credential-stuffing and credential abuse attacks as well as the capability to detect malicious
botnets. This is especially critical for those applications where each of the microservices are
independently callable and carry their own sets of credentials. Credential abuse attacks can be
detected using offline threat analysis or run-time solutions [17]. Detection of botnet attacks is
provided by a dedicated bot manager product or as an add-on feature in web application firewalls
(WAF).

Security strategies for preventing credential abuse and stuffing attacks (MS-SS-11):

• A run-time prevention strategy for credential abuse is preferable to an offline strategy. A
threshold for a designated time interval from a given location (e.g., IP address) for the
number of login attempts should be established; if the threshold is exceeded, preventive
measures must be triggered by the authentication/authorization server. This feature must
be present when a bearer token is used, to detect its reuse and enforce prevention.

• A credential-stuffing detection solution has the capability to check user logins against the
stolen credential database and warn legitimate users that their credentials have been
stolen.

• Configure IDS and boundary devices to detect the following: (a) a denial of service attack
and raise an alert before the service is no longer accessible, and (b) a distributed network
probe.

• Configure service hosts to scan file uploads and the contents of each container's memory
and file system for resident malware threats.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

5 Security Strategies for Architectural Frameworks in Microservices

The two main architectural frameworks considered in this document for microservices-based
application systems are the API gateway and service mesh. The primary security
considerations in the implementation of the API gateway involve choosing the right platform
for hosting it, proper integration and configuration with enterprise-wide authentication and
authorization frameworks, and securely leveraging the traffic flowing through it for security
monitoring and analysis.

Security strategy for API gateway implementation (MS-SS-12):

• Integrate the API gateway with an identity management application to provision
credentials before activating the API.

• When identity management is invoked through the API gateway, connectors should be
provided for integrating with identity providers (IdPs).

• The API gateway should have a connector to an artifact that can generate an access token
for the client request (e.g., OAuth 2.0 Authorization Server).

• Securely channel all traffic information to a monitoring and/or analytics application for
detecting attacks (e.g., denial of service, malicious actions) and unearthing explanations
for degrading performance.

• Distributed gateway deployments (or a combination of initial gateway (that intercepts all
client accesses) and microgateways (closer to microservices)) should have a token
translation (exchange) service [18] between gateways. The token presented to the initial
gateway should have permissions with a broad scope whereas the token presented to
inside gateways (or microgateways) should be more narrowly scoped with specific
permissions or an entirely different token type that is appropriate for the target
microservice platform. This helps to implement the least privilege paradigm.

Implementing a service mesh can help ensure that proper configuration parameters associated
with various security policies are defined correctly in the control plane so that the intent of the
security policies are met, and the service mesh alone does not introduce new vulnerabilities.

Security strategy for service mesh implementation (MS-SS-13):

• Provide policy support for designating a specific communication protocol between pairs
of services and specifying the traffic load between pairs of services based on application
requirements.

• The default configuration should always enable access control policies for all services.
• Avoid configurations that may lead to privilege escalation (e.g., the service role

permissions and binding of the service role to service user accounts).
• Service mesh deployments should have configuration capabilities to specify resource

usage limits for its components. The absence of this feature creates the potential for these
components to impact the resiliency and availability of the overall microservices
application.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

• Service mesh deployments should have configuration capabilities to collect and send
environment metrics, including request metrics, to a centralized service for monitoring.
Policies should allow for specifying either a single service mesh or multiple service
meshes (each with their own control plane) for multi-cluster microservices environments
to ensure high availability and resiliency in those scenarios.

• For highly sensitive microservices-based applications, Layer 3 network segmentation
must be configured within the orchestrator platform to complement the Layer 5 network
segmentation achieved throughout the service mesh layer. This is a countermeasure to the
threat by malicious actors circumventing or bypassing the sidecar proxy that the service
mesh uses for firewalling and blocking network traffic.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Appendix A—Differences between Monolithic Application and Microservices-based
Application

A.1 Design and Deployment Differences

Conceptually, a monolithic architecture of an application involves generating one huge artifact
that must be deployed in its entirety, while a microservices-based application contains multiple
self-contained, loosely-coupled executables called services or microservices. The individual
services can be deployed independently. In monolithic applications, any change to a certain
functionality of the overall application will involve recompilation and, in some instances, re-
testing of the whole application before being deployed again. However, in the case of
microservices, only the relevant service is modified and redeployed since the independent nature
of the services ensures that a change in one does not logically affect the functionality of another.
In monolithic applications, any increase in workload due to an increase in the number of users or
the frequency of application usage will involve allocating resources to the whole application,
whereas in microservices, the increase in resources can be selectively applied to those services
whose performance is less than desirable, thus providing flexibility in scalability efforts.

Some monolithic applications may be constructed modularly but may not have semantic or
logical modularity. Modular construction refers to how an application may be built from a large
number of components and libraries that may have been supplied by different vendors, and some
components (e.g., database) may be distributed across the network [13]. In such monolithic
applications, the design and specification of APIs may be similar to that in a microservices
architecture. However, the difference between such modularly designed monolithic applications
(sometimes called a classic modular design) and a microservices-based application is that in the
latter, the individual API is network-exposed and therefore independently callable and re-usable.

The differences between monolithic and microservices-based applications is summarized in
Table 3.

Table 3: Logical Differences between Monolithic and Microservices-based Application

Monolithic Application Microservices-based Application

Must be deployed as a whole. Independent or selective deployment of
services.

Change in a small part of the application
requires re-deployment of the entire
application.

Only the modified services need to be re-
deployed.

Scalability involves allocating resources
to the application as a whole.

Each of the individual services can be
selectively scaled up by allocating more
resources.

API calls are local. Network-exposed APIs enable
independent invocation and re-usability.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

A.1.1 An Example Application to Illustrate the Design and Deployment differences

The following example of a small, Online Shopping Application illustrates the design and
deployment differences discussed above. The main functions of this application are:

• A module that displays the catalog of products offered by the retailer with pictures of the
products, product numbers, product names, and the unit prices;

• A module for processing customer orders by gathering information about the customer
(e.g., name, address) and the details of the order (e.g., name of the product from the
catalog, quantity, unit price) as well as creating a bin containing all the items ordered in
that session;

• A module for preparing the order for shipping, specifying the total bill of lading (i.e., the
total package to be shipped, quantity of each item in the order, shipping preferences,
shipping address); and

• A module for invoicing the customer with a built-in feature for making payments by
credit card or bank account.

The differences in the design of this Online Shopping Application as a monolithic versus
microservices-based are given in Table 4. Schematic diagrams of this application under
monolithic and microservices architectures are given in Figures 1 and 2 respectively.

Table 4: Differences in Application Construct between Monolithic and Microservices-based Application

Application Construct Monolith Microservices-based
Communication between
functional modules

All communications are in the
form of procedure calls or
some internal data structures
(e.g., socket). The module
handling the order
processing makes a
procedural call to the module
handling the shipping
function and waits for
successful completion
(blocking type synchronous
communication).

The shipping functionality
and the order processing
functionality are each
designed as independent
services. Communication
takes place as an API call
across the network using a
web protocol. The order
processing microservice can
either (a) make a request-
response call to the shipping
microservice and wait for a
response or (b) put the
details of the order to be
shipped in a message queue
to be picked up
asynchronously by the
shipping microservice, which
has subscribed to the event.

Handling changes or
enhancements (e.g.,
invoicing module needs to be
changed to accept debit
cards)

The entire application must
be recompiled and
redeployed after making the
necessary changes.

The invoicing function is
designed as a separate
microservice, so that service
can simply be recompiled
and redeployed.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Application Construct Monolith Microservices-based
Scaling the application,
allocation of increased
resources (e.g., order
processing module needs to
be allocated more resources
to handle a larger load)

The order processing
functionality involves longer
transaction times compared
to shipping or invoicing
functions. Vertical scaling
that involves using servers
with more memory or CPUs
must be deployed for the
entire application.

It is enough to allocate
increased resources for
hardware where the order
processing microservice is
deployed. Also, the number
of instances of order-
processing microservices
can be increased for better
load balancing.

Development and
deployment strategy

Development is handled by
the development team which,
after necessary testing by the
QA team, transfers the task
of deployment to an
infrastructure team that
oversees the allocation of
suitable resources for
deployment.

The complete lifecycle—from
development to
deployment—is handled by a
single DevOps team for each
microservice since it is a
relatively small module with a
single functionality and built-
in platform (e.g., OS,
languages libraries) that is
optimal for that functionality.

A.2 Run-time Differences

A monolithic application runs as a single computational node such that the node is aware of the
overall system or application state. In a microservices environment, the application is designed
as a set of multiple nodes that each provide a service. Since they operate without the need to
coordinate with others, the overall system state is unknown to individual nodes. In the absence of
any global information or global variable values, the individual nodes make decisions based on
locally available information. The independence of the nodes means that failure of one node does
not affect other nodes. Unlike monolithic applications where services may share database
connections or a data repository, a microservice architecture may deploy a pattern wherein each
service has its own data repository. In many situations, interaction between services may require
a distributed transaction which, if not designed properly, may affect the integrity of the
databases.

The runtime differences between monolithic and microservices applications and their
implications are summarized in Table 5.

Table 5: Architectural Differences between Monolithic and Microservices-based Application

Monolithic Application Microservices-based Application
Runs as a single computational node; overall
state information fully known.

Designed as a set of multiple nodes, each
providing a service; overall system state is
unknown to individual nodes.

Designed to make use of global information
or values of global variables.

Individual nodes make decisions based on
locally available information.

Failure of the node means crash of the
application.

Failure of one node should not affect other
nodes.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Figure 1: Online Shopping Application – Monolithic Architecture

Figure 2: Online Shopping Application – Microservices Architecture

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Appendix B—Traceability of Security Strategies to Microservices Architectural Features

All security strategies discussed in sections 4 & 5 (a total of 13) are listed in Table 6 along with either the microservice core feature or
the architectural framework to which each of them pertain.

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Table 6: Security Strategies for Microservices

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-1 • Authentication to microservices APIs that have access to sensitive data should

not be done simply by using API keys. Access to such APIs should require
authentication tokens that have either been digitally signed (e.g., client
credentials grant) or that is verified with an authoritative source. Additionally,
some services may require either single-use tokens or short-lived tokens
(tokens that expire after a short time period) to limit the damage a compromised
token can cause.

• Authentication tokens should be handle-based, cryptographically signed, or
protected by an HMAC scheme.

• Every API Key that is used in the application should have restrictions specified
both for the applications (e.g., mobile app, IP address) and the set of APIs
where they can be used.

• The restriction scope for functionality of every API Key should be
commensurate with the level of assurance provided during identity proofing,
whether it be machine or human driven identity proofing.

• When stateless authentication tokens (e.g., JSON Web Tokens (JWT)) are
used by implementing shared libraries associated with a microservice, the
following security precautions must be observed: (a) the token expiry times
should be as short as possible since they determine the duration of the session
and an active session cannot be revoked, and (b) the token secret key must not
be a part of the library code, it must be a dynamic variable represented by an
environmental variable or specified in an environment data file. The key value
should be stored in a data vault solution.

• If standards-based techniques such as OAuth or OpenID connect are
implemented, they must be deployed securely [19].

Authentication

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-2 • Access policies to all APIs and their resources should be defined and

provisioned to an access server. Access policies at a coarse level of granularity
say “Permit to Call for a given set of addressable functionalities” should be
defined and enforced at the initial API gateway while authorizations at the finer
level of granularity (e.g., related to domain of the particular microservices’
business logic) should be defined and enforced closer to the location of the
microservices (e.g., at the microgateway) or sometimes at the microservice
itself.

• Caching Mechanism: It may be appropriate to allow microservices to cache
policy data; this cache should be only relied upon when an access server is
unavailable and should expire after a duration appropriate for the
environment/infrastructure.

• The access server should be capable of supporting fine-grained policies.
• Access decisions from the access server should be conveyed to individual and

sets of microservices through standardized tokens encoded in a platform-
neutral format (e.g., OAuth 2.0 token encoded in JSON format). The token can
be either a handle-based token or an assertion bearing token.

• The scope of internal authorization tokens appended by the micro gateway or
decision point to each request should be carefully controlled; for example, in a
request for transaction, the internal authorization token should be limited in
scope to only involve the API endpoints that must be accessed for that
transaction.

• The API gateway can be leveraged to centralize enforcement of authentication
and access control for all downstream microservices, eliminating the need to
provide authentication and access control for each of the individual services. If
this design is chosen, any component suitably positioned on the network can
make anonymous connections to the services bypassing the API gateway and
its protections. Mitigating controls such as mutual authentication should be
leveraged to prevent direct, anonymous connections to the services."

Access management

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

36

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-3 • Service registry capabilities should be provided through servers that are either

dedicated or part of a service mesh architecture.
• Service registry services should be in a network that has been configured with

certain QoS parameters to ensure its availability and resilience.
• Communication between an application service and a service registry should be

through a secure communication protocol, such as HTTPS/TLS.
• Service registry should have validation checks to ensure that only legitimate

services are performing the registration and refresh operations or querying its
database to discover services

• The bounded context and loose coupling principle for microservices should be
observed for the service registration/deregistration function; the application
service should not have tight coupling with an infrastructure service, such as
service registry service, and the service self-registration/deregistration pattern
should be avoided. Moreover, when an application service crashes or is running
but not in a position to handle requests, it cannot perform deregistration, thus
affecting the integrity of the whole process. Registration or deregistration of an
application service should be enabled using a third-party registration pattern,
and the application service should be restricted to simply querying the service
registry for service location information as described in the client-side discovery
pattern.

• If a third-party registration pattern is implemented, registration/deregistration
should only take place after performing a health check on the application
service

• Distributed service registry should be deployed for large microservices
applications, and care should be taken to maintain data consistency among
multiple service registry instances

Service registry configuration

MS-SS-4 • Clients should not be configured to call their target services directly but rather
be configured to point to the single gateway URL

• Client to API gateway as well as Service to Service communication should take
place after mutual authentication and be encrypted (e.g., using mTLS protocol)

• Frequently interacting services should create keep-alive TLS connections

Secure communication

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

37

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-5 • Security monitoring should be performed at both the gateway and service level

to detect, alert and respond to inappropriate behavior, for example a bearer
token reuse attack and injection attacks. Further, input validation errors and
extra parameters errors, crashes and core dumps must be logged. A class of
software that can accomplish this is the OWASP AppSensor which could
potentially be implemented in the gateway, service mesh and microservice
itself.

• A central dashboard displays the status of various services and the network
segments that link them. At a minimum, the dashboard should show security
parameters such as input validation failures and unexpected parameters that
are obvious signs of injection attack attempts.

• A baseline for normal, uncompromised behavior in terms of the outcome of
business logic decisions, contact attempts, and other behavior should be
created. The placement and capabilities of IDS nodes should be such that
deviations from this baseline can be detected.

Security monitoring

MS-SS-6 • A proxy circuit breaker option should be deployed to limit the trusted component
to be the proxy, which avoids the need to place the trust on the clients and
microservices (e.g.,setting thresholds and cutting off requests based on the set
threshold) since they are multiple components

Implementing circuit breaker

MS-SS-7 • The load balancing function should be decoupled from individual service
requests; for example, the program that performs health checks on the services
to determine the load balancing pool should run asynchronously in the
background

• Care must be taken to protect the network connection between the load
balancer and the microservice platform.

• When a DNS resolver is deployed in front of a source microservice to provide a
table of available target microservice instances, it should work in tandem with
the health check program to present a single list to the calling microservice

Implementing load balancing

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

38

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-8 • Quotas or limits for application usage should be based on both infrastructure

and application-related requirements
• Limits should be determined based on well-defined API usage plans
• For high security microservices, replay detection must be implemented. Based

on the risk, this feature can be configured to detect replays 100 % of the time or
perform random detection.

Rate limiting (throttling)

MS-SS-9 • The traffic to both the existing version and the new version of the service should
be routed through a central node, such as an API gateway, to monitor that the
blue/green transition occurs in a controlled manner and to monitor the risk
associated with a canary release. Security monitoring should cover nodes
hosting both the existing and newer versions

• Usage monitoring of the existing version should drive the rate of “ramping up” of
the traffic to the new version.

• The performance and functional correctness of the new version should be a
factor in the ramping up of the traffic to the new version.

• Client preference for the version (existing or new) should be taken into
consideration while designing a canary release technique.

Induction of new versions of
microservice

MS-SS-10 • Session information for a client must be stored securely
• The artifact used for conveying the binding server information must be protected
• Internal authorization tokens must not be provided back to the user, and the

user's session tokens must not be passed beyond the gateway for use in policy
decisions.

Handling session persistence

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

39

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-11 • A run-time prevention strategy for credential abuse is preferable to an offline

strategy. A threshold for a designated time interval from a given location (e.g.,
IP address) for the number of login attempts should be established; if the
threshold is exceeded, preventive measures must be triggered by the
authentication/authorization server. This feature must be present when a bearer
token is used, to detect its reuse and enforce prevention.

• A credential-stuffing detection solution has the capability to check user logins
against the stolen credential database and warn legitimate users that their
credentials have been stolen.

• Configure IDS and boundary devices to detect the following: (a) a denial of
service attack and raise an alert before the service is no longer accessible, and
(b) a distributed network probe.

• Configure service hosts to scan file uploads and the contents of each
container's memory and file system for resident malware threats.

Preventing credential abuse and
stuffing attacks

MS-SS-12 • Integrate the API gateway with an identity management application to provision
credentials before activating the API.

• When identity management is invoked through the API gateway, connectors
should be provided for integrating with identity providers (IdPs).

• The API gateway should have a connector to an artifact that can generate an
access token for the client request (e.g., OAuth 2.0 Authorization Server).

• Securely channel all traffic information to a monitoring and/or analytics
application for detecting attacks (e.g., denial of service, malicious actions) and
unearthing explanations for degrading performance.

• Distributed gateway deployments (or a combination of initial gateway (that
intercepts all client accesses) and microgateways (closer to microservices))
should have a token translation (exchange) service [18] between gateways. The
token presented to the initial gateway should have permissions with a broad
scope whereas the token presented to inside gateways (or microgateways)
should be more narrowly scoped with specific permissions or an entirely
different token type that is appropriate for the target microservice platform. This
helps to implement the least privilege paradigm.

API gateway configuration

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

40

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Security Strategy
Identifier Security Strategy Microservices Core Feature /

Architectural Framework
MS-SS-13 • Policy support should be enabled for: (a) designating a specific communication

protocol between pairs of services and (b) specifying the traffic load between
pairs of services based on application requirements

• The default configuration should always be to enable access control policies for
all services

• Avoid configurations that may lead to privilege escalation (e.g., the service role
permissions and binding of the service role to service user accounts)

• Service mesh deployments should have configuration capabilities to specify
resource usage limits for its components. The absence of this feature creates
the potential for these components to impact the resiliency and availability of the
overall microservices application.

• Service mesh deployments should have configuration capabilities to collect and
send environment metrics, including request metrics, to a centralized service for
monitoring. Policies should allow for specifying either a single service mesh or
multiple service meshes (each with their own control plane) for multi-cluster
microservices environments to ensure high availability and resiliency in those
scenarios.

• For highly sensitive microservices-based applications, Layer 3 network
segmentation must be configured within the orchestrator platform to
complement the Layer 5 network segmentation achieved throughout the service
mesh layer. This is a countermeasure to the threat by malicious actors
circumventing or bypassing the sidecar proxy that the service mesh uses for
firewalling and blocking network traffic.

Service mesh configuration

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

41

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

Appendix C—References

[1] Sill A (2016) The design and architecture of microservices. IEEE Cloud Computing
3(5):76-80. https://doi.org/10.1109/MCC.2016.111

[2] Richardson C, Smith F (2016) Microservices: From design to deployment (NGINX Inc.).
Available at https://www.nginx.com/resources/library/designing-deploying-
microservices/

[3] TechTarget (n.d.) Comparing two schools of application development: Traditional vs.
Cloud-Native. Available at

 https://searchcloudcomputing.techtarget.com/PaaS/Comparing-Two-Schools-of-
Application-Development-Traditional-vs-Cloud-Native

[4] Richardson C (2015) Building microservices: Using an API gateway. Available at
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/

[5] Palladino M (2016) Microservices and API gateway, Part 1: Why an API gateway?
Available at https://shadrin.org/nginx/blog/content/microservices-api-gateways-part-1-
why-an-api-gateway.html

[6] Jander K, Braubach L, Pokahr A (2018) Defense in-depth and role authentication for
microservice systems. Procedia Computer Science 130:456-463.

 https://doi.org/10.1016/j.procs.2018.04.047

[7] Richardson C (2015) Building microservices: Inter-process communication in a
microservices architecture. Available at https://www.nginx.com/blog/building-
microservices-inter-process-communication/

[8] Harms H, Rogowski C, Lo Iacono L (2017) Guidelines for adopting frontend
architectures and patterns in microservices-based systems. Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (ACM, Paderborn, Germany), pp
902-907. https://doi.org/10.1145/3106237.3117775

[9] Montesi F, Weber J (2016) Circuit breakers, discovery, and API gateways in
microservices. arXiv preprint. https://arxiv.org/abs/1609.05830v2

[10] O’Neill M, Malinverno P (2018) Critical capabilities for full life cycle API management.
(Gartner, Stamford, CT), ID G00334223. Available at
https://www.gartner.com/doc/reprints?id=1-51SE2EK&ct=180601&st=sb

[11] Calcote L (2018) The enterprise path to service mesh architectures (O’Reilly Media,
Sebastopol, CA).

https://doi.org/10.1109/MCC.2016.111
https://www.nginx.com/resources/library/designing-deploying-microservices/
https://www.nginx.com/resources/library/designing-deploying-microservices/
https://searchcloudcomputing.techtarget.com/PaaS/Comparing-Two-Schools-of-Application-Development-Traditional-vs-Cloud-Native
https://searchcloudcomputing.techtarget.com/PaaS/Comparing-Two-Schools-of-Application-Development-Traditional-vs-Cloud-Native
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://shadrin.org/nginx/blog/content/microservices-api-gateways-part-1-why-an-api-gateway.html
https://shadrin.org/nginx/blog/content/microservices-api-gateways-part-1-why-an-api-gateway.html
https://doi.org/10.1016/j.procs.2018.04.047
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://www.nginx.com/blog/building-microservices-inter-process-communication/
https://doi.org/10.1145/3106237.3117775
https://arxiv.org/abs/1609.05830v2
https://www.gartner.com/doc/reprints?id=1-51SE2EK&ct=180601&st=sb

NIST SP 800-204 SECURITY STRATEGIES FOR
 MICROSERVICES-BASED APPLICATION SYSTEMS

42

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204

[12] Twistlock (n.d.) Securing the service mesh: Understanding the value of service meshes,
why Istio is rising in popularity, and exploring official Twistlock compliance checks for
Istio. Available at https://www.twistlock.com/resources/securing-service-mesh-istio-
compliance-checks/

[13] Yarygina T, Bagge, AH (2018). Overcoming security challenges in microservice
architecture. Proceedings of 2018 IEEE Symposium on Service-Oriented System
Engineering (IEEE, Bamberg, Germany), pp 11-20.
https://doi.org/10.1109/SOSE.2018.00011

[14] OpenID (2019) Welcome to OpenID Connect. Available at https://openid.net/connect/

[15] Hardt D (ed.) (2012) The OAuth 2.0 authorization framework. (Internet Engineering Task
Force), IETF Request for Comments (RFC) 6749. https://doi.org/10.17487/RFC6749

 [16] NGINX (n.d.) High-performance load balancing: Scale out your applications with
NGINX and NGINX Plus. Available at https://www.nginx.com/products/nginx/load-
balancing/

[17] Katz O (2017) Improving credential abuse threat mitigation. Available at
https://blogs.akamai.com/2017/01/improving-credential-abuse-threat-mitigation.html

[18] Jones M, Nadalin A, Campbell B (ed.), Bradley J, Mortimore C (2018) OAuth 2.0 token
exchange. (Internet Engineering Task Force), IETF Internet-Draft. Available at
https://datatracker.ietf.org/doc/draft-ietf-oauth-token-exchange/

[19] Lodderstedt T, Bradley J, Labunets A, Fett D (2019) OAuth 2.0 security best current
practice. (Internet Engineering Task Force), IETF Internet-Draft. Available at
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/

[20] Jain J (2015) HTTP verb tempering: Bypassing web authentication and authorization.
Available at https://resources.infosecinstitute.com/http-verb-tempering-bypassing-web-
authentication-and-authorization/

https://www.twistlock.com/resources/securing-service-mesh-istio-compliance-checks/
https://www.twistlock.com/resources/securing-service-mesh-istio-compliance-checks/
https://doi.org/10.1109/SOSE.2018.00011
https://openid.net/connect/
https://doi.org/10.17487/RFC6749
https://www.nginx.com/products/nginx/load-balancing/
https://www.nginx.com/products/nginx/load-balancing/
https://blogs.akamai.com/2017/01/improving-credential-abuse-threat-mitigation.html
https://datatracker.ietf.org/doc/draft-ietf-oauth-token-exchange/
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/
https://resources.infosecinstitute.com/http-verb-tempering-bypassing-web-authentication-and-authorization/
https://resources.infosecinstitute.com/http-verb-tempering-bypassing-web-authentication-and-authorization/

	Executive Summary
	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 Relationship to other NIST Guidance Documents
	1.4 Methodology and Organization

	2 Microservices-based Application Systems: Technology Background
	2.1 Microservices: A Conceptual View
	2.2 Microservices: Design Principles
	2.3 Business Drivers
	2.4 Building Blocks
	2.5 Microservices: Interaction Styles
	2.6 Microservices: State of the Practice Core Features
	2.7 Microservices: Architectural Frameworks
	2.7.1 API Gateway
	2.7.2 Service Mesh

	2.8 Comparison with Monolithic Architecture
	2.9 Comparison with Service-Oriented Architecture (SOA)
	2.10 Advantages of Microservices
	2.11 Disadvantages of Microservices

	3 Microservices: Threat Background
	3.1 Review of Threat Sources Landscape
	3.2 Microservices-specific Threats
	3.2.1 Service Discovery Mechanism Threats
	3.2.2 Internet-based Attacks
	3.2.3 Cascading Failure

	4 Security Strategies for Implementing Core Features and Countering Threats
	4.1 Strategies for Identity and Access Management
	4.2 Strategies for Service Discovery Mechanism
	4.3 Strategies for Secure Communication Protocols
	4.4 Strategies for Security Monitoring
	4.5 Availability/Resiliency Improvement Strategies
	4.5.1 Analysis of Circuit Breaker implementation options
	4.5.2 Strategies for Load Balancing
	4.5.3 Rate Limiting (Throttling)

	4.6 Integrity Assurance Strategies
	4.7 Countering Internet-based Attacks

	5 Security Strategies for Architectural Frameworks in Microservices
	Appendix A— Differences between Monolithic Application and Microservices-based Application
	A.1 Design and Deployment Differences
	A.1.1 An Example Application to Illustrate the Design and Deployment differences

	A.2 Run-time Differences

	Appendix B— Traceability of Security Strategies to Microservices Architectural Features
	Appendix C— References

