
Withdrawn Draft 
 
 

Warning Notice 
 

The attached draft document has been withdrawn, and is provided solely for historical purposes. 
It has been superseded by the document identified below. 
 

Withdrawal Date October 29, 2020 

Original Release Date December 11, 2019 
 

 
 

Superseding Document 

Status Final 

Series/Number NIST Special Publication (SP) 800-208 

Title Recommendation for Stateful Hash-Based Signature Schemes 

Publication Date October 2020 

DOI https://doi.org/10.6028/NIST.SP.800-208  

CSRC URL https://csrc.nist.gov/publications/detail/sp/800-208/final  

Additional Information  
 

https://doi.org/10.6028/NIST.SP.800-208
https://csrc.nist.gov/publications/detail/sp/800-208/final


 

Draft NIST Special Publication 800-208 1 

 2 

Recommendation for Stateful  3 

Hash-Based Signature Schemes 4 

 5 

David A. Cooper 6 
Daniel C. Apon 7 
Quynh H. Dang 8 

Michael S. Davidson 9 
Morris J. Dworkin 10 

Carl A. Miller 11 
 12 

 13 

 14 
This publication is available free of charge from: 15 

https://doi.org/10.6028/NIST.SP.800-208-draft 16 
 17 

 18 

 19 

20 

C  O  M  P  U  T  E  R      S  E  C  U  R  I  T  Y



  

Draft NIST Special Publication 800-208 21 

 22 

Recommendation for Stateful  23 

Hash-Based Signature Schemes 24 

 25 

David A. Cooper 26 
Daniel C. Apon 27 
Quynh H. Dang 28 

Michael S. Davidson 29 
Morris J. Dworkin 30 

Carl A. Miller 31 
Computer Security Division 32 

Information Technology Laboratory 33 
 34 
 35 
 36 
 37 

This publication is available free of charge from: 38 
https://doi.org/10.6028/NIST.SP.800-208-draft 39 

 40 
 41 

December 2019 42 
 43 
 44 

 45 
 46 
 47 

U.S. Department of Commerce 48 
Wilbur L. Ross, Jr., Secretary 49 

 50 
National Institute of Standards and Technology 51 

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 52 



 

  

Authority 53 

This publication has been developed by NIST in accordance with its statutory responsibilities under the 54 
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 55 
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 56 
minimum requirements for federal information systems, but such standards and guidelines shall not apply 57 
to national security systems without the express approval of appropriate federal officials exercising policy 58 
authority over such systems. This guideline is consistent with the requirements of the Office of Management 59 
and Budget (OMB) Circular A-130. 60 

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 61 
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 62 
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 63 
Director of the OMB, or any other federal official.  This publication may be used by nongovernmental 64 
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 65 
however, be appreciated by NIST. 66 

National Institute of Standards and Technology Special Publication 800-208 67 
Natl. Inst. Stand. Technol. Spec. Publ. 800-208, 54 pages (December 2019) 68 

CODEN: NSPUE2 69 

This publication is available free of charge from: 70 
https://doi.org/10.6028/NIST.SP.800-208-draft 71 

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 72 
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 73 
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 74 
available for the purpose. 75 
There may be references in this publication to other publications currently under development by NIST in accordance 76 
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 77 
may be used by federal agencies even before the completion of such companion publications. Thus, until each 78 
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 79 
planning and transition purposes, federal agencies may wish to closely follow the development of these new 80 
publications by NIST. 81 
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 82 
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 83 
https://csrc.nist.gov/publications. 84 

 85 
Public comment period: December 11, 2019 through February 28, 2020 86 

National Institute of Standards and Technology 87 
Attn: Computer Security Division, Information Technology Laboratory 88 

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 89 
Email: pqc-comments@nist.gov  90 

All comments are subject to release under the Freedom of Information Act (FOIA).  91 

https://csrc.nist.gov/publications
mailto:pqc-comments@nist.gov


NIST SP 800-208 (DRAFT)  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

ii 

 
 

 
 

 
 

 
 

 

 

Reports on Computer Systems Technology 92 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 93 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 94 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 95 
methods, reference data, proof of concept implementations, and technical analyses to advance the 96 
development and productive use of information technology. ITL’s responsibilities include the 97 
development of management, administrative, technical, and physical standards and guidelines for 98 
the cost-effective security and privacy of other than national security-related information in federal 99 
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 100 
outreach efforts in information system security, and its collaborative activities with industry, 101 
government, and academic organizations. 102 

Abstract 103 

This recommendation specifies two algorithms that can be used to generate a digital signature, 104 
both of which are stateful hash-based signature schemes: the Leighton-Micali Signature (LMS) 105 
system and the eXtended Merkle Signature Scheme (XMSS), along with their multi-tree variants, 106 
the Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT). 107 

 Keywords  108 

cryptography; digital signatures; hash-based signatures; public-key cryptography.  109 
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Document Conventions 110 

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to 111 
conform to the publication and from which no deviation is permitted. 112 

The terms “should” and “should not” indicate that among several possibilities one is 113 
recommended as particularly suitable, without mentioning or excluding others, or that a certain 114 
course of action is preferred but not necessarily required, or that (in the negative form) a certain 115 
possibility or course of action is discouraged but not prohibited. 116 

The terms “may” and “need not” indicate a course of action permissible within the limits of the 117 
publication. 118 

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical or 119 
causal. 120 

Conformance Testing 121 

Conformance testing for implementations of the functions that are specified in this publication 122 
will be conducted within the framework of the Cryptographic Algorithm Validation Program 123 
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements on these 124 
implementations are indicated by the word “shall.” Some of these requirements may be out-of-125 
scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, 126 
implementing, installing, or configuring applications that incorporate this Recommendation. 127 

Note to Reviewers 128 

Sections 4 and 5 specify the parameter sets that are approved by this recommendation for LMS, 129 
HSS, XMSS, and XMSSMT. Given the large number of parameter sets specified in these two 130 
sections, NIST would like feedback on whether there would be a benefit in reducing the number 131 
of parameter sets that are approved, and if so, which ones should be removed. 132 

While this recommendation does not allow cryptographic modules to export private keying 133 
material, Section 7 describes a way in which a single key pair can be created with the one-time 134 
keys being spread across multiple cryptographic modules. The method described in Section 7 135 
involves creating a 2-level HSS or XMSSMT tree where the one-time keys associated with each of 136 
the bottom-level trees can be created on a different cryptographic module. 137 

NIST believes that it would be possible to create a one-level XMSS or LMS tree in which the 138 
one-time keys are not all created and stored on the same cryptographic module. Key generation 139 
would be more complicated to implement, though, as would be the steps that end users would 140 
have to perform during the key generation process. However, a one-level tree would result in 141 
shorter signatures. 142 

NIST would like feedback on whether there is a need to be able to create one-level XMSS or 143 
LMS keys in which the one-time keys are not all created and stored on the same cryptographic 144 
module even though such an option would be more complicated to implement and use than the 145 
two-level option that is already described in the draft.  146 
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Call for Patent Claims 147 

This public review includes a call for information on essential patent claims (claims whose use 148 
would be required for compliance with the guidance or requirements in this Information 149 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 150 
directly stated in this ITL Publication or by reference to another publication. This call also 151 
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 152 
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 153 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 154 
in written or electronic form, either: 155 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 156 
does not currently intend holding any essential patent claim(s); or 157 

b) assurance that a license to such essential patent claim(s) will be made available to applicants 158 
desiring to utilize the license for the purpose of complying with the guidance or requirements 159 
in this ITL draft publication either: 160 

i) under reasonable terms and conditions that are demonstrably free of any unfair 161 
discrimination; or 162 

ii) without compensation and under reasonable terms and conditions that are demonstrably 163 
free of any unfair discrimination. 164 

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 165 
on its behalf) will include in any documents transferring ownership of patents subject to the 166 
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 167 
the transferee, and that the transferee will similarly include appropriate provisions in the event of 168 
future transfers with the goal of binding each successor-in-interest. 169 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 170 
regardless of whether such provisions are included in the relevant transfer documents. 171 

Such statements should be addressed to: pqc-comments@nist.gov 172 

mailto:pqc-comments@nist.gov
mailto:pqc-comments@nist.gov
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1 Introduction 254 

This publication supplements FIPS 186-4 [4] by specifying two additional digital signature 255 
schemes, both of which are stateful hash-based signature (HBS) schemes: the Leighton-Micali 256 
Signature (LMS) system [2] and the eXtended Merkle Signature Scheme (XMSS) [1], along with 257 
their multi-tree variants, the Hierarchical Signature System (HSS) and multi-tree XMSS 258 
(XMSSMT). All of the digital signature schemes specified in FIPS 186-4 will be broken if large-259 
scale quantum computers are ever built. The security of the stateful HBS schemes in this 260 
publication, however, only depends on the security of the underlying hash functions—in 261 
particular, the infeasibility of finding a preimage or a second preimage—and it is believed that 262 
the security of hash functions will not be broken by the development of large-scale quantum 263 
computers [20]. 264 

This recommendation specifies profiles of LMS, HSS, XMSS, and XMSSMT that are appropriate 265 
for use by the U.S. Federal Government. This profile approves the use of some but not all of the 266 
parameter sets defined in [1] and [2] and also defines some new parameter sets. The approved 267 
parameter sets use either SHA-256 or SHAKE256 with 192- or 256-bit outputs. It requires that 268 
key and signature generation be performed in hardware cryptographic modules that do not allow 269 
secret keying material to be exported. 270 

1.1 Intended Applications for Stateful HBS Schemes 271 

NIST is in the process of developing standards for post-quantum secure digital signature 272 
schemes [7] that can be used as replacements for the schemes that are specified in [4]. Stateful 273 
HBS schemes are not suitable for general use because they require careful state management that 274 
is often difficult to assure, as summarized in Section 1.2 and described in detail in [8]. 275 

Instead, stateful HBS schemes are primarily intended for applications with the following 276 
characteristics: 1) it is necessary to implement a digital signature scheme in the near future; 2) 277 
the implementation will have a long lifetime; and 3) it would not be practical to transition to a 278 
different digital signature scheme once the implementation has been deployed.  279 

An application that may fit this profile is firmware updates for constrained devices. Some 280 
constrained devices that will be deployed in the near future will be in use for decades. These 281 
devices will need to have a secure mechanism for receiving firmware updates, and it may not be 282 
practical to change the code for verifying signatures on updates once the devices have been 283 
deployed. 284 

1.2 The Importance of the Proper Maintenance of State 285 

In a stateful HBS scheme, a key pair consists of a large set of one-time signature (OTS) key 286 
pairs. An HBS key pair may contain thousands, millions, or billions of OTS keys, and the signer 287 
needs to ensure that no individual OTS key is ever used to sign more than one message. If an 288 
attacker were able to obtain digital signatures for two different messages created using the same 289 
OTS key, then it would become computationally feasible for that attacker to forge signatures on 290 
arbitrary messages [13]. Therefore, as described in [8], when a stateful HBS scheme is 291 
implemented, extreme care needs to be taken in order to ensure that no OTS key is ever reused. 292 
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In order to obtain assurance that OTS keys are not reused, the signing process should be 293 
performed in a highly controlled environment. As described in [8], there are many ways in which 294 
seemingly routine operations could lead to the risk of one-time key reuse. The conformance 295 
requirements imposed in Section 8.1 on cryptographic modules that implement stateful HBS 296 
schemes are intended to help prevent one-time key reuse. 297 

1.3 Outline of Text 298 

The remainder of this document is divided into the following sections and appendices: 299 

• Section 2, Glossary of Terms, Acronyms, and Mathematical Symbols, defines the terms, 300 
acronyms, and mathematical symbols used in this document. This section is informative. 301 

• Section 3, General Discussion, gives a conceptual explanation of the elements used in 302 
stateful hash-based signature schemes (including hash chains, Merkle trees, and hash 303 
prefixes). This section may be used as either a high-level overview of stateful hash-based 304 
signature schemes or as an introduction to the detailed descriptions of LMS and XMSS 305 
provided in [1] and [2]. This section is informative. 306 

• Section 4, Leighton-Micali Signatures (LMS) Parameter Sets, describes the parameter 307 
sets that are approved for use by this Special Publication with LMS and HSS. 308 

• Section 5, eXtended Merkle Signature Scheme (XMSS) Parameter Sets, describes the 309 
parameter sets that are approved for use by this Special Publication with XMSS and 310 
XMSSMT. 311 

• Section 6, Random Number Generation for Keys and Signatures, states how the random 312 
data used in XMSS and LMS must be generated. 313 

• Section 7, Distributed Multi-Tree Hash-Based Signatures, provides recommendations for 314 
distributing the implementation of a single HSS or XMSSMT instance over multiple 315 
cryptographic modules. 316 

• Section 8, Conformance, specifies requirements for cryptographic algorithm and module 317 
validation that are specific to modules that implement the algorithms in this document. 318 

• Section 9, Security Considerations, enumerates security risks in various scenarios for 319 
stateful HBS schemes (with a focus on the problem of key reuse) and describes steps that 320 
should be taken to maximize the security of an implementation. This section is 321 
informative. 322 

• Appendix A, LMS XDR Syntax Additions, describes additions that are required for the 323 
External Data Representation (XDR) syntax for LMS in order to support the new 324 
parameter sets specified in this document. 325 

• Appendix B, XMSS XDR Syntax Additions, describes additions that are required for the 326 
XDR syntax for XMSS and XMSSMT in order to support the new parameter sets specified 327 
in this document. 328 
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• Appendix C, Provable Security Analysis, provides information about the security proofs 329 
that are available for LMS and XMSS. This section is informative.   330 
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2 Glossary of Terms, Acronyms, and Mathematical Symbols 331 

2.1 Terms and Definitions 332 

approved FIPS-approved or NIST-recommended. An algorithm or technique 
that is either 1) specified in a FIPS or NIST Recommendation, or 2) 
adopted in a FIPS or NIST Recommendation and specified either (a) 
in an appendix to the FIPS or NIST Recommendation, or (b) in a 
document referenced by the FIPS or NIST Recommendation. 

 333 
2.2 Acronyms 334 

Selected acronyms and abbreviations used in this publication are defined below. 335 

EEPROM Electronically erasable programmable read-only memory 

EUF-CMA Existential unforgeability under adaptive chosen message attacks 

FIPS Federal Information Processing Standard 

HBS Hash-based signature 

HSS Hierarchical Signature Scheme 

IRTF Internet Research Task Force 

LM-OTS Leighton-Micali One-Time Signature 

LMS Leighton-Micali signature 

NIST National Institute of Standards and Technology 

OTS One-time signature 

QROM Quantum random oracle model 

RAM Random access memory 

RFC Request for Comments 

ROM Random oracle model 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special publication 
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VM Virtual machine 

WOTS+ Winternitz One-Time Signature Plus 

XDR External Data Representation 

XMSS eXtended Merkle Signature Scheme 

XMSSMT Multi-tree XMSS 
 336 
2.3 Mathematical Symbols 337 

SHA-256(M) SHA-256 hash function as specified in [3] 

SHA-256/192(M) T192(SHA-256(M)), the most significant (i.e., leftmost) 192 bits of the 
SHA-256 hash of M 

SHAKE256/256(M) SHAKE256(M, 256), where SHAKE256 is specified in Section 6.2 of 
[5] 

SHAKE256/192(M) SHAKE256(M, 192), where SHAKE256 is specified in Section 6.2 of 
[5] 

T192(X) A truncation function that outputs the most significant (i.e., leftmost) 
192 bits of the input bit string X 

  338 
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3 General Discussion 339 

At a high level, XMSS and LMS are very similar. They each consist of two components—a one-340 
time signature (OTS) scheme and a method for creating a single, long-term public key from a 341 
large set of OTS public keys. A brief explanation of OTS schemes and the method for creating a 342 
long-term public key from a large set of OTS public keys can be found in Sections 3 and 4 of 343 
[14]. 344 

3.1 One-Time Signature Systems 345 

Both LMS and XMSS make use of variants of the Winternitz signature scheme. In the Winternitz 346 
signature scheme, the message to be signed is hashed to create a digest; the digest is encoded as a 347 
base b number; and then each digit of the digest is signed using a hash chain, as follows. 348 

A hash chain is created by first randomly generating a secret value, x, which is the private key. 349 
The size of x should generally correspond to the targeted strength of the scheme. So for the 350 
parameter sets approved by this recommendation, x will be either 192 or 256 bits in length. The 351 
public key, pub, is then created by applying the hash function, H, to the secret b – 1 times, 352 
𝐻𝐻𝑏𝑏−1(𝑥𝑥). Figure 1 shows an example of a hash chain for the kth digit of a digest where b is 4. 353 

The kth digit of the digest, Nk, is signed by applying the hash function, H, to the private key Nk 354 
times, 𝐻𝐻𝑁𝑁𝑘𝑘(𝑥𝑥𝑘𝑘). In Figure 1, Nk is 1, and so the signature is 𝑠𝑠𝑘𝑘 = 𝐻𝐻1(𝑥𝑥𝑘𝑘) = 𝐻𝐻(𝑥𝑥𝑘𝑘). The 355 
signature can be verified by checking that 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻𝑏𝑏−1−𝑁𝑁𝑘𝑘(𝑠𝑠𝑘𝑘). So in Figure 1, the signature 356 
can be verified by checking that 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻4−1−1(𝑠𝑠𝑘𝑘) = 𝐻𝐻2(𝑠𝑠𝑘𝑘) = 𝐻𝐻�𝐻𝐻(𝑠𝑠𝑘𝑘)�. 357 

 358 

As noted in [14], simply signing the individual digits of the digest is not sufficient as an attacker 359 
would be able to generate valid signatures for other message digests. For example, given 𝑠𝑠𝑘𝑘 =360 
𝐻𝐻(𝑥𝑥𝑘𝑘), as in Figure 1, an attacker would be able to generate a signature for a message digest with 361 
a kth digit of 2 by applying H to 𝑠𝑠𝑘𝑘 once or to a message digest with a kth digit of 3 by applying 362 
H to 𝑠𝑠𝑘𝑘 twice. An attacker could not, however, generate a signature for a message digest with a 363 
kth digit of 0 as this would require finding some value y such that 𝐻𝐻(𝑦𝑦) = 𝑠𝑠𝑘𝑘 , which would not 364 
be feasible as long as H is preimage resistant. 365 

In order to protect against the above attack, the Winternitz signature scheme computes a 366 
checksum of the message digest and signs the checksum along with the digest. For an n-digit 367 
message digest, the checksum is computed as ∑ (𝑝𝑝 − 1− 𝑁𝑁𝑘𝑘)𝑛𝑛−1

𝑘𝑘=0 . The checksum is designed so 368 
that the value is non-negative and any increase in a digit in the message digest will result in the 369 
checksum becoming smaller. This prevents an attacker from creating an effective forgery from a 370 
message signature since the attacker can only increase values within the message digest and 371 
cannot decrease values within the checksum. 372 

𝑥𝑥𝑘𝑘 H H H 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�� 𝑠𝑠𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘) 𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)� 

Figure 1: A sample Winternitz chain 
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Figure 2 shows an example of a signature for a 32-bit message digest using b = 16. The digest is 373 
written as eight hexadecimal digits, and a separate hash chain is used to sign each digit with each 374 
hash chain having its own private key.1 375 

 
Digest  Checksum 

Digest 6 3 F 1 E 9 0 B  3 D 

Private 
Key 

x0 x1 x2 x3 x4 x5 x6 x7  x8 x9 

Signature H6(x0) H3(x1) H15(x2) H(x3) H14(x4) H9(x5) x6 H11(x7)  H3(x8) H13(x9) 

Public 
Key 

H15(x0) H15(x1) H15(x2) H15(x3) H15(x4) H15(x5) H15(x6) H15(x7)  H15(x8) H15(x9) 

Figure 2: A sample Winternitz signature 376 

3.2 Merkle Trees 377 

While a single, long-term public key could be created from a large set of OTS public keys by 378 
simply concatenating the keys together, the resulting public key would be unacceptably large. 379 
XMSS and LMS instead use Merkle hash trees [18], which allow for the long-term public key to 380 
be very short in exchange for requiring a small amount of additional information to be provided 381 
with each OTS key. To create a hash tree, the OTS public keys are hashed once to form the 382 
leaves of the tree, and these hashes are then hashed together in pairs to form the next level up. 383 
Those hash values are then hashed together in pairs, the resulting hash values are hashed 384 
together, and so on until all of the public keys have been used to generate a single hash value, 385 
which will be used as the long-term public key. 386 

 387 

Figure 3: A Merkle Hash Tree 388 

Figure 3 depicts a hash tree containing eight OTS public keys. The eight keys are each hashed to 389 
form the leaves of the tree, and the eight leaf values are hashed in pairs to create the next level up 390 
in the tree. These four hash values are again hashed in pairs to create h0−3 and h4−7, which are 391 

                                                

1 If SHA-256 were used as the hash function, then the message digest would be encoded as 64 hexadecimal digits, and the 
checksum would be encoded as three hexadecimal digits. 
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hashed together to create the long-term public key, h0−7. In order for an entity that had already 392 
received h0−7 in a secure manner to verify a message signed using k2, the signer would need to 393 
provide h3, h01, and h4−7 in addition to k2. The verifier would compute ℎ2′ = 𝐻𝐻(𝑘𝑘2), ℎ23′ =394 
𝐻𝐻(ℎ2′ ||ℎ3), ℎ0−3′ = 𝐻𝐻(ℎ01||ℎ23′ ), and ℎ0−7′ = 𝐻𝐻(ℎ0−3′ ||ℎ4−7). If ℎ0−7′  is the same as h0−7, then k2 395 
may be used to verify the message signature. 396 

3.3 Two-Level Trees 397 

Both [1] and [2] define single tree as well as multi-tree variants of their signature schemes. In an 398 
instance that involves two levels of trees, as shown in Figure 4, the OTS keys that form the 399 
leaves of the top-level tree sign the roots of the trees at the bottom level, and the OTS keys that 400 
form the leaves of the bottom-level trees are used to sign the messages. The root of the top-level 401 
tree is the public key for the signature scheme.2 402 

As described in Section 7, the use of two levels of trees can make it easier to distribute OTS keys 403 
across multiple cryptographic modules in order to protect against private key loss. A set of OTS 404 
keys can be created in one cryptographic module, and the root of the Merkle tree formed from 405 
these keys can be published as the public key for the signature scheme. OTS keys can then be 406 
created on multiple other cryptographic modules with a separate Merkle tree being created for 407 
the OTS keys of each of the other cryptographic modules, and a different OTS key from the first 408 
cryptographic module can be used to sign each of the roots of the other cryptographic modules. 409 

While there are benefits in the use of a two-level tree, it results in larger signatures and slower 410 
signature verification as each message signature will need to include two OTS signatures. For 411 
example, if a message were signed using OTS key k1,6 in Figure 4, the signature would need to 412 

                                                

2 While this section only describes two-level trees, HSS allows for up to eight levels of trees and XMSSMT allows for up to 12 
levels of trees.  

k0,0 k0,1 k0,2 k0,3 

r0 

r1,0 

k1,0 k1,1 k1,2 k1,3 

r1,1 

k1,4 k1,5 k1,6 k1,7 

r1,2 

k1,8 k1,9 k1,10 k1,11 

r1,3 

k1,12 k1,13 k1,14 k1,15 

Figure 4: A two-Level Merkle tree 
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include the signature on r1,1 using k0,1 in addition to the signature on the message using k1,6. 413 

3.4 Prefixes and Bitmasks 414 

In order to strengthen the security of the schemes in both XMSS and LMS whenever a value is 415 
hashed, a prefix is prepended to the value that is hashed. For example, when computing the 416 
public key for a Winternitz signature from the private key in LMS as described in Section 3.1, 417 
rather than just computing 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻3(𝑥𝑥𝑘𝑘) = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�� the public key is computed as 418 

𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻 �𝑝𝑝3 || 𝐻𝐻�𝑝𝑝2 || 𝐻𝐻(𝑝𝑝1 || 𝑥𝑥𝑘𝑘)��, where p1, p2, and p3 are each different values. The 419 
prefix is formed by concatenating together various pieces of information, including a unique 420 
identifier for the long-term public key and an indicator of the purpose of the hash (e.g., 421 
Winternitz chain or Merkle tree). If the hash is part of a Winternitz chain, then the prefix also 422 
includes the number of the OTS key, which digit of the digest or checksum is being signed, and 423 
where in the chain the hash appears. The goal is to ensure that every single hash that is computed 424 
within the LMS scheme uses a different prefix. 425 

XMSS generates its prefixes in a similar way. The information described above is used to form 426 
an address, which uniquely identifies where a particular hash invocation occurs within the 427 
scheme. This address is then hashed along with a unique identifier for the long-term public key 428 
(SEED) to create the prefix. 429 

Unlike LMS, XMSS also uses bitmasks. In addition to creating the prefix, a slightly different 430 
address is also hashed along with the SEED to create a bitmask. The bitmask is then exclusive-431 
ORed with the input before the input is hashed along with the prefix. Figure 5 illustrates an 432 
example of this computation. In [1], the hash function is referred to as H, H_msg, F, or PRF, 433 
depending on where it is being used. However, in each case it is the same function, just with a 434 
different prefix prepended in order to ensure separation between the uses. 435 

  436 

Figure 5: XMSS hash computation with prefix and bitmask 

⊗ 

3 || SEED || ADDR 

3 || SEED || ADDR' 

0 || prefix || input 

xk 

H 

H 

H 
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4 Leighton-Micali Signatures (LMS) Parameter Sets 437 

The LMS and HSS algorithms are described in RFC 8554 [2]. This Special Publication approves 438 
the use of LMS and HSS with four different hash functions: SHA-256, SHA-256/192, 439 
SHAKE256/256, and SHAKE256/192 (see Section 2.3). The parameter sets that use SHA-256 440 
are defined in RFC 8554 [2]. The parameter sets that use SHA-256/192, SHAKE256/256, and 441 
SHAKE256/192 are defined below. 442 

When generating a key pair for an LMS instance, each LM-OTS key in the system shall use the 443 
same parameter set, and the hash function used for the LMS system shall be the same as the hash 444 
function used in the LM-OTS keys. The height of the tree (h) shall be 5, 10, 15, 20, or 25. 445 

When generating a key pair for an HSS instance, the requirements specified in the previous 446 
paragraph apply to each LMS tree in the instance. If the HSS instance has more than one level, 447 
then the hash function used for the tree at level 0 shall be used for every LMS tree at every other 448 
level. For each level, the same LMS and LM-OTS parameter sets shall be used for every LMS 449 
tree at that level. 450 

The LMS and LM-OTS parameter sets that are approved for use by this Special Publication are 451 
specified in Sections 4.1 through 4.4. The parameters n, w, p, ls, m, and h specified in the tables 452 
are defined in Sections 4.1 and 5.1 of [2]. 453 

Extensions to the XDR syntax in Section 3.3 of [2] needed to support the parameter sets defined 454 
in Sections 4.2 through 4.4 of this document are specified in Appendix A. 455 

4.1 LMS with SHA-256 456 

When generating LMS or HSS key pairs using SHA-256, the LMS and LM-OTS parameter sets 457 
shall be selected from the following two tables, which come from Sections 4 and 5 of [2]. 458 

Table 1: LM-OTS parameter sets for SHA-256 459 

LM-OTS Parameter Sets 
Numeric 
Identifier n w p ls sig_len 

LMOTS_SHA256_N32_W1 0x00000001 32 1 265 7 8516 

LMOTS_SHA256_N32_W2 0x00000002 32 2 133 6 4292 

LMOTS_SHA256_N32_W4 0x00000003 32 4 67 4 2180 

LMOTS_SHA256_N32_W8 0x00000004 32 8 34 0 1124 

  460 
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Table 2: LMS parameter sets for SHA-256 461 

LMS Parameter Sets Numeric Identifier m h 

LMS_SHA256_M32_H5 0x00000005 32 5 

LMS_SHA256_M32_H10 0x00000006 32 10 

LMS_SHA256_M32_H15 0x00000007 32 15 

LMS_SHA256_M32_H20 0x00000008 32 20 

LMS_SHA256_M32_H25 0x00000009 32 25 

 462 

4.2 LMS with SHA-256/192 463 

When generating LMS or HSS key pairs using SHA-256/192, the LMS and LM-OTS parameter 464 
sets shall be selected from the following two tables. 465 

Table 3: LM-OTS parameter sets for SHA-256/192 466 

LM-OTS Parameter Sets 
Numeric 
Identifier n w p ls sig_len 

LMOTS_SHA256_N24_W1 TBD 24 1 200 8 4828 

LMOTS_SHA256_N24_W2 TBD 24 2 101 6 2452 

LMOTS_SHA256_N24_W4 TBD 24 4 51 4 1252 

LMOTS_SHA256_N24_W8 TBD 24 8 26 0 652 

 467 

Table 4: LMS parameter sets for SHA-256/192 468 

LMS Parameter Sets Numeric Identifier m h 

LMS_SHA256_M24_H5 TBD 24 5 

LMS_SHA256_M24_H10 TBD 24 10 

LMS_SHA256_M24_H15 TBD 24 15 

LMS_SHA256_M24_H20 TBD 24 20 

LMS_SHA256_M24_H25 TBD 24 25 

 469 
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4.3 LMS with SHAKE256/256 470 

When generating LMS or HSS key pairs using SHAKE256/256, the LMS and LM-OTS 471 
parameter sets shall be selected from the following two tables. 472 

Table 5: LM-OTS parameter sets for SHAKE256/256 473 

LM-OTS Parameter Sets 
Numeric 
Identifier n w p ls sig_len 

LMOTS_SHAKE_N32_W1 TBD 32 1 265 7 8516 

LMOTS_SHAKE_N32_W2 TBD 32 2 133 6 4292 

LMOTS_SHAKE_N32_W4 TBD 32 4 67 4 2180 

LMOTS_SHAKE_N32_W8 TBD 32 8 34 0 1124 

 474 
Table 6: LMS parameter sets for SHAKE256/256 475 

LMS Parameter Sets Numeric Identifier m h 

LMS_ SHAKE_M32_H5 TBD 32 5 

LMS_ SHAKE_M32_H10 TBD 32 10 

LMS_ SHAKE_M32_H15 TBD 32 15 

LMS_ SHAKE_M32_H20 TBD 32 20 

LMS_ SHAKE_M32_H25 TBD 32 25 

 476 
4.4 LMS with SHAKE256/192 477 

When generating LMS or HSS key pairs using SHAKE256/192, the LMS and LM-OTS 478 
parameter sets shall be selected from the following two tables. 479 

Table 7: LM-OTS parameter sets for SHAKE256/192 480 

LM-OTS Parameter Sets 
Numeric 
Identifier n w p ls sig_len 

LMOTS_SHAKE_N24_W1 TBD 24 1 200 8 4828 

LMOTS_SHAKE_N24_W2 TBD 24 2 101 6 2452 

LMOTS_SHAKE_N24_W4 TBD 24 4 51 4 1252 

LMOTS_SHAKE_N24_W8 TBD 24 8 26 0 652 
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Table 8: LMS parameter sets for SHAKE256/192 481 

LMS Parameter Sets Numeric Identifier m h 

LMS_ SHAKE_M24_H5 TBD 24 5 

LMS_ SHAKE_M24_H10 TBD 24 10 

LMS_ SHAKE_M24_H15 TBD 24 15 

LMS_ SHAKE_M24_H20 TBD 24 20 

LMS_ SHAKE_M24_H25 TBD 24 25 

  482 
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5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets 483 

The XMSS and XMSSMT algorithms are described in RFC 8391 [1]. This Special Publication 484 
approves the use of XMSS and XMSSMT with four different hash functions: SHA-256, SHA-485 
256/192, SHAKE256/256, and SHAKE256/192 (see Section 2.3).3 The parameter sets that use 486 
SHA-256 are defined in RFC 8391 [1]. The parameter sets that use SHA-256/192, 487 
SHAKE256/256, and SHAKE256/192 are defined below. 488 

The WOTS+ parameters corresponding to the use of each of these hash functions is specified in 489 
the following table. 490 

Table 9: WOTS+ parameter sets 491 

Parameter Sets Numeric Identifier F / PRF n w len 
WOTSP-SHA2_256 0x00000001 See Section 5.1 32 16 67 

WOTSP-SHA2_192 TBD See Section 5.2 24 16 51 

WOTSP-SHAKE256_256 TBD See Section 5.3 32 16 67 

WOTSP-SHAKE256_192 TBD See Section 5.4 24 16 51 
 492 
The XMSS and XMSSMT parameter sets that are approved for use by this Special Publication are 493 
specified in Sections 5.1 through 5.4. The parameters n, w, len, h, and d specified in the tables 494 
are defined in Sections 3.1.1, 4.1.1, and 4.2.1 of [1]. 495 

Extensions to the XDR syntax in Appendices A, B, and C of [1] needed to support the parameter 496 
sets defined in Sections 5.2 through 5.4 of this document are specified in Appendix B. 497 

5.1 XMSS and XMSSMT with SHA-256 498 

When generating XMSS or XMSSMT key pairs using SHA-256, the parameter sets shall be 499 
selected from the following two tables, which come from Section 5 of [1]. Each of these uses the 500 
WOTSP-SHA2_256 parameter set. 501 

Table 10: XMSS parameter sets for SHA-256 502 

Parameter Sets Numeric Identifier n w len h 
XMSS-SHA2_10_256 0x00000001 32 16 67 10 

XMSS-SHA2_16_256 0x00000002 32 16 67 16 

XMSS-SHA2_20_256 0x00000002 32 16 67 20 

                                                

3 The parameter sets specified in RFC 8391 [1] that use SHAKE128, SHAKE256, and SHA-512 are not approved for use by this 
Special Publication. 
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Table 11: XMSSMT parameter sets for SHA-256 503 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHA2_20/2_256 0x00000001 32 16 67 20 2 

XMSSMT-SHA2_20/4_256 0x00000002 32 16 67 20 4 

XMSSMT-SHA2_40/2_256 0x00000003 32 16 67 40 2 

XMSSMT-SHA2_40/4_256 0x00000004 32 16 67 40 4 

XMSSMT-SHA2_40/8_256 0x00000005 32 16 67 40 8 

XMSSMT-SHA2_60/3_256 0x00000006 32 16 67 60 3 

XMSSMT-SHA2_60/6_256 0x00000007 32 16 67 60 6 

XMSSMT-SHA2_60/12_256 0x00000008 32 16 67 60 12 

 504 
For the parameter sets in this section, the functions F, H, H_msg, and PRF are as defined in 505 
Section 5.1 of [1] for SHA2 with n = 32. 506 

5.2 XMSS and XMSSMT with SHA-256/192 507 

When generating XMSS or XMSSMT key pairs using SHA-256/192, the parameter sets shall be 508 
selected from the following two tables. Each of these uses the WOTSP-SHA2_192 parameter 509 
set. 510 

Table 12: XMSS parameter sets for SHA-256/192 511 

Parameter Sets Numeric Identifier n w len h 

XMSS-SHA2_10_192 TBD 24 16 51 10 

XMSS-SHA2_16_192 TBD 24 16 51 16 

XMSS-SHA2_20_192 TBD 24 16 51 20 

 512 

  513 
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Table 13: XMSSMT parameter sets for SHA-256/192 514 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHA2_20/2_192 TBD 24 16 51 20 2 

XMSSMT-SHA2_20/4_192 TBD 24 16 51 20 4 

XMSSMT-SHA2_40/2_192 TBD 24 16 51 40 2 

XMSSMT-SHA2_40/4_192 TBD 24 16 51 40 4 

XMSSMT-SHA2_40/8_192 TBD 24 16 51 40 8 

XMSSMT-SHA2_60/3_192 TBD 24 16 51 60 3 

XMSSMT-SHA2_60/6_192 TBD 24 16 51 60 6 

XMSSMT-SHA2_60/12_192 TBD 24 16 51 60 12 

 515 
For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as 516 
follows: 517 

• F: T192(SHA-256(toByte(0, 4) || KEY || M)) 518 
• H: T192(SHA-256(toByte(1, 4) || KEY || M)) 519 
• H_msg: T192(SHA-256(toByte(2, 4) || KEY || M)) 520 
• PRF: T192(SHA-256(toByte(3, 4) || KEY || M)) 521 

5.3 XMSS and XMSSMT with SHAKE256/256 522 

When generating XMSS or XMSSMT key pairs using SHAKE256/256, the parameter sets shall 523 
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_256 524 
parameter set. 525 

Table 14: XMSS parameter sets for SHAKE256/256 526 

Parameter Sets Numeric Identifier n w len h 

XMSS-SHAKE256_10_256 TBD 32 16 67 10 

XMSS-SHAKE256_16_256 TBD 32 16 67 16 

XMSS-SHAKE256_20_256 TBD 32 16 67 20 

 527 

  528 
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Table 15: XMSSMT parameter sets for SHAKE256/256 529 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHAKE256_20/2_256 TBD 32 16 67 20 2 

XMSSMT-SHAKE256_20/4_256 TBD 32 16 67 20 4 

XMSSMT-SHAKE256_40/2_256 TBD 32 16 67 40 2 

XMSSMT-SHAKE256_40/4_256 TBD 32 16 67 40 4 

XMSSMT-SHAKE256_40/8_256 TBD 32 16 67 40 8 

XMSSMT-SHAKE256_60/3_256 TBD 32 16 67 60 3 

XMSSMT-SHAKE256_60/6_256 TBD 32 16 67 60 6 

XMSSMT-SHAKE256_60/12_256 TBD 32 16 67 60 12 

 530 
For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as 531 
follows: 532 

• F: SHAKE256(toByte(0, 32) || KEY || M, 256) 533 
• H: SHAKE256(toByte(1, 32) || KEY || M, 256) 534 
• H_msg: SHAKE256(toByte(2, 32) || KEY || M, 256) 535 
• PRF: SHAKE256(toByte(3, 32) || KEY || M, 256) 536 

5.4 XMSS and XMSSMT with SHAKE256/192 537 

When generating XMSS or XMSSMT key pairs using SHAKE256/192, the parameter sets shall 538 
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_192 539 
parameter set. 540 

Table 16: XMSS parameter sets for SHAKE256/192 541 

Parameter Sets Numeric Identifier n w len h 

XMSS-SHAKE256_10_192 TBD 24 16 51 10 

XMSS-SHAKE256_16_192 TBD 24 16 51 16 

XMSS-SHAKE256_20_192 TBD 24 16 51 20 

  542 
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Table 17: XMSSMT parameter sets for SHAKE256/192 543 

Parameter Sets Numeric Identifier n w len h d 

XMSSMT-SHAKE256_20/2_192 TBD 24 16 51 20 2 

XMSSMT-SHAKE256_20/4_192 TBD 24 16 51 20 4 

XMSSMT-SHAKE256_40/2_192 TBD 24 16 51 40 2 

XMSSMT-SHAKE256_40/4_192 TBD 24 16 51 40 4 

XMSSMT-SHAKE256_40/8_192 TBD 24 16 51 40 8 

XMSSMT-SHAKE256_60/3_192 TBD 24 16 51 40 3 

XMSSMT-SHAKE256_60/6_192 TBD 24 16 51 40 6 

XMSSMT-SHAKE256_60/12_192 TBD 24 16 51 40 12 

 544 
For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as 545 
follows: 546 

• F: SHAKE256(toByte(0, 4) || KEY || M, 192) 547 
• H: SHAKE256(toByte(1, 4) || KEY || M, 192) 548 
• H_msg: SHAKE256(toByte(2, 4) || KEY || M, 192) 549 
• PRF: SHAKE256(toByte(3, 4) || KEY || M, 192) 550 

  551 
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6 Random Number Generation for Keys and Signatures 552 

This section specifies requirements for the generation of random data that apply in addition to 553 
the requirements that are specified in [2] for LMS and HSS and in [1] for XMSS and XMSSMT. 554 

Note: Variables and notations used in this section are defined in the relevant documents 555 
mentioned above. 556 

6.1 LMS and HSS Random Number Generation Requirements 557 

The LMS key pair identifier, I, shall be generated using an approved random bit generator (see 558 
the SP 800-90 series of publications [6]) where the instantiation of the random bit generator 559 
supports at least 128 bits of security strength. 560 

The n-byte private elements of the LM-OTS private keys (x[i] in Section 4.2 of [2]) shall be 561 
generated using the pseudorandom key generation method specified in Appendix A of [2]. The 562 
same SEED value shall be used to generate every private element in a single LMS instance, and 563 
SEED shall be generated using an approved random bit generator [6] where the instantiation of 564 
the random bit generator supports at least 8n bits of security strength. 565 

If more than one LMS instance is being created (e.g., for an HSS instance), then a separate key 566 
pair identifier, I, and SEED (if using the pseudorandom key generation method) shall be 567 
generated for each LMS instance. 568 

When generating a signature, the n-byte randomizer C (see Section 4.5 of [2]) shall be generated 569 
using an approved random bit generator [6] where the instantiation of the random bit generator 570 
supports at least 8n bits of security strength. 571 

6.2 XMSS and XMSSMT Random Number Generation Requirements 572 

The n-byte values SK_PRF and SEED shall be generated using an approved random bit 573 
generator (see the SP 800-90 series of publications [6]) where the instantiation of the random bit 574 
generator supports at least 8n bits of security strength. 575 

The private n-byte strings in the WOTS+ private keys (sk[i] in Section 3.1.3 of [1]) shall be 576 
generated using the pseudorandom key generation method specified in Section 3.1.7 of [1]: 577 
sk[i, j] = PRF(S_ots[j], toByte(i, 32)), where PRF is as defined in Section 5 for the parameter set 578 
being used. The private seed, S_ots[j], for each WOTS+ private key, j, shall be as specified in 579 
Section 4.1.11 of [1]: S_ots[j] = PRF(S_XMSS, toByte(j, 32)), where PRF is as defined in Section 580 
5 for the parameter set being used. The private seed, S_XMSS, shall be generated using an 581 
approved random bit generator [6] where the instantiation of the random bit generator supports 582 
at least 8n bits of security strength. If more than one XMSS key pair is being created within a 583 
cryptographic module (including XMSS keys that belong to a single XMSSMT instance), then a 584 
separate random S_XMSS shall be generated for each XMSS key pair.  585 
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7 Distributed Multi-Tree Hash-Based Signatures 586 

If a digital signature key will be used to generate signatures over a long period of time and 587 
replacing the public key would be difficult, then storing the private key in multiple places to 588 
protect against loss will be necessary. In the case of most digital signature schemes, this just 589 
involves making copies of the private key. However, in the case of stateful HBS schemes, simply 590 
copying the private key would create a risk of OTS key reuse. An alternative that avoids this risk 591 
is to have multiple cryptographic modules that each generate their own OTS keys and then create 592 
a single instance that includes all of the public keys from all of the modules. 593 

While it would also be possible to have one cryptographic module generate all of the OTS keys 594 
and then distribute different OTS keys to each of the other cryptographic modules, doing so is 595 
not an option for cryptographic modules conforming to this recommendation. Due to the risks 596 
associated with copying OTS keys, this recommendation prohibits exporting private keying 597 
material (Section 8). 598 

The easiest way to have OTS keys on multiple cryptographic modules without exporting private 599 
keys is to use HSS or XMSSMT with two levels of trees where each tree is instantiated on a 600 
different cryptographic module. First, a top-level LMS or XMSS key pair would be created in a 601 
cryptographic module. The top level’s OTS keys would only be used to sign the roots of other 602 
trees. Then, bottom-level LMS or XMSS key pairs would be created in other cryptographic 603 
modules, and the public keys from those key pairs (i.e., the roots of their Merkle trees) would be 604 
signed by OTS keys of the top-level key pair. The OTS keys of the bottom-level key pairs would 605 
be used to sign ordinary messages. The number of bottom-level key pairs that could be created 606 
would only be limited by the number of OTS keys in the top-level key pair. 607 

7.1 HSS 608 

In the case of HSS, the scheme described above can be implemented using multiple 609 
cryptographic modules that each implement LMS without modifications. The top-level LMS 610 
public key can be converted to an HSS public key by an external, non-cryptographic device. This 611 
device can also submit the public keys of the bottom-level LMS keys to be signed by the top-612 
level LMS key. In HSS, the operation for signing the root of a lower-level tree is the same as the 613 
operation for signing an ordinary message. Finally, this external device can submit ordinary 614 
messages to cryptographic modules holding the bottom-level LMS keys for signing and then 615 
combine the resulting LMS signatures with the top-level key’s signature on the bottom-level 616 
LMS public key in order to create the HSS signature for the ordinary messages (see Algorithm 8 617 
and Algorithm 9 in [2]). 618 

7.2 XMSSMT 619 

Distributing the implementation of an XMSSMT instance across multiple cryptographic modules 620 
requires each cryptographic module to implement slightly modified versions of the XMSS key 621 
and signature generation algorithms provided in [1]. The modified versions of these algorithms 622 
are provided in Section 7.2.1. The modifications are primarily intended to ensure that each 623 
XMSS key uses the appropriate values for its layer and tree addresses when computing prefixes 624 
and bitmasks. The modifications also ensure that every XMSS key uses the same value for SEED 625 
and that the root of the top-level tree is used when computing the hashes of messages to be 626 
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signed. 627 

Note that while Algorithm 15 in [1] indicates that an XMSSMT secret key has a single SK_PRF 628 
value that is shared by all of the XMSS secret keys, Algorithm 10' in Section 7.2.1 has each 629 
cryptographic module generate its own value for SK_PRF. While generating a different SK_PRF 630 
for each cryptographic module does not exactly align with the specification in [1], doing so does 631 
not affect either interoperability or security. SK_PRF is only used to pseudorandomly generate 632 
the value r in Algorithm 16, which is used for randomized hashing, and any secure method for 633 
generating random values could be used to generate r. 634 

Section 7.2.2 describes the steps that an external, non-cryptographic device needs to perform in 635 
order to implement XMSSMT key and signature generation using a set of cryptographic modules 636 
that implement the algorithms in Section 7.2.1. While Algorithms 10' and 12' in Section 7.2.1 637 
have been designed to work with XMSSMT instances that have more than two layers, the 638 
algorithms in Section 7.2.2 assume that an XMSSMT instance with exactly two layers is being 639 
created. 640 

7.2.1 Modified XMSS Key Generation and Signature Algorithms 641 

Algorithm 10': XMSS'_keyGen 642 

  // L needs to be in the range [0 … d-1] 643 
  // t needs to be in the range [0 … 2^((d-1-L)(h/d)) - 1] 644 
  Input: level L, tree t, 645 
         public key of top-level tree PK_MT (if L ≠ d - 1) 646 
  Output: XMSS public key PK 647 

  // Example initialization for SK-specific contents 648 
  idx = t * 2^(h / d); 649 
  for ( i = 0; i < 2^(h / d); i++ ) { 650 
    wots_sk[i] = WOTS_genSK(); 651 
  } 652 

  Initialize SK_PRF with an n-byte string using an approved 653 
  random bit generator [6], where the instantiation of the 654 
  random bit generator supports at least 8n bits of security 655 
  strength. 656 
  setSK_PRF(SK, SK_PRF); 657 

  // SEED needs to be generated for the top-level XMSS key. 658 
  // For all other XMSS keys, the value needs to be copied from 659 
  // the top-level XMSS key. 660 
  if ( L = d – 1 ) { 661 
    Initialize SEED with an n-byte string using an approved 662 
    random bit generator [6], where the instantiation of the 663 
    random bit generator supports at least 8n bits of security 664 
    strength. 665 
  } else { 666 



NIST SP 800-208 (DRAFT)  RECOMMENDATION FOR STATEFUL 
  HASH-BASED SIGNATURE SCHEMES 

22 

 
 

 
 

 
 

 
 

 

 

    SEED = getSEED(PK_MT); 667 
  } 668 
  setSEED(SK, SEED); 669 
  setWOTS_SK(SK, wots_sk); 670 
  ADRS = toByte(0, 32); 671 
  ADRS.setLayerAddress(L); 672 
  ADRS.setTreeAddress(t); 673 
  root = treeHash(SK, 0, h / d, ADRS); 674 

  // The "root" value in SK needs to be the root of the top-level 675 
  // XMSS tree, as this is the value used when hashing the message 676 
  // to be signed. 677 
  if ( L = d – 1 ) { 678 
    SK = L || t || idx || wots_sk || SK_PRF || root || SEED 679 
  } else { 680 
    SK = L || t || idx || wots_sk || SK_PRF || getRoot(PK_MT) || SEED 681 
  } 682 
  PK = OID || root || SEED 683 

Algorithm 12': XMSS'_sign 684 

  Input: Message M 685 
  Output: signature Sig 686 

  idx_sig = getIdx(SK); 687 
  setIdx(SK, idx_sig + 1); 688 
  L = getLayerAddress(SK); 689 
  t = getTreeAddress(SK); 690 
  ADRS = toByte(0, 32); 691 
  ADRS.setLayerAddress(L); 692 
  ADRS.setTreeAddress(t); 693 

  if ( L > 0 ) { 694 
    // M must be the n-byte root from an XMSS public key 695 
    byte[n] r = 0 // n-byte string of zeros 696 
    byte[n] M' = M 697 
  } else { 698 
    byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32)); 699 
    byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M);  700 
  } 701 
  idx_leaf = idx_sig - t * 2^(h / d); 702 
  Sig = idx_sig || r || treeSig(M', SK, idx_leaf, ADRS); 703 

7.2.2 XMSSMT External Device Operations 704 

XMSS^MT external device keygen 705 

  Input: No input 706 
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  // Generate top-level key pair on a cryptographic module 707 
  PK_MT = XMSS'_keyGen(1, 0, NULL); 708 

  t = 0; 709 
  for each bottom-level key pair to be created { 710 
    // Generate bottom-level key pair on a cryptographic module 711 
    PK[t] = XMSS’_keygen(0, t, PK_MT); 712 

    // Submit root of bottom-level key pair’s public key 713 
    // to be signed by the top-level key pair. 714 
    SigPK[t] = XMSS'_sign(getRoot(PK[t])); 715 

    // If the public key on the bottom-level tree was created using 716 
    // a tree address of t, then its root needs to be signed by OTS 717 
    // key t of the top-level tree. If it wasn’t, then try again. 718 
    if ( getIdx(SigPK[t]) ≠ t ) { 719 
      t = getIdx(SigPK[t]) + 1; 720 
      PK[t] = XMSS'_keygen(0, t, PK_MT); 721 
      SigPK[t] = XMSS'_sign(getRoot(PK[t])); 722 
    } 723 
    t = t + 1; 724 
  } 725 

XMSS^MT external device sign 726 

  Input: Message M  727 
  Output: signature Sig 728 

  // Send XMSS'_sign() command to one of the bottom-level key pairs 729 
  Sig_tmp = XMSS'_sign(M); 730 

  idx_sig = getIdx(Sig_tmp); 731 
  t = (h / d) most significant bits of idx_sig; 732 

  // Append the signature of the signing key pair's root 733 
  // (just the output of treeSig, not idx_sig or r). 734 
  Sig = Sig_tmp || getSig(SigPK[t]);  735 
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8 Conformance 736 

8.1 Key Generation and Signature Generation 737 

Cryptographic modules implementing signature generation for a parameter set shall also 738 
implement key generation for that parameter set. Implementations of the key generation and 739 
signature algorithms in this document shall only be validated for use within hardware 740 
cryptographic modules. The cryptographic modules shall be validated to provide FIPS 140-2 or 741 
FIPS 140-3 [19] Level 3 or higher physical security, and the operational environment shall be 742 
limited.4 In addition, a cryptographic module implementing the key generation or signature 743 
algorithms shall only operate in an approved mode of operation and shall not implement a 744 
bypass mode. The cryptographic module shall not allow for the export of private keying 745 
material. 746 

In order to prevent the possible reuse of an OTS key, when the cryptographic module accepts a 747 
request to sign a message, the cryptographic module shall update the state of the private key in 748 
non-volatile storage before exporting a signature value or accepting another request to sign a 749 
message. 750 

Cryptographic modules implementing LMS key and signature generation shall support at least 751 
one of the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 752 
cryptographic module, the cryptographic module shall support at least one LMS parameter set 753 
from Section 4 that uses the same hash function as the LM-OTS parameter set. Cryptographic 754 
modules implementing LMS key and signature generation shall generate random data in 755 
accordance with Section 6.1. 756 

Cryptographic modules implementing XMSS key and signature generation shall implement 757 
Algorithm 10 and Algorithm 12 from [1] for at least one of the XMSS parameter sets in Section 758 
5. Cryptographic modules supporting implementation of XMSSMT key and signature generation 759 
shall implement Algorithm 10' and Algorithm 12' from Section 7.2.1 of this document for at 760 
least one of the XMSSMT parameter sets in Section 5. Cryptographic modules implementing 761 
XMSS or XMSSMT key and signature generation shall generate random data in accordance with 762 
Section 6.2. 763 

8.2 Signature Verification 764 

Cryptographic modules implementing LMS signature verification shall support at least one of 765 
the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 766 
cryptographic module, the cryptographic module shall support at least one LMS parameter set 767 
from Section 4 that uses the same hash function as the LM-OTS parameter set. 768 

Cryptographic modules implementing XMSS signature verification shall implement Algorithm 769 
14 of [1] for at least one of the parameter sets in Section 5. Cryptographic modules implementing 770 
XMSSMT signature verification shall implement Algorithm 17 of [1] for at least one of the 771 
parameter sets in Section 5.  772 

                                                

4 See Section 4.6 of FIPS 140-2 [19]. 
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9 Security Considerations 773 

9.1 One-Time Signature Key Reuse 774 

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain 775 
signatures for two different messages created using the same one-time signature (OTS) key, then 776 
it would become computationally feasible for that attacker to create forgeries [13]. As noted in 777 
[8], extreme care needs to be taken in order to avoid the risk that an OTS key will be reused 778 
accidentally. While the conformance requirements in Section 8.1 prevent many of the actions 779 
that could result in accidental OTS key reuse, cryptographic modules still need to be carefully 780 
designed to ensure that unexpected behavior cannot result in an OTS key being reused. 781 

In order to avoid reuse of an OTS key, the state of the private key must be updated each time a 782 
signature is generated. If the private key is stored in non-volatile memory, then the state of the 783 
key must be updated in the non-volatile memory to mark an OTS key as unavailable before the 784 
corresponding signature generated using the OTS key is exported. Depending on the 785 
environment, this can be nontrivial to implement. With many operating systems, simply writing 786 
the update to a file is not sufficient as the write operation will be cached with the actual write to 787 
non-volatile memory taking place later. If the cryptographic module loses power or crashes 788 
before the write to non-volatile memory, then the state update will be lost. If a signature were 789 
exported after the write operation was issued but before the update was written to non-volatile 790 
memory, there would be a risk that the OTS key would be used again after the cryptographic 791 
module starts up. 792 

Some hardware cryptographic modules implement monotonic counters, which are guaranteed to 793 
increase each time the counter’s value is read. When available, using the current value of a 794 
monotonic counter to determine which OTS key to use for a signature may be very helpful in 795 
avoiding unintentional reuse of an OTS key. 796 

9.2 Fault Injection Resistance 797 

Fault injection attacks involve the intentional introduction of an error at some point during the 798 
execution of an algorithm, such as by varying the voltage supplied to a device executing the 799 
algorithm, causing it to produce the wrong output, and providing the attacker with additional 800 
information. These attacks are most relevant for users of embedded cryptographic devices where 801 
an adversary may have physical access to the signing device and thus can control its operations. 802 

Fault injection attacks have been shown to be effective against hash-based signatures, though 803 
they are more severe when used against stateless schemes like SPHINCS and its variants [9][10]. 804 
With hash-based signatures, the attack works by forcing the cryptographic device to sign two 805 
different messages with the same OTS key. The attack takes advantage of the schemes where 806 
multiple levels of Merkle trees are used and the roots of lower-level trees are signed using a one-807 
time signature (XMSSMT and HSS) [10]. In some cases, the signatures on these roots are 808 
recomputed each time a message is signed. Under normal circumstances, this is acceptable since 809 
it just involves using an OTS key multiple times to sign the same message. However, by 810 
injecting a fault that introduces an error in the computation of the Merkle tree root at any of the 811 
non-top layers, an attacker can cause the device to sign a different message under the same key. 812 
With both a valid and a faulty signature, the attacker can “graft” a new subtree into the hierarchy 813 
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and produce universal forgeries. 814 

The faulted signature remains a valid signature, so checking that the signature verifies is 815 
insufficient to detect or prevent this attack. The only reliable way to prevent this attack is to 816 
compute each one-time signature once, cache the result, and output it whenever needed. When 817 
implementing multiple levels of trees as described in Section 7, this is the only option since no 818 
cryptographic module will use any OTS more than once. If multiple levels of trees are 819 
implemented within a single cryptographic module, it is recommended to cache a single, one-820 
time signature per layer of subtrees, refreshing them when a new subtree is used for signing [10]. 821 
While this prevents an attacker from learning about the secret key when a corrupted signature is 822 
cached, it does result in the cached one-time signature being incorrect and thus prevents the 823 
hash-based signature scheme from working. 824 

9.3 Hash Collisions 825 

In LMS and XMSS, as in the other approved digital signature schemes [4], the signature 826 
generation algorithm is not applied directly to the message but to a message digest generated by 827 
the underlying hash function. The security of any signature scheme depends on the inability of an 828 
attacker to find distinct messages with the same message digest. 829 

There are two ways that an attacker might find these distinct messages. The attacker could look 830 
for a message that has the same message digest as a message that has already been signed (a 831 
second preimage), or the attacker could look for any two messages that have the same message 832 
digest (a generic collision) and then try to get the private key holder (i.e., signer) to sign one of 833 
them [21]. Finding a second preimage is much more difficult than finding a generic collision, 834 
and it would be infeasible for an attacker to find a second preimage with any of the hash 835 
functions allowed for use in this recommendation. 836 

LMS and XMSS both use randomized hashing. When a message is presented to be signed, a 837 
random value is created and prepended to the message, and the hash function is applied to this 838 
expanded message to produce the message digest. Prepending the random value makes it 839 
infeasible for anyone other than the signer to find a generic collision as finding a collision would 840 
require predicting the randomizing value. The randomized hashing process does not, however, 841 
impact the ability for a signer to create a generic collision since the signer, knowing the private 842 
key, could choose the random value to prepend to the message. 843 

The 196-bit hash functions in this recommendation, SHA-256/196 and SHAKE256/196, offer 844 
significantly less resistance to generic collision searches than their 256-bit counterparts. In 845 
particular, a collision of the 196-bit functions may be found as the number of sampled inputs 846 
approaches 296, as opposed to 2128 for the 256-bit functions, and it may be possible for a signer 847 
with access to an extremely large amount of computing resources to sample 296 inputs. 848 

Consequently, one tradeoff for the use of 196-bit hash functions in LMS and XMSS is the 849 
weakening of the verifier’s assurance that the signer will not be able to change the message once 850 
the signature is revealed. This possibility does not affect the formal security properties of the 851 
schemes because it remains the case that only the signer could produce a valid signature on a 852 
message.  853 
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Appendix A—LMS XDR Syntax Additions 856 

In order to support the LM-OTS and LMS parameter sets defined in Sections 4.2 through 4.4, the 857 
XDR syntax in Section 3.3 of [2] is extended as follows. 858 

/* one-time signatures */ 859 
 860 
enum lmots_algorithm_type { 861 
  lmots_sha256_n24_w1 = TBD, 862 
  lmots_sha256_n24_w2 = TBD, 863 
  lmots_sha256_n24_w4 = TBD, 864 
  lmots_sha256_n24_w8 = TBD, 865 
  lmots_shake_n32_w1  = TBD, 866 
  lmots_shake_n32_w2  = TBD, 867 
  lmots_shake_n32_w4  = TBD, 868 
  lmots_shake_n32_w8  = TBD, 869 
  lmots_shake_n24_w1  = TBD, 870 
  lmots_shake_n24_w2  = TBD, 871 
  lmots_shake_n24_w4  = TBD, 872 
  lmots_shake_n24_w8  = TBD 873 
}; 874 
 875 
typedef opaque bytestring24[24]; 876 
 877 
struct lmots_signature_n24_p200 { 878 
  bytestring24 C; 879 
  bytestring24 y[200]; 880 
}; 881 
 882 
struct lmots_signature_n24_p101 { 883 
  bytestring24 C; 884 
  bytestring24 y[101]; 885 
}; 886 
 887 
struct lmots_signature_n24_p51 { 888 
  bytestring24 C; 889 
  bytestring24 y[51]; 890 
}; 891 
 892 
struct lmots_signature_n24_p26 { 893 
  bytestring24 C; 894 
  bytestring24 y[26]; 895 
}; 896 
 897 
union lmots_signature switch (lmots_algorithm_type type) { 898 
 case lmots_sha256_n24_w1: 899 
   lmots_signature_n24_p200 sig_n24_p200; 900 
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 case lmots_sha256_n24_w2: 901 
   lmots_signature_n24_p101 sig_n24_p101; 902 
 case lmots_sha256_n24_w4: 903 
   lmots_signature_n24_p51  sig_n24_p51; 904 
 case lmots_sha256_n24_w8: 905 
   lmots_signature_n24_p26  sig_n24_p26; 906 
case lmots_shake_n32_w1: 907 
   lmots_signature_n32_p265 sig_n32_p265; 908 
 case lmots_shake_n32_w2: 909 
   lmots_signature_n32_p133 sig_n32_p133; 910 
 case lmots_shake_n32_w4: 911 
   lmots_signature_n32_p67  sig_n32_p67; 912 
 case lmots_shake_n32_w8: 913 
   lmots_signature_n32_p34  sig_n32_p34; 914 
case lmots_shake_n24_w1: 915 
   lmots_signature_n24_p200 sig_n24_p200; 916 
 case lmots_shake_n24_w2: 917 
   lmots_signature_n24_p101 sig_n24_p101; 918 
 case lmots_shake_n24_w4: 919 
   lmots_signature_n24_p51  sig_n24_p51; 920 
 case lmots_shake_n24_w8: 921 
   lmots_signature_n24_p26  sig_n24_p26; 922 
}; 923 
 924 
/* hash-based signatures (hbs) */ 925 
 926 
enum lms_algorithm_type { 927 
  lms_sha256_n24_h5  = TBD, 928 
  lms_sha256_n24_h10 = TBD, 929 
  lms_sha256_n24_h15 = TBD, 930 
  lms_sha256_n24_h20 = TBD, 931 
  lms_sha256_n24_h25 = TBD, 932 
  lms_shake_n32_h5   = TBD, 933 
  lms_shake_n32_h10  = TBD, 934 
  lms_shake_n32_h15  = TBD, 935 
  lms_shake_n32_h20  = TBD, 936 
  lms_shake_n32_h25  = TBD, 937 
  lms_shake_n24_h5   = TBD, 938 
  lms_shake_n24_h10  = TBD, 939 
  lms_shake_n24_h15  = TBD, 940 
  lms_shake_n24_h20  = TBD, 941 
  lms_shake_n24_h25  = TBD 942 
}; 943 
 944 
/* leighton-micali signatures (lms) */ 945 
 946 
union lms_path switch (lms_algorithm_type type) { 947 
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 case lms_sha256_n24_h5: 948 
 case lms_shake_n24_h5: 949 
   bytestring24 path_n24_h5[5]; 950 
 case lms_sha256_n24_h10: 951 
case lms_shake_n24_h10: 952 
   bytestring24 path_n24_h10[10]; 953 
 case lms_sha256_n24_h15: 954 
 case lms_shake_n24_h15: 955 
   bytestring24 path_n24_h15[15]; 956 
 case lms_sha256_n24_h20: 957 
case lms_shake_n24_h20: 958 
   bytestring24 path_n24_h20[20]; 959 
 case lms_sha256_n24_h25: 960 
case lms_shake_n24_h25: 961 
   bytestring24 path_n24_h25[25]; 962 
 963 
case lms_shake_n32_h5: 964 
   bytestring32 path_n32_h5[5]; 965 
 case lms_shake_n32_h10: 966 
   bytestring32 path_n32_h10[10]; 967 
 case lms_shake_n32_h15: 968 
   bytestring32 path_n32_h15[15]; 969 
 case lms_shake_n32_h20: 970 
   bytestring32 path_n32_h20[20]; 971 
 case lms_shake_n32_h25: 972 
   bytestring32 path_n32_h25[25]; 973 
}; 974 
 975 
struct lms_key_n24 { 976 
  lmots_algorithm_type ots_alg_type; 977 
  opaque I[16]; 978 
  opaque K[24]; 979 
}; 980 
 981 
union lms_public_key switch (lms_algorithm_type type) { 982 
 case lms_sha256_n24_h5: 983 
 case lms_sha256_n24_h10: 984 
 case lms_sha256_n24_h15: 985 
 case lms_sha256_n24_h20: 986 
 case lms_sha256_n24_h25: 987 
 case lms_shake_n24_h5: 988 
 case lms_shake_n24_h10: 989 
 case lms_shake_n24_h15: 990 
 case lms_shake_n24_h20: 991 
 case lms_shake_n24_h25: 992 
      lms_key_n24 z_n24; 993 
 994 
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case lms_shake_n32_h5: 995 
 case lms_shake_n32_h10: 996 
 case lms_shake_n32_h15: 997 
 case lms_shake_n32_h20: 998 
 case lms_shake_n32_h25: 999 
      lms_key_n32 z_n32; 1000 
}; 1001 

  1002 
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Appendix B—XMSS XDR Syntax Additions 1003 

In order to support the XMSS parameter sets defined in Sections 5.2 through 5.4, the XDR 1004 
syntax in Appendices A, B, and C of [1] is extended as follows. 1005 

B.1 WOTS+ 1006 

/* ots_algorithm_type identifies a particular 1007 
   signature algorithm */ 1008 
 1009 
enum ots_algorithm_type { 1010 
  wotsp-sha2_192     = TBD, 1011 
  wotsp-shake256_256 = TBD, 1012 
  wotsp-shake256_192 = TBD, 1013 
}; 1014 

 1015 
/* Byte strings */ 1016 
 1017 
typedef opaque bytestring24[24]; 1018 
 1019 
union ots_signature switch (ots_algorithm_type type) { 1020 
 1021 
  case wotsp-sha2_192: 1022 
  case wotsp-shake256_192: 1023 
    bytestring24 ots_sig_n24_len51[51]; 1024 
 1025 
  case wotsp-shake256_256: 1026 
    bytestring32 ots_sig_n32_len67[67]; 1027 
}; 1028 
 1029 
union ots_pubkey switch (ots_algorithm_type type) { 1030 
  case wotsp-sha2_192: 1031 
  case wotsp-shake256_192: 1032 
    bytestring24 ots_pubk_n24_len51[51]; 1033 
 1034 
  case wotsp-shake256_256: 1035 
    bytestring32 ots_pubk_n32_len67[67]; 1036 
}; 1037 

B.2 XMSS 1038 

/* Definition of parameter sets */ 1039 
 1040 
enum xmss_algorithm_type { 1041 
  xmss-sha2_10_192      = TBD, 1042 
  xmss-sha2_16_192      = TBD, 1043 
  xmss-sha2_20_192      = TBD, 1044 
 1045 
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  xmss-shake256_10_256  = TBD, 1046 
  xmss-shake256_16_256  = TBD, 1047 
  xmss-shake256_20_256  = TBD, 1048 
 1049 
  xmss-shake256_10_192  = TBD, 1050 
  xmss-shake256_16_192  = TBD, 1051 
  xmss-shake256_20_192  = TBD, 1052 
}; 1053 
 1054 
/* Authentication path types */ 1055 
 1056 
union xmss_path switch (xmss_algorithm_type type) { 1057 
  case xmss-sha2_10_192: 1058 
  case xmss-shake256_10_192: 1059 
    bytestring24 path_n24_t10[10]; 1060 
 1061 
  case xmss-shake256_10_256: 1062 
    bytestring32 path_n32_t10[10]; 1063 
 1064 
  case xmss-sha2_16_192: 1065 
  case xmss-shake256_16_192: 1066 
    bytestring24 path_n24_t16[16]; 1067 
 1068 
  case xmss-shake256_16_256: 1069 
    bytestring32 path_n32_t16[16]; 1070 
 1071 
  case xmss-sha2_20_192: 1072 
  case xmss-shake256_20_192: 1073 
    bytestring24 path_n24_t20[20]; 1074 
 1075 
  case xmss-shake256_20_256: 1076 
    bytestring32 path_n32_t20[20]; 1077 
}; 1078 
 1079 
/* Types for XMSS random strings */ 1080 
 1081 
union random_string_xmss switch (xmss_algorithm_type type) { 1082 
  case xmss-sha2_10_192: 1083 
  case xmss-sha2_16_192: 1084 
  case xmss-sha2_20_192: 1085 
  case xmss-shake256_10_192: 1086 
  case xmss-shake256_16_192: 1087 
  case xmss-shake256_20_192: 1088 
    bytestring24 rand_n24; 1089 
 1090 
  case xmss-shake256_10_256: 1091 
  case xmss-shake256_16_256: 1092 
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  case xmss-shake256_20_256: 1093 
    bytestring32 rand_n32; 1094 
}; 1095 
 1096 
/* Corresponding WOTS+ type for given XMSS type */ 1097 
 1098 
union xmss_ots_signature switch (xmss_algorithm_type type) { 1099 
  case xmss-sha2_10_192: 1100 
  case xmss-sha2_16_192: 1101 
  case xmss-sha2_20_192: 1102 
    wotsp-sha2_192; 1103 
 1104 
  case xmss-shake256_10_256: 1105 
  case xmss-shake256_16_256: 1106 
  case xmss-shake256_20_256: 1107 
    wotsp-shake256_256; 1108 
 1109 
  case xmss-shake256_10_192: 1110 
  case xmss-shake256_16_192: 1111 
  case xmss-shake256_20_192: 1112 
    wotsp-shake256_192; 1113 
}; 1114 
 1115 
/* Types for bitmask seed */ 1116 
 1117 
union seed switch (xmss_algorithm_type type) { 1118 
  case xmss-sha2_10_192: 1119 
  case xmss-sha2_16_192: 1120 
  case xmss-sha2_20_192: 1121 
  case xmss-shake256_10_192: 1122 
  case xmss-shake256_16_192: 1123 
  case xmss-shake256_20_192: 1124 
    bytestring24 seed_n24; 1125 
 1126 
  case xmss-shake256_10_256: 1127 
  case xmss-shake256_16_256: 1128 
  case xmss-shake256_20_256: 1129 
    bytestring32 seed_n32; 1130 
}; 1131 
 1132 
/* Types for XMSS root node */ 1133 
 1134 
union xmss_root switch (xmss_algorithm_type type) { 1135 
  case xmss-sha2_10_192: 1136 
  case xmss-sha2_16_192: 1137 
  case xmss-sha2_20_192: 1138 
  case xmss-shake256_10_192: 1139 
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  case xmss-shake256_16_192: 1140 
  case xmss-shake256_20_192: 1141 
    bytestring24 root_n24; 1142 
 1143 
  case xmss-shake256_10_256: 1144 
  case xmss-shake256_16_256: 1145 
  case xmss-shake256_20_256: 1146 
    bytestring32 root_n32; 1147 
}; 1148 

B.3 XMSSMT 1149 

/* Definition of parameter sets */ 1150 
 1151 
enum xmssmt_algorithm_type { 1152 
 1153 
  xmssmt-sha2_20/2_192      = TBD, 1154 
  xmssmt-sha2_20/4_192      = TBD, 1155 
  xmssmt-sha2_40/2_192      = TBD, 1156 
  xmssmt-sha2_40/4_192      = TBD, 1157 
  xmssmt-sha2_40/8_192      = TBD, 1158 
  xmssmt-sha2_60/3_192      = TBD, 1159 
  xmssmt-sha2_60/6_192      = TBD, 1160 
  xmssmt-sha2_60/12_192     = TBD, 1161 
 1162 
  xmssmt-shake256_20/2_256  = TBD, 1163 
  xmssmt-shake256_20/4_256  = TBD, 1164 
  xmssmt-shake256_40/2_256  = TBD, 1165 
  xmssmt-shake256_40/4_256  = TBD, 1166 
  xmssmt-shake256_40/8_256  = TBD, 1167 
  xmssmt-shake256_60/3_256  = TBD, 1168 
  xmssmt-shake256_60/6_256  = TBD, 1169 
  xmssmt-shake256_60/12_256 = TBD, 1170 
 1171 
  xmssmt-shake256_20/2_192  = TBD, 1172 
  xmssmt-shake256_20/4_192  = TBD, 1173 
  xmssmt-shake256_40/2_192  = TBD, 1174 
  xmssmt-shake256_40/4_192  = TBD, 1175 
  xmssmt-shake256_40/8_192  = TBD, 1176 
  xmssmt-shake256_60/3_192  = TBD, 1177 
  xmssmt-shake256_60/6_192  = TBD, 1178 
  xmssmt-shake256_60/12_192 = TBD, 1179 
}; 1180 
 1181 
/* Type for XMSS^MT key pair index */ 1182 
/* Depends solely on h */ 1183 
 1184 
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union idx_sig_xmssmt switch (xmss_algorithm_type type) { 1185 
  case xmssmt-sha2_20/2_192: 1186 
  case xmssmt-sha2_20/4_192: 1187 
  case xmssmt-shake256_20/2_256: 1188 
  case xmssmt-shake256_20/4_256: 1189 
  case xmssmt-shake256_20/2_192: 1190 
  case xmssmt-shake256_20/4_192: 1191 
    bytestring3 idx3; 1192 
 1193 
  case xmssmt-sha2_40/2_192: 1194 
  case xmssmt-sha2_40/4_192: 1195 
  case xmssmt-sha2_40/8_192: 1196 
  case xmssmt-shake256_40/2_256: 1197 
  case xmssmt-shake256_40/4_256: 1198 
  case xmssmt-shake256_40/8_256: 1199 
  case xmssmt-shake256_40/2_192: 1200 
  case xmssmt-shake256_40/4_192: 1201 
  case xmssmt-shake256_40/8_192: 1202 
    bytestring5 idx5; 1203 
 1204 
  case xmssmt-sha2_60/3_192: 1205 
  case xmssmt-sha2_60/6_192: 1206 
  case xmssmt-sha2_60/12_192: 1207 
  case xmssmt-shake256_60/3_256: 1208 
  case xmssmt-shake256_60/6_256: 1209 
  case xmssmt-shake256_60/12_256: 1210 
  case xmssmt-shake256_60/3_192: 1211 
  case xmssmt-shake256_60/6_192: 1212 
  case xmssmt-shake256_60/12_192: 1213 
    bytestring8 idx8; 1214 
}; 1215 
 1216 
union random_string_xmssmt switch (xmssmt_algorithm_type type) { 1217 
  case xmssmt-sha2_20/2_192: 1218 
  case xmssmt-sha2_20/4_192: 1219 
  case xmssmt-sha2_40/2_192: 1220 
  case xmssmt-sha2_40/4_192: 1221 
  case xmssmt-sha2_40/8_192: 1222 
  case xmssmt-sha2_60/3_192: 1223 
  case xmssmt-sha2_60/6_192: 1224 
  case xmssmt-sha2_60/12_192: 1225 
  case xmssmt-shake256_20/2_192: 1226 
  case xmssmt-shake256_20/4_192: 1227 
  case xmssmt-shake256_40/2_192: 1228 
  case xmssmt-shake256_40/4_192: 1229 
  case xmssmt-shake256_40/8_192: 1230 
  case xmssmt-shake256_60/3_192: 1231 
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  case xmssmt-shake256_60/6_192: 1232 
  case xmssmt-shake256_60/12_192: 1233 
    bytestring24 rand_n24; 1234 
 1235 
  case xmssmt-shake256_20/2_256: 1236 
  case xmssmt-shake256_20/4_256: 1237 
  case xmssmt-shake256_40/2_256: 1238 
  case xmssmt-shake256_40/4_256: 1239 
  case xmssmt-shake256_40/8_256: 1240 
  case xmssmt-shake256_60/3_256: 1241 
  case xmssmt-shake256_60/6_256: 1242 
  case xmssmt-shake256_60/12_256: 1243 
    bytestring32 rand_n32; 1244 
}; 1245 
 1246 
/* Type for reduced XMSS signatures */ 1247 
 1248 
union xmss_reduced (xmss_algorithm_type type) { 1249 
  case xmssmt-sha2_20/2_192: 1250 
  case xmssmt-sha2_40/4_192: 1251 
  case xmssmt-sha2_60/6_192: 1252 
  case xmssmt-shake256_20/2_192: 1253 
  case xmssmt-shake256_40/4_192: 1254 
  case xmssmt-shake256_60/6_192: 1255 
    bytestring24 xmss_reduced_n24_t61[61]; 1256 
 1257 
  case xmssmt-sha2_20/4_192: 1258 
  case xmssmt-sha2_40/8_192: 1259 
  case xmssmt-sha2_60/12_192: 1260 
  case xmssmt-shake256_20/4_192: 1261 
  case xmssmt-shake256_40/8_192: 1262 
  case xmssmt-shake256_60/12_192: 1263 
    bytestring24 xmss_reduced_n24_t56[56]; 1264 
 1265 
  case xmssmt-sha2_40/2_192: 1266 
  case xmssmt-sha2_60/3_192: 1267 
  case xmssmt-shake256_40/2_192: 1268 
  case xmssmt-shake256_60/3_192: 1269 
    bytestring24 xmss_reduced_n24_t71[71]; 1270 
 1271 
  case xmssmt-shake256_20/2_256: 1272 
  case xmssmt-shake256_40/4_256: 1273 
  case xmssmt-shake256_60/6_256: 1274 
    bytestring32 xmss_reduced_n32_t77[77]; 1275 
 1276 
  case xmssmt-shake256_20/4_256: 1277 
  case xmssmt-shake256_40/8_256: 1278 
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case xmssmt-shake256_60/12_256: 1279 
    bytestring32 xmss_reduced_n32_t72[72]; 1280 
 1281 
  case xmssmt-shake256_40/2_256: 1282 
  case xmssmt-shake256_60/3_256: 1283 
    bytestring32 xmss_reduced_n32_t87[87]; 1284 
}; 1285 
 1286 
/* xmss_reduced_array depends on d */ 1287 
 1288 
union xmss_reduced_array (xmss_algorithm_type type) { 1289 
  case xmssmt-sha2_20/2_192: 1290 
  case xmssmt-sha2_40/2_192: 1291 
  case xmssmt-shake256_20/2_256: 1292 
  case xmssmt-shake256_40/2_256: 1293 
  case xmssmt-shake256_20/2_192: 1294 
  case xmssmt-shake256_40/2_192: 1295 
    xmss_reduced xmss_red_arr_d2[2];  1296 
 1297 
  case xmssmt-sha2_60/3_192: 1298 
  case xmssmt-shake256_60/3_256: 1299 
  case xmssmt-shake256_60/3_192: 1300 
    xmss_reduced xmss_red_arr_d3[3]; 1301 
 1302 
  case xmssmt-sha2_20/4_192: 1303 
  case xmssmt-sha2_40/4_192: 1304 
  case xmssmt-shake256_20/4_256: 1305 
  case xmssmt-shake256_40/4_256: 1306 
  case xmssmt-shake256_20/4_192: 1307 
  case xmssmt-shake256_40/4_192: 1308 
    xmss_reduced xmss_red_arr_d4[4]; 1309 
 1310 
  case xmssmt-sha2_60/6_192: 1311 
  case xmssmt-shake256_60/6_256: 1312 
  case xmssmt-shake256_60/6_192: 1313 
    xmss_reduced xmss_red_arr_d6[6]; 1314 
 1315 
  case xmssmt-sha2_40/8_192: 1316 
  case xmssmt-shake256_40/8_256: 1317 
  case xmssmt-shake256_40/8_192: 1318 
    xmss_reduced xmss_red_arr_d8[8]; 1319 
 1320 
  case xmssmt-sha2_60/12_192: 1321 
  case xmssmt-shake256_60/12_256: 1322 
  case xmssmt-shake256_60/12_192: 1323 
    xmss_reduced xmss_red_arr_d12[12]; 1324 
}; 1325 
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 1326 
/* Types for bitmask seed */ 1327 
 1328 
union seed switch (xmssmt_algorithm_type type) { 1329 
  case xmssmt-sha2_20/2_192: 1330 
  case xmssmt-sha2_20/4_192: 1331 
  case xmssmt-sha2_40/2_192: 1332 
  case xmssmt-sha2_40/4_192: 1333 
  case xmssmt-sha2_40/8_192: 1334 
  case xmssmt-sha2_60/3_192: 1335 
  case xmssmt-sha2_60/6_192: 1336 
  case xmssmt-sha2_60/12_192: 1337 
  case xmssmt-shake256_20/2_192: 1338 
  case xmssmt-shake256_20/4_192: 1339 
  case xmssmt-shake256_40/2_192: 1340 
  case xmssmt-shake256_40/4_192: 1341 
  case xmssmt-shake256_40/8_192: 1342 
  case xmssmt-shake256_60/3_192: 1343 
  case xmssmt-shake256_60/6_192: 1344 
  case xmssmt-shake256_60/12_192: 1345 
    bytestring24 seed_n24; 1346 
 1347 
  case xmssmt-shake256_20/2_256: 1348 
  case xmssmt-shake256_20/4_256: 1349 
  case xmssmt-shake256_40/2_256: 1350 
  case xmssmt-shake256_40/4_256: 1351 
  case xmssmt-shake256_40/8_256: 1352 
  case xmssmt-shake256_60/3_256: 1353 
  case xmssmt-shake256_60/6_256: 1354 
  case xmssmt-shake256_60/12_256: 1355 
    bytestring32 seed_n32; 1356 
 1357 
}; 1358 
 1359 
/* Types for XMSS^MT root node */ 1360 
 1361 
union xmssmt_root switch (xmssmt_algorithm_type type) { 1362 
  case xmssmt-sha2_20/2_192: 1363 
  case xmssmt-sha2_20/4_192: 1364 
  case xmssmt-sha2_40/2_192: 1365 
  case xmssmt-sha2_40/4_192: 1366 
  case xmssmt-sha2_40/8_192: 1367 
  case xmssmt-sha2_60/3_192: 1368 
  case xmssmt-sha2_60/6_192: 1369 
  case xmssmt-sha2_60/12_192: 1370 
  case xmssmt-shake256_20/2_192: 1371 
  case xmssmt-shake256_20/4_192: 1372 
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  case xmssmt-shake256_40/2_192: 1373 
  case xmssmt-shake256_40/4_192: 1374 
  case xmssmt-shake256_40/8_192: 1375 
  case xmssmt-shake256_60/3_192: 1376 
  case xmssmt-shake256_60/6_192: 1377 
  case xmssmt-shake256_60/12_192: 1378 
    bytestring24 root_n24; 1379 
 1380 
  case xmssmt-shake256_20/2_256: 1381 
  case xmssmt-shake256_20/4_256: 1382 
  case xmssmt-shake256_40/2_256: 1383 
  case xmssmt-shake256_40/4_256: 1384 
  case xmssmt-shake256_40/8_256: 1385 
  case xmssmt-shake256_60/3_256: 1386 
  case xmssmt-shake256_60/6_256: 1387 
  case xmssmt-shake256_60/12_256: 1388 
    bytestring32 root_n32; 1389 
}; 1390 

  1391 
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Appendix C—Provable Security Analysis 1392 

This appendix briefly summarizes the formal security model and proofs of security of the LMS 1393 
and XMSS signature schemes and provides a short discussion comparing these models and 1394 
proofs. 1395 

C.1 The Random Oracle Model 1396 

In the random oracle model (ROM), there is a publicly accessible random oracle that both the 1397 
user and the adversary can send queries to and receive responses from at any time. A random 1398 
oracle H is a hypothetical, interactive black-box algorithm that obeys the following rules: 1399 

1. Every time the algorithm H receives a new input string s, it generates an output t 1400 
uniformly at random from its output space and returns the response t. The algorithm H 1401 
then records the pair (s, t) for future use. 1402 

2. If the algorithm H is ever queried in the future with some prior input s, it will always 1403 
return the same output t according to its recorded memory. 1404 

Alternatively, the random oracle H can be described as a non-interactive but exponentially large 1405 
look-up table initialized with truly random outputs t for each possible input string s. 1406 

To say that a cryptographic security proof is done in the random oracle model means that every 1407 
use of a particular function (for example, in the case here, the compression function that is used 1408 
to perform hashes) is replaced by a query to the random oracle H. This simplifies security claims 1409 
as, for example, it becomes easy to prove upper bounds on the likelihood of producing a second 1410 
preimage within a fixed number of queries to H. On the other hand, (compression) functions in 1411 
the real world are neither interactive nor have exponentially large descriptions, so they cannot 1412 
truly behave like a random oracle. 1413 

It is therefore desirable to have a cryptographic security proof that avoids using the random 1414 
oracle model. However, this often leads to less efficient cryptographic systems, or it is not yet 1415 
known how to perform a proof without appealing to the random oracle model, or both. So, as a 1416 
matter of real-world pragmatism, the ROM is commonly used. 1417 

C.2 The Quantum Random Oracle Model 1418 

The quantum random oracle model (QROM) is similar to the ROM, except it is additionally 1419 
assumed that all parties (in particular, the adversary) have quantum computers and can query the 1420 
random oracle H in superposition. (In the real world, the random oracle H is still instantiated as a 1421 
compression function or similar, as per the cryptosystem’s specification.) While this complicates 1422 
security claims as compared to the ROM, it more accurately models the power of an adversary 1423 
that has access to a large-scale quantum device for its cryptanalysis when attacking a real-world 1424 
scheme. 1425 

C.3 LMS Security Proof 1426 

In [11], the author considers a particular experiment in the random oracle model in which the 1427 
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adversary is given a series of strings with prefixes (in a randomly chosen but structured manner) 1428 
and hash targets. The attacker’s goal is to find one more string that has the same prefix and hash 1429 
target as any of its input strings. The author proves an upper bound on the adversary’s ability to 1430 
compute first or second preimages from these strings (by querying the compression function 1431 
modeled as a random oracle). 1432 

Then, the author reduces the problem of forging a signature in LMS to this stated experiment, 1433 
concluding that the same upper bounds apply to the problem of producing forgeries against 1434 
LMS. This random oracle model proof critically depends on the randomness of the prefixes used 1435 
in LMS, which means that LMS in the real world critically depends on the pseudorandomness of 1436 
the prefixes. 1437 

Further, in [15], the same proof is carried out in the QROM. 1438 

C.4 XMSS Security Proof 1439 

In [12], a security analysis for the original (academic publication) version of XMSS is given 1440 
under the following assumptions: 1441 

1. The function family {fk} used to construct Winternitz signatures is pseudorandom. This 1442 
means that if the bit string k is chosen uniformly at random, then an adversary given 1443 
black-box access to the function fk cannot distinguish this black box from a random 1444 
function within a polynomial number of queries (except with negligible probability). 1445 

2. The hash function family {hk} is second preimage-resistant. This means that if bit strings 1446 
k and m are chosen uniformly at random, then an adversary given k and m cannot 1447 
construct m' ≠ m such that hk(m') = hk(m) in polynomial time (except with negligible 1448 
probability). 1449 

The proof in [12] asserts that if both of these assumptions are true, then XMSS is existentially 1450 
unforgeable under adaptive chosen message attacks (EUF-CMA) in the standard model. 1451 

However, in the current version of XMSSMT [1], the security analysis differs somewhat. In the 1452 
standard model, [17] shows that XMSSMT is EUF-CMA. Further, [16] shows that XMSSMT is 1453 
post-quantum existentially unforgeable under adaptive chosen message attacks with respect to 1454 
the QROM. 1455 

In a little more detail, the current version of XMSS uses two types of assumptions: 1456 

1. A standard model assumption – that the hash function hk, used for the one-time 1457 
signatures and tree node computations, is post-quantum, multi-function, multi-target 1458 
preimage-resistant. 1459 

2. A (quantum) random oracle model assumption – that the pseudorandom function fk, used 1460 
to generate pseudorandom values for randomized hashing and computing bitmasks as 1461 
blinding keys, may be validly modeled as a quantum random oracle H. 1462 
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C.5 Comparison of the Security Models and Proofs of LMS and XMSS 1463 

Generally speaking, both LMS and XMSS are supported by sound security proofs under 1464 
commonly used cryptographic hardness assumptions. That is, if these cryptographic assumptions 1465 
are true, then both schemes are provably shown to be existentially unforgeable under chosen 1466 
message attack, even against an adversary that has access to a large-scale quantum computer for 1467 
use in its forgery attack. 1468 

The main difference between these schemes’ security analyses comes down to the use (and the 1469 
degree of use) of the random oracle or quantum random oracle models. Along these lines, the 1470 
difference between the (standard model/real world) cryptographic assumption that some function 1471 
family {fk} is pseudorandom and the use of the random oracle model is briefly pointed out. For a 1472 
function fk to be a pseudorandom function in the real world, it should be the case that the bit 1473 
string k used as the key to the function remains private, meaning that it is not in the view of the 1474 
adversary at any point of the security experiment. On the other hand, a random oracle H achieves 1475 
the same pseudorandomness (or even randomness) properties of a pseudorandom function fk, but 1476 
there is no key k necessarily associated with the random oracle. Indeed, all inputs to the random 1477 
oracle H may be known to all parties and, in particular, to the adversary. Therefore, using the 1478 
random oracle model clearly involves making a stronger assumption about the (limits of the) 1479 
cryptanalytic power of the adversary. 1480 

That said, a security proof is either entirely a “real world proof,” which does not use the random 1481 
oracle model, or it appeals to the random oracle methodology in some manner. The security 1482 
analysis of the current version of XMSS only uses the random oracle H when performing 1483 
randomized hashing and computing bitmasks, whereas LMS uses the random oracle H to a 1484 
greater degree (modeling the compression function as a random oracle). However, it remains the 1485 
case that both schemes in their modern form are ultimately proven secure using the ROM and 1486 
QROM. 1487 

Therefore, the cryptographic hardness assumptions made by LMS and XMSS in order to achieve 1488 
existential unforgeability under chosen message attack (EUF-CMA) may be viewed as 1489 
substantially similar and worthy of essentially equal confidence. As such, the practitioner’s 1490 
decision to deploy one scheme or the other should primarily depend on other factors, such as the 1491 
efficiency demands for a given deployment environment or the other security considerations 1492 
enumerated earlier in this document. 1493 
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