
Withdrawn Draft 
 
 

Warning Notice 
 

The attached draft document has been withdrawn, and is provided solely for historical purposes. 
It has been superseded by the document identified below. 
 

Withdrawal Date August 6, 2021 

Original Release Date January 26, 2021 
 

 
 

Superseding Document 

Status Final 

Series/Number NIST Special Publication (SP) 800-204B 

Title Attribute-based Access Control for Microservices-based 
Applications using a Service Mesh 

Publication Date August 2021 

DOI https://doi.org/10.6028/NIST.SP.800-204B  

CSRC URL https://csrc.nist.gov/publications/detail/sp/800-204b/final  

Additional Information  
 

https://doi.org/10.6028/NIST.SP.800-204B
https://csrc.nist.gov/publications/detail/sp/800-204b/final


Draft NIST Special Publication 800-204B 1 

 2 

Attribute-based Access Control for 3 

Microservices-based Applications 4 

Using a Service Mesh 5 

 6 

 7 
 8 

Ramaswamy Chandramouli 9 
Zack Butcher 10 

Aradhna Chetal 11 
 12 
 13 
 14 

This publication is available free of charge from: 15 
https://doi.org/10.6028/NIST.SP.800-204B-draft16 



 

 Draft NIST Special Publication 800-204B 17 

 18 

Attribute-based Access Control for 19 

Microservices-based Applications 20 

Using a Service Mesh 21 

 22 

Ramaswamy Chandramouli 23 
Computer Security Division  24 

Information Technology Laboratory 25 

Zack Butcher 26 
Tetrate  27 

San Francisco, CA 28 

Aradhna Chetal 29 
TIAA 30 

New York, NY 31 
  32 

This publication is available free of charge from: 33 
https://doi.org/10.6028/NIST.SP.800-204B-draft 34 

 35 
January 2021 36 

 37 

 38 
 39 

U.S. Department of Commerce 40 
Wynn Coggins, Acting Secretary 41 

 42 
National Institute of Standards and Technology  43 

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce 44 
for Standards and Technology & Director, National Institute of Standards and Technology45 



Authority 46 

This publication has been developed by NIST in accordance with its statutory responsibilities under the 47 
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 48 
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 49 
minimum requirements for federal information systems, but such standards and guidelines shall not apply 50 
to national security systems without the express approval of appropriate federal officials exercising policy 51 
authority over such systems. This guideline is consistent with the requirements of the Office of Management 52 
and Budget (OMB) Circular A-130. 53 

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 54 
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 55 
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 56 
Director of the OMB, or any other federal official.  This publication may be used by nongovernmental 57 
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 58 
however, be appreciated by NIST.   59 

National Institute of Standards and Technology Special Publication 800-204B 60 
Natl. Inst. Stand. Technol. Spec. Publ. 800-204B, 37 pages (January 2021) 61 

CODEN: NSPUE2 62 

This publication is available free of charge from: 63 
https://doi.org/10.6028/NIST.SP.800-204B-draft 64 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 65 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 66 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 67 
available for the purpose.  68 

There may be references in this publication to other publications currently under development by NIST in accordance 69 
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 70 
may be used by federal agencies even before the completion of such companion publications. Thus, until each 71 
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 72 
planning and transition purposes, federal agencies may wish to closely follow the development of these new 73 
publications by NIST.   74 

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 75 
NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 76 
http://csrc.nist.gov/publications. 77 

Public comment period: January 27, 2021 through February 24, 2021 78 

National Institute of Standards and Technology 79 
Attn: Computer Security Division, Information Technology Laboratory 80 

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 81 
Email: sp800-204b-comments@nist.gov 82 

All comments are subject to release under the Freedom of Information Act (FOIA). 83 
   84 

http://csrc.nist.gov/publications
mailto:sp800-204b-comments@nist.gov


NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

ii 

 

Reports on Computer Systems Technology 85 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88 
methods, reference data, proof of concept implementations, and technical analyses to advance the 89 
development and productive use of information technology. ITL’s responsibilities include the 90 
development of management, administrative, technical, and physical standards and guidelines for 91 
the cost-effective security and privacy of other than national security-related information in federal 92 
information systems. 93 

Abstract 94 

Deployment architecture in cloud-native applications now consists of loosely coupled 95 
components, called microservices, with all application services provided through a dedicated 96 
infrastructure, called service mesh, independent of the application code. Two critical security 97 
requirements in this architecture are (a) to build the concept of zero trust by enabling mutual 98 
authentication in communication between any pair of services and (b) a robust access control 99 
mechanism based on an access control such as ABAC that can be used to express a wide set of 100 
policies and is scalable in terms of user base, objects (resources), and deployment environment. 101 
This document provides deployment guidance for building an authentication and authorization 102 
framework within the service mesh that meets these requirements. A reference platform for 103 
hosting the microservices-based application and a reference platform for the service mesh are 104 
included to illustrate the concepts in the recommendations and provide the context in terms of 105 
the components used in real-world deployments. 106 
 107 

Keywords 108 

attribute-based access control; authentication policy; authorization policy; CI/CD; DevSecOps; 109 
JSON web token; microservices-based application; mutual TLS; next generation access control; 110 
policy enforcement point; role-based access control; service mesh; service proxy; zero trust. 111 

 112 

113 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

iii 

 

Acknowledgments 114 

The authors like to express their sincere thanks to Mr. David Ferraiolo of NIST for initiating this 115 
effort to provide a targeted deployment guidance in the form of an authentication and 116 
authorization framework in a service mesh environment used for protecting microservices-based 117 
applications. They also express thanks to Isabel Van Wyk of NIST for her detailed editorial 118 
review. 119 

Call for Patent Claims 120 

This public review includes a call for information on essential patent claims (claims whose use 121 
would be required for compliance with the guidance or requirements in this Information 122 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 123 
directly stated in this ITL Publication or by reference to another publication. This call also 124 
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 125 
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 126 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 127 
in written or electronic form, either: 128 

a) assurance in the form of a general disclaimer to the effect that such party does not hold 129 
and does not currently intend holding any essential patent claim(s); or 130 

b) assurance that a license to such essential patent claim(s) will be made available to 131 
applicants desiring to utilize the license for the purpose of complying with the guidance 132 
or requirements in this ITL draft publication either: 133 

i. under reasonable terms and conditions that are demonstrably free of any unfair 134 
discrimination; or 135 

ii. without compensation and under reasonable terms and conditions that are 136 
demonstrably free of any unfair discrimination. 137 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 138 
on its behalf) will include in any documents transferring ownership of patents subject to the 139 
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 140 
the transferee, and that the transferee will similarly include appropriate provisions in the event of 141 
future transfers with the goal of binding each successor-in-interest. 142 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 143 
regardless of whether such provisions are included in the relevant transfer documents. 144 

Such statements should be addressed to: sp800-204b-comments@nist.gov 145 

  146 

mailto:sp800-204b-comments@nist.gov


NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

iv 

 

Executive Summary 147 

Two significant features of the application environment in emerging cloud-native applications 148 
are: 149 

• Applications have multiple loosely coupled components called microservices that 150 
communicate with each other across the network. 151 

• A dedicated infrastructure called the service mesh provides all services for the application 152 
(e.g., authentication, authorization, routing, network resilience, security monitoring), 153 
which can be deployed independently of the application code. 154 

With the disappearance of a network perimeter because of the need to provide ubiquitous access 155 
to applications from multiple remote locations using different types of devices, it is necessary to 156 
build the concept of zero trust into the application environment. Further, the cloud-native 157 
applications span different domains and, therefore, require increased precision in specifying 158 
policy by considering a large set of variables. The service mesh provides a framework for 159 
building these and other operational assurances.  160 
 161 
The framework includes:  162 

• An authenticatable runtime identity for services, the ability to authenticate application 163 
(user) credentials, and encryption of communication in transit and between services  164 

• A Policy Enforcement Point (PEP) that is separately deployable and controllable from the 165 
application; the service mesh’s side-car proxies 166 

• Logs and metrics for monitoring policy enforcement 167 
 168 

The service mesh’s native feature to authenticate end-user credentials attached to the request 169 
(e.g., using a Java Web Token [JWT]) is augmented in many offerings to provide the ability to 170 
call external authentication and authorization systems on behalf of the application. The capability 171 
to deploy these authentication and authorization systems as services in the mesh also provides 172 
operational assurances for encryption in transit, identity, a PEP, authentication, and authorization 173 
for end-user identity.  174 
 175 
The objective of this document is to provide deployment guidance for an authentication and 176 
authorization framework within a service mesh for microservices-based applications that 177 
leverages the features listed above. A reference platform for hosting the microservices-based 178 
application and the service mesh is included to illustrate the concepts in the recommendations 179 
and provide context in terms of the components used in real-world deployments. 180 
  181 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

v 

 

Table of Contents 182 

Executive Summary ..................................................................................................... iv 183 
1 Introduction ............................................................................................................ 1 184 

1.1 Service Mesh Capabilities ............................................................................... 1 185 
1.2 Candidate Applications ................................................................................... 3 186 
1.3 Scope .............................................................................................................. 3 187 
1.4 Target Audience.............................................................................................. 3 188 
1.5 Relationship to other NIST Guidance Documents .......................................... 3 189 
1.6 Organization of this document ........................................................................ 4 190 

2 Microservices-based Application and Service Mesh – Reference Platforms ... 5 191 
2.1 Reference Platform for Hosting a Microservices-based Application ............... 5 192 

2.1.1 Limitations of Reference Hosting Platform for Security ........................ 5 193 
2.2 Service Mesh Reference Platform – Conceptual Architecture ........................ 6 194 

2.2.1 Service Mesh Functions for Reference Hosting Platform ..................... 7 195 
3 Attribute-based Access Control (ABAC) – Background ..................................... 9 196 

3.1 ABAC Deployment for Microservices-based Applications Using Service Mesh197 
 12 198 

4 Authentication and Authorization Policy Configuration in Service Mesh ....... 13 199 
4.1 Hosting Platform Configuration ..................................................................... 13 200 
4.2 Service Mesh Configuration .......................................................................... 13 201 
4.3 Higher-level Security Configuration Parameters ........................................... 14 202 
4.4 Authentication Policies .................................................................................. 15 203 

4.4.1 Specifying Authentication Policies ...................................................... 16 204 
4.4.2 Service-level Authentication ............................................................... 16 205 
4.4.3 End User Authentication ..................................................................... 17 206 

4.5 Authorization Policies .................................................................................... 17 207 
4.5.1 Service-level Authorization Policies .................................................... 18 208 
4.5.2 End-user Level Authorization Policies ................................................ 18 209 
4.5.3 Model-based Authorization Policies.................................................... 20 210 

4.6 Authorization Policy Elements ......................................................................... 21 211 
4.6.1 Policy Types ......................................................................................... 21 212 
4.6.2 Policy Target or Authorization Scope ................................................... 21 213 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

vi 

 

4.6.3 Policy Sources ..................................................................................... 22 214 
4.6.4 Policy Operations ................................................................................. 22 215 
4.6.5 Policy Conditions .................................................................................. 22 216 

5 ABAC Deployment for Service Mesh .................................................................. 24 217 
5.1 Security Assurance for Authorization Framework Enforcement .................... 24 218 
5.2 Supporting Infrastructure for ABAC Authorization Framework ...................... 24 219 

5.2.1 Service-to-Service Request (SVC-SVC) – Supporting Infrastructure . 24 220 
5.2.2 End User + Service-to-Service Request (EU+SVC-SVC) – Supporting 221 
Infrastructure ................................................................................................. 25 222 

5.3 Advantages of ABAC Authorization Framework for Service Mesh ................ 26 223 
5.4 Enforcement Alternatives in Proxies ............................................................. 26 224 

6 Summary and Conclusions ................................................................................. 27 225 
References ................................................................................................................... 28 226 
 227 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

1 

 

1 Introduction 228 

Applications based on microservices-based architecture and an application infrastructure based 229 
on service mesh that provides various security services through service proxies have emerged as 230 
the widespread application environment for cloud-native applications. With the disappearance of 231 
the network perimeter due to the need to provide ubiquitous access to these applications from 232 
multiple remote locations using different types of devices, it is necessary to build the concept of 233 
zero trust [1] into this application environment. Further, the loosely coupled nature of the 234 
components of these cloud-native applications (i.e., microservices) facilitates independent 235 
design, development, and agile deployment (e.g., CI/CD [2]) of the constituent microservices, 236 
enabling paradigms such as DevSecOps [3] need to be used.  237 

The security requirements for microservices-based applications are discussed extensively in [4] 238 
and summarized here to provide context for this discussion. They are: 239 

● Multiple, loosely coupled microservices communicate through network calls, and these 240 
communication links must be protected. In the case of monolithic applications, these 241 
communications take place through procedure calls. 242 

● The entire network is untrusted, and each microservice is untrusted. Therefore, mutual 243 
authentication between microservices and secure communication channels between 244 
paired microservices through mechanisms such as mutual TLS (mTLS) are required. 245 

● The logging data that pertains to each microservice must be consolidated to obtain a 246 
security profile in order for forensics, audits, and analytics to assess the overall health of 247 
the application. 248 

Operating in multiple security domains and multiple clouds, cloud-native applications require a 249 
secure authentication and authorization framework. The critical requirements of this framework 250 
when implemented within the service mesh are: 251 

● The code that is part of this framework is verifiable and non-bypassable (always 252 
invoked), thus satisfying the requirements of a security kernel. 253 

● The framework should provide authentication and authorization services at multiple 254 
levels: service and end-user. 255 

● The framework should be able to support a diverse set of authorization policies. 256 

The operational assurances required for meeting the above requirements and others are provided 257 
by the service mesh. The specific features in service that enable these are given in the next 258 
section. 259 

1.1 Service Mesh Capabilities 260 

A service mesh provides a framework for building a set of operational assurances for an 261 
organization. That framework includes an authenticatable runtime identity for services, the 262 
ability to authenticate application (user) credentials, encryption in transit of communication 263 
between services, a Policy Enforcement Point (PEP) separately deployable and controllable from 264 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

2 

 

the application (the service mesh’s side-car proxies), and logs and metrics for monitoring policy 265 
enforcement. Using these mesh features, a set of controls can be built for all applications that are 266 
part of the mesh (e.g., all traffic is encrypted, all traffic to an application goes through the side-267 
car [PEP]). These controls provide a set of operational assurances for applications in an 268 
organization deployed in the service mesh. 269 

A significant benefit of the service mesh architecture is that the key piece that allows for these 270 
controls to be built—the sidecar proxy deployed next to every application—has more security 271 
benefits than the traditional approach of building these operational assurances into the 272 
application code. First, the life cycle of the sidecar is independent of the application, making it 273 
easier to manage across a fleet (e.g., push updates, ensure a consistent version is deployed 274 
everywhere). Second, modern implementations (like Istio) allow for dynamic configuration. It is 275 
easy to update policies, and updates take effect immediately and without having to redeploy 276 
applications. Finally, the mesh’s centralized control allows security teams to build policies that 277 
apply to the entire organization so that application developers who build business value are 278 
secure by default. 279 

A service mesh provides the ability to authenticate end user credentials attached to the request, 280 
like a JSON Web Token (JWT). Many service meshes (e.g., Istio) go further and provide the 281 
ability for the mesh’s sidecar to call external authentication and authorization systems on behalf 282 
of the application. This grants the ability to move request-level policy enforcement out of the 283 
application code, trusting instead on the mesh’s assurance that requests that reach the service 284 
have been authenticated and authorized for the action that the request is taking. The mesh can 285 
even be configured to pass proof of this to the application. This, coupled with the service mesh’s 286 
centralized control, means it is possible for a central team to mandate and manage application-287 
level security across the entire organization, delegating to individual application teams only to 288 
specify what permissions are required for each applications’ actions. 289 

Using the service mesh architecture also means that authentication and authorization systems can 290 
be deployed as services in the mesh. Like any other service in the mesh, they benefit from the 291 
operational assurances the mesh provides: encryption in transit, identity, a PEP, authentication, 292 
and authorization for end user identity. This makes it cheaper to operate an organization’s 293 
authentication and authorization systems securely and reliably. 294 

In addition to the service mesh features, the capabilities of the access control model play an 295 
important role in the authentication and authorization framework. Attribute-based access control 296 
(ABAC) has emerged as a promising approach for supporting multiple authorization policies 297 
(third requirement above). As per [5], ABAC is defined as “an access control method where 298 
subject requests to perform operations on objects are granted or denied based on assigned 299 
attributes of the subject, assigned attributes of the object, (optionally) environmental conditions, 300 
and a set of policies that are specified in terms of those attributes and conditions.” The main 301 
focus of this document is to provide guidance on an authentication and authorization framework, 302 
the latter using ABAC to secure microservices-based applications using service mesh. 303 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

3 

 

1.2 Candidate Applications 304 

The service mesh is most widely used today with containerized applications but can be extended 305 
into other environments, such as stateful applications.  306 

1.3 Scope  307 

This document focuses on providing guidance for building a secure authentication and 308 
authorization framework using components of a service mesh for securing services in 309 
microservice-based applications. A reference application hosting platform and a reference 310 
service mesh platform have been used as examples to illustrate the recommendations in the 311 
context of real-world application artifacts (e.g., containers, VMs, etc.). The chosen reference 312 
application platform is the open-source Kubernetes, and the chosen reference service mesh 313 
platform is Istio. Application infrastructure components in the service mesh that provide other 314 
services like network routing, network resilience, and monitoring are outside of the scope of this 315 
document. 316 

1.4 Target Audience 317 

The target audience of the guidance document for developing an authentication and authorization 318 
framework for microservices-based applications using the service mesh includes: 319 

● Security solutions architects who want to protect the application workloads in microservices-320 
based applications. 321 

● Platform architects who want to incorporate a service mesh into the platform offered by their 322 
organization to its developers 323 

● Developers who want to develop authentication and authorization plug-ins in this application 324 
environment 325 

1.5 Relationship to other NIST Guidance Documents 326 

This guidance document focuses on building an authentication and authorization framework 327 
within the service mesh used for securing microservices-based applications. The following 328 
publications provide background information for the contents of this document: 329 

● Special Publication (SP) 800-204, Security Strategies for Microservices-based Application 330 
Systems [4], discusses the characteristics of microservices-based applications and the overall 331 
security requirements and strategies for addressing those requirements. 332 

● Special Publication (SP) 800-204A, Building Secure Microservices-based Applications 333 
Using Service-Mesh Architecture [6], provides deployment guidance for various security 334 
services (e.g., authentication and authorization, security monitoring, etc.) for a microservices-335 
based application using a dedicated infrastructure (i.e., a service mesh) that uses service 336 
proxies that operate independent of the application code.  337 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

4 

 

1.6 Organization of this document 338 

The organization of this document is as follows: 339 

● Chapter 2 provides an overview of a microservices-based application, its security 340 
requirements, components of a service mesh, and a brief description of the overall 341 
architecture of the reference hosting platform and the reference service mesh platform. 342 
The latter two are used as examples to illustrate the building blocks involved in the 343 
deployment recommendations. 344 

● Chapter 3 outlines the advantages of ABAC for the application environment and 345 
describes the functional architecture for two of the standard ABAC representations. 346 

● Chapter 4 discusses the building blocks of the authentication and authorization 347 
framework, the basic configuration that is required in the reference hosting and reference 348 
service mesh platform for implementing the framework, and the salient features of the 349 
framework. 350 

● Chapter 5 provides recommendations regarding deployment of the various use cases 351 
pertaining to authorization policies as well as the building blocks (policy components) of 352 
these policies. 353 

● Chapter 6 provides the summary and conclusions. 354 

  355 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

5 

 

2 Microservices-based Application and Service Mesh – Reference Platforms 356 

The objective of this document is to offer recommendations for the deployment of an 357 
authentication and authorization framework for microservices-based applications within a 358 
service mesh that provides the infrastructure for various services, including critical security 359 
services. A reference platform for hosting microservices-based applications and the service mesh 360 
is included to provide clarity and context for concepts and recommendations in real-world 361 
application environments. A brief description of these reference platforms is also provided in 362 
terms of their overall architecture and salient building blocks. 363 

2.1 Reference Platform for Hosting a Microservices-based Application 364 

Kubernetes is an orchestration and resource management system widely used for microservices-365 
based applications. In a large application, there will be several microservices, each of which is 366 
implemented as a container. Scalable, automated means are required for deployments, 367 
operations, upgrading services, and monitoring the health of these containers. The Kubernetes 368 
architecture provides the tools to achieve these goals.  369 

To enable application-level, fine-grained access control, it is imperative to have some cluster-370 
level security mechanisms for the clusters that are configured using the hosts of the application 371 
components (i.e., microservices). Considering a scenario where the host is a worker node of a 372 
Kubernetes platform cluster and the application components are running inside of a container      373 
with a pod (i.e., a group of containers) as a deployment artifact, the following cluster-level 374 
security measures are required. These measures are defined and enforced through artifacts called 375 
pod security policies. 376 

For example, one of the most well-known features of Kubernetes is pod-level horizontal scaling. 377 
This means that when services receive more traffic, more instances will be generated across 378 
machines that grow or shrink on demand. Kubernetes supports auto-vertical scaling on the pod 379 
level. Thus, a cluster could be configured to scale the machine on which a pod runs up or down 380 
to more accurately fit the anticipated power needs of any microservice. For example, if certain 381 
subsets of worker nodes saw spikes in traffic at key times, with the right usage analysis, one 382 
could potentially reschedule across machines in order to save costs and optimize 383 
performance [7]. 384 

Similarly, Kubernetes offers features to monitor the health of the microservices (check the status 385 
and readiness). The data to perform these functions is configured in declarative deployment 386 
documents, typically as YAML, that describe the port that a pod’s containers are listening on. 387 
One can specify what to do when services do not start, do not perform as normal, or exit 388 
unexpectedly. 389 

2.1.1 Limitations of Reference Hosting Platform for Security 390 

Microservices-based applications require several application infrastructure and security services, 391 
such as authentication, authorization, monitoring, logging, auditing, traffic control, caching, 392 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

6 

 

secure ingress, service-to-service, and egress communication. Moreover, the following 393 
advantages of API architecture are not fully leveraged in the reference platform [8]: 394 

● A unified way to apply cross-cutting concerns 395 
● Out of the box plugins to apply cross-cutting concerns quickly 396 
● A framework for building custom plugins 397 
● Managing security in a single plane 398 
● Reduced operation complexity 399 
● Easy governance of third-party developers and integrators 400 
● Saving the cost of development and operations 401 

By default, communication between Kubernetes containers is insecure, and there is no easy way 402 
to enforce TLS between pods since this would result in individually maintaining hundreds of 403 
TLS certificates. Pods that communicate do not apply identity and access management between 404 
themselves. Though there are tools, such as Kubernetes Network Policy, that can be 405 
implemented to act as a firewall between pods, they are a layer 3 solution rather than a layer 406 
7 solution, which is what most modern firewalls are. This means that while one can know the 407 
source of traffic, one cannot peek into the data packets to understand what they contain. It does 408 
not allow for making vital metadata-driven decisions, such as routing on a new version of a pod 409 
based on an HTTP header. There are Kubernetes ingress objects that do provide a reverse proxy 410 
based on layer 7, but they do not offer anything more than simple traffic routing. Kubernetes 411 
does offer different ways of deploying pods that do some form of A/B testing or canary 412 
deployments, but they are done at the connection level and provide no fine-grained control or 413 
fast failback. For example, if a developer wants to deploy a new version of a microservice and 414 
pass 10 % of traffic through it, they will  have to scale the containers to at least 10—nine for      415 
the old version and one for the new version. Further, Kubernetes cannot split the traffic 416 
intelligently and instead balances loads between pods in a round-robin fashion. Every 417 
Kubernetes container within a pod has separate log, and a custom solution over Kubernetes must 418 
be implemented to capture and consolidate them.  419 

Although the Kubernetes dashboard offers features like monitoring pods and checking their 420 
health, it does not expose metrics that describe how application components interact with each 421 
other, how much traffic flows through each of the pods, or what chains of containers make up the 422 
application. Since traffic flow cannot be traced through Kubernetes pods out of the box, it is 423 
unclear where on the chain the failure for the request occurred.  424 

A service mesh addresses these limitations [9]. This document will first consider the service 425 
mesh architecture, followed by implementation of service mesh capabilities in the context of the 426 
reference platform (Kubernetes). 427 

2.2 Service Mesh Reference Platform – Conceptual Architecture 428 

A service mesh is the network of microservices that make up applications and the interactions 429 
between them. It helps to manage microservices-based applications using two major 430 
components: 431 

https://medium.com/better-programming/how-to-secure-kubernetes-using-network-policies-bbb940909364
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/A/B_testing


NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

7 

 

1. Data Plane. This is the component that performs the actual routing or communication of 432 
messages between microservices. It also gathers telemetry data, which helps to monitor 433 
the health and state of the services. The traffic that flows through the data plane is thus 434 
the application-related (business) data. 435 

2. Control Plane. This is the component that provides an API to define policies. This API 436 
is often independent of the platform on which the microservices application and, hence, 437 
the Service Mesh runs. The control plane also helps the administrator populate the data 438 
plane component with configuration that determines how to route traffic. The control 439 
plane is the brain of a service mesh. The traffic that flows through the control plane 440 
consists of messages of interaction between service mesh components. 441 

The control plane may consist of multiple modules, and the distribution of functionality among 442 
these modules may be different in different service mesh offerings. However, they all provide the 443 
following core functions: 444 

a. A module that parses the policy rules defined in the control plane and converts them into 445 
configuration parameters in the data plane module (i.e., the sidecar proxy). These policies 446 
may pertain to various functions, such as authentication and authorization, service 447 
discovery, traffic management (including load balancing), intelligent routing, blue-green 448 
deployments, canary rollouts, and much more. It may also include configuration 449 
parameters related to resiliency in the service mesh, such as timeout, retry, and circuit-450 
breaking capabilities. 451 

b. A module that provides all of the infrastructure functionality for authentication, 452 
authorization, and establishing a secure, encrypted session while two microservices 453 
communicate. These functions include user authentication, credential management, 454 
digital certificate management, and traffic encryption.  455 

2.2.1 Service Mesh Functions for Reference Hosting Platform 456 

In order to describe the generic service mesh functions in the context of the reference platform—457 
which, in this case, is Kubernetes— the deployment details of both the microservices application 458 
and service mesh components in that platform must be considered. Since authentication and 459 
authorization functions are the focus of this document, discussions for those functions on the 460 
Kubernetes platform will be confined to the functions in the service mesh. 461 

Since the sidecar proxy code implemented as a container is hosted in the same pod as the 462 
microservice container, they share the same network namespace and are present in the same node 463 
(e.g., VM or a physical machine). Both containers have the same IP address and share the same 464 
IP Table rules. That makes the proxy take complete control over the pod and handle all traffic 465 
that passes through it [10].  466 

Taking the example of establishing a mutual TLS session, the proxy will interact with the 467 
module in the control plane of the service mesh to check whether it needs to encrypt traffic 468 
through the chain and establish mutual TLS with the backend pod. Enabling this functionality 469 
using mutual TLS requires every pod to have a certificate (i.e., a valid credential), and since a 470 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

8 

 

good-sized microservice application may be hosted in hundreds of pods, this may involve 471 
managing hundreds of short-lived certificates. This in turn requires the service mesh to have a 472 
robust identity, access manager, certificate store, and certificate validation. In addition, 473 
mechanisms for identifying and authenticating the two communicating pods are required for 474 
supporting authentication policies. 475 

A service mesh not only provides various application services during runtime but also supports 476 
the DevSecOps development and maintenance paradigm. The development team can concentrate 477 
their efforts on efficient development paradigms, such as code modularity and structuring, 478 
without worrying about the security and management details of their implementation. 479 

The service mesh is reference platform-aware and thus automatically injects sidecar containers 480 
into the pods. Once the service mesh inserts the sidecar containers, operations and security teams 481 
can enforce policies on the traffic and help secure and operate the application. These teams can 482 
also configure monitoring of the microservices applications without interfering with the 483 
functioning of the applications. 484 

  485 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

9 

 

3 Attribute-based Access Control (ABAC) – Background 486 

Attribute-based access control (ABAC) is an authorization framework or engine that computes 487 
decisions for user access requests based on attributes and policies expressed in terms of attributes 488 
[5]. The advantages of ABAC for microservices-based applications using service mesh include: 489 

● Cloud-native applications span different domains and require increased precision in 490 
specifying policy by considering a large set of variables. Because of its scalability with 491 
respect to attribute and value stores and associated policies, ABAC can meet this 492 
requirement. 493 

● Attributes and their values associated with users, application objects, resources, and 494 
environments are independently assigned. Hence, policies based on the attributes do not 495 
create a tight subject/object relationship since access decisions are ultimately dependent on 496 
dynamic attribute values. 497 

● Policies are expressed in terms of attributes without prior knowledge of potentially numerous 498 
users and resources that are or will be governed under those policies, and users and resources 499 
are independently assigned attribute values without knowledge of policy details. This dual 500 
feature enables access control decisions to be based on centralized, enterprise-wide policies 501 
while also supporting the DevSecOps approach that provides autonomy to each microservice 502 
development team to make all decisions regarding their module, including the resource 503 
attribute assignments.  504 

Due to the features described above, the ABAC authorization framework is a natural fit for the 505 
class of cloud-native applications whose design is based on splitting an application into several 506 
loosely coupled modules called microservices with each being developed and deployed by 507 
independent teams. 508 

The ABAC framework has two standardized, representational structures. One uses a platform-509 
neutral text-based language called eXtensible Access Control Markup Language (XACML) 510 
Version 3.0, which has been standardized by OASIS. The other is Next Generation Access 511 
Control (NGAC), whose data structure and operations have been standardized under INCITS 512 
565-2020 [11] – Information technology – Next Generation Access Control. This standardization 513 
includes the APIs of functional components (i.e., PEP, PDP, RAP), allowing for the 514 
interoperability of these components from different sources. Further, the PEP interface is 515 
common for enforcing policies over both application requests and policy administration requests. 516 
The biggest advantage of NGAC is the use of linear time algorithms for computing access 517 
control decisions and performing policy reviews (i.e., determining the set of resources that a user 518 
can access, determining the set of users that can access a resource) [12,13]. 519 

The functional architectures for these two representational structures are given in Figures 3.1 and 520 
3.2, respectively. A brief description of the modules in these two functional architectures is as 521 
follows: 522 

● Policy Decision Point (PDP) – This is the core module of the ABAC functional 523 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

10 

 

architecture that computes decisions to permit or deny user access requests for 524 
performing actions on resources. Requests are received from and responses sent to a 525 
module called Policy Enforcement Point (PEP) in both representations. 526 

● Policy Enforcement Point (PEP) – This is a module that is part of the application’s 527 
platform and tightly integrated with the application. It is designed to intercept all access 528 
requests that emanate from the application in both representations. 529 

● Policy Information Point (PIP)  530 

a. In the XACML representation, this is a module that contains the database of attributes 531 
and their associated values for all application-relevant objects or resources. The 532 
information here is used to extract the attributes and associated values for users and 533 
resources found in the access request to find the applicable target policies in the PRP 534 
(described below).  535 

b. In the NGAC representation, this is a repository of association relations of the form 536 
(u-ai, op-i, o-ai) for a pc-i, where u-ai and o-ai are attribute values associated with a 537 
user and object (resource), respectively. op-i denotes a set of allowed operations and 538 
pc-i the governing policy classes. To minimize the set of association relations in the 539 
authorization database (e.g., having triples to represent every user and every object in 540 
the application), containment relations of the form (U < u-ai) are used to show the 541 
members of the user group and object group represented in the association relations. 542 
In addition, the same set of containment relations are used to denote the applicable 543 
policies for each object as well (O < pc-i). 544 

● Policy Retrieval Point (PRP) – In the XACML representation, this is the module that is 545 
the repository for authorization policies expressed as logical formulas involving 546 
predicates on attribute values. The policy representation also contains the target resources 547 
that are covered by the policy. The resources requested in the access request are matched 548 
to these targets to retrieve the applicable policies by the PDP when computing decisions 549 
for those requests. This module is not part of the functional architecture in the NGAC 550 
representation. 551 

● Attribute Administration Point (AAP) – This is the interface for administering attributes 552 
stored in PIP in the XACML representation. This module is not necessary in NGAC 553 
representation since its association relations express the access rights on objects 554 
instantiated using attribute values. 555 

● Policy Administration Point (PAP) – This is the interface for administering policies 556 
stored in PRP. 557 

 558 

 559 

 560 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

11 

 

 561 

Figure 3.1 ABAC Functional Architecture based on XACML Representation 562 

 563 

 564 

 565 

Figure 3.2 ABAC Functional Architecture based on NGAC Representation 566 

 567 

 568 



NIST SP 800-204B (DRAFT)  ABAC FOR MICROSERVICES-BASED 
  APPLICATIONS USING A SERVICE MESH 

12 

 

3.1 ABAC Deployment for Microservices-based Applications Using Service Mesh 569 

In the context of a microservices-based application using service mesh, an ABAC deployment 570 
for access control can take the following forms: 571 

● The proxies (e.g., Ingress, sidecar, and Egress) play the role of PEPs since they intercept all 572 
requests that emanate from each client, user, service, or external service. 573 

● The PEPs can provide either an ALLOW/DENY verdict or a list of allowable objects. 574 
● The enforcement function can be provided either natively (using local configuration 575 

structures, such as ACLs) or using proxy extensions that call an external authorization server 576 
to obtain one or more of the data in the previous bullet. 577 

● The assurance mechanisms in the service mesh (e.g., certificate-based authentication, secure 578 
session, non-bypassability, execution isolation) can be leveraged to deploy a high assurance 579 
authorization framework. 580 

 581 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

13 

 

4 Authentication and Authorization Policy Configuration in Service Mesh 582 

Fine-grained access control for microservices can be enforced through the configuration of 583 
authentication and access control policies. These policies are defined in the control plane of the 584 
service mesh, mapped into low-level configurations, and pushed into the sidecar proxies that 585 
form the data plane of the service mesh. The configurations enable the proxies to enforce the 586 
policies at application runtime (or request time), thus making the proxies act as Policy 587 
Enforcement Points (PEPs). As stated in the introduction, the objective of this document is to 588 
provide guidance for the deployment of an authentication and authorization framework that is 589 
external to the application, agnostic to the platform hosting the application and the service mesh 590 
product that implements the application infrastructure. However, Kubernetes is used as the 591 
reference application platform and Istio as the service mesh infrastructure platform to provide 592 
concrete examples of the concepts and to enable us to make specific recommendations with more 593 
clarity and specificity.   594 

4.1 Hosting Platform Configuration 595 

The generic host platform configuration data for microservices-based applications using service 596 
mesh that are, at the minimum, needed for authentication and authorization policy configuration 597 
are: 598 

• Metadata, like service name and the sets of instances of that service 599 
● Runtime data, such as services’s protocols and ports 600 
● Namespaces that provide logical isolation boundaries for sets of services 601 
● Unique runtime identities for each service 602 

In the reference hosting platform Kubernetes, this is realized as: 603 

● Service resource, which declares a service’s name, protocol (e.g. TCP), and ports (e.g. 604 
9080) 605 

● Deployment resource, which declares deployments of pods that implement that service, 606 
including metadata such as labels and version 607 

● Namespace construct and RBAC for managing how users are allowed to publish 608 
configuration into namespaces 609 

● Service Accounts, which are identities unique to each namespace bound to individual 610 
services   611 

4.2  Service Mesh Configuration 612 

The installation of any service mesh involves the following components: 613 

● Ingress Gateway, which is the first point of entry into the microservices-based application. 614 
This gateway specification includes names, ports, and routes that the application client 615 
must take to access the application.  616 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

14 

 

● Egress Gateway for the application to call outside services or applications. Egress 617 
gateways are optional since a sidecar proxy can act as an egress proxy for the purposes of 618 
policy without deploying an egress gateway. 619 

● Injection of sidecar proxies (in the form of containers). The consequence of this is that 620 
each of the application’s deployments in the platform will now have two containers—the 621 
original microservice container plus the mesh’s sidecar proxy. These sidecar proxies 622 
enforce authentication and authorization policies during application runtime, thus acting 623 
as Policy Enforcement Points (PEPs). In addition, proxies should emit metrics and logs to 624 
enable continuous monitoring of the system; this can be used to ensure policies are in 625 
place and are being enforced. 626 

● A Certificate Authority (CA) module is needed to handle certificate requests from sidecar 627 
proxies, which need a runtime identity presented as an X.509 certificate. This CA 628 
generates, distributes, and manages keys and certificates used by the mesh and enables the 629 
mesh to perform automatic certificate rotation. A CRL or OCSP feature is also required to 630 
support certificate validation. 631 

● A control plane module in the service mesh that monitors configuration data in the hosting 632 
platform, encodes policies and distributes those policies in the form of configuration to 633 
various proxies in the mesh (e.g., Ingress, sidecar, and Egress). 634 

In the context of the reference service mesh platform Istio, to facilitate route specification to the 635 
entry service of the application in the Ingress Gateway, a virtual service is defined that specifies 636 
the path and hosts making up the virtual service and the first entry service/port to which the 637 
gateway must route the incoming request from an application client [14]. 638 

SMC-SR-1: The signing certificate used by the mesh’s CA module should be rooted in the 639 
organization’s existing PKI to allow for auditability, rotation, and revocation. 640 

Some service meshes come with the ability to encrypt traffic using a self-signed certificate; such 641 
a certificate should not be used in secure deployments. 642 

SMC-SR-2: Communication between the service mesh control plane and the hosting platform’s 643 
configuration server must be authenticated and authorized. 644 

In this reference platform, authentication is typically achieved by the Kubernetes API Server (the 645 
configuration server) with simple TLS. Authentication of the client is based on the pod’s service 646 
account credential. Authorization for the client to receive platform information from the API 647 
Server is enforced by Kubernetes RBAC. 648 

4.3 Higher-level Security Configuration Parameters 649 

Since the component microservices of our application are generally implemented as containers, 650 
the following higher-level security configuration parameters should be set. In the reference 651 
hosting platform Kubernetes, containers are implemented in pods, which contain a microservice 652 
container as well as a sidecar container. These higher-level security configurations are set through 653 
flags that come under the banner of pod security policies. The recommendations for these flag 654 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

15 

 

values are numbered using the acronym HLC-SR-X, where HL stands for higher-level 655 
configuration, SR stands for security recommendation, and X is the sequence number. They 656 
include but are not limited to the following [5]: 657 
 658 
HLC-SR-1: Containers and applications should not be run as root (thus becoming privileged 659 
containers).  660 
In Kubernetes, the configuration setting for this is to set the value TRUE for 661 
“MustRunAsNonRoot” flag. 662 
 663 
HLC-SR-2: Host path volumes should not be used as they create tight coupling between the 664 
container and the node on which it is hosted, constraining the migration and flexible resource 665 
scheduling process.  666 
In Kubernetes, the configuration setting for this is to set the value of TRUE to 667 
“readOnlyRootFilesystem” flag. 668 
 669 
HLC-SR-3: Configure the container file system as read-only by default for all applications, 670 
overriding only when the underlying application (e.g., database) must write to disk.       671 
 672 
HLC-SR-4: Explicitly prevent privilege escalation for containers. 673 
In Kubernetes, this is achieved by setting the value FALSE for the 674 
“allowPrivilegeEscalation” flag. 675 

4.4 Authentication Policies 676 

Authentication policies specify the process for validating identities. The integrity of this process 677 
and its strength determines the integrity of the authorization process since the latter depends upon 678 
the strength of the authenticated identity. There are two types of identity needed in a 679 
microservices-based application: 680 

● Microservices or workload identity 681 
● End-user identity 682 

Service (microservice) identity is critical for the following reasons: 683 

● It enables the client to verify that the server to which it is communicating (server identity 684 
validated using the certificate it carries) is authorized to run the service. This assurance 685 
has to be provided by a secure naming service that maps the server identity to the service 686 
identity. In any orchestration platform (including Kubernetes), services can be moved 687 
around the nodes (server) for load balancing and service availability reasons. It is the 688 
responsibility of the control plane of the service mesh to refresh this mapping information 689 
by interacting with the API that contains this configuration information (e.g., through API 690 
server in Kubernetes) and convey it to the sidecar proxy in the data plane of the service 691 
mesh.  692 

● The service identity is the basis for the target service to select and enforce applicable 693 
authorization policies. 694 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

16 

 

4.4.1 Specifying Authentication Policies 695 

Associated with these identities are the corresponding authentication processes that the service 696 
meshes have to support. They are: 697 

● Service-level authentication or peer authentication using service identity 698 
● End user authentication or request authentication using end user credentials 699 

It is assumed that the reference hosting platform has been configured with the high-level 700 
requirements outlined in Section 4.1. It is also assumed that the reference service mesh platform 701 
has been installed and configured with the initial requirements outlined in Section 4.2.  702 

4.4.2 Service-level Authentication 703 

Service-level authentication is the mutual authentication of the communicating services and setup 704 
of a secure TLS session. Enabling  this requires the capability to define a policy object which 705 
should meet the following requirements: 706 

AUN-SR-1: A policy object relating to service-level authentication should be defined that requires      707 
that mTLS be used for communication. The policy object should be expressive enough to be defined 708 
at various levels (given below) with features for overrides at the lower levels or inheritance of the 709 
requirement specified at the higher levels. The following are the minimum required levels [6]: 710 

a. Global level or the service mesh level  711 
b. Namespace level  712 
c. Workload or microservices level – used for applying authentication and authorization 713 

policies for a subset of traffic to a subset of resources (e.g., particular microservices, hosts 714 
or ports) 715 

d. Port level, taking into account that certain traffic is designed for communicating through 716 
designated ports 717 

This form of authentication also requires the assignment of a strong identity to each service and 718 
the authenticating of that identity by mapping it to the server identity (where the service is 719 
hosted) that digitally signed in a special digital authentication certificate (SPIFFE). To provide 720 
assurance that the server whose identity is found in the SPIFFE certificate is the one that is 721 
authorized to run the target service, the following requirement (also specified in SP 800-204A) is 722 
needed: 723 

AUN-SR-2: If the certificate used for mTLS carries server identity, then the service mesh should 724 
provide a secure naming service that maps the server identity to the microservice name that is 725 
provided by the secure discovery service or DNS. This requirement is needed to ensure that the 726 
server is the authorized location for the microservices and to protect against network hijacking. 727 

The information for mapping the server identity to a service is obtained by the control plane of 728 
the service mesh by accessing the configuration information from the platform that is hosting the 729 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

17 

 

microservices-based application. In Kubernetes, the control plane of the service mesh obtains the 730 
mapping information through the API server module of the Kubernetes platform and populates 731 
that information in the secure naming service. Thus, the mutual certificate validation not only 732 
enables validation of the associated service identities of both the client and target services but 733 
also enables creation of a secure mutual TLS (mTLS) session. In Istio, the policy object for this 734 
type of authentication is called “peer authentication.”      735 

4.4.3 End User Authentication 736 

For the mesh to authenticate end user credentials (EUC), the application must participate in some 737 
way. Client services that make the request should acquire and attach an appropriate credential to 738 
each request (e.g., a JWT) in the request header. End user authentication, or request 739 
authentication, is the process of validating the credentials of the end user making a request by 740 
extracting from the request’s metadata and authenticating them (locally or against an external 741 
server). For example, a common flow at many organizations is to exchange an external EUC, like 742 
an Oauth bearer token, at ingress for an internal credential that is encoded within a JSON Web 743 
Token (JWT). The JWT can be created by a custom authentication provider or standards-based 744 
OpenID Connect provider.   745 

EAUN-SR-1: A request authentication policy must, at the minimum, provide the following 746 
information: 747 

● Instructions for extracting the credential from the request 748 
● Instructions for validating the credential 749 

For a JWT, this might include: 750 

● Location (header name) of the JWT token that contains the user’s claims 751 
● How to extract the subject, claims, and issuers from the JWT 752 
● Public keys or the location for the key used for validating the JWT 753 

4.5 Authorization Policies 754 

Authorization policies, just like their authentication counterparts, can be specified at the service 755 
level as well as the end user level. In addition, authorization policies are expressed based on 756 
constructs of an access control model and thus may vary based on the nature of the application 757 
and enterprise-level directives. Further, the location of the access control data may vary 758 
depending on the identity and access management infrastructure in the enterprise. These 759 
variations result in the following variables: 760 

● Two authorization levels – service level and end user level 761 
● Access control model used to express authorization policies 762 
● Location of the access control data in a centralized or external authorization server or 763 

carried as header data 764 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

18 

 

The supported access control in the service mesh uses abstraction to group one or more policy 765 
components (described below in Section 4.5.1) for specifying either service-level or end user-766 
level authorization policies. Since microservices-based applications are implemented as APIs 767 
(e.g., RESTful API), authorization policy components described using key/value pairs will have 768 
attributes pertaining to an API, including the associated network protocols. The types of 769 
authorization policies are: 770 

● Service-level authorization policies 771 
● End user-level authorization policies 772 
● Model-based authorization policies 773 

4.5.1 Service-level Authorization Policies 774 

Service-level authorization policies are defined using a policy object that provides positive or 775 
negative permission (authorization) with the following policy components: 776 

a. The scope of the policy can span all applications at the service mesh level, namespace 777 
level, or one or more designated applications (microservice level). 778 

b. The permissions or operations can be restricted to one or more designated methods of a 779 
given service (e.g., an “HTTP GET method on the ‘/details’ path of an application named 780 
PRODUCT-CATALOG”) or to designated ports through which an application can be 781 
accessed. 782 

c. Conditions under which access can take place (e.g., possession of a token) are specified. 783 
d. Sources allowed access are specified at the namespace or a particular service level (in 784 

terms of the service’s runtime identity).  785 

AUZ-SR-1: A policy object describing service-to-service access should be in place for all 786 
services in the mesh. At a minimum, these policies should permit access at the namespace level 787 
(e.g., “services in namespace A can call services in namespace B”).  788 

Ideally, policies should describe the minimum access required for application functionality (e.g., 789 
“service ‘foo’ in namespace A can perform ‘GET /bar’ on service ‘bar’ in namespace B”). 790 

4.5.2 End-user Level Authorization Policies 791 

Given an authentication policy like Section 4.4.3, a sidecar in the mesh can extract a principal 792 
from the request to perform authorization on. Further, the sidecar typically has additional context 793 
about the request, including the resource being accessed (e.g., the path in an HTTP/REST API) 794 
and the action being taken (e.g., the HTTP verb – GET, PUT, etc. – in the request to that API). 795 
This gives the sidecar enough information to act as a policy enforcement point and call a policy 796 
decision point. 797 

This is the most common case, especially for organizations with traditional IAM systems that 798 
exist as an external service, often called by an SDK. To handle this case, a service mesh’s sidecar 799 
proxy will typically support calling external services to render an authentication and authorization 800 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

19 

 

verdict. For example, the reference implementation Istio supports this via Envoy’s (i.e., the 801 
sidecar proxy) external authorization service [15]. 802 

EUAZ-SR-1: When a sidecar communicates with an authentication or authorization system, that 803 
communication should be secured with the mesh’s built-in service-to-service authentication and 804 
authorization capabilities.  805 

Logs and metrics exported by the sidecar can be used to prove that authentication and 806 
authorization was performed by the sidecar on behalf of the application. 807 

End user authorization is not applied to the decision endpoint of the external authorization (PDP) 808 
service since the service is the principal making the call. It also avoids needing a default policy 809 
that allows all users to call the decision endpoint of the PDP. End user authorization should be 810 
applied to the PAP and other administrative endpoints of the authorization system, and that can 811 
be facilitated by the mesh. 812 

However, there is another case that is common enough to address in which an external 813 
authorization system is not required. Making a network call to an authorization service for every 814 
hop in a service chain can be expensive and cause centralized failures. To mitigate these 815 
problems, many organizations will exchange end user credentials at ingress for an internal, 816 
trusted, authenticatable credential that conveys not just the user’s principal but also that user’s 817 
capabilities in the system. A JSON Web Token (JWT) is frequently used for this because it is 818 
locally authenticatable and conveys the user’s principal (the JWT’s subject), the issuer of the 819 
JWT (issuer), and arbitrary claims that the organization can control (e.g., to use for access 820 
control). 821 

Performing end user authorization based on a JWT is common enough that it is built directly into 822 
Envoy, the sidecar proxy of the reference mesh, Istio. Envoy can be configured with a filter [16] 823 
that will process requests in two steps: 824 

a. JWT token verification involves extracting the token from the request header, verifying 825 
whether issuers and audiences are allowed, fetching the public key, and verifying the 826 
digital signature on the token. 827 

b. Match the resources in the request to the claims in the token to determine whether the end 828 
user should be allowed access to the requested resources or denied. 829 

Envoy’s JWT filter act as the PDP, making the access decision entirely locally. This requires that 830 
policy documents be small enough to reside on an individual sidecar proxy. Although a full 831 
ABAC is ideal for handling resource-level policies, the JWT filter is valuable as a stepping stone 832 
from a traditional system that only performs access control on the edge to a zero trust system that 833 
performs authentication and authorization at each service. 834 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

20 

 

apiVersion: security.istio.io/v1beta1 
kind: AuthorizationPolicy 
metadata: 
 name: backend 
 namespace: product 
spec: 
 action: ALLOW 
 rules: 
 - from: 
   - source: 
       principals: ["cluster.local/ns/product/sa/frontend"] 
   to: 
   - operation: 
       methods: ["GET"] 
       paths: ["/info*"] 
   - operation: 
       methods: ["POST"] 
       paths: ["/data"] 
   when: 
   - key: request.auth.claims[iss] 
     values: ["accounts.google.com"] 

Figure 4.1 – An example Istio authorization policy  
This allows the front end to call specific methods on the backend only if the request has an EUC attached issued 

by “accounts.google.com.” 
 835 

EUAC-SR-2: All application traffic should carry end-user credentials, and there should be a 836 
policy in the mesh enforcing that credentials are present. 837 

We recommend this even if the application is enforcing authentication and authorization 838 
independently of the mesh, because these organization-wide controls allow functionality like 839 
audit to be built on top of the mesh at lower cost to central teams responsible for compliance and 840 
controls. 841 

4.5.3 Model-based Authorization Policies 842 

The service-level authorization policies and a use case of end-user authorization policies that uses 843 
JWT are natively implemented in the proxies. Since these cannot be used for resource-level 844 
authorization policies, we need to support model-based authorization policies as well. As already 845 
alluded to in section 4.5.2, this requires a call from the proxy to an external authorization server 846 
which holds the model-based authorization engine to obtain an access decision.   847 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

21 

 

The service principals in these model-based policies are identities (e.g., ServiceAccount) that are 848 
provided by the underlying application orchestration platform (e.g., Kubernetes) and is the same 849 
that are used by authorization policies natively supported in the proxies. The user principals are 850 
usually obtained from the JWT token.  The popular access control models in the external 851 
authorization servers are either RBAC or ABAC.4.6 Authorization Policy Elements 852 

4.6 Authorization Policy Elements 853 

The authorization policies that can be specified in a service mesh may consist of the following 854 
elements: 855 

● The policy types – Positive (ALLOW) or Negative (DENY)  856 
● The policy target or authorization scope – The namespace, a particular service 857 

(application name), and version 858 
● The policy sources – Covers the set of authorized services 859 
● The policy operations – Specifies the operations on the target resources that are covered 860 

under the policy  861 
● The policy conditions – The metadata associated with the request that must be met for the 862 

application or invocation of the policy 863 

4.6.1 Policy Types  864 

Positive and negative policies are specified in order to set precedence relationships (e.g., DENY 865 
overrides, ALLOW, etc.). They are also used for situations that allow one type of policy for all 866 
services under a group and to specify exceptions (e.g., have an ALLOW policy for all services in 867 
a namespace but a DENY policy for a specified service) 868 

4.6.2 Policy Target or Authorization Scope 869 

This refers to the target resources in terms of a set of services, versions, and the namespaces 870 
under which the services are located. The service can be specified in the following ways: 871 

Using path: The location of the target resource is specified using paths (e.g., for resources 872 
accessed using HTTP or gRPC protocols). The list of paths to be included in the authorization 873 
policy scope and paths that need to be excluded can be defined. Both of these sub-elements of the 874 
policy target component (i.e., the list of paths to be included and the list of paths to be excluded) 875 
are optional. 876 

Using host name: In some instances, the target resources are specified using the host sub-element. 877 
The list of hosts to be included in the authorization policy scope as well as those hosts that need 878 
to be excluded can be defined. Both of these sub-elements of the policy target component (i.e., 879 
list of hosts to be included and the list of hosts to be excluded) are optional. 880 

Using network ports: The network port through which the target resource (the service) is accessed 881 
is often specified using the port sub-element. The list of ports to be included in the authorization 882 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

22 

 

policy scope as well as those ports that need to be excluded can be defined. Both of these sub-883 
elements of the policy target component (i.e., list of ports to be included and the list of ports to be 884 
excluded) are optional4.6.3 Policy Sources 885 

4.6.3 Policy Sources 886 

The policy sources are the set of services that are authorized to operate on the set of resources 887 
specified under the policy target (specified using name, path, host name, and ports). The policy 888 
sources are usually specified using a service account or name (called principal), all services in a 889 
particular logical group (e.g., namespace), or all services that are accessed from a group of 890 
network locations (e.g., IP blocks). Both included and excluded principals, namespaces, and IP 891 
blocks can be specified in some implementations. 892 

4.6.4 Policy Operations 893 

The set of operations depends on the way the application is implemented. If the application is 894 
implemented as a REST API, the following are the common operations (also called HTTP verbs 895 
or HTTP methods): 896 

POST: This is equivalent to creating a resource. 897 

GET: This is equivalent to reading the contents of the resource. 898 

PUT: This is equivalent to updating the resource by replacing. 899 

PATCH: This is equivalent to updating the resource by modifying. 900 

DELETE: This is equivalent to deleting the resource. 901 

OPTIONS: 902 

HEAD: 903 

If the resource is accessed using gRPC instead of a RESTful protocol, there is only one operation 904 
or method: “POST.” The authorization policy definition may also have a feature to specify the list 905 
of operations (methods) to be excluded. Both policy sub-elements—one to specify the operations 906 
to be included in the authorization policy scope and the other to be excluded—are optional. 907 

4.6.5 Policy Conditions 908 

Policy conditions specify the constraints in the form of a key-value pair for the metadata 909 
associated with the request. This metadata may cover the following: 910 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

23 

 

Metadata associated with the source: Some of the metadata (e.g., service account name, 911 
namespace, and IP blocks) are specified as part of the policy source specification itself. In 912 
addition, it is possible to list IP addresses in CIDR format of the policy sources. 913 

Metadata associated with the request: In this type of metadata, the parameters or attributes that 914 
pertain to a specific request can be specified. These parameters can include an audience that can 915 
present the authentication information expressed in the form of a URL (only applicable to HTTP 916 
protocol-based requests), a specific end user identifier associated with the audience that can 917 
present the authentication credentials, or the claim name that is carried in the token presented by 918 
the presenter. In addition, parameters that pertain to the user-agent (e.g., browser name) can also 919 
be specified for HTTP protocol-based requests.  920 

Metadata associated with the destination:The range of allowable IP addresses can be specified in 921 
CIDR format as well as the associated list of ports. 922 

 923 

  924 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

24 

 

5 ABAC Deployment for Service Mesh 925 

The last chapter introduced three different types of authorization policies including  two use cases 926 
for end-user level authorization policies. This chapter, we will leverage those architectural choices 927 
to describe an ABAC-based authorization framework in the service mesh: 928 

● Security assurance for authorization framework enforcement 929 
● Supporting infrastructure for authorization requests 930 
● Advantages of ABAC Authorization framework for Service Mesh 931 
● Enforcement alternatives in Proxies 932 

5.1  Security Assurance for Authorization Framework Enforcement 933 

The authorization policy enforcement mechanism implemented in the service mesh for a 934 
microservices-based application must satisfy the three requirements of a reference monitor 935 
concept. It must be 1) non-bypassable, 2) protected from modification, and 3) verified and tested 936 
to be correct. These three requirements can be ensured by the following: 937 

● Every request from a client to the microservices-based application, from one service to 938 
another (inter-services call), and from a microservice to an external application is 939 
intercepted by the ingress gateway, sidecar proxy, and egress proxy, respectively, and 940 
these policy enforcement points (PEPs) are non-bypassable. 941 

● The policy enforcement modules are independent executables that are decoupled from the 942 
application logic and cannot be modified. 943 

● Their outcome can be independently verified and tested through both shadow operations 944 
and live production requests. 945 

In short, a proxy running in the data plane of the service mesh is the reference monitor with 946 
respect to authorization enforcement. The authorization policy engine (e.g., NGAC-based ABAC 947 
policy engine) implemented as a container executing either natively in the proxy memory space 948 
or callable from a corresponding filter module in the proxy runs as a separate process that does 949 
not share any memory space with the calling application. Hence, it satisfies the requirement of a 950 
security kernel. 951 

5.2 Supporting Infrastructure for ABAC Authorization Framework 952 

We will now look at the basic building blocks of the supporting infrastructure for service-to-953 
service and end-user+service-to service requests. 954 

5.2.1 Service-to-Service Request (SVC-SVC) – Supporting Infrastructure 955 

The policy object used for authorizing this type of request was described in Section 4.5.1. 956 
Service-to-service requests must be authorized based on the identity of the calling and called 957 
services. The trusted document that carries the identity of the service is an X.509 certificate 958 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

25 

 

issued by one of the control plane components of the service mesh after verifying whether the 959 
requested identity is valid for the microservice by consulting an identity registry. The proxy 960 
communicates with this control plane component through a local agent, obtains a certificate, and 961 
sends it to the proxy, which then performs the certificate validation process on behalf of the 962 
calling service or client during each service request. The identity is encoded as URI and carried in 963 
a certificate’s SAN (subject alternate name) field. It must be mentioned that the certificates that 964 
carry service account identities are short-lived certificates (rotated every hour or few hours) 965 
rather than the conventional HTTPS TLS terminating certificates whose validity lasts for several 966 
months.  967 

5.2.2 End User + Service-to-Service Request (EU+SVC-SVC) – Supporting Infrastructure 968 

The policy object used for authorizing this type of request was described in Section 4.5.2. This 969 
request type requires the verification of two identities: the calling user identity and the service 970 
identity. As described in the previous section, the service mesh provides the feature to perform 971 
authorization based on service identities. Since this is a standard feature, no extra components 972 
need to be built in the service mesh infrastructure for this type of authorization. However, when 973 
end user identities are introduced for authorization, the authorization framework should be tightly 974 
integrated with the following components of the architecture: 975 

● The services orchestration control plane for obtaining application object attributes as well 976 
as attributes of the registered application users (which includes user credentials), thus 977 
playing the role of Policy Information Point (PIP) in ABAC-based authorization 978 

● A service mesh control plane for obtaining tokens that encode the claims based on the 979 
authorization decision 980 

● A service mesh data plane in the service proxy for making calls to the authorization 981 
engine (which is just another service), obtaining the authorization decision, enforcing the 982 
service-to-service authorization policies, making calls to the service mesh control plane 983 
for authorization tokens (e.g., Java Web Tokens [JWT]), and attaching the tokens to the 984 
service request.  985 

The advantage of an EU+SVC-SVC request processing scheme is that authorizations at a finer 986 
level of granularity than the method level can be specified, and conformant claims can be 987 
included in the authorization token.  988 

A disadvantage is that there is overhead involved in enforcing two layers of authorization—one 989 
layer based on policies specified for SVC-SVC requests and a second layer based on EU+SVC-990 
SVC requests. Access control processing logic based on the second layer involves multiple calls 991 
by service proxy, such as (a) a call to the authorization engine service to obtain the access 992 
decision after obtaining the user attributes (including user credentials) and application object 993 
attributes from the orchestration system, (b) obtaining the authorization token from the service 994 
mesh control plane based on the access decision, and (c) including the authorization token along 995 
with service request. 996 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

26 

 

5.3 Advantages of ABAC Authorization Framework for Service Mesh 997 

We provide here the justification for the various building blocks of the architecture for our 998 
authorization framework – the service mesh, the NGAC-based ABAC model etc. We also 999 
highlight the scalability and flexibility of certain components such as proxy APIs, NGAC 1000 
authorization engine etc. 1001 

a. A service mesh is the right architecture for the enforcement of authorization policies since 1002 
the components involved are moved out of the application and executed in a space where 1003 
they can form a security kernel that can be vetted. 1004 

b. Both types of authorization requests (i.e., SVC-SVC and EU-SVC-SVC) can be handled 1005 
by a runtime infrastructure that involves the coupling of orchestration platform control 1006 
plane, service mesh control plane, and mesh data plane to the access control engine. 1007 

c. The extensible API of the proxy can be used to integrate any authorization engine using 1008 
the appropriate type of access control model. ABAC has been found to be one of the most 1009 
flexible, scalable access control models because of its ability to incorporate any number 1010 
and type of attributes associated with the subject, object, and environment. 1011 

d. Performance requirements for the authorization engine are met due to the linear time 1012 
processing speed of the graph-based, NGAC-based ABAC model. 1013 

e. The flexibility outlined in (c) can be leveraged to incorporate models for both application 1014 
and data protection. Enabling data protection models such as NDAC can be part of the 1015 
authorization server. 1016 

5.4 Enforcement Alternatives in Proxies 1017 

Authorization can be enforced through a native structure (e.g., authorization policy) supported in 1018 
the particular version of the service mesh or using calls to an external authorization server. The 1019 
external authorization server can use any access control model and any representation of policy 1020 
expressions (logical rules or acyclic graph representations), but the mediation of a request coming 1021 
into the proxy can be performed in the following ways: 1022 

a. Each request is passed on to the external authorization server through the external 1023 
authorization filter in the proxy, and the response from the authorization server is used for 1024 
request mediation in the form of ALLOW or DENY. 1025 

b. Prestored ACLs can be used in the proxy itself, generated by calls to the authorization 1026 
server. If the authorization server uses an enterprise-wide access control model, an 1027 
administrative API may be needed that will perform the function of mapping the 1028 
enterprise resources to resources, users, and groups pertaining to the service served by its 1029 
proxy to generate ACLs that are customized for the service.  1030 

  1031 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

27 

 

6 Summary and Conclusions 1032 

Deployment guidance has been provided for an ABAC-based authorization framework for 1033 
securing microservices-based applications using a service mesh. Background information in 1034 
terms of authentication and authorization policies natively supported in proxies of the service 1035 
mesh are discussed. For supporting any authentication and authorization framework in the mesh, 1036 
the pre-requisites in the form of hosting platform configuration data, the service mesh 1037 
configuration and some higher-level security configuration parameters for orchestration of 1038 
component microservices (when implemented as containers) are outlined. 1039 

The description of the ABAC deployment in the service mesh includes the requirements for 1040 
security assurance, supporting infrastructure, advantages of ABAC authorization framework and 1041 
enforcement alternatives in proxies.    1042 

  1043 



SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

28 

 

References 1044 

 [1] Rose S, Borchert O, Mitchell S, Connelly S (2020) Zero Trust Architecture. (National 1045 
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 1046 
800-207. https://doi.org/10.6028/NIST.SP.800-207 1047 

[2] Red Hat (2021) What is CI/CD? Available at 1048 
https://www.redhat.com/en/topics/devops/what-is-ci-1049 
cd#:~:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20c1050 
ontinuous%20deployment 1051 

[3] Red Hat (2021) What is DevSecOps? Available at 1052 
https://www.redhat.com/en/topics/devops/what-is-devsecops 1053 

[4] Chandramouli R (2019) Security Strategies for Microservices-based Application Systems. 1054 
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 1055 
Publication (SP) 800-204. https://doi.org/10.6028/NIST.SP.800-204 1056 

[5] Hu VC, Ferraiolo DF, Chandramouli R, Kuhn DR (2018) Attribute-Based Access Control 1057 
(Artech House, Boston USA). 1058 

[6] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications 1059 
using Service-Mesh Architecture. (National Institute of Standards and Technology, 1060 
Gaithersburg, MD), NIST Special Publication (SP) 800-204A. 1061 
https://doi.org/10.6028/NIST.SP.800-204A 1062 

[7] McEvoy E (2019) Cordanetes: Combining Corda and Kubernetes (Medium.com). 1063 
Available at https://medium.com/corda/combining-corda-and-kubernetes-4e2ba54494c7 1064 

[8] Ramakani A (2020) Kong API Gateway – From Zero to Production (Medium.com). 1065 
Available at https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee 1066 

 1067 
[9] Agarwal G (2020) How to Manage Microservices on Kubernetes With Istio 1068 

(Medium.com). Available at https://medium.com/better-programming/how-to-manage-1069 
microservices-on-kubernetes-with-istio-c25e97a60a59 1070 

 1071 
[10] Agarwal G (2020) How Istio Works Behind the Scenes on Kubernetes (Medium.com). 1072 

Available at https://medium.com/better-programming/how-istio-works-behind-the-scenes-1073 
on-kubernetes-aeb8003f2cb5 1074 

 1075 
[11] InterNational Committee for Information Technology Standards (2020) INCITS 565-2020 1076 

- Information technology - Next Generation Access Control (INCITS, Washington, DC). 1077 
Available at 1078 
https://standards.incits.org/apps/group_public/project/details.php?project_id=2328 1079 

https://doi.org/10.6028/NIST.SP.800-207
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204A
https://medium.com/corda/combining-corda-and-kubernetes-4e2ba54494c7
https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/better-programming/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5
https://medium.com/better-programming/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5
https://standards.incits.org/apps/group_public/project/details.php?project_id=2328


SP800-204B(DRAFT) ATTRIBUTE-BASED ACCESS CONTROL FOR MICROSERVICES-
BASED APPLICATIONS USING A SERVICE MESH 

 

29 

 

[12] Mell P, Shook J, Harang R, Gavrila S (2017) Linear Time Algorithms to Restrict Insider 1080 
Access using Multi-Policy Access Control Systems. Journal of Wireless Mobile Networks, 1081 
Ubiquitous Computing, and Dependable Applications 8(1):4-25. 1082 
https://doi.org/10.22667/JOWUA.2017.03.31.004 1083 

[13] Ferraiolo D, Chandramouli R, Hu V, Kuhn R (2016) A Comparison of Attribute Based 1084 
Access Control (ABAC) Standards for Data Service Applications: Extensible Access 1085 
Control Markup Language (XACML) and Next Generation Access Control (NGAC)  1086 
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special 1087 
Publication (SP) 800-204A. https://doi.org/10.6028/NIST.SP.800-178 1088 

[14] Agarwal G (2020) Enable Mutual TLS Authentication between your Kubernetes 1089 
Workloads Using Istio (Medium.com). Available at https://medium.com/better-1090 
programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-1091 
using-istio-65338c8adf82 1092 

[15] Envoy (2021) External Authorization. Available at  1093 
https://www.envoyproxy.io/docs/envoy/v1.17.0/intro/arch_overview/security/ext_authz_fi1094 
lter#arch-overview-ext-authz 1095 

[16] Envoy (2021) JWT Authentication. Available at 1096 
https://www.envoyproxy.io/docs/envoy/v1.17.0/configuration/http/http_filters/jwt_authn_1097 
filter#config-http-filters-jwt-authn 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

https://doi.org/10.22667/JOWUA.2017.03.31.004
https://doi.org/10.6028/NIST.SP.800-178
https://medium.com/better-programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-using-istio-65338c8adf82
https://medium.com/better-programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-using-istio-65338c8adf82
https://medium.com/better-programming/enable-mutual-tls-authentication-between-your-kubernetes-workloads-using-istio-65338c8adf82
https://www.envoyproxy.io/docs/envoy/v1.17.0/intro/arch_overview/security/ext_authz_filter#arch-overview-ext-authz
https://www.envoyproxy.io/docs/envoy/v1.17.0/intro/arch_overview/security/ext_authz_filter#arch-overview-ext-authz
https://www.envoyproxy.io/docs/envoy/v1.17.0/configuration/http/http_filters/jwt_authn_filter#config-http-filters-jwt-authn
https://www.envoyproxy.io/docs/envoy/v1.17.0/configuration/http/http_filters/jwt_authn_filter#config-http-filters-jwt-authn

	Draft NIST SP 800-204B, Attribute-based Access Control for Microservices-based Applications Using a Service Mesh
	Executive Summary
	1 Introduction
	1.1 Service Mesh Capabilities
	1.2 Candidate Applications
	1.3 Scope
	1.4 Target Audience
	1.5 Relationship to other NIST Guidance Documents
	1.6 Organization of this document

	2 Microservices-based Application and Service Mesh – Reference Platforms
	2.1 Reference Platform for Hosting a Microservices-based Application
	2.1.1 Limitations of Reference Hosting Platform for Security

	2.2 Service Mesh Reference Platform – Conceptual Architecture
	2.2.1 Service Mesh Functions for Reference Hosting Platform


	3 Attribute-based Access Control (ABAC) – Background
	3.1 ABAC Deployment for Microservices-based Applications Using Service Mesh

	4 Authentication and Authorization Policy Configuration in Service Mesh
	4.1 Hosting Platform Configuration
	4.2  Service Mesh Configuration
	4.3 Higher-level Security Configuration Parameters
	4.4 Authentication Policies
	4.4.1 Specifying Authentication Policies
	4.4.2 Service-level Authentication
	4.4.3 End User Authentication

	4.5 Authorization Policies
	4.5.1 Service-level Authorization Policies
	4.5.2 End-user Level Authorization Policies
	4.5.3 Model-based Authorization Policies

	4.6 Authorization Policy Elements
	4.6.1 Policy Types
	4.6.2 Policy Target or Authorization Scope
	4.6.3 Policy Sources
	4.6.4 Policy Operations
	4.6.5 Policy Conditions


	5 ABAC Deployment for Service Mesh
	5.1  Security Assurance for Authorization Framework Enforcement
	5.2 Supporting Infrastructure for ABAC Authorization Framework
	5.2.1 Service-to-Service Request (SVC-SVC) – Supporting Infrastructure
	5.2.2 End User + Service-to-Service Request (EU+SVC-SVC) – Supporting Infrastructure

	5.3 Advantages of ABAC Authorization Framework for Service Mesh
	5.4 Enforcement Alternatives in Proxies

	6 Summary and Conclusions
	References

