
NIST Special Publication 800-204C

Implementation of DevSecOps for a
Microservices-based Application

with Service Mesh

Ramaswamy Chandramouli

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204C

 NIST Special Publication 800-204C

Implementation of DevSecOps for a
Microservices-based Application

with Service Mesh

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204C

March 2022

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce
for Standards and Technology & Director, National Institute of Standards and Technology

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-204C
Natl. Inst. Stand. Technol. Spec. Publ. 800-204C, 45 pages (March 2022)

CODEN: NSPUE2

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-204C

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

Submit comments on this publication to: sp800-204c-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

All comments are subject to release under the Freedom of Information Act (FOIA).

https://doi.org/10.6028/NIST.SP.800-204C
http://csrc.nist.gov/publications
mailto:sp800-204c-comments@nist.gov

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems.

Abstract

Cloud-native applications have evolved into a standardized architecture consisting of multiple
loosely coupled components called microservices (often typically implemented as containers)
that are supported by an infrastructure for providing application services, such as service mesh.
Both of these components are usually hosted on a container orchestration and resource
management platform. In this architecture, the entire set of source code involved in the
application environment can be divided into five code types: 1) application code (which
embodies the application logic), 2) application services code (for services such as session
establishment, network connection, etc.), 3) infrastructure as code (for provisioning and
configuring computing, networking, and storage resources), 4) policy as code (for defining
runtime policies such as zero trust expressed as a declarative code), 5) and observability as code
(for the continuous monitoring of an application runtime state). Due to security, business
competitiveness, and the inherent structure of loosely coupled application components, this class
of applications needs a different development, deployment, and runtime paradigm. DevSecOps
(consisting of acronyms for Development, Security, and Operations, respectively) has been
found to be a facilitating paradigm for these applications with primitives such as continuous
integration, continuous delivery, and continuous deployment (CI/CD) pipelines. These pipelines
are workflows for taking the developer’s source code through various stages, such as building,
testing, packaging, deployment, and operations supported by automated tools with feedback
mechanisms. The objective of this document is to provide guidance for the implementation of
DevSecOps primitives for cloud-native applications with the architecture and code types
described above. The benefits of this approach for high security assurance and for enabling
continuous authority to operate (C-ATO) are also discussed.

Keywords

container orchestration and resource management platform; DevSecOps; CI/CD pipelines;
infrastructure as code; policy as code; observability as code; GitOps; workflow models; static
AST; dynamic AST; interactive AST; SCA.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Acknowledgments

The author would like to express his first thanks to David Ferraiolo of NIST for initiating this
effort to provide targeted guidance for the implementation of DevSecOps primitives for the
development, deployment, and monitoring of services in microservices-based applications with
service mesh. Sincere thanks to Mr. Nicolas Chaillan, CSO US Air Force, for his detailed and
insightful review and feedback. Thanks are also due to Zack Butcher of Tetrate, Inc. for
suggesting the title for this document. The author also expresses thanks to Isabel Van Wyk of
NIST for her detailed editorial review.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Patent Disclosure Notice

NOTICE: The Information Technology Laboratory (ITL) has requested that holders of patent claims
whose use may be required for compliance with the guidance or requirements of this publication
disclose such patent claims to ITL. However, holders of patents are not obligated to respond to ITL
calls for patents and ITL has not undertaken a patent search in order to identify which, if any,
patents may apply to this publication.

As of the date of publication and following call(s) for the identification of patent claims whose use
may be required for compliance with the guidance or requirements of this publication, no such
patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Executive Summary

Cloud-native applications have evolved into a standardized architecture consisting of the
following components:

• Multiple loosely coupled components called microservices (often or typically
implemented as containers)

• An application services infrastructure that provides services such as secure
communication, authentication, and authorization for users, services, and devices (e.g.,
service mesh)

Due to security, business competitiveness, and its inherent structure (loosely coupled application
components), this class of applications needs a different application, deployment, and runtime
monitoring paradigm – collectively called the software life cycle paradigm. DevSecOps
(consisting of acronyms for Development, Security, and Operations, respectively) is one of the
facilitating paradigms for the development, deployment, and operation of these applications with
primitives such as continuous integration, continuous delivery, and continuous deployment
(CI/CD) pipelines.

CI/CD pipelines are workflows for taking the developer’s source code through various stages,
such as building, functional testing, security scanning for vulnerabilities, packaging, and
deployment supported by automated tools with feedback mechanisms. For the purpose of this
document, the entire set of source code involved in the application environment is classified into
five code types:

1. Application code, which embodies the application logic for carrying out one or more
business functions.

2. Application services code for services such as session establishment, network connection
etc.

3. Infrastructure as code, which are computing, networking, and storage resources in the
form of a declarative code.

4. Policy as code, which are runtime policies (e.g., zero trust) expressed as a declarative
code .

5. Observability as code for the continuous monitoring of the health of the application
where monitoring functions are expressed as a declarative code.

Thus, separate CI/CD pipelines can be created for all five code types. The functions performed
by each of these code types is also described to highlight the roles that they play in the overall
execution of the application.

Though cloud-native applications have a common architectural stack, the platform on which the
components of the stack run may vary. The platform is an abstraction layer over a physical (bare
metal) or virtualized (e.g., virtual machines, containers) infrastructure. In this document, the
chosen platform is a container orchestration and resource management platform (e.g.,

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Kubernetes). To unambiguously refer to this platform or application environment throughout this
document, it is called the Reference Platform for DevSecOps Primitives, or simply the reference
platform.

The objective of this document is to provide guidance for the implementation of DevSecOps
primitives for the reference platform. The benefits of this implementation for high security
assurance and the use of the artifacts within the pipelines for providing continuous authority to
operate (C-ATO) using risk management tools and dashboard metrics are also described.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

vii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Table of Contents

Executive Summary .. v

1 Introduction .. 1

1.1 Scope .. 1

1.2 Related DevSecOps Initiatives .. 3

1.3 Target Audience .. 4

1.4 Relationship to Other NIST Guidance Documents .. 4

1.5 Organization of This Document ... 5

2 Reference Platform for the Implementation of DevSecOps Primitives 6

2.1 Container Orchestration and Resource Management Platform 6

2.1.1 Security Limitations of Orchestration Platform 6

2.2 Service Mesh Software Architecture ... 7

2.2.1 Control Plane ... 7

2.2.2 Data Plane ... 8

3 DevSecOps – Organizational Preparedness, Key Primitives, and
Implementation .. 10

3.1 Organizational Preparedness for DevSecOps .. 10

3.2 DevSecOps Platform .. 10

3.2.1 Deliverables for DevSecOps Platform .. 11

3.3 DevSecOps – Key Primitives and Implementation Tasks 12

3.3.1 Concept of Pipelines and the CI/CD Pipeline 12

3.3.2 Building Blocks for CI/CD Pipelines ... 14

3.3.3 Preparing and Executing the CI/CD pipeline .. 15

3.3.4 Strategies for Automation ... 17

3.3.5 Requirements for Security Automation Tools in CI/CD Pipelines 18

4 Implementing DevSecOps Primitives for the Reference Platform 19

4.1 Description of Code Types and Reference Platform Components 19

4.2 CI/CD Pipeline for Application Code and Application Services Code 21

4.3. CI/CD Pipeline for Infrastructure as Code .. 21

4.3.1 Protection for IaC ... 22

4.3.2 Distinction Between Configuration and Infrastructure 23

4.4 CI/CD Pipeline for Policy as Code ... 23

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

viii

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

4.5 CI/CD Pipeline for Observability as Code ... 24

4.6 Securing the CI/CD Pipeline.. 24

4.7 Workflow Models in CI/CD Pipelines ... 25

4.7.1 GitsOps Workflow Model for CI/CD – A Pull-based Model 25

4.8 Security Testing – Common Requirement for CI/CD Pipelines for All Code
Types .. 26

4.8.1 Functional and Coverage Requirements for AST tools 27

4.9 Benefits of DevSecOps Primitives to Application Security in the Service Mesh
 28

4.10 Leveraging DevSecOps for Continuous Authorization to Operate (C-ATO) .. 30

5 Summary and Conclusion ... 31

References ... 32

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

1 Introduction

Cloud-native applications are made up of multiple loosely coupled components (called
microservices typically implemented as containers), operate in perimeter-less network
environments requiring zero trust concepts (on-premises or cloud), and are accessed by users
from a diverse set of locations (e.g., campus, home office, etc.). Cloud-native applications do not
just refer to applications that run in the cloud. They also refer to the class of applications with
design and runtime architectures, such as microservices, and a dedicated infrastructure for
providing all application services, including security. The incorporation of zero trust principles
[1] into this class of application provides techniques wherein access to all protected resources is
enforced through identity-based protection and network-based protections (e.g., micro-
segmentation), where applicable.

Cloud-native applications require agile and secure updates and deployment techniques for
business reasons as well as the necessary resilience to respond to cybersecurity events. Hence,
they call for a different application development, deployment, and runtime monitoring paradigm
(collectively called the software life cycle paradigm) than the ones used for traditional monolithic
or multi-tier applications. DevSecOps (Development, Security, and Operations) is a facilitating
paradigm for this class of applications since it facilitates agile and secure development, delivery,
deployment, and operations through (a) primitives, such as continuous integration, continuous
delivery/continuous deployment (CI/CD) pipelines (explained in section 3); (b) security testing
throughout the life cycle; and (c) continuous monitoring during runtime, all of which are
supported by automation tools. In fact, the paradigm that meets the above objectives was
originally given the term DevOps to indicate the fact that it seeks to remove the silos between
development and operations groups and promotes (or drives) increased collaboration. The term
DevSecOps was later coined by a portion of the community to emphasize the role of the security
team in the whole process. Thus, DevSecOps is the term that denotes a culture and set of
practices with automation tools to drive increased collaboration, trust, shared responsibility,
transparency, autonomy, agility, and automation across the key stakeholders responsible for
delivering software, including development, operations, and security organizations. DevSecOps
has the necessary primitives and other building blocks to meet the design goals of cloud-native
applications.

It should be noted that there is no community-wide consensus on the term “DevSecOps.” As
already stated, the term was primarily coined to emphasize the fact that security must be tested
and incorporated in all stages of the software development life cycle (i.e., build, test, package,
deploy, and operate). A portion of the community continues to use the term “DevOps” based on
the argument that there is no need to define a new term since security must be an integral part of
any software life cycle process.

1.1 Scope

In theory, DevSecOps primitives can be applied to many application architectures but are best
suited to microservices-based ones, which permit agile development paradigms due to the fact
that the application is made up of relatively small, loosely coupled modules called microservices.
Even within microservices-based architectures, the implementation of DevSecOps primitives can

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

take on different forms, depending on the platform. In this document, the chosen platform is a
container orchestration and resource management platform (e.g., Kubernetes). The platform is an
abstraction layer over a physical (bare metal) or virtualized (e.g., virtual machines, containers)
infrastructure. To unambiguously refer to this platform or application environment throughout
this document, it is called the Reference Platform for DevSecOps Primitives, or simply the
reference platform.

Before describing the implementation of DevSecOps primitives for the reference platform, it is
assumed that the following due diligence is applied with respect to deployment of the service
mesh component [2]:

• Secure design patterns for deploying and managing service mesh-based components for
infrastructure (e.g., network routing), policy enforcement, and monitoring

• Tests to prove that these service mesh components work as intended in a variety of
scenarios for all aspects of the application, such as ingress, egress, and inside services

The guidance provided for implementation of DevSecOps primitives for the reference platform is
agnostic to (a) the tools used in DevSecOps pipelines and (b) the service mesh software, which
provides application services, though examples from service mesh offerings, such as Istio, are
used to link them to real-world application artifacts (e.g., containers, policy enforcement
modules, etc.).

A slightly more detailed description of the code types (referred to in the executive summary) in
the entire application environment presented by the reference platform is given below. Please
note that these code types include those that support implementation of DevSecOps primitives.

1. Application code – embodies the application logic for carrying out one or more business
functions) and is made up of code describing the business transactions and database
access

2. Application services code (e.g., service mesh code) – provides various services for the
application, such as service discovery, establishing network routes, network resiliency
services (e.g., load balancing, retries), and security services (e.g., enforcing
authentication, authorization etc. based on policies (item 4 below))

3. Infrastructure as code – expresses the computing, networking, and storage resources
needed to run the application in the form of a declarative code

4. Policy as code – contains declarative code for generating the rules and configuration
parameters for realizing security objectives, such as zero trust through security controls
(e.g., authentication, authorization) during runtime

5. Observability as code – triggers software related to logging (recording all transactions)
and tracing (communication pathways involved in executing application requests) and
monitors (keeping track of application states during runtime)

Code types 3, 4, and 5 may have overlap with code type 2.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

This document covers the implementation of pipelines or workflows associated with all five code
types listed above. Thus, the entire application environment (not just the application code)
benefits from all of the best practices that exist for application code (e.g., agile iterative
development, version control, governance, etc.). Infrastructure as code, policy as code, and
observability as code belong to a special class called declarative code. When using ‘as code’
techniques, the code that is written (e.g., for provisioning a resource) is managed similar to
application source code. This implies that it is versioned, documented, and has access controls
defined similar to what is done for application source code repository. Often, domain-specific
declarative languages are used: the requirements are declared, and an associated tool converts
them into artifacts that make up a runtime instance. For example, in the case of infrastructure as
code (IaC), the declarative language models the infrastructure as a series of resources. The
associated configuration management tool pulls together these resources and generates what are
known as manifests that define the final shape and state of the platform (runtime instance)
associated with the defined resources. These manifests are stored in servers associated with a
configuration management tool and are used by the tool to create compiled configuration
instructions for the runtime instance on the designated platform. Manifests are generally encoded
in platform-neutral representations (e.g., JSON) and fed to platform resource provisioning agents
through REST APIs.

1.2 Related DevSecOps Initiatives

There are several DevSecOps initiatives in various agencies of the Federal Government with
varying emphasis and focus, depending on the processes enabled by software and mission needs.
Though not exhaustive, here is a brief overview of those initiatives [3].

• DevSecOps pipelines are involved in building, checking in, and checking out from a
container registry called Iron Bank, a repository of DOD-vetted hardened container
images.

• The Air Force’s Platform One, the DevSecOps platform that enabled the concept of
continuous authority to operate (C-ATO), which in turn streamlined the DOD’s
authorization process to accommodate the speed and frequency of modern continuous
software deployments.

• The National Geospatial-Intelligence Agency (NGA) outlined its DevSecOps strategy in
“The NGA Software Way,” where three key metrics – availability, lead time, and
deployment frequency – are laid out for each of its software products, along with
specification of seven distinct product lines for enabling DevSecOps pipelines, including
messaging and workflow tools.

• The Centers for Medicare and Medicaid Services (CMS) is adopting a DevSecOps
approach where one emphasis is on laying the groundwork for the software bill of
materials (SBOM) – a formal record that contains the details and supply chain
relationships of various components used in building software. The purpose of producing
SBOMs is to meet the goals established under the Continuous Diagnostics and Mitigation
(CDM) program.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• At the Naval Surface Warfare Center (NSWC), the implementation methodology of
DevSecOps primitives is used to teach and train the software workforce on various
software metrics and the role of automation as enablers for achieving those metrics.

• The Army’s DevSecOps initiative is called the Army Software Factory and is focused on
building skillsets rather than building software. It utilizes DevSecOps capabilities
(pipelines and platform-as-a-service features) as a technology accelerator to gain
efficiency and proficiency in product management, user experience, user interface
(UI/UX) design, platform, and software engineering.

1.3 Target Audience

Since DevSecOps primitives span development (build and test for security, package), delivery/
deployment and continuous monitoring (to ensure secure states during runtime), the target
audience for the recommendations in this document includes software development, operations,
and security teams.

1.4 Relationship to Other NIST Guidance Documents

Since the reference platform is made up of container orchestration and resource management
platform and service mesh software, the following publications offer guidance for securing this
platform as well as provide background information for the contents of this document:

● Special Publication (SP) 800-204, Security Strategies for Microservices-based
Application Systems [4], discusses the characteristics and security requirements of
microservices-based applications and the overall strategies for addressing those
requirements.

● SP 800-204A, Building Secure Microservices-based Applications Using Service-Mesh
Architecture [5], provides deployment guidance for various security services (e.g.,
establishment of secure sessions, security monitoring, etc.) for a microservices-based
application using a dedicated infrastructure (i.e., a service mesh) based on service proxies
that operate independent of the application code.

● SP 800-204B [6], Attribute-based Access Control for Microservices-based Applications
Using a Service Mesh, provides deployment guidance for building an authentication and
authorization framework within the service mesh that meets the security requirements,
such as (1) zero trust by enabling mutual authentication in communication between any
pair of services and (2) a robust access control mechanism based on an access control
model, such as attribute-based access control (ABAC) model, that can be used to express
a wide set of policies and is scalable in terms of user base, objects (resources), and
deployment environment.

● SP 800-190 [7], Application Container Security Guide, explains the security concerns
associated with container technologies and makes practical recommendations for
addressing those concerns when planning for, implementing, and maintaining containers.
The recommendations are provided for each tier within the container technology
architecture.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

1.5 Organization of This Document

This document is organized as follows:

● Chapter 2 gives a brief description of the reference platform for which guidance for
implementation of DevSecOps primitives is provided.

● Chapter 3 introduces the DevSecOps primitives (i.e., pipelines), the methodology for
designing and executing the pipelines, and the role that automation plays in the execution.

● Chapter 4 covers all facets of pipelines, including (a) common issues to be addressed for
all pipelines, (b) descriptions of the pipelines for the five code types in the reference
platform that are listed in Section 1.1, and (c) the benefit of DevSecOps for security
assurance for the entire application environment (the reference platform with five code
types, thus carrying the DevSecOps implementation) during the entire life cycle,
including the “Continuous Authority to Operate (C-ATO).”

● Chapter 5 provides summary and conclusion.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

2 Reference Platform for the Implementation of DevSecOps Primitives

As stated in Section 1.1, the reference platform is a container orchestration and management
platform. In modern application environments, the platform is an abstraction layer over a physical
(bare metal) or virtualized (e.g., virtual machines, containers) infrastructure. Before the
implementation of DevSecOps primitives, the platform simply contains the application code,
which contains the application logic and the service mesh code, which in turn provides
application services. This section will consider the following:

• A container orchestration and resource management platform that houses both the
application code and most of the service mesh code

• The service mesh software architecture

2.1 Container Orchestration and Resource Management Platform

Since microservices are typically implemented as containers, a container orchestration and
resource management platform are used for deployment, operations, and maintenance of services.

A typical orchestration and resource management platform consists of various logical (forming
the abstraction layer) and physical artifacts for the deployment of containers. For example, in
Kubernetes, containers run inside the smallest unit of deployment called a pod. A pod can
theoretically host a group of containers, though usually, only one container runs inside a pod. A
group of pods are defined inside what is known as a node, where a node can be either a physical
or virtual machine (VM). A group of nodes constitutes a cluster. Usually, multiple instances of a
single microservice are needed to distribute the workload to achieve the desired performance
level. A cluster is a pool of resources (nodes) that is used to distribute the workload of
microservices. One of the techniques used is horizontal scaling, where microservices that are
accessed more frequently are allocated more instances or allocated to nodes with more resources
(e.g., CPUs and/or memory).

2.1.1 Security Limitations of Orchestration Platform

Microservices-based applications require several application services, including security services
such as authentication and authorization, as well as the generation of metrics for individual pods
(monitoring), consolidated logging (to ascertain causes of failures of certain requests), tracing
(sequence of service calls for an application request), traffic control, caching, secure ingress,
service-to-service (east/west traffic), and egress communication.
Taking the example of secure communications between containers, specific code needs to be
added in order to secure the communications between pods in a platform such as Kubernetes (e.g.,
with mTLS). Pods that communicate do not apply identity and access management between
themselves. Though there are tools that can be implemented to act as a firewall between pods,
such as the Kubernetes Network Policy [8], this is a layer 3 solution rather than a layer 7 solution,
which is what most modern firewalls are. This means that while one can know the source of
traffic, one cannot peek into the data packets to understand what they contain. Further, it does not
allow for making vital metadata-driven decisions, such as routing on a new version of a pod

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

based on an HTTP header. There are Kubernetes ingress objects that provide a reverse proxy
based on layer 7, but they do not offer anything more than simple traffic routing. Kubernetes does
offer different ways of deploying pods that some form of A/B testing or canary deployments, but
they are done at the connection level and provide no fine-grained control or fast failback. For
example, if a developer wants to deploy a new version of a microservice and pass 10 % of traffic
through it, they will have to scale the containers to at least 10 – nine for the old version and one
for the new version. Further, Kubernetes cannot split the traffic intelligently and instead balances
loads between pods in a round-robin fashion. Every Kubernetes container within a pod has a
separate log, and a custom solution over Kubernetes must be implemented to capture and
consolidate them.

Although the Kubernetes dashboard offers monitoring features on individual pods and their
states, it does not expose metrics that describe how application components interact with each
other or how much traffic flows through each of the pods. Consolidated logging is required to
determine error conditions that cause an application request or transaction to fail. Tracing is
required to trace the sequence of containers that are invoked as part of any application request
based on the application logic that underlies a transaction. Since traffic flow cannot be traced
through Kubernetes pods out of the box, it is unclear where on the chain the failure for the
request occurred.

This is where the service mesh software can provide the needed application services and much
more.

2.2 Service Mesh Software Architecture

Having looked at the various application services required by microservices-based applications,
consider the architecture of service mesh software that provides those services. The service mesh
software consists of two main components: the control plane and the data plane.

2.2.1 Control Plane

The control plane has several components. While the data plane of the service mesh mainly
consists of proxies running as containers within the same pod as application containers, the
control plane components run in their own pods, nodes, and associated clusters. The following
are the various functions of the control plane [9]:

1. Service discovery and configuration of the Envoy sidecar proxies
2. Automated key and certificate management
3. API for policy definition and the gathering of telemetry data
4. Configuration ingestion for service mesh components
5. Management of an inbound connection to the service mesh (Ingress Gateway)
6. Management of an outbound connection from the service mesh (Egress Gateway)

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

7. Inject sidecar proxies into those pods, nodes, or namespaces where application
microservice containers are hosted

Overall, the control plane helps the administrator populate the data plane component with the
configuration data that is generated from the policies resident in the control plane. The policies
for function 3 above may include network routing policies, load balancing policies, policies for
blue-green deployments, canary rollouts, timeout, retry, and circuit-breaking capabilities. These
last three are collectively called by the special name of resiliency capabilities of the networking
infrastructure services. Last but not the least are security-related policies (e.g., authentication and
authorization policies, TLS establishment policies, etc.). These policy rules are parsed by a
module that converts them into configuration parameters for use by executables in data plane
proxies that enforce those policies.

2.2.2 Data Plane

The data plane component performs three different functions:

1. Secure networking functions
2. Policy enforcement functions
3. Observability functions

The primary component of the data plane that performs all three functions listed above is called
the sidecar proxy. This L7 proxy runs in the same network namespace (which, in this platform, is
the same pod) as the microservice for which it performs proxy functions. There is a proxy for
every microservice to ensure that a request from a microservice does not bypass its associated
proxy and that each proxy is run as a container in the same pod as the application microservice.
Both containers have the same IP address and share the same IP Table rules. That makes the
proxy take complete control over the pod and handle all traffic that passes through it [9,10].

The first category of functions (secure networking) includes all functions related to the actual
routing or communication of messages between microservices. The functions that come under
this category are service discovery, establishing a secure (TLS) session, establishing network
paths and routing rules for each microservice and its associated requests, authenticating each
request (from a service or user), and authorizing the request.

With the example of establishing a mutual TLS session, the proxy that initiates the
communication session will interact with the module in the control plane of the service mesh to
check whether it needs to encrypt traffic through the chain and establish mutual TLS with the
backend or target pod. Enabling this functionality using mutual TLS requires every pod to have a
certificate (i.e., a valid credential). Since a good-sized microservice application (consisting of
many microservices) may require hundreds of pods (even without horizontal scaling of individual
microservices through multiple instances), this may involve managing hundreds of short-lived
certificates. This, in turn, requires each microservice to have a robust identity and the service
mesh to have an access manager, a certificate store, and a certificate validation capability. In
addition, mechanisms for identifying and authenticating the two communicating pods are

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

required for supporting authentication policies.

Other kinds of proxies include ingress proxies [11] that intercept the client calls into the first
entry point of application (first microservice that is invoked) and egress proxies that handle a
microservice’s request to application modules residing outside of the platform cluster.

The second category of functions that the data plane performs is enforcement of the policies
defined in the control plane through configuration parameters in the proxies (policy enforcement
service). An example is the use of the information in the JWT token that is part of a microservice
request to authenticate the calling service. Another example is the enforcement of access control
policies for each request using either the code residing in the proxy itself or by connecting to an
external authorization service.

The third category of functions that service proxies perform almost always in collaboration with
application service containers are to gather telemetry data, which helps to monitor the health and
state of the services, transfer logs associated with a service to the log aggregation module in the
control plane, and append necessary data to application request headers to facilitate the tracing of
all requests associated with a given application transaction. The application response is conveyed
by proxies back to its associated calling service in the form of return codes, a description of
response, or the retrieved data.

The service mesh is container orchestration platform-aware, interacts with the API server that
provides a window into application services installed in various platform artifacts (e.g., pods,
nodes, namespaces), monitors it for new microservices, and automatically injects sidecar
containers into the pods containing these new microservices. Once the service mesh inserts the
sidecar proxy containers, operations and security teams can enforce policies on the traffic and
help secure and operate the application. These teams can also configure the monitoring of
microservices applications without interfering with the functioning of the applications.

The provisioning of infrastructure, policy enforcement, and observability services can be
automated using declarative code that is part of DevSecOps pipelines. While the development
team should be overall aware of the security and management details of deployment of their code,
the automation of the above mentioned services provides more time to them to concentrate their
efforts on efficient development paradigms, such as code modularity and structuring.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

3 DevSecOps – Organizational Preparedness, Key Primitives, and
Implementation

DevSecOps incorporates security into the software engineering process early on. It integrates and
automates security processes and tooling into all of the development workflow (or pipeline as later
explained) in DevOps so that it is seamless and continuous. In other words, it can be looked upon
as a combination of the three processes: Development + Security + Operations [12].

This section discusses the following aspects of DevSecOps:

• Organizational preparedness for DevSecOps

• DevSecOps Platform

• Fundamental building blocks or key primitives for DevSecOps

3.1 Organizational Preparedness for DevSecOps

DevSecOps is a software development, deployment, and life cycle management methodology that
involves a shift from one large release for an entire application or platform to the continuous
integration, continuous delivery, and continuous deployment (CI/CD) approach. This shift, in
turn, requires changes in the structure of a company’s IT department and its workflow. The most
pronounced change involves organizing a DevSecOps group that consists of software developers,
security specialists, and IT operations experts for each portion of the application (i.e., the
microservice). This smaller team not only promotes efficiency and effectiveness in initial agile
development and deployment but also in subsequent life cycle management activities, such as
monitoring application behavior, developing patches, fixing bugs, or scaling the application. The
composition of this cross-functional team with expertise in three areas forms a critical success
factor for introducing DevSecOps in an organization.

3.2 DevSecOps Platform

DevSecOps is an agile, automated development and deployment process that uses primitives
called CI/CD pipelines aided by automated tools to take the software from the build phase to
deployment phase and finally to the runtime/operations phase. These pipelines are workflows that
take the developer’s source code through various stages, such as building, testing, packaging,
delivery, and deployment supported by testing tools in various phases.

A DevSecOps platform denotes the set of resources on which various CI/CD pipelines (for each
code type) run. At the minimum, this platform consists of the following components:

(a) Pipeline software
 - CI software - pulls code from a code repository, invokes the build software, invokes test
tools and stores back tested artifacts to Image registry
 - CD software – pulls out artifacts, packages and based on computing, network and storage
resource descriptions in IaC deploys the package
(b) SDLC software

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

 - Build Tools (e.g., IDEs)
 - Testing Tools (SAST, DAST, SCA)
(c) Repositories
 - Source Code Repositories (e.g., GitHub)
 - Container Image Repositories or Registries
(d) Observability or Monitoring Tools
 - Logging and Log Aggregation Tools
 - Tools that generate metrics
 - Tracing Tools (sequence of application calls)
 - Visualization Tools (combine data from above
 to generate dashboard/alerts)

In a DevSecOps platform, security assurance is provided during the build and deployment phases
through built-in design features, such as zero trust, and testing using a comprehensive set of
security testing tools, such as static application security tools (SAST), dynamic security testing
tools (DAST), and software composition analysis (SCA) tools. In addition, security assurance is
also provided during the runtime/operations phase by continuous behavior detection/prevention
tools, some of which may even use sophisticated techniques such as artificial intelligence (AI)
and machine learning (ML). Therefore, a DevSecOps platform not only runs during build and
deployment phases but also during the runtime/operations phase.

In some DevSecOps platforms, the security tools (e.g., SAST, DAST, and SCAs) that perform
application security analysis, such as identifying vulnerabilities and bugs through efficient
scanning in the background can be tightly integrated with integrated development environments
(IDEs) and other DevOps tools. This feature when present, makes these tools transparent to
developers and avoids the necessity for them to call separate APIs for running these tools [13].
Depending on the IDE, the task performed, or the resources consumed by the tool, the tool may
alternatively execute separate from the IDE.

3.2.1 Deliverables for DevSecOps Platform

The use of SAST, DAST, and SCA tools may not be limited to testing just the application code.
DevSecOps may include the use of these tools for other code types such as IaC, as IaC defines
the deployment architecture of the application and thus the key avenue to automatically assess
and remediate security design gaps.

In summary, a DevSecOps platform delivers the following:

• Provides security assurance through the incorporation of adequate testing/checking within
pipelines associated with all code types in the application environment. Security is not
relegated to a separate task or phase.

• The DevSecOps platform also operates during runtime (in production), providing real-time
assurance of security by assisting enforcement of zero trust principles and through continuous
monitoring followed by alerts and correction mechanisms thus enabling the certification of
continuous authority to operate (C-ATO).

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

3.3 DevSecOps – Key Primitives and Implementation Tasks

The key primitives and implementation tasks involved are:
• Concept of pipelines and the CI/CD pipeline
• Building blocks for the CI/CD pipeline
• Designing and executing the CI/CD pipeline
• Strategies for automation
• Requirements for security automation tools in the CI/CD pipeline

3.3.1 Concept of Pipelines and the CI/CD Pipeline

DevSecOps, being a methodology or framework for agile application development, deployment,
and operations – is made up of stages just like any other methodology [14]. The sequence and
flow of information through the stages is called workflow, where some stages can be executed in
parallel while others have to follow a sequence. Each stage may require the invocation of a
unique job to execute the activities in that stage.

A unique concept that DevSecOps introduces in the process workflow is the concept of
“pipelines” [15]. With pipelines, there is no need to individually write jobs for
initiating/executing each stage of the process. Instead, there is only one job that starts from the
initial stage, automatically triggers the activities/tasks pertaining to other stages (both sequential
and parallel), and creates an error-free smart workflow.

The pipeline in DevSecOps is called the CI/CD pipeline based on the overall tasks it
accomplishes and the two individual stages it contains. CD can denote either the continuous
delivery or continuous deployment stage. Depending on this latter stage, CI/CD can involve the
following tasks:
• Build, Test, Secure, and Deliver – the tested modified code is delivered to the staging area.
• Build, Test, Secure, Deliver, and Deploy – the code in the stage area is automatically

deployed.

In the former, automation ends at the delivery stage, and the next task of deployment of the
modified application in the hosting platform infrastructure is performed manually. In the latter,
the deployment is also automated. Automation of any stage in the pipeline is enabled by tools that
express the pipeline stage as code.

The workflow process for a CI/CD pipeline is depicted in Figure 1 below:

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Figure 1: CI/CD pipeline workflow [16]

The unit and integration tests shown in the diagram use the SAST, DAST, and SCA tools
described in Section 3.2. It should be noted that an organization has the option to continue the
build process when a test fails. Depending on how the organization balances risk tolerance versus
business needs, it may choose to fail-open (log and continue) or fail-closed (stop/break) when a
specific test fails. In the fail-closed event, the developer gets the test outcome report, must fix the
issues, and restart the CI process.

Continuous integration involves developers frequently merging code changes into a central
repository where automated builds and tests run. Build is the process of converting the source
code to executable code for the platform on which it is intended to run. In the CI/CD pipeline
software, the developer’s changes are validated by creating a build and running automated tests
against the build. This process avoids the integration challenges that can happen when waiting for
release day to merge changes into the release branch [17].

Continuous delivery is the stage after continuous integration where code changes are deployed to
a testing and/or staging environment after the build stage. Continuous delivery to a production
environment involves the designation of a release frequency – daily, weekly, fortnightly, or some
other period – based on the nature of the software or the market in which the organization
operates. This means that on top of automated testing, there is a scheduled release process,
though the application can be deployed at any time by clicking a button. The deployment process
in continuous delivery is characterized as manual, but tasks such as the migration of code to a
production server, the establishment of networking parameters, and the specification of runtime
configuration data may be performed by automated scripts.

Continuous deployment is similar to continuous delivery except that the releases happen
automatically [17], and changes to code are available to customers immediately after they are
made. The automatic release process may in many instances include A/B testing to facilitate slow
rollout of new features so as to mitigate the impact of failures if there is a bug/error.

The distinction between continuous delivery and continuous deployment is shown in Figure 2
below.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Figure 2 - Distinction Between Continuous Delivery and Continuous Deployment [17]

3.3.2 Building Blocks for CI/CD Pipelines

The primary software for defining CI/CD pipeline resources, building the pipelines, and
executing those pipelines is the CI/CD pipeline software. There may be slight variations in the
architecture of this class of software depending on the particular offering. The following is an
overview of the landscape in which CI/CD tools (pipeline software) operate:

• Some CI/CD tools natively operate on the platform on which the application and the
associated resources are hosted (i.e., container orchestration and resource management
platform), while others need to be integrated into the application hosting platform through
its API. Some advantages of using the CI/CD tools that are native to the application
hosting platform are:
o It makes it easier to deploy, maintain, and manage the CI/CD tool itself.
o Every pipeline defined by the CI/CD tool becomes another platform-native resource

and is managed the same way. In fact, all entities required for executing pipelines, such
as Tasks and Pipelines (which then act as blueprints for other entities, such as Task
Runs and Pipeline Runs, respectively), can be created as custom resource definitions
(CRDs) built on top of resources native to the platform [18]. Software with this type of
architecture may be used by other CI/CD pipeline software offerings to facilitate faster
defining of pipelines.

• Some CI/CD tools integrate with code repositories to scan/inspect application code. These
types of tools have association with code repositories for each application and for each
environment. When changes in application modules, infrastructure, or configuration are
made they are stored in these code repositories. The CI/CD pipeline software connected to

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

the code repositories through webhooks or some other means is activated on commits (push
workflow model) or through pull requests from these repositories.

• Some CI/CD tools perform CD functions alone for the native platform (e.g., Jenkins X for
Kubernetes platform) or for multiple technology stacks (e.g., Spinnaker for multi-cloud
deployment). The difficulty with some in this class of tools is that they may lack native
tools for completing the CI functions (e.g., tools to test code, build application images, or
push them to registry).

3.3.3 Preparing and Executing the CI/CD pipeline

The purpose of creating the CI/CD pipeline is to enable frequent updates to source code, rebuilds,
and the automatic deployment of updated modules into the production environment. The key
tasks involved are [19]:

The preparatory tasks required are the following:
(1) Ensure that all individual components in the DevSecOps platform (Pipeline software, SDLC
software, Code Repositories, Observability tools etc.) are available
(2) Ensure that these components are secure either through certification, validation or customized
testing
(3) Integrate CI & CD tools with SDLC tools – Access tokens, Calling scripts, pipeline
definitions
(4) Set up configuration details in IaC tool (with GitOps) based on deployment environment (i.e.,
 application hosting platform in-premise or in the cloud)
(5) Integrate the runtime tools to the deployment environment
(6) Design the dashboard and define the events to monitor, the alerts to be generated and the
application state variables (e.g., Memory utilization etc.) to monitor through connection to
Tools such as log aggregators, metric generators and trace generators.

The execution tasks include [19]:

• Setting up the source code repository: Set up a repository (e.g., GitHub or GitLab) for storing
application source code with proper version control.

• Build process: Configure and execute the build process for generating the executables (for
those portions of the code that need to be updated) using an automated code build tool.

• Securing the process: Ensure that the build is free of static and dynamic vulnerabilities
through unit testing with SAST and DAST tools. This and the above tasks are activated by the
CI tool.

• Describing the deployment environment: This may involve describing (using the IaC) the
physical/virtual resources to deploy the application either in the cloud or in the enterprise data
center

• Creating the delivery pipeline: Create a pipeline that will automatically deploy the
application. This and the previous task are enabled by the CD tool.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• Test the code and execute the pipeline: After proper testing, execute the CI tool whenever a
new code appears in the repository. When the build process is successful, execute the CD tool
to deploy the application into staging/production environment.

• Activate the run time tool and the dashboard to initiate run time monitoring

To reiterate, the three primary stages of the CI/CD process are build/test, ship/package, and
deploy. The following features transform this into a pipeline:

• When an update is made to the source code for a service, the code changes pushed to the
source code repository trigger the code building tool.

• The code development environment or a code building tool (such as an IDE), is often
integrated with security testing tools (e.g., static vulnerability analysis tool) to facilitate the
generation of secure compiled code artifacts, thus integrating security into the CI pipeline.

• The generation of compiled code artifacts in code building tools triggers the shipping/package
tool, which may be integrated with its own set of tools (e.g., dynamic vulnerability analysis,
dynamic penetration testing tools, software composition analysis tools for identifying
vulnerabilities in the attached libraries) and also creates the configuration parameters relevant
to the deployment environment.

• The output of the shipping/packaging tool is then automatically fed to the CD tool, which
deploys the package into the desired environment (e.g., staging, production) [20].

The workflow of the CI/CD pipeline should not create the impression that there is no human
element involved. The following teams/role players contribute to CI/CD pipeline [21]:
• Development team – Members of this team declare third-party off-the-shelf software (OSS)

dependencies for their application, review recommendations from DevSecOps system around
vulnerable dependencies, update them as suggested, and write adequate test-cases to ensure
all functional verifications (to eliminate runtime bugs).

• The Chief Information Security Officer (CISO) – In consultation with the security team, the
CISO defines the overall scope (depth and breadth) of the DevSecOps system so that it can be
configured appropriately to meet the mission-critical needs of the applications.

• Security team – Members of this team create pipelines following best-practices, including
tasks to perform all required security functions (e.g., SBOM generation, vulnerability
scanning, code building, code signing, introduction of new testing tools, conducting audit etc.).
Specifically, in some instances, members of the security team may be responsible for
designing, building, and maintaining Policy as Code and the associated pipeline.

• Infrastructure team – Members of this team create, maintain, and upgrade the infrastructure.
• QA team – Members of this team develop integration test cases.
• Deployment team/release team – Members of this team create pipelines and packages for

various environments (UAT/PreProd/Prod) and perform the configuration and provisioning
appropriate for these environments.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Some of the many activities performed by these teams include the customization, update, and
enhancement of the tools employed in the CI/CD pipeline (e.g., updating the static vulnerability
analysis tool with the latest database of known vulnerabilities). Caution should be exercised during
manual operations so that they do not block pipelines. The targets for mean time to production
should be set up while also mitigating risks, such as insider threats, through the use of “merge
(GitLab) or pull (GitHub) requests” and multiple approvers for those requests. This pipeline is
designed, maintained, and executed by the post-release team who – in addition to monitoring
functions – performs other processes, such as compliance management, backup processes, and
asset tracking [22].

3.3.4 Strategies for Automation

Compared to other models of software development, which involve a linear progression from
coding to release, DevOps uses a forward process with a delivery pipeline (i.e., build/secure,
ship/package, and release) and a reverse process with a feedback loop (i.e., plan and monitor) that
form a recursive workflow. The role of automation in these activities is to improve this workflow.
Continuous integration emphasizes testing automation to ensure that the application is not broken
whenever new commits are integrated into the main branch. Automation results in the following
benefits:

• Generation of data regarding software static and runtime flows.

• Reduction of development and deployment times.

• Built-in security, privacy, and compliance for the architecture.

The following strategies are recommended [23] for automation so as to facilitate better utilization
of organizational resources and derive the greatest benefit in terms of an efficient, secure
application environment.

Choice of Activities to Automate: For example, the following are productive candidates for the
automation of testing activities.

• Testing of modules whose functions are subject to regulatory compliance (e.g., PCI-DSS,
HIPAA, Sarbanes-Oxley).

• Tasks that are repetitive with moderate to high frequency.

• Testing of modules that perform time-sequenced operations, such as message publishers
and message subscribers.

• Testing of workflows (e.g., request tracing) involving transactions that span multiple
services.

• Testing of services that are resource-intensive and likely to be performance bottlenecks.

After choosing the candidates for automation based on the above criteria, the usual risk analysis
must be applied to choose a subset that provides an optimum return on investment and maximizes
desirable security metrics (e.g., defense in depth). Some recommended strategies include:

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• Using the cost-benefit ratio in hours saved per year to prioritize which processes to
automate [23].

• Using key performance indicators (KPI) (e.g., mean time to identify faults or problems,
rectify, or recover) as markers to refine the DevSecOps processes [23].

• Based on the application, applying different weights to infrastructure services (e.g.,
authorization and other policies enforcement, monitoring of system states to ensure secure
runtime states, network resilience in terms of system availability, latency, mean time to
recover from an outage etc.) to determine the allocation of resources to DevSecOps
processes.

3.3.5 Requirements for Security Automation Tools in CI/CD Pipelines

The security automation tools for various functions (e.g., static vulnerability analysis, dynamic
vulnerability analysis, software composition analysis) used in CI/CD pipelines need to have
different interface and alerting/reporting requirements since they have to operate seamlessly
depending on the pipeline stage (e.g., build, package, release) during which they are used. These
requirements are:

• Security automation tools should work with integrated development environment (IDE)
tools and help developers prioritize and remediate static vulnerabilities. These capabilities
are needed to facilitate developer adoption and improve productivity.

• Security automation tools should be flexible to support specific workflows and provide
scaling capabilities for security services.

• Tools that perform static vulnerability checks at the build phase ensure safe data flows,
and those that perform dynamic vulnerability checks ensure safe application states during
runtime.

It must be mentioned that security automation tools come with costs, and hence, the extent of the
usage of these tools is based on risk factor analysis.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

4 Implementing DevSecOps Primitives for the Reference Platform

Various CI/CD pipelines are involved in the reference platform (i.e., microservices-based
application with service mesh that provides infrastructure services). Though the reference
application is a microservices-based application, the DevSecOps primitives can be applied to
monolithic applications as well as applications that are both on-premises and cloud-based (e.g.,
hybrid cloud, single public cloud, and multi-cloud).

In section 2.1, we referred to the five code types in our reference application environment. We
also mentioned that separate CI/CD pipelines can be created for each of these five code types as
well. The location of these five code types within the reference platform components will be
discussed followed by separate sections that will describe the associated CI/CD pipelines.

1. Code types in the reference platform and associated CI/CD pipelines (Section 4.1)
2. CI/CD pipeline for application code and application services code (Section 4.2)
3. CI/CD pipeline for infrastructure as code (IaC) (Section 4.3)
4. CI/CD pipeline for policy as code (Section 4.4)
5. CI/CD pipeline for observability as code (Section 4.5)

Implementation issues for all CI/CD pipelines irrespective of code types will be addressed in the
following sections:

• Securing the CI/CD pipelines (Section 4.6)

• Workflow models in the CI/CD pipelines (Section 4.7)

• Security testing in the CI/CD pipelines (Section 4.8)
This section will also consider the overall benefits of DevSecOps with a subsection on specific
advantages in the context of the reference platform and the ability to leverage DevSecOps for
continuous authorization to operate (C-ATO) in Sections 4.9 and 4.10, respectively.

4.1 Description of Code Types and Reference Platform Components

A brief description of the five types of codes stated above (i.e., application, application services,
infrastructure, policy, and monitoring) is as follows:

• Application code and application services code – The former contains the data and
application logic for a specific set of business transactions, while the latter contains code
for all services, such as network connections, load balancing, and network resilience.

• Infrastructure as code (IaC) – The code for provisioning and configuring infrastructure
resources which host application deployment in a repeatable and consistent manner [24].
This code is written in a declarative language and – when executed – provisions, de-
provisions, and configures the infrastructure for the application that is being deployed. This
type of code is like any other code found in an application’s microservice except that it
provides an infrastructure service (e.g., provisioning a server) rather than a transaction
service (e.g., payment processing for an online retail application).

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• Policy as code – This describes many policies, including security policies, as executable
modules [25]. One example is the authorization policy, the code for which contains verbs
or artifacts specific to the policy (e.g., allow, deny, etc.) and to the domain where it
applies (e.g., REST API with verbs such as method [GET, PUT, etc.], path, etc.). This
code can be written in a special-purpose policy language, such as Rego, or languages used
in regular applications, such as Go. This code may have some overlap with the
configuration code of IaC. However, for implementing policies associated with critical
security services that are specific to the application domain, a separate policy as code that
resides in the policy enforcement points (PEPs) of the reference platform is required.

• Observability as code – The ability to infer a system’s internal state and provide
actionable insights into when and, more importantly, why errors occur within a system. It
is a full-stack observability that includes monitoring and analytics and that offers key
insights into the overall performance of applications and the systems hosting them. In the
context of the reference platform, observability as code is the portion of the code that
creates agencies in proxies and creates functionality for gathering three types of data (i.e.,
logs, traces, and telemetry) from microservices applications [26]. This type of code also
supplies or transfers data to the external tools (e.g., log aggregation tool that aggregates
log data from individual microservices, provides analysis of tracing data for bottleneck
services, generates metrics that reflect the application health from telemetry data, etc.).
Brief descriptions of the three functions enabled by observability as code are:
1. Logging captures detailed error messages, as well as debugs logs and stack traces for

troubleshooting.
2. Tracing follows application requests as they wind through multiple microservices to

complete a transaction in order to identify an issue or performance bottleneck in a
distributed or microservices-based ecosystem.

3. Monitoring, or metrics, gathers telemetry data from applications and services.
Each of the code types has an associated CI/CD pipeline and is described in Sections 4.2 through
4.5. There may be overlaps among application service code, infrastructure as code, policy as
code, and observability as code types.

The constituent components of the reference platform hosting the five code types are:
1. Business function component (consisting of several microservices modules with each of

them often implemented as a container), which embody the application logic (e.g.,
interacting with data, performing transactions, etc.), thus forming the application code.

2. Infrastructure component (containing computer, networking, and storage resources)
whose constituents can be provisioned using infrastructure as code.

3. Service mesh component (implemented through a combination of control plane modules
and service proxies), which provides application services, enforces policies (e.g.,
authentication and authorization), and contains application services code and policy as
code.

https://whatis.techtarget.com/definition/telemetry

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

4. Monitoring component (modules involved in ascertaining the parameters that indicate the
health of the application), which performs functions (e.g., log aggregation, the generation
of metrics, the generation of displays for dashboard, etc.) and contains observability as
code.

The distribution of policy and observability code types within the components of the service
mesh are as follows:

• Proxies (ingress, sidecar, and egress): These house encoding policies related to session
establishment, routing, authentication, and authorization functions.

• Control plane of the service mesh: This houses code for relaying telemetry information
from services captured and sent by proxies to specialized monitoring tools, authentication
certificate generation and maintenance, updating policies in the proxies, monitoring
overall configuration in the service orchestration platform for generating new proxies, and
deleting obsolete proxies associated with discontinued microservices.

• External modules: These house modules that perform specialized functions at the
application and enterprise levels (e.g., such as the centralized authorization or entitlement
server, the centralized logger, monitoring/alerting server status through dashboards, etc.)
and build a comprehensive view of the application status. These modules are called by
code from the proxies or the control plane.

4.2 CI/CD Pipeline for Application Code and Application Services Code

Application code and application services code reside in the container orchestration and resource
management platform, and the CI/CD software that implements the workflows associated with it
usually resides in the same platform. This pipeline should be protected using the steps outlined in
Section 4.6, and the application code under the control of this pipeline should be subject to the
security testing described in Section 4.8. Additionally, the orchestration platform on which the
application resides should itself be protected using a runtime security tool (e.g., Falco) [27] that
can read OS kernel logs, container logs, and platform logs in real-time and process them against a
threat detection rules engine to alert users of malicious behavior (e.g., creation of a privileged
container, reading of a sensitive file by an unauthorized user, etc.). They usually come with a set
of default (predefined) rules over which custom rules can be added. Installing them on the
platform spins up agents for each node in the cluster, which can monitor the containers running in
the various pods of that node. The advantage of this type of tool is that it complements the existing
platform’s native security measures, such as access control models and pod security policies, that
prevent violations of security by actually detecting them when they occur [27].

4.3. CI/CD Pipeline for Infrastructure as Code

The conventional approach to allocating infrastructure for applications consists of initially
provisioning compute and networking resources with configuration parameters and ongoing tasks
such as patch management (e.g., OS and libraries), establishing conformity to compliance
regulations (e.g., data privacy), and making drift (where the current configuration no longer
provides the intended operational state) correction.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Infrastructure as code (IaC) is a declarative style of code that encodes computer instructions that
encapsulate the parameters necessary to deploy virtual infrastructure on a public cloud service or
private data center via a service’s management APIs [28]. In other words, infrastructures are
defined in a declarative way and versioned using the same source code control tools (e.g.,
GitOps) used for the application code. Depending on the particular IaC tool, this language can
either be a scripting language (e.g., JavaScript, Python, TypeScript, etc.) or a proprietary
configuration language (e.g., HCL) that may or may not be compatible with standardized
languages (e.g., JSON). The basic instructions consist of telling the system how to provision and
manage infrastructure (whether that is an individual compute instance or a complete server, such
as physical servers or virtual machines), containers, storage, network connections, connection
topology, and load balancers. [29]. In some cases, the infrastructure may be short-lived or
ephemeral, and the lifespan of the infrastructure (whether immutable or mutable) does not
warrant continued configuration management. Provisioning could be tied to individual commits
of application code using tools that can connect application code and infrastructure code in a way
that is logical, expressive, and familiar to development and operations teams, where application
code increasingly defines the infrastructure resource requirements for a cloud application [30].

IaC thus involves codifying all software deployment tasks (allocation of type of servers, such as
bare metal, VMs or containers, resource content of servers) and the configuration of these servers
and their networks. The software containing this code type is also called a resource manager or
deployment manager. In other words, IaC software automates the management of the whole IT
infrastructure life cycle (provisioning and de-provisioning of resources) and enables a
programmable infrastructure. The integration of this software as part of the CI/CD pipeline not
only results in agile deployment and maintenance but also in a robust application platform that is
secure and meets performance needs.

4.3.1 Protection for IaC

When infrastructure is code as in IaC, it can include bugs and oversights that can potentially
become vulnerabilities and, therefore, be exploited just as in application code. Thus, protecting
the IaC is protecting the infrastructure definitions and eventually the deployment environment.
Any piece of IaC has to be scanned for potential vulnerabilities before it enters the GitOps and is
merged.

In addition, the assurance of a secure application platform can be obtained only if there is a
methodical drift management process in place. This assurance can be obtained only if the
architecture defined in IaC is what actually exists in the deployed environment since this
equivalence could be altered by an inadvertent or intentional change made through a console or
CLI – thus bypassing the IaC. Ensuring this equivalence has to be done immediately after
deployment and periodically during runtime as any change to the architecture could result in the
introduction of security design flaws and may require making changes to IaC.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

4.3.2 Distinction Between Configuration and Infrastructure

Infrastructure is often confused with configuration [30], which maintains computer systems,
software, dependencies, and settings in a desired, consistent state. For example, putting a newly
purchased server onto a rack and connecting it to the switches so that it is connected to the existing
networks (or launching a new virtual machine and assigning network interfaces to it) belongs to
the definition of “infrastructure.” In contrast, after the server is launched, installing an HTTPS
server and configuring it belongs to configuration management.

4.4 CI/CD Pipeline for Policy as Code

Policy as code involves codifying all policies and running them as part of the CI/CD pipeline so
that they become an integral part of the application runtime. Examples of policy categories
include authorization policies, networking policies, and implementation artifact policies (e.g.,
container policies). Policy management capabilities in a typical “policy as code software” may
come with a set of predefined policy categories and policies and also support the definition of
new policy categories and associated policies by providing policy templates [31]. The due
diligence required for policy as code is that it should provide protection against all known
threats that are relevant for the application environment including the infrastructure, and this
can be ensured only if that code is periodically scanned and updated with appropriate changes to
counter the threats relevant to the application class (e.g., web application) and the hosting
infrastructure. Some examples of policy categories and associated policies are given in Table 1
below.

Table 1: Policy Categories and Example Policies

Policy Category Example Policies

Networking policies and zero trust policies • Blocking designated ports
• Designating ingress host names
• In general, all network access control

policies
Implementation artifact policies (e.g.,
container policies)

• Hardening of servers, vulnerability scans
for base images

• Ensuring that containers do not run as root
• Blocking privilege escalation for

containers
Storage policies • Set persistent volume sizes

• Set persistent volume reclaim policies
Access control policies • Ensure that policies cover all data objects

• Ensure that policies cover all roles for
administrative and application access

• Ensure that data protection policies cover
data at rest, data in transit, and data in use

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

Policy Category Example Policies

• Ensure that policies of all types do not
have conflicts

Supply chain policies • Allow only approved container registries
• Allow only certified libraries

Audit and accountability policies • Ensure that there are policies associated
with audit and accountability functions

The policies defined in the “policy as code software” may translate into the following in the
application infrastructure runtime configuration parameters:

• Policy-enforcing executable (e.g., WASM in service proxies)
• Triggers for calling an external policy decision module (e.g., calling an external

authorization server for an allow/deny decision based on the evaluation of access control
policies relevant to the current access request)

• It may also impact the IaC to ensure that appropriate resources are provisioned in the
deployment environment to enforce security, privacy, and compliance requirements.

4.5 CI/CD Pipeline for Observability as Code

Observability as code deploys a monitoring agent in each of the application’s service components
to collect the three types of data (described in Section 4.1), send them to specialized tools that
correlate them, perform analysis, and display the analyzed consolidated data on dashboards to
present an overall application-level picture [32]. An example of such consolidated data are log
patterns, which provide a view of log data that is presented after the log data are filtered using
some criterion (e.g., a service or an event). The data are grouped into clusters based on common
patterns (e.g., based on timestamp or range of IP addresses) for easy interpretation. Unusual
occurrences are identified, and those findings can then be used to steer and accelerate further
investigation [33].

4.6 Securing the CI/CD Pipeline

There are some common implementation issues to be addressed for CI/CD pipelines irrespective
of code type. Securing the processes involves the assignment of roles for operating the build
tasks. Automation tools (e.g., Git Secrets) are available for this purpose. The following security
tasks should be considered as a minimum for securing the CI/CD pipeline:

• Harden servers hosting code & artifact repositories
• Secure the credentials used for accessing repositories such as authorization tokens and for

generating pull requests
• Controls on who can check-in and check-out in container Image registries since they are the

storage for artifacts produced by CI pipeline and serve as bridges between CI and CD
pipelines

• Logging all code and build update activities

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• If build or test fails in CI pipeline - Send build reports to developers and stop further pipeline
tasks. The code repositories should be configured to automatically block all pull requests
from CD pipeline [34]

• If audit fails – Send build reports to security team and stop further pipeline tasks
• Ensuring that developers can only access the application code and not any of the five pipeline

code types
• During the build and release process, signing the release artifact during each required CI/CD

stage (preferably multi-party signing)
• During production release, verify that all required signatures (generated with multiple phase

keys) are present to ensure that no one bypasses the pipeline.

4.7 Workflow Models in CI/CD Pipelines

The next common issue involves workflow models. All CI/CD pipelines can have two types of
workflow models, which depend on the automated tools that are deployed as part of the pipeline:

1. Push-based model
2. Pull-based model

In the CI/CD tools that support the push-based model, changes made in one stage or phase of the
pipeline trigger changes in the subsequent stages and phases. For example, through a series of
encoded scripts, the new builds in the CI system trigger changes to the CD portion of the pipeline
and thus change the deployment infrastructure (e.g., Kubernetes cluster). The security downside
of using the CI system as the basis for change in deployments is the possibility of exposing
credentials outside of the deployment environment in spite of best efforts to secure the CI scripts,
which operate outside of the trusted domain of the deployment infrastructure. Since CD tools
have the keys to production systems, push-based models are rendered insecure.

In a pull-based workflow model, an operator that pertains to the deployment environment (e.g.,
Kubernetes Operator, Flux, ArgoCD) pulls new images from inside of the environment as soon as
the operator observes that a new image has been pushed to the registry. The new image is pulled
from the registry, the deployment manifest is automatically updated, and the new image is
deployed in the environment (e.g., cluster). Thus, the convergence of the actual deployment
infrastructure state with the state declaratively described in the Git deployment repository is
achieved. Additionally, the deployment environment credentials (e.g., cluster credentials) are not
exposed outside of the production environment. Therefore, a pull-based model, which typically
uses a GitOps repository for storing the source code and builds, is highly recommended.

4.7.1 GitsOps Workflow Model for CI/CD – A Pull-based Model

The GitOps workflow model is an improvement on the CI/CD pipeline (for the delivery portion
of the pipeline), which uses a pull-based workflow model instead of the push-based model
supported by many CI/CD tools. In this model, the CI portion of the pipeline is unchanged since
the CI engine (e.g., Jenkins, GitLab CI) is still used for creating builds for the changed code,

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

regression testing, and integrating/merging with the main source code in the relevant repositories,
though it is not used to trigger continuous delivery (push updates directly) in the pipeline.
Instead, a separate GitOps operator manages the deployment based on updates to the main (trunk)
code.

An operator (e.g., Flux, ArgoCD) is an actor managed by an orchestration platform and can
inherit the cluster’s configuration, security, and availability. The use of this actor improves
security because an agent that lives inside of the cluster listens for updates to all code and image
repositories that it is allowed to access and pulls images and configuration updates into the
cluster. The pull approach used by the agent has the following security features:

• ONLY carry out operations permitted by authorization policies defined in the
orchestration platform; trust is shared with the cluster and not managed separately

• Bind natively to all orchestration platform objects, and know whether operations have
completed or need to be retried

4.8 Security Testing – Common Requirement for CI/CD Pipelines for All Code Types

The last common issue is security testing. Whatever the code type is (e.g., application service,
Iac, Pac or observability), the CI/CD pipelines of DevSecOps for microservices-based
infrastructure with service mesh should include application security testing (AST) enabled by
either automated tools or offered as a service. These tools analyze and test applications for
security vulnerabilities. According to Gartner, there are four main AST technologies [35]:
1. Static AST (SAST) tools – Analyze an application’s source, bytecode, or binary code for

security vulnerabilities, typically at the programming and/or testing software life cycle (SLC)
phases. Specifically, this technology involves techniques that look through the application in
a commit and analyze its dependencies [36]. If any dependencies contain issues or known
security vulnerabilities, a commit will be marked as insecure and will not be allowed to
proceed to deployment. This can also include finding hardcoded passwords/secrets in code
that should be removed.

2. Dynamic AST (DAST) tools – Analyze applications in their dynamic, running state during

testing or operational phases. They simulate attacks against an application (typically web-
enabled applications, services, and APIs), analyze the application’s reactions, and determine
whether it is vulnerable. In particular, DAST tools go one step further than SAST and spin up
a copy of the production environment inside the CI job in order to scan the resulting
containers and executables [36]. The dynamic aspect helps the system catch dependencies
that are being loaded at launch time, such as those that would not be caught by SAST.

3. Interactive AST (IAST) tools – Combine elements of DAST with the instrumentation of the
application under test. They are typically implemented as an agent within the test runtime
environment (e.g., instrumenting the Java Virtual Machine [JVM] or .NET CLR) that
observes operations or identifies and attacks vulnerabilities.

4. Software composition analysis (SCA) tools – Used to identify open-source and third-party
components in use in an application, their known security vulnerabilities, and typically
adversarial license restrictions.

https://coreos.com/operators/

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

4.8.1 Functional and Coverage Requirements for AST tools

In general, the overall metrics that testing tools (including the specific class of AST tools) should
satisfy are [37]:

• Increase the quality of application releases by identifying security, privacy, and
compliance gaps.

• Integrate with the tools that developers are already using.

• Be as few test tools as possible but provide the necessary coverage risk.

• Lower-level unit tests at the API and microservices level should have sufficient visibility
to determine coverage.

• Include higher-level UI/UX and system tests.

• Have deep code analysis capabilities to detect runtime flaws.

• Increase the speed at which the releases can be done.

• Be cost-efficient.
The functional requirements for AST tools in particular include performing the following types of
scans [35]:

• Vulnerability scans: Probe applications for security weaknesses that could expose them
to attacks.

• Container image scans: Analyze the contents and build process of a container image in
order to detect security issues, vulnerabilities, or deficient practices (e.g., hardcoded
passwords/secrets)

• Regulatory/compliance scans: Assess adherence to specific compliance requirements.

The vulnerability scans are to be performed whenever the code in the source code repository is
revised to ensure that the current revision does not contain any vulnerable dependencies [38].

The desirable features of AST tools and/or services, along with techniques for behavioral
analysis, are [35]:

• Analyze source, byte, or binary code

• Observe the behavior of apps to identify coding, design, packaging, deployment, and
runtime conditions that introduce security vulnerabilities.

Scanning application code for security vulnerabilities and misconfiguration as part of CI/CD
pipeline tasks should involve the following artifacts:

• Container images should be scanned for vulnerabilities.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• After the container is built from a base-image (that is scanned as stated above), the
container’s file system should be scanned for both vulnerabilities and misconfigurations.

• Git repositories (containing application source code) should be scanned for both
vulnerabilities and misconfigurations.

Container images include OS packages (e.g., Alpine, UBI, RHEL, CentOS, etc.) and language-
specific packages (e.g., Bundler, Composer, npm, yarn, etc.).

Scanning infrastructure as code for security vulnerabilities reduces the operations workload by
preventing those vulnerabilities from making it to production, although it cannot replace checking
for runtime security since the risk of drift will always exist. However, the reasons for all post-
deployment (runtime) changes to the architecture (due to drift) must be analyzed and addressed
by pushing appropriate updates to the IaC so that it becomes part of the pipeline and does not
reoccur in subsequent deployments. This approach facilitates the use of runtime checks for
remediating security design flaws.

The infrastructure-as-code files can be found in the following:

• The container orchestration platform itself to facilitate deployments (e.g., Kubernetes
YAML infrastructure-as-code files).

• The dedicated infrastructure-as-code files found as part of CI/CD pipeline software (e.g.,
HashiCorp Terraform infrastructure-as-code files, AWS CloudFormation infrastructure-
as-code files).

Application services code, policy-as-code, and observability-as-code files can be found in the
data plane and control plane components of the dedicated application services component (e.g.,
service mesh) and should be scanned for both security vulnerabilities (e.g., information leakage in
authorization policies) and misconfiguration.

4.9 Benefits of DevSecOps Primitives to Application Security in the Service Mesh

The benefits of DevSecOps include:
• Better communication and collaboration between various IT teams especially between

developers, operations and security teams and other stakeholders. Results in better
productivity [39]

• Streamlined software development, delivery and deployment process – less downtime,
faster time to market and lower infrastructure & operational costs and efficiency due to
automation [39]

• Reduction of attack surfaces by implementing zero trust which also restricts lateral
movement and thus prevents attack escalation. This is further facilitated by continuous
monitoring with modern behavior prevention capabilities.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

• Security Benefits: Better security through validation of every request monitoring, alerts

and feedback mechanisms because of Observability as code. These are described in more
detailed in the following paragraphs. Specific capabilities include:
(a) Runtime - Killing a malicious container
(b) Feedback - to the right repository due to an errant program to update code and re-

trigger the pipelines
(c) Monitor new and terminated services and adjust associated services (e.g., service

proxy)
(d) Enable Security assertions: - Non-bypassable – by proxies executing in same

 space, secure sessions, robust authentication & authorization and secure state
transitions

• Enable Continuous Authorization to operate (C-ATO) described in detail at the end of this
section

Validation of each request and the feedback mechanisms mentioned above are further described
below:

• Validation of every request: Every request from a user or client application (service) is
authenticated and authorized (using mechanisms such as OPA or any external
authorization engine or admission controllers [40] that are integral parts of the platform).
While authorization engines provide application domain-specific policy enforcement,
admission controllers provide platform-specific policy relating to end-point objects of a
specific platform (e.g., pods, deployment, namespaces). Specifically, admission
controllers mutate and validate. Mutating admission controllers parse each request and
make changes to the request (mutate) before forwarding it down the chain. An example is
setting default values for specifications that are not set by a user in the request so as to
ensure that workloads running on the cluster are uniform and follow a particular standard
defined by the cluster administrator. Another example is adding a specific resource limit
for the pod (if the resource limits are not set for that pod) and then forwarding it down the
chain (mutate the request by adding this field if it is not present in the request). By doing
so, all of the pods in the cluster will always have a resource limit set according to a
specification unless explicitly stated. Validating admission controllers reject requests that
do not follow a particular specification. For example, none of the pod requests can have
security context set to run as root user [40].

• Feedback mechanisms:
o Some remediation for issues discovered at runtime may have to be handled or fixed at

the source code. There should be a process for automatically opening an issue against
the right code repository to fix the problem and re-trigger the DevSecOps pipeline.

o Provide feedback loops to the application-hosting platform (e.g., a notification to kill a
pod that contains a malicious container).

o Provide proactive dynamic security by monitoring application configuration (e.g.,
monitoring new pods/containers introduced into the application and generating and
injecting proxies to take care of their secure communication needs).

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

30

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

o Enable several security assertions regarding the application: non-bypassable (i.e.,
policies always enforced under all usage scenarios), trusted and untrusted portions of
the overall application code, absence of credential and privilege leaks, trusted
communication paths, and secure state transitions.

o Enable assertions regarding performance parameters (e.g., network resilience
parameters, such as continued operation under failures, redundancy, and recoverability
features).

o Overall, faster incorporation of feedback, results in quicker software improvements

4.10 Leveraging DevSecOps for Continuous Authorization to Operate (C-ATO)

In the reference platform, the runtime status or execution state of the entire application system is
due to a combination of executions of infrastructure code (e.g., networking routes for inter-
service communication, resources provisioning code), policy code (e.g., code that specifies
authentication and authorization policies), and session management code (e.g., code that
establishes an mTLS session, code that generates JWT tokens) as revealed by the execution of
observability as code. The observability as code of the service mesh relays the output from the
execution of infrastructure, policy, and session management codes during runtime to various
monitoring tools that generate applicable metrics and log aggregation tools and tracing tools,
which in turn relay their output to a centralized dashboard. The analytics that are integral to the
output of these tools enable system administrators to obtain a comprehensive global view of the
runtime status of the entire application system. It is the runtime performance of a DevSecOps
platform enabled through continuous monitoring with zero trust design features that provides all
of the necessary security assurance for cloud-native applications.

The activities in the DevSecOps pipelines that enable continuous ATO are:

• Checking for compliant code: The following codes can be checked for compliance with a
Risk Management Framework

(a) IaC – Generate network routes, Resource provisioning
(b) Policy as Code – Encodes AuthN and AuthZ policies
(c) Session Management Code – mTLS session, JWT tokens
(d) Observability code
Specific risk assessment features include the capability to generate actionable tasks, specify code-
level guidance, and test plans for verifying compliance [38]. In addition, risk assessment tools
can provide complete traceability for all of the artifacts displayed in the dashboard, as well as the
reporting capabilities needed for continuous ATO.

• Dashboard that displays runtime status: Provides alerts and feedback necessary to fix security

and performance bottleneck issues (that impact availability) by the process that triggers new
pipelines. In addition, dashboard generation tools have features that enable system
administrators to analyze macro-level features, as well as dynamically change the
composition of the artifacts to be displayed based on the evolving system and consumer needs
of the environment in which the application operates.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

31

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

5 Summary and Conclusion

This document provides comprehensive guidance for the implementation of DevSecOps
primitives for a reference platform hosting a cloud-native application. It includes an overview of
the reference platform and describes the basic DevSecOps primitives (i.e., CI/CD pipelines), its
building blocks, the design and execution of the pipelines, and the role of automation in the
efficient execution of workflows in CI/CD pipelines.

The architecture of the reference platform – in addition to the application code and the code for
providing application services – consists of functional elements for infrastructure, runtime
policies, and continuous monitoring of the health of the application, which can be deployed
through declarative codes with separate CI/CD pipelines types. The runtime behaviors of these
codes, the benefits of the implementation for high-assurance security, and the use of the artifacts
within the pipelines for providing a continuous authority to operate (C-ATO) using risk
management tools and dashboard metrics are also described.

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

32

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

References

[1] Rose S, Borchert O, Mitchell S, Connelly S (2020) Zero Trust Architecture. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-207. https://doi.org/10.6028/NIST.SP.800-207

[2] Garrison J, Nova K (2017) Cloud Native Infrastructure (oreilly.com). Available at
https://www.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/

[3] Federal News Network (2021) Expert Edition – DevSecOps. Available at

https://federalnewsnetwork.com/wp-content/uploads/2021/12/120821_Expert-
Edition_DevSecOps.pdf

[4] Chandramouli R (2019) Security Strategies for Microservices-based Application Systems.
(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-204. https://doi.org/10.6028/NIST.SP.800-204

[5] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications
Using Service-Mesh Architecture. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-204A.
https://doi.org/10.6028/NIST.SP.800-204A

[6] Chandramouli R, Butcher Z, Aradhna C (2021) Attribute-based Access Control for

Microservices-based Applications using a Service Mesh. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-204B.
https://doi.org/10.6028/NIST.SP.800-204B

[7] Souppaya M, Morello J, Scarfone K (2017) Application Container Security Guide.

(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-190. https://doi.org/10.6028/NIST.SP.800-190

[8] Kubernetes Documentation (2021) Network Policies. Available at

https://kubernetes.io/docs/concepts/services-networking/network-policies/

[9] Kubernetes Advocate (2021) Managing Microservices With Istio Service Mesh in

Kubernetes. Available at https://medium.com/avmconsulting-blog/managing-
microservices-with-istio-service-mesh-in-kubernetes-36e1fda81757

[10] Agarwal G (2020) How to Manage Microservices on Kubernetes With Istio. Available at

https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-
with-istio-c25e97a60a59

[11] Ramakani A (2020) Kong API Gateway – From Zero to Production. Available at

https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee

https://doi.org/10.6028/NIST.SP.800-207
https://www.oreilly.com/library/view/cloud-native-infrastructure/9781491984291/
https://federalnewsnetwork.com/wp-content/uploads/2021/12/120821_Expert-Edition_DevSecOps.pdf
https://federalnewsnetwork.com/wp-content/uploads/2021/12/120821_Expert-Edition_DevSecOps.pdf
https://doi.org/10.6028/NIST.SP.800-204
https://doi.org/10.6028/NIST.SP.800-204A
https://doi.org/10.6028/NIST.SP.800-204B
https://doi.org/10.6028/NIST.SP.800-190
https://medium.com/avmconsulting-blog/managing-microservices-with-istio-service-mesh-in-kubernetes-36e1fda81757
https://medium.com/avmconsulting-blog/managing-microservices-with-istio-service-mesh-in-kubernetes-36e1fda81757
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/better-programming/how-to-manage-microservices-on-kubernetes-with-istio-c25e97a60a59
https://medium.com/swlh/kong-api-gateway-zero-to-production-5b8431495ee

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

33

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

[12] Srinath K (2020) DevSecOps – Baking Security into Development Process. Available at

https://medium.com/faun/devsecops-baking-security-into-development-process-
9579418ad9a7

[13] Rubinstein D (2020) AppSec vs. DevSecOps, and what that means for developers.

Available at https://sdtimes.com/security/appsec-vs-devsecops-and-what-that-means-for-
developers/

[14] Red Hat (2021) What is DevSecOps? Available at

https://www.redhat.com/en/topics/devops/what-is-devsecops

[15] Red Hat (2021) What is CI/CD? Available at

https://www.redhat.com/en/topics/devops/what-is-ci-
cd#:~:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20c
ontinuous%20deployment

[16] Ali M (2018) Continuous Release Practices are evolving, Here is our story. Available at

https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-
here-is-our-story-2a4d164e9cac

[17] Pittet S (2021) Continuous integration vs. continuous delivery vs. continuous deployment.

Available at https://www.atlassian.com/continuous-delivery/principles/continuous-
integration-vs-delivery-vs-deployment

[18] Wuestkamp K (2020) K8s–native Jenkins-X and Tekton Pipelines. Available at

https://itnext.io/k8s-native-jenkins-x-and-tekton-pipelines-e2b5a61a1d22

[19] aws.amazon.com (2021) Create Continuous Delivery Pipeline. Available at

https://aws.amazon.com/getting-started/hands-on/create-continuous-delivery-
pipeline/?trk=gs_card

[20] aws.amazon.com (2021) Setting up a CI/CD pipeline by integrating Jenkins with AWS

CodeBuild and AWS CodeDeploy. https://aws.amazon.com/blogs/devops/setting-up-a-ci-
cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/

[21] mylocaldevstack.pl (2019) The future of DevOps – Assembly Lines. Available at
https://medium.com/@mylocaldevstack/the-future-of-devops-assembly-lines-
40227546d750

[22] Socher R (2020) Best Terraform Tutorial Guides: An Overview. Available at
https://faun.pub/best-terraform-tutorial-guides-an-overview-65a6fcee0a24

[23] Soni A (2020) GitOps: The Next Big Thing for DevOps and Automation! Available at
https://medium.com/searce/gitops-the-next-big-thing-for-devops-and-automation-
2a9597e51559

https://medium.com/faun/devsecops-baking-security-into-development-process-9579418ad9a7
https://medium.com/faun/devsecops-baking-security-into-development-process-9579418ad9a7
https://sdtimes.com/security/appsec-vs-devsecops-and-what-that-means-for-developers/
https://sdtimes.com/security/appsec-vs-devsecops-and-what-that-means-for-developers/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://www.redhat.com/en/topics/devops/what-is-ci-cd#:%7E:text=CI%2FCD%20is%20a%20method,continuous%20delivery%2C%20and%20continuous%20deployment
https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-here-is-our-story-2a4d164e9cac
https://medium.com/the-telegraph-engineering/continuous-release-practices-are-evolving-here-is-our-story-2a4d164e9cac
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://itnext.io/k8s-native-jenkins-x-and-tekton-pipelines-e2b5a61a1d22
https://aws.amazon.com/getting-started/hands-on/create-continuous-delivery-pipeline/?trk=gs_card
https://aws.amazon.com/getting-started/hands-on/create-continuous-delivery-pipeline/?trk=gs_card
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://aws.amazon.com/blogs/devops/setting-up-a-ci-cd-pipeline-by-integrating-jenkins-with-aws-codebuild-and-aws-codedeploy/
https://medium.com/@mylocaldevstack/the-future-of-devops-assembly-lines-40227546d750
https://medium.com/@mylocaldevstack/the-future-of-devops-assembly-lines-40227546d750
https://faun.pub/best-terraform-tutorial-guides-an-overview-65a6fcee0a24
https://medium.com/searce/gitops-the-next-big-thing-for-devops-and-automation-2a9597e51559
https://medium.com/searce/gitops-the-next-big-thing-for-devops-and-automation-2a9597e51559

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

34

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

[24] Fallon A (2020) Understand the role of infrastructure as code in DevOps
(TechTarget.com). Available at
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-
code-in-
DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_
medium=EM&utm_source=NLN&track=NL-
1841&ad=939963&asrc=EM_NLN_174809933

[25] Ahmed M (2020) Introducing Policy As Code: The Open Policy Agent (OPA). Available
at https://www.magalix.com/blog/introducing-policy-as-code-the-open-policy-agent-opa

[26] Singh P (2021) Tackle Kubernetes observability with the right metrics. Available at
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-
right-metrics?track=NL-
1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN
&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust

[27] Agarwal G (2020) Kubernetes Security With Falco. Available at
https://betterprogramming.pub/kubernetes-security-with-falco-2eb060d3ae7d

[28] Marko K (2021) Terraform cheat sheet: Notable commands, HCL and more. Available at
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-
HCL-and-
more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm
_medium=EM&utm_source=NLN&track=NL-
1841&ad=939808&asrc=EM_NLN_172629823

[29] Guo T (2021) On DevOps 8: Infrastructure as Code: Introduction, Best Practices and
How to choose the Right tool. Available at https://medium.com/4th-coffee/on-devops-8-
infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-
2c8f46d1f34

[30] Pulumi.com (2020) Delivering Cloud Native Infrastructure as Code. Available at
https://cdn2.hubspot.net/hubfs/4429525/Content/Pulumi-Delivering-CNI-as-Code.pdf

[31] Chong T (2021) Product In-Depth: Instantly Secure your Cloud Infrastructure with Policy-as-
Code. Available at https://www.magalix.com/blog/instantly-secure-your-cloud-
infrastructure-with-policy-as-
code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-
HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-
OcHJmlUHG8eFhC5Tfu7MW_Dn3i-
g3Ng&utm_content=123795689&utm_source=hs_email

https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://searchitoperations.techtarget.com/feature/Understand-the-role-of-infrastructure-as-code-in-DevOps?utm_campaign=20210809_The+next+DevSecOps+challenge%3A+People&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939963&asrc=EM_NLN_174809933
https://www.magalix.com/blog/introducing-policy-as-code-the-open-policy-agent-opa
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://searchitoperations.techtarget.com/tip/Tackle-Kubernetes-observability-with-the-right-metrics?track=NL-1841&ad=938191&asrc=EM_NLN_153034984&utm_medium=EM&utm_source=NLN&utm_campaign=20210322_DevSecOps+leaves+Excel+in+the+dust
https://betterprogramming.pub/kubernetes-security-with-falco-2eb060d3ae7d
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://searchitoperations.techtarget.com/tip/Terraform-cheat-sheet-Notable-commands-HCL-and-more?utm_campaign=20210726_Infrastructure+as+code+still+a+big+security+buzz&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939808&asrc=EM_NLN_172629823
https://medium.com/4th-coffee/on-devops-8-infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-2c8f46d1f34
https://medium.com/4th-coffee/on-devops-8-infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-2c8f46d1f34
https://medium.com/4th-coffee/on-devops-8-infrastructure-as-code-introduction-best-practices-and-choosing-the-right-tool-2c8f46d1f34
https://cdn2.hubspot.net/hubfs/4429525/Content/Pulumi-Delivering-CNI-as-Code.pdf
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email
https://www.magalix.com/blog/instantly-secure-your-cloud-infrastructure-with-policy-as-code?utm_medium=email&_hsmi=123795689&_hsenc=p2ANqtz-HbHGaLCOrCV_WXjrKE-JgWUWUX9Tg1s9ot5HSox2Ts1rgAhwquoZkBKqZYo-OcHJmlUHG8eFhC5Tfu7MW_Dn3i-g3Ng&utm_content=123795689&utm_source=hs_email

NIST SP 800-204C DEVSECOPS FOR A MICROSERVICES-BASED
 APPLICATION WITH SERVICE MESH

35

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.SP.800-204C

[32] Pariseau B (2020) Mendix dumps cluttered DevOps monitoring tools for Datadog.
Available at https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-
cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-
1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN
&utm_campaign=20210315_Kong+Mesh%27s+built-
in+Open+Policy+Agent+simplifies+IT+security+management

[33] Boutet R (2018) Log Patterns: Automatically cluster your logs for faster investigation
(datadoghq.com). Available at https://www.datadoghq.com/blog/log-patterns/

[34] Devopscurry (2021) Securing your CI/CD pipelines with DevSecOps in 2021. Available at

https://medium.com/devopscurry/securing-your-ci-cd-pipelines-with-devsecops-in-2021-
1a6a6e34f2e7

[35] CI/CD] Gartner (2021) Gardner D, Horvath M, Zumerle D Magic Quadrant for
Application Security Testing. Available at https://www.gartner.com/doc/reprints?id=1-
262TXQZV&ct=210518&st=sb

[36] Lewkowicz J (2021) A guide to automated testing providers. Available at
https://sdtimes.com/test/a-guide-to-automated-testing-providers/

[37] Lewkowicz J (2021) Automated testing is a must in CI/CE pipelines. Available at
https://sdtimes.com/test/automated-testing-is-a-must-in-ci-cd-pipelines/

[38] Alexey K (2020) Ultimate guide to CI/CD security and DevSecOps. Available at

https://circleci.com/blog/security-best-practices-for-ci-cd/

[39] Sheldon R (2021) Top 30 DevOps interview questions and answers for 2021. Available at
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-
answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_
medium=EM&utm_source=NLN&track=NL-
1841&ad=939635&asrc=EM_NLN_170130891

[40] Prasad A (2020) Kubernetes Admission Controllers: Request Interceptors. Available at
https://medium.com/cloudlego/kubernetes-admission-controllers-request-interceptors-
47a9b12c5303

https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://searchitoperations.techtarget.com/news/252497697/Mendix-dumps-cluttered-DevOps-monitoring-tools-for-Datadog?track=NL-1841&ad=938089&asrc=EM_NLN_151848158&utm_medium=EM&utm_source=NLN&utm_campaign=20210315_Kong+Mesh%27s+built-in+Open+Policy+Agent+simplifies+IT+security+management
https://www.datadoghq.com/blog/log-patterns/
https://medium.com/devopscurry/securing-your-ci-cd-pipelines-with-devsecops-in-2021-1a6a6e34f2e7
https://medium.com/devopscurry/securing-your-ci-cd-pipelines-with-devsecops-in-2021-1a6a6e34f2e7
https://www.gartner.com/doc/reprints?id=1-262TXQZV&ct=210518&st=sb
https://www.gartner.com/doc/reprints?id=1-262TXQZV&ct=210518&st=sb
https://sdtimes.com/test/a-guide-to-automated-testing-providers/
https://sdtimes.com/test/automated-testing-is-a-must-in-ci-cd-pipelines/
https://circleci.com/blog/security-best-practices-for-ci-cd/
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://whatis.techtarget.com/feature/Top-30-DevOps-interview-questions-and-answers?utm_campaign=20210712_New+Kubernetes+use+case%253A+Hacking&utm_medium=EM&utm_source=NLN&track=NL-1841&ad=939635&asrc=EM_NLN_170130891
https://medium.com/cloudlego/kubernetes-admission-controllers-request-interceptors-47a9b12c5303
https://medium.com/cloudlego/kubernetes-admission-controllers-request-interceptors-47a9b12c5303

	NIST SP 800-204C, Implementation of DevSecOps for a Microservices-based Application with Service Mesh
	Executive Summary
	1 Introduction
	1.1 Scope
	1.2 Related DevSecOps Initiatives
	1.3 Target Audience
	1.4 Relationship to Other NIST Guidance Documents
	1.5 Organization of This Document

	2 Reference Platform for the Implementation of DevSecOps Primitives
	2.1 Container Orchestration and Resource Management Platform
	2.1.1 Security Limitations of Orchestration Platform

	2.2 Service Mesh Software Architecture
	2.2.1 Control Plane
	2.2.2 Data Plane

	3 DevSecOps – Organizational Preparedness, Key Primitives, and Implementation
	3.1 Organizational Preparedness for DevSecOps
	3.2 DevSecOps Platform
	3.2.1 Deliverables for DevSecOps Platform

	3.3 DevSecOps – Key Primitives and Implementation Tasks
	3.3.1 Concept of Pipelines and the CI/CD Pipeline
	3.3.2 Building Blocks for CI/CD Pipelines
	3.3.3 Preparing and Executing the CI/CD pipeline
	3.3.4 Strategies for Automation
	3.3.5 Requirements for Security Automation Tools in CI/CD Pipelines

	4 Implementing DevSecOps Primitives for the Reference Platform
	4.1 Description of Code Types and Reference Platform Components
	4.2 CI/CD Pipeline for Application Code and Application Services Code
	4.3. CI/CD Pipeline for Infrastructure as Code
	4.3.1 Protection for IaC
	4.3.2 Distinction Between Configuration and Infrastructure

	4.4 CI/CD Pipeline for Policy as Code
	4.5 CI/CD Pipeline for Observability as Code
	4.6 Securing the CI/CD Pipeline
	4.7 Workflow Models in CI/CD Pipelines
	4.7.1 GitsOps Workflow Model for CI/CD – A Pull-based Model
	4.8 Security Testing – Common Requirement for CI/CD Pipelines for All Code Types
	4.8.1 Functional and Coverage Requirements for AST tools

	4.9 Benefits of DevSecOps Primitives to Application Security in the Service Mesh
	4.10 Leveraging DevSecOps for Continuous Authorization to Operate (C-ATO)

	5 Summary and Conclusion
	References

