
Withdrawn Draft

Warning Notice

The attached draft document has been withdrawn, and is provided solely for historical purposes.
It has been superseded by the document identified below.

Withdrawal Date October 29, 2020

Original Release Date December 11, 2019

Superseding Document

Status Final

Series/Number NIST Special Publication (SP) 800-208

Title Recommendation for Stateful Hash-Based Signature Schemes

Publication Date October 2020

DOI https://doi.org/10.6028/NIST.SP.800-208

CSRC URL https://csrc.nist.gov/publications/detail/sp/800-208/final

Additional Information

https://doi.org/10.6028/NIST.SP.800-208
https://csrc.nist.gov/publications/detail/sp/800-208/final

Draft NIST Special Publication 800-208 1

 2

Recommendation for Stateful 3

Hash-Based Signature Schemes 4

 5

David A. Cooper 6
Daniel C. Apon 7
Quynh H. Dang 8

Michael S. Davidson 9
Morris J. Dworkin 10

Carl A. Miller 11
 12

 13

 14
This publication is available free of charge from: 15

https://doi.org/10.6028/NIST.SP.800-208-draft 16
 17

 18

 19

20

C O M P U T E R S E C U R I T Y

Draft NIST Special Publication 800-208 21

 22

Recommendation for Stateful 23

Hash-Based Signature Schemes 24

 25

David A. Cooper 26
Daniel C. Apon 27
Quynh H. Dang 28

Michael S. Davidson 29
Morris J. Dworkin 30

Carl A. Miller 31
Computer Security Division 32

Information Technology Laboratory 33
 34
 35
 36
 37

This publication is available free of charge from: 38
https://doi.org/10.6028/NIST.SP.800-208-draft 39

 40
 41

December 2019 42
 43
 44

 45
 46
 47

U.S. Department of Commerce 48
Wilbur L. Ross, Jr., Secretary 49

 50
National Institute of Standards and Technology 51

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 52

Authority 53

This publication has been developed by NIST in accordance with its statutory responsibilities under the 54
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 55
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 56
minimum requirements for federal information systems, but such standards and guidelines shall not apply 57
to national security systems without the express approval of appropriate federal officials exercising policy 58
authority over such systems. This guideline is consistent with the requirements of the Office of Management 59
and Budget (OMB) Circular A-130. 60

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 61
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 62
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 63
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 64
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 65
however, be appreciated by NIST. 66

National Institute of Standards and Technology Special Publication 800-208 67
Natl. Inst. Stand. Technol. Spec. Publ. 800-208, 54 pages (December 2019) 68

CODEN: NSPUE2 69

This publication is available free of charge from: 70
https://doi.org/10.6028/NIST.SP.800-208-draft 71

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 72
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 73
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 74
available for the purpose. 75
There may be references in this publication to other publications currently under development by NIST in accordance 76
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 77
may be used by federal agencies even before the completion of such companion publications. Thus, until each 78
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 79
planning and transition purposes, federal agencies may wish to closely follow the development of these new 80
publications by NIST. 81
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 82
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 83
https://csrc.nist.gov/publications. 84

 85
Public comment period: December 11, 2019 through February 28, 2020 86

National Institute of Standards and Technology 87
Attn: Computer Security Division, Information Technology Laboratory 88

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 89
Email: pqc-comments@nist.gov 90

All comments are subject to release under the Freedom of Information Act (FOIA). 91

https://csrc.nist.gov/publications
mailto:pqc-comments@nist.gov

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

ii

Reports on Computer Systems Technology 92

The Information Technology Laboratory (ITL) at the National Institute of Standards and 93
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 94
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 95
methods, reference data, proof of concept implementations, and technical analyses to advance the 96
development and productive use of information technology. ITL’s responsibilities include the 97
development of management, administrative, technical, and physical standards and guidelines for 98
the cost-effective security and privacy of other than national security-related information in federal 99
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and 100
outreach efforts in information system security, and its collaborative activities with industry, 101
government, and academic organizations. 102

Abstract 103

This recommendation specifies two algorithms that can be used to generate a digital signature, 104
both of which are stateful hash-based signature schemes: the Leighton-Micali Signature (LMS) 105
system and the eXtended Merkle Signature Scheme (XMSS), along with their multi-tree variants, 106
the Hierarchical Signature System (HSS) and multi-tree XMSS (XMSSMT). 107

 Keywords 108

cryptography; digital signatures; hash-based signatures; public-key cryptography. 109

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

iii

Document Conventions 110

The terms “shall” and “shall not” indicate requirements to be followed strictly in order to 111
conform to the publication and from which no deviation is permitted. 112

The terms “should” and “should not” indicate that among several possibilities one is 113
recommended as particularly suitable, without mentioning or excluding others, or that a certain 114
course of action is preferred but not necessarily required, or that (in the negative form) a certain 115
possibility or course of action is discouraged but not prohibited. 116

The terms “may” and “need not” indicate a course of action permissible within the limits of the 117
publication. 118

The terms “can” and “cannot” indicate a possibility and capability, whether material, physical or 119
causal. 120

Conformance Testing 121

Conformance testing for implementations of the functions that are specified in this publication 122
will be conducted within the framework of the Cryptographic Algorithm Validation Program 123
(CAVP) and the Cryptographic Module Validation Program (CMVP). The requirements on these 124
implementations are indicated by the word “shall.” Some of these requirements may be out-of-125
scope for CAVP or CMVP validation testing, and thus are the responsibility of entities using, 126
implementing, installing, or configuring applications that incorporate this Recommendation. 127

Note to Reviewers 128

Sections 4 and 5 specify the parameter sets that are approved by this recommendation for LMS, 129
HSS, XMSS, and XMSSMT. Given the large number of parameter sets specified in these two 130
sections, NIST would like feedback on whether there would be a benefit in reducing the number 131
of parameter sets that are approved, and if so, which ones should be removed. 132

While this recommendation does not allow cryptographic modules to export private keying 133
material, Section 7 describes a way in which a single key pair can be created with the one-time 134
keys being spread across multiple cryptographic modules. The method described in Section 7 135
involves creating a 2-level HSS or XMSSMT tree where the one-time keys associated with each of 136
the bottom-level trees can be created on a different cryptographic module. 137

NIST believes that it would be possible to create a one-level XMSS or LMS tree in which the 138
one-time keys are not all created and stored on the same cryptographic module. Key generation 139
would be more complicated to implement, though, as would be the steps that end users would 140
have to perform during the key generation process. However, a one-level tree would result in 141
shorter signatures. 142

NIST would like feedback on whether there is a need to be able to create one-level XMSS or 143
LMS keys in which the one-time keys are not all created and stored on the same cryptographic 144
module even though such an option would be more complicated to implement and use than the 145
two-level option that is already described in the draft. 146

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

iv

Call for Patent Claims 147

This public review includes a call for information on essential patent claims (claims whose use 148
would be required for compliance with the guidance or requirements in this Information 149
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 150
directly stated in this ITL Publication or by reference to another publication. This call also 151
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 152
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 153

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 154
in written or electronic form, either: 155

a) assurance in the form of a general disclaimer to the effect that such party does not hold and 156
does not currently intend holding any essential patent claim(s); or 157

b) assurance that a license to such essential patent claim(s) will be made available to applicants 158
desiring to utilize the license for the purpose of complying with the guidance or requirements 159
in this ITL draft publication either: 160

i) under reasonable terms and conditions that are demonstrably free of any unfair 161
discrimination; or 162

ii) without compensation and under reasonable terms and conditions that are demonstrably 163
free of any unfair discrimination. 164

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 165
on its behalf) will include in any documents transferring ownership of patents subject to the 166
assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 167
the transferee, and that the transferee will similarly include appropriate provisions in the event of 168
future transfers with the goal of binding each successor-in-interest. 169

The assurance shall also indicate that it is intended to be binding on successors-in-interest 170
regardless of whether such provisions are included in the relevant transfer documents. 171

Such statements should be addressed to: pqc-comments@nist.gov 172

mailto:pqc-comments@nist.gov
mailto:pqc-comments@nist.gov

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

v

 173
Table of Contents 174

1 Introduction .. 1 175
1.1 Intended Applications for Stateful HBS Schemes ... 1 176

1.2 The Importance of the Proper Maintenance of State 1 177
1.3 Outline of Text... 2 178

2 Glossary of Terms, Acronyms, and Mathematical Symbols 4 179
2.1 Terms and Definitions ... 4 180

2.2 Acronyms .. 4 181
2.3 Mathematical Symbols .. 5 182

3 General Discussion .. 6 183
3.1 One-Time Signature Systems ... 6 184

3.2 Merkle Trees ... 7 185
3.3 Two-Level Trees ... 8 186

3.4 Prefixes and Bitmasks .. 9 187
4 Leighton-Micali Signatures (LMS) Parameter Sets ... 10 188

4.1 LMS with SHA-256 .. 10 189
4.2 LMS with SHA-256/192 ... 11 190

4.3 LMS with SHAKE256/256 ... 12 191
4.4 LMS with SHAKE256/192 ... 12 192

5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets 14 193
5.1 XMSS and XMSSMT with SHA-256 ... 14 194

5.2 XMSS and XMSSMT with SHA-256/192 .. 15 195
5.3 XMSS and XMSSMT with SHAKE256/256 ... 16 196

5.4 XMSS and XMSSMT with SHAKE256/192 ... 17 197
6 Random Number Generation for Keys and Signatures 19 198

6.1 LMS and HSS Random Number Generation Requirements 19 199
6.2 XMSS and XMSSMT Random Number Generation Requirements 19 200

7 Distributed Multi-Tree Hash-Based Signatures ... 20 201
7.1 HSS .. 20 202

7.2 XMSSMT .. 20 203
7.2.1 Modified XMSS Key Generation and Signature Algorithms 21 204

7.2.2 XMSSMT External Device Operations ... 22 205

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

vi

8 Conformance .. 24 206
8.1 Key Generation and Signature Generation ... 24 207

8.2 Signature Verification .. 24 208
9 Security Considerations .. 25 209

9.1 One-Time Signature Key Reuse ... 25 210
9.2 Fault Injection Resistance ... 25 211

9.3 Hash Collisions ... 26 212
References ... 27 213

 214
List of Appendices 215

Appendix A— LMS XDR Syntax Additions ... 30 216
Appendix B— XMSS XDR Syntax Additions ... 34 217

B.1 WOTS+ .. 34 218
B.2 XMSS .. 34 219

B.3 XMSSMT .. 37 220
Appendix C— Provable Security Analysis .. 43 221

C.1 The Random Oracle Model ... 43 222
C.2 The Quantum Random Oracle Model ... 43 223

C.3 LMS Security Proof ... 43 224
C.4 XMSS Security Proof .. 44 225

C.5 Comparison of the Security Models and Proofs of LMS and XMSS.............. 45 226
 227

List of Figures 228

Figure 1: A Sample Winternitz chain ... 6 229

Figure 2: A Sample Winternitz Signature .. 7 230
Figure 3: A Merkle Hash Tree ... 7 231

Figure 4: A Two-Level Merkle Tree ... 8 232
Figure 5: XMSS Hash Computation with Prefix and Bitmask .. 9 233

 234

List of Tables 235

Table 1: LM-OTS parameter sets for SHA-256 ... 10 236
Table 2: LMS parameter sets for SHA-256 ... 11 237

file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866254
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866254
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866254
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866257
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866257
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866257
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866258
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866258
file://Users/cooper/Documents/PQC/HBS/NIST%20SP%20on%20stateful%20HBS.docx#_Toc23866258

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

vii

Table 3: LM-OTS parameter sets for SHA-256/192 .. 11 238
Table 4: LMS parameter sets for SHA-256/192 .. 11 239

Table 5: LM-OTS parameter sets for SHAKE256/256 ... 12 240
Table 6: LMS parameter sets for SHAKE256/256 ... 12 241

Table 7: LM-OTS parameter sets for SHAKE256/192 ... 12 242
Table 8: LMS parameter sets for SHAKE256/192 ... 13 243

Table 9: WOTS+ parameter sets ... 14 244
Table 10: XMSS parameter sets for SHA-256 ... 14 245

Table 11: XMSSMT parameter sets for SHA-256 ... 15 246
Table 12: XMSS parameter sets for SHA-256/192 .. 15 247

Table 13: XMSSMT parameter sets for SHA-256/192 .. 16 248
Table 14: XMSS parameter sets for SHAKE256/256 .. 16 249

Table 15: XMSSMT parameter sets for SHAKE256/256 ... 17 250
Table 16: XMSS parameter sets for SHAKE256/192 .. 17 251

Table 17: XMSSMT parameter sets for SHAKE256/192 ... 18 252

253

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

1

1 Introduction 254

This publication supplements FIPS 186-4 [4] by specifying two additional digital signature 255
schemes, both of which are stateful hash-based signature (HBS) schemes: the Leighton-Micali 256
Signature (LMS) system [2] and the eXtended Merkle Signature Scheme (XMSS) [1], along with 257
their multi-tree variants, the Hierarchical Signature System (HSS) and multi-tree XMSS 258
(XMSSMT). All of the digital signature schemes specified in FIPS 186-4 will be broken if large-259
scale quantum computers are ever built. The security of the stateful HBS schemes in this 260
publication, however, only depends on the security of the underlying hash functions—in 261
particular, the infeasibility of finding a preimage or a second preimage—and it is believed that 262
the security of hash functions will not be broken by the development of large-scale quantum 263
computers [20]. 264

This recommendation specifies profiles of LMS, HSS, XMSS, and XMSSMT that are appropriate 265
for use by the U.S. Federal Government. This profile approves the use of some but not all of the 266
parameter sets defined in [1] and [2] and also defines some new parameter sets. The approved 267
parameter sets use either SHA-256 or SHAKE256 with 192- or 256-bit outputs. It requires that 268
key and signature generation be performed in hardware cryptographic modules that do not allow 269
secret keying material to be exported. 270

1.1 Intended Applications for Stateful HBS Schemes 271

NIST is in the process of developing standards for post-quantum secure digital signature 272
schemes [7] that can be used as replacements for the schemes that are specified in [4]. Stateful 273
HBS schemes are not suitable for general use because they require careful state management that 274
is often difficult to assure, as summarized in Section 1.2 and described in detail in [8]. 275

Instead, stateful HBS schemes are primarily intended for applications with the following 276
characteristics: 1) it is necessary to implement a digital signature scheme in the near future; 2) 277
the implementation will have a long lifetime; and 3) it would not be practical to transition to a 278
different digital signature scheme once the implementation has been deployed. 279

An application that may fit this profile is firmware updates for constrained devices. Some 280
constrained devices that will be deployed in the near future will be in use for decades. These 281
devices will need to have a secure mechanism for receiving firmware updates, and it may not be 282
practical to change the code for verifying signatures on updates once the devices have been 283
deployed. 284

1.2 The Importance of the Proper Maintenance of State 285

In a stateful HBS scheme, a key pair consists of a large set of one-time signature (OTS) key 286
pairs. An HBS key pair may contain thousands, millions, or billions of OTS keys, and the signer 287
needs to ensure that no individual OTS key is ever used to sign more than one message. If an 288
attacker were able to obtain digital signatures for two different messages created using the same 289
OTS key, then it would become computationally feasible for that attacker to forge signatures on 290
arbitrary messages [13]. Therefore, as described in [8], when a stateful HBS scheme is 291
implemented, extreme care needs to be taken in order to ensure that no OTS key is ever reused. 292

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

2

In order to obtain assurance that OTS keys are not reused, the signing process should be 293
performed in a highly controlled environment. As described in [8], there are many ways in which 294
seemingly routine operations could lead to the risk of one-time key reuse. The conformance 295
requirements imposed in Section 8.1 on cryptographic modules that implement stateful HBS 296
schemes are intended to help prevent one-time key reuse. 297

1.3 Outline of Text 298

The remainder of this document is divided into the following sections and appendices: 299

• Section 2, Glossary of Terms, Acronyms, and Mathematical Symbols, defines the terms, 300
acronyms, and mathematical symbols used in this document. This section is informative. 301

• Section 3, General Discussion, gives a conceptual explanation of the elements used in 302
stateful hash-based signature schemes (including hash chains, Merkle trees, and hash 303
prefixes). This section may be used as either a high-level overview of stateful hash-based 304
signature schemes or as an introduction to the detailed descriptions of LMS and XMSS 305
provided in [1] and [2]. This section is informative. 306

• Section 4, Leighton-Micali Signatures (LMS) Parameter Sets, describes the parameter 307
sets that are approved for use by this Special Publication with LMS and HSS. 308

• Section 5, eXtended Merkle Signature Scheme (XMSS) Parameter Sets, describes the 309
parameter sets that are approved for use by this Special Publication with XMSS and 310
XMSSMT. 311

• Section 6, Random Number Generation for Keys and Signatures, states how the random 312
data used in XMSS and LMS must be generated. 313

• Section 7, Distributed Multi-Tree Hash-Based Signatures, provides recommendations for 314
distributing the implementation of a single HSS or XMSSMT instance over multiple 315
cryptographic modules. 316

• Section 8, Conformance, specifies requirements for cryptographic algorithm and module 317
validation that are specific to modules that implement the algorithms in this document. 318

• Section 9, Security Considerations, enumerates security risks in various scenarios for 319
stateful HBS schemes (with a focus on the problem of key reuse) and describes steps that 320
should be taken to maximize the security of an implementation. This section is 321
informative. 322

• Appendix A, LMS XDR Syntax Additions, describes additions that are required for the 323
External Data Representation (XDR) syntax for LMS in order to support the new 324
parameter sets specified in this document. 325

• Appendix B, XMSS XDR Syntax Additions, describes additions that are required for the 326
XDR syntax for XMSS and XMSSMT in order to support the new parameter sets specified 327
in this document. 328

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

3

• Appendix C, Provable Security Analysis, provides information about the security proofs 329
that are available for LMS and XMSS. This section is informative. 330

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

4

2 Glossary of Terms, Acronyms, and Mathematical Symbols 331

2.1 Terms and Definitions 332

approved FIPS-approved or NIST-recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation, or 2)
adopted in a FIPS or NIST Recommendation and specified either (a)
in an appendix to the FIPS or NIST Recommendation, or (b) in a
document referenced by the FIPS or NIST Recommendation.

 333
2.2 Acronyms 334

Selected acronyms and abbreviations used in this publication are defined below. 335

EEPROM Electronically erasable programmable read-only memory

EUF-CMA Existential unforgeability under adaptive chosen message attacks

FIPS Federal Information Processing Standard

HBS Hash-based signature

HSS Hierarchical Signature Scheme

IRTF Internet Research Task Force

LM-OTS Leighton-Micali One-Time Signature

LMS Leighton-Micali signature

NIST National Institute of Standards and Technology

OTS One-time signature

QROM Quantum random oracle model

RAM Random access memory

RFC Request for Comments

ROM Random oracle model

SHA Secure Hash Algorithm

SHAKE Secure Hash Algorithm KECCAK

SP Special publication

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

5

VM Virtual machine

WOTS+ Winternitz One-Time Signature Plus

XDR External Data Representation

XMSS eXtended Merkle Signature Scheme

XMSSMT Multi-tree XMSS
 336
2.3 Mathematical Symbols 337

SHA-256(M) SHA-256 hash function as specified in [3]

SHA-256/192(M) T192(SHA-256(M)), the most significant (i.e., leftmost) 192 bits of the
SHA-256 hash of M

SHAKE256/256(M) SHAKE256(M, 256), where SHAKE256 is specified in Section 6.2 of
[5]

SHAKE256/192(M) SHAKE256(M, 192), where SHAKE256 is specified in Section 6.2 of
[5]

T192(X) A truncation function that outputs the most significant (i.e., leftmost)
192 bits of the input bit string X

 338

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

6

3 General Discussion 339

At a high level, XMSS and LMS are very similar. They each consist of two components—a one-340
time signature (OTS) scheme and a method for creating a single, long-term public key from a 341
large set of OTS public keys. A brief explanation of OTS schemes and the method for creating a 342
long-term public key from a large set of OTS public keys can be found in Sections 3 and 4 of 343
[14]. 344

3.1 One-Time Signature Systems 345

Both LMS and XMSS make use of variants of the Winternitz signature scheme. In the Winternitz 346
signature scheme, the message to be signed is hashed to create a digest; the digest is encoded as a 347
base b number; and then each digit of the digest is signed using a hash chain, as follows. 348

A hash chain is created by first randomly generating a secret value, x, which is the private key. 349
The size of x should generally correspond to the targeted strength of the scheme. So for the 350
parameter sets approved by this recommendation, x will be either 192 or 256 bits in length. The 351
public key, pub, is then created by applying the hash function, H, to the secret b – 1 times, 352
𝐻𝐻𝑏𝑏−1(𝑥𝑥). Figure 1 shows an example of a hash chain for the kth digit of a digest where b is 4. 353

The kth digit of the digest, Nk, is signed by applying the hash function, H, to the private key Nk 354
times, 𝐻𝐻𝑁𝑁𝑘𝑘(𝑥𝑥𝑘𝑘). In Figure 1, Nk is 1, and so the signature is 𝑠𝑠𝑘𝑘 = 𝐻𝐻1(𝑥𝑥𝑘𝑘) = 𝐻𝐻(𝑥𝑥𝑘𝑘). The 355
signature can be verified by checking that 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻𝑏𝑏−1−𝑁𝑁𝑘𝑘(𝑠𝑠𝑘𝑘). So in Figure 1, the signature 356
can be verified by checking that 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻4−1−1(𝑠𝑠𝑘𝑘) = 𝐻𝐻2(𝑠𝑠𝑘𝑘) = 𝐻𝐻�𝐻𝐻(𝑠𝑠𝑘𝑘)�. 357

 358

As noted in [14], simply signing the individual digits of the digest is not sufficient as an attacker 359
would be able to generate valid signatures for other message digests. For example, given 𝑠𝑠𝑘𝑘 =360
𝐻𝐻(𝑥𝑥𝑘𝑘), as in Figure 1, an attacker would be able to generate a signature for a message digest with 361
a kth digit of 2 by applying H to 𝑠𝑠𝑘𝑘 once or to a message digest with a kth digit of 3 by applying 362
H to 𝑠𝑠𝑘𝑘 twice. An attacker could not, however, generate a signature for a message digest with a 363
kth digit of 0 as this would require finding some value y such that 𝐻𝐻(𝑦𝑦) = 𝑠𝑠𝑘𝑘 , which would not 364
be feasible as long as H is preimage resistant. 365

In order to protect against the above attack, the Winternitz signature scheme computes a 366
checksum of the message digest and signs the checksum along with the digest. For an n-digit 367
message digest, the checksum is computed as ∑ (𝑝𝑝 − 1− 𝑁𝑁𝑘𝑘)𝑛𝑛−1

𝑘𝑘=0 . The checksum is designed so 368
that the value is non-negative and any increase in a digit in the message digest will result in the 369
checksum becoming smaller. This prevents an attacker from creating an effective forgery from a 370
message signature since the attacker can only increase values within the message digest and 371
cannot decrease values within the checksum. 372

𝑥𝑥𝑘𝑘 H H H 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�� 𝑠𝑠𝑘𝑘 = 𝐻𝐻(𝑥𝑥𝑘𝑘) 𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�

Figure 1: A sample Winternitz chain

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

7

Figure 2 shows an example of a signature for a 32-bit message digest using b = 16. The digest is 373
written as eight hexadecimal digits, and a separate hash chain is used to sign each digit with each 374
hash chain having its own private key.1 375

Digest Checksum

Digest 6 3 F 1 E 9 0 B 3 D

Private
Key

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Signature H6(x0) H3(x1) H15(x2) H(x3) H14(x4) H9(x5) x6 H11(x7) H3(x8) H13(x9)

Public
Key

H15(x0) H15(x1) H15(x2) H15(x3) H15(x4) H15(x5) H15(x6) H15(x7) H15(x8) H15(x9)

Figure 2: A sample Winternitz signature 376

3.2 Merkle Trees 377

While a single, long-term public key could be created from a large set of OTS public keys by 378
simply concatenating the keys together, the resulting public key would be unacceptably large. 379
XMSS and LMS instead use Merkle hash trees [18], which allow for the long-term public key to 380
be very short in exchange for requiring a small amount of additional information to be provided 381
with each OTS key. To create a hash tree, the OTS public keys are hashed once to form the 382
leaves of the tree, and these hashes are then hashed together in pairs to form the next level up. 383
Those hash values are then hashed together in pairs, the resulting hash values are hashed 384
together, and so on until all of the public keys have been used to generate a single hash value, 385
which will be used as the long-term public key. 386

 387

Figure 3: A Merkle Hash Tree 388

Figure 3 depicts a hash tree containing eight OTS public keys. The eight keys are each hashed to 389
form the leaves of the tree, and the eight leaf values are hashed in pairs to create the next level up 390
in the tree. These four hash values are again hashed in pairs to create h0−3 and h4−7, which are 391

1 If SHA-256 were used as the hash function, then the message digest would be encoded as 64 hexadecimal digits, and the
checksum would be encoded as three hexadecimal digits.

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

8

hashed together to create the long-term public key, h0−7. In order for an entity that had already 392
received h0−7 in a secure manner to verify a message signed using k2, the signer would need to 393
provide h3, h01, and h4−7 in addition to k2. The verifier would compute ℎ2′ = 𝐻𝐻(𝑘𝑘2), ℎ23′ =394
𝐻𝐻(ℎ2′ ||ℎ3), ℎ0−3′ = 𝐻𝐻(ℎ01||ℎ23′), and ℎ0−7′ = 𝐻𝐻(ℎ0−3′ ||ℎ4−7). If ℎ0−7′ is the same as h0−7, then k2 395
may be used to verify the message signature. 396

3.3 Two-Level Trees 397

Both [1] and [2] define single tree as well as multi-tree variants of their signature schemes. In an 398
instance that involves two levels of trees, as shown in Figure 4, the OTS keys that form the 399
leaves of the top-level tree sign the roots of the trees at the bottom level, and the OTS keys that 400
form the leaves of the bottom-level trees are used to sign the messages. The root of the top-level 401
tree is the public key for the signature scheme.2 402

As described in Section 7, the use of two levels of trees can make it easier to distribute OTS keys 403
across multiple cryptographic modules in order to protect against private key loss. A set of OTS 404
keys can be created in one cryptographic module, and the root of the Merkle tree formed from 405
these keys can be published as the public key for the signature scheme. OTS keys can then be 406
created on multiple other cryptographic modules with a separate Merkle tree being created for 407
the OTS keys of each of the other cryptographic modules, and a different OTS key from the first 408
cryptographic module can be used to sign each of the roots of the other cryptographic modules. 409

While there are benefits in the use of a two-level tree, it results in larger signatures and slower 410
signature verification as each message signature will need to include two OTS signatures. For 411
example, if a message were signed using OTS key k1,6 in Figure 4, the signature would need to 412

2 While this section only describes two-level trees, HSS allows for up to eight levels of trees and XMSSMT allows for up to 12
levels of trees.

k0,0 k0,1 k0,2 k0,3

r0

r1,0

k1,0 k1,1 k1,2 k1,3

r1,1

k1,4 k1,5 k1,6 k1,7

r1,2

k1,8 k1,9 k1,10 k1,11

r1,3

k1,12 k1,13 k1,14 k1,15

Figure 4: A two-Level Merkle tree

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

9

include the signature on r1,1 using k0,1 in addition to the signature on the message using k1,6. 413

3.4 Prefixes and Bitmasks 414

In order to strengthen the security of the schemes in both XMSS and LMS whenever a value is 415
hashed, a prefix is prepended to the value that is hashed. For example, when computing the 416
public key for a Winternitz signature from the private key in LMS as described in Section 3.1, 417
rather than just computing 𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻3(𝑥𝑥𝑘𝑘) = 𝐻𝐻 �𝐻𝐻�𝐻𝐻(𝑥𝑥𝑘𝑘)�� the public key is computed as 418

𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘 = 𝐻𝐻 �𝑝𝑝3 || 𝐻𝐻�𝑝𝑝2 || 𝐻𝐻(𝑝𝑝1 || 𝑥𝑥𝑘𝑘)��, where p1, p2, and p3 are each different values. The 419
prefix is formed by concatenating together various pieces of information, including a unique 420
identifier for the long-term public key and an indicator of the purpose of the hash (e.g., 421
Winternitz chain or Merkle tree). If the hash is part of a Winternitz chain, then the prefix also 422
includes the number of the OTS key, which digit of the digest or checksum is being signed, and 423
where in the chain the hash appears. The goal is to ensure that every single hash that is computed 424
within the LMS scheme uses a different prefix. 425

XMSS generates its prefixes in a similar way. The information described above is used to form 426
an address, which uniquely identifies where a particular hash invocation occurs within the 427
scheme. This address is then hashed along with a unique identifier for the long-term public key 428
(SEED) to create the prefix. 429

Unlike LMS, XMSS also uses bitmasks. In addition to creating the prefix, a slightly different 430
address is also hashed along with the SEED to create a bitmask. The bitmask is then exclusive-431
ORed with the input before the input is hashed along with the prefix. Figure 5 illustrates an 432
example of this computation. In [1], the hash function is referred to as H, H_msg, F, or PRF, 433
depending on where it is being used. However, in each case it is the same function, just with a 434
different prefix prepended in order to ensure separation between the uses. 435

 436

Figure 5: XMSS hash computation with prefix and bitmask

⊗

3 || SEED || ADDR

3 || SEED || ADDR'

0 || prefix || input

xk

H

H

H

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

10

4 Leighton-Micali Signatures (LMS) Parameter Sets 437

The LMS and HSS algorithms are described in RFC 8554 [2]. This Special Publication approves 438
the use of LMS and HSS with four different hash functions: SHA-256, SHA-256/192, 439
SHAKE256/256, and SHAKE256/192 (see Section 2.3). The parameter sets that use SHA-256 440
are defined in RFC 8554 [2]. The parameter sets that use SHA-256/192, SHAKE256/256, and 441
SHAKE256/192 are defined below. 442

When generating a key pair for an LMS instance, each LM-OTS key in the system shall use the 443
same parameter set, and the hash function used for the LMS system shall be the same as the hash 444
function used in the LM-OTS keys. The height of the tree (h) shall be 5, 10, 15, 20, or 25. 445

When generating a key pair for an HSS instance, the requirements specified in the previous 446
paragraph apply to each LMS tree in the instance. If the HSS instance has more than one level, 447
then the hash function used for the tree at level 0 shall be used for every LMS tree at every other 448
level. For each level, the same LMS and LM-OTS parameter sets shall be used for every LMS 449
tree at that level. 450

The LMS and LM-OTS parameter sets that are approved for use by this Special Publication are 451
specified in Sections 4.1 through 4.4. The parameters n, w, p, ls, m, and h specified in the tables 452
are defined in Sections 4.1 and 5.1 of [2]. 453

Extensions to the XDR syntax in Section 3.3 of [2] needed to support the parameter sets defined 454
in Sections 4.2 through 4.4 of this document are specified in Appendix A. 455

4.1 LMS with SHA-256 456

When generating LMS or HSS key pairs using SHA-256, the LMS and LM-OTS parameter sets 457
shall be selected from the following two tables, which come from Sections 4 and 5 of [2]. 458

Table 1: LM-OTS parameter sets for SHA-256 459

LM-OTS Parameter Sets
Numeric
Identifier n w p ls sig_len

LMOTS_SHA256_N32_W1 0x00000001 32 1 265 7 8516

LMOTS_SHA256_N32_W2 0x00000002 32 2 133 6 4292

LMOTS_SHA256_N32_W4 0x00000003 32 4 67 4 2180

LMOTS_SHA256_N32_W8 0x00000004 32 8 34 0 1124

 460

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

11

Table 2: LMS parameter sets for SHA-256 461

LMS Parameter Sets Numeric Identifier m h

LMS_SHA256_M32_H5 0x00000005 32 5

LMS_SHA256_M32_H10 0x00000006 32 10

LMS_SHA256_M32_H15 0x00000007 32 15

LMS_SHA256_M32_H20 0x00000008 32 20

LMS_SHA256_M32_H25 0x00000009 32 25

 462

4.2 LMS with SHA-256/192 463

When generating LMS or HSS key pairs using SHA-256/192, the LMS and LM-OTS parameter 464
sets shall be selected from the following two tables. 465

Table 3: LM-OTS parameter sets for SHA-256/192 466

LM-OTS Parameter Sets
Numeric
Identifier n w p ls sig_len

LMOTS_SHA256_N24_W1 TBD 24 1 200 8 4828

LMOTS_SHA256_N24_W2 TBD 24 2 101 6 2452

LMOTS_SHA256_N24_W4 TBD 24 4 51 4 1252

LMOTS_SHA256_N24_W8 TBD 24 8 26 0 652

 467

Table 4: LMS parameter sets for SHA-256/192 468

LMS Parameter Sets Numeric Identifier m h

LMS_SHA256_M24_H5 TBD 24 5

LMS_SHA256_M24_H10 TBD 24 10

LMS_SHA256_M24_H15 TBD 24 15

LMS_SHA256_M24_H20 TBD 24 20

LMS_SHA256_M24_H25 TBD 24 25

 469

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

12

4.3 LMS with SHAKE256/256 470

When generating LMS or HSS key pairs using SHAKE256/256, the LMS and LM-OTS 471
parameter sets shall be selected from the following two tables. 472

Table 5: LM-OTS parameter sets for SHAKE256/256 473

LM-OTS Parameter Sets
Numeric
Identifier n w p ls sig_len

LMOTS_SHAKE_N32_W1 TBD 32 1 265 7 8516

LMOTS_SHAKE_N32_W2 TBD 32 2 133 6 4292

LMOTS_SHAKE_N32_W4 TBD 32 4 67 4 2180

LMOTS_SHAKE_N32_W8 TBD 32 8 34 0 1124

 474
Table 6: LMS parameter sets for SHAKE256/256 475

LMS Parameter Sets Numeric Identifier m h

LMS_ SHAKE_M32_H5 TBD 32 5

LMS_ SHAKE_M32_H10 TBD 32 10

LMS_ SHAKE_M32_H15 TBD 32 15

LMS_ SHAKE_M32_H20 TBD 32 20

LMS_ SHAKE_M32_H25 TBD 32 25

 476
4.4 LMS with SHAKE256/192 477

When generating LMS or HSS key pairs using SHAKE256/192, the LMS and LM-OTS 478
parameter sets shall be selected from the following two tables. 479

Table 7: LM-OTS parameter sets for SHAKE256/192 480

LM-OTS Parameter Sets
Numeric
Identifier n w p ls sig_len

LMOTS_SHAKE_N24_W1 TBD 24 1 200 8 4828

LMOTS_SHAKE_N24_W2 TBD 24 2 101 6 2452

LMOTS_SHAKE_N24_W4 TBD 24 4 51 4 1252

LMOTS_SHAKE_N24_W8 TBD 24 8 26 0 652

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

13

Table 8: LMS parameter sets for SHAKE256/192 481

LMS Parameter Sets Numeric Identifier m h

LMS_ SHAKE_M24_H5 TBD 24 5

LMS_ SHAKE_M24_H10 TBD 24 10

LMS_ SHAKE_M24_H15 TBD 24 15

LMS_ SHAKE_M24_H20 TBD 24 20

LMS_ SHAKE_M24_H25 TBD 24 25

 482

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

14

5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets 483

The XMSS and XMSSMT algorithms are described in RFC 8391 [1]. This Special Publication 484
approves the use of XMSS and XMSSMT with four different hash functions: SHA-256, SHA-485
256/192, SHAKE256/256, and SHAKE256/192 (see Section 2.3).3 The parameter sets that use 486
SHA-256 are defined in RFC 8391 [1]. The parameter sets that use SHA-256/192, 487
SHAKE256/256, and SHAKE256/192 are defined below. 488

The WOTS+ parameters corresponding to the use of each of these hash functions is specified in 489
the following table. 490

Table 9: WOTS+ parameter sets 491

Parameter Sets Numeric Identifier F / PRF n w len
WOTSP-SHA2_256 0x00000001 See Section 5.1 32 16 67

WOTSP-SHA2_192 TBD See Section 5.2 24 16 51

WOTSP-SHAKE256_256 TBD See Section 5.3 32 16 67

WOTSP-SHAKE256_192 TBD See Section 5.4 24 16 51
 492
The XMSS and XMSSMT parameter sets that are approved for use by this Special Publication are 493
specified in Sections 5.1 through 5.4. The parameters n, w, len, h, and d specified in the tables 494
are defined in Sections 3.1.1, 4.1.1, and 4.2.1 of [1]. 495

Extensions to the XDR syntax in Appendices A, B, and C of [1] needed to support the parameter 496
sets defined in Sections 5.2 through 5.4 of this document are specified in Appendix B. 497

5.1 XMSS and XMSSMT with SHA-256 498

When generating XMSS or XMSSMT key pairs using SHA-256, the parameter sets shall be 499
selected from the following two tables, which come from Section 5 of [1]. Each of these uses the 500
WOTSP-SHA2_256 parameter set. 501

Table 10: XMSS parameter sets for SHA-256 502

Parameter Sets Numeric Identifier n w len h
XMSS-SHA2_10_256 0x00000001 32 16 67 10

XMSS-SHA2_16_256 0x00000002 32 16 67 16

XMSS-SHA2_20_256 0x00000002 32 16 67 20

3 The parameter sets specified in RFC 8391 [1] that use SHAKE128, SHAKE256, and SHA-512 are not approved for use by this
Special Publication.

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

15

Table 11: XMSSMT parameter sets for SHA-256 503

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHA2_20/2_256 0x00000001 32 16 67 20 2

XMSSMT-SHA2_20/4_256 0x00000002 32 16 67 20 4

XMSSMT-SHA2_40/2_256 0x00000003 32 16 67 40 2

XMSSMT-SHA2_40/4_256 0x00000004 32 16 67 40 4

XMSSMT-SHA2_40/8_256 0x00000005 32 16 67 40 8

XMSSMT-SHA2_60/3_256 0x00000006 32 16 67 60 3

XMSSMT-SHA2_60/6_256 0x00000007 32 16 67 60 6

XMSSMT-SHA2_60/12_256 0x00000008 32 16 67 60 12

 504
For the parameter sets in this section, the functions F, H, H_msg, and PRF are as defined in 505
Section 5.1 of [1] for SHA2 with n = 32. 506

5.2 XMSS and XMSSMT with SHA-256/192 507

When generating XMSS or XMSSMT key pairs using SHA-256/192, the parameter sets shall be 508
selected from the following two tables. Each of these uses the WOTSP-SHA2_192 parameter 509
set. 510

Table 12: XMSS parameter sets for SHA-256/192 511

Parameter Sets Numeric Identifier n w len h

XMSS-SHA2_10_192 TBD 24 16 51 10

XMSS-SHA2_16_192 TBD 24 16 51 16

XMSS-SHA2_20_192 TBD 24 16 51 20

 512

 513

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

16

Table 13: XMSSMT parameter sets for SHA-256/192 514

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHA2_20/2_192 TBD 24 16 51 20 2

XMSSMT-SHA2_20/4_192 TBD 24 16 51 20 4

XMSSMT-SHA2_40/2_192 TBD 24 16 51 40 2

XMSSMT-SHA2_40/4_192 TBD 24 16 51 40 4

XMSSMT-SHA2_40/8_192 TBD 24 16 51 40 8

XMSSMT-SHA2_60/3_192 TBD 24 16 51 60 3

XMSSMT-SHA2_60/6_192 TBD 24 16 51 60 6

XMSSMT-SHA2_60/12_192 TBD 24 16 51 60 12

 515
For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as 516
follows: 517

• F: T192(SHA-256(toByte(0, 4) || KEY || M)) 518
• H: T192(SHA-256(toByte(1, 4) || KEY || M)) 519
• H_msg: T192(SHA-256(toByte(2, 4) || KEY || M)) 520
• PRF: T192(SHA-256(toByte(3, 4) || KEY || M)) 521

5.3 XMSS and XMSSMT with SHAKE256/256 522

When generating XMSS or XMSSMT key pairs using SHAKE256/256, the parameter sets shall 523
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_256 524
parameter set. 525

Table 14: XMSS parameter sets for SHAKE256/256 526

Parameter Sets Numeric Identifier n w len h

XMSS-SHAKE256_10_256 TBD 32 16 67 10

XMSS-SHAKE256_16_256 TBD 32 16 67 16

XMSS-SHAKE256_20_256 TBD 32 16 67 20

 527

 528

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

17

Table 15: XMSSMT parameter sets for SHAKE256/256 529

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHAKE256_20/2_256 TBD 32 16 67 20 2

XMSSMT-SHAKE256_20/4_256 TBD 32 16 67 20 4

XMSSMT-SHAKE256_40/2_256 TBD 32 16 67 40 2

XMSSMT-SHAKE256_40/4_256 TBD 32 16 67 40 4

XMSSMT-SHAKE256_40/8_256 TBD 32 16 67 40 8

XMSSMT-SHAKE256_60/3_256 TBD 32 16 67 60 3

XMSSMT-SHAKE256_60/6_256 TBD 32 16 67 60 6

XMSSMT-SHAKE256_60/12_256 TBD 32 16 67 60 12

 530
For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as 531
follows: 532

• F: SHAKE256(toByte(0, 32) || KEY || M, 256) 533
• H: SHAKE256(toByte(1, 32) || KEY || M, 256) 534
• H_msg: SHAKE256(toByte(2, 32) || KEY || M, 256) 535
• PRF: SHAKE256(toByte(3, 32) || KEY || M, 256) 536

5.4 XMSS and XMSSMT with SHAKE256/192 537

When generating XMSS or XMSSMT key pairs using SHAKE256/192, the parameter sets shall 538
be selected from the following two tables. Each of these uses the WOTSP-SHAKE256_192 539
parameter set. 540

Table 16: XMSS parameter sets for SHAKE256/192 541

Parameter Sets Numeric Identifier n w len h

XMSS-SHAKE256_10_192 TBD 24 16 51 10

XMSS-SHAKE256_16_192 TBD 24 16 51 16

XMSS-SHAKE256_20_192 TBD 24 16 51 20

 542

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

18

Table 17: XMSSMT parameter sets for SHAKE256/192 543

Parameter Sets Numeric Identifier n w len h d

XMSSMT-SHAKE256_20/2_192 TBD 24 16 51 20 2

XMSSMT-SHAKE256_20/4_192 TBD 24 16 51 20 4

XMSSMT-SHAKE256_40/2_192 TBD 24 16 51 40 2

XMSSMT-SHAKE256_40/4_192 TBD 24 16 51 40 4

XMSSMT-SHAKE256_40/8_192 TBD 24 16 51 40 8

XMSSMT-SHAKE256_60/3_192 TBD 24 16 51 40 3

XMSSMT-SHAKE256_60/6_192 TBD 24 16 51 40 6

XMSSMT-SHAKE256_60/12_192 TBD 24 16 51 40 12

 544
For the parameter sets in this section, the functions F, H, H_msg, and PRF are defined as 545
follows: 546

• F: SHAKE256(toByte(0, 4) || KEY || M, 192) 547
• H: SHAKE256(toByte(1, 4) || KEY || M, 192) 548
• H_msg: SHAKE256(toByte(2, 4) || KEY || M, 192) 549
• PRF: SHAKE256(toByte(3, 4) || KEY || M, 192) 550

 551

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

19

6 Random Number Generation for Keys and Signatures 552

This section specifies requirements for the generation of random data that apply in addition to 553
the requirements that are specified in [2] for LMS and HSS and in [1] for XMSS and XMSSMT. 554

Note: Variables and notations used in this section are defined in the relevant documents 555
mentioned above. 556

6.1 LMS and HSS Random Number Generation Requirements 557

The LMS key pair identifier, I, shall be generated using an approved random bit generator (see 558
the SP 800-90 series of publications [6]) where the instantiation of the random bit generator 559
supports at least 128 bits of security strength. 560

The n-byte private elements of the LM-OTS private keys (x[i] in Section 4.2 of [2]) shall be 561
generated using the pseudorandom key generation method specified in Appendix A of [2]. The 562
same SEED value shall be used to generate every private element in a single LMS instance, and 563
SEED shall be generated using an approved random bit generator [6] where the instantiation of 564
the random bit generator supports at least 8n bits of security strength. 565

If more than one LMS instance is being created (e.g., for an HSS instance), then a separate key 566
pair identifier, I, and SEED (if using the pseudorandom key generation method) shall be 567
generated for each LMS instance. 568

When generating a signature, the n-byte randomizer C (see Section 4.5 of [2]) shall be generated 569
using an approved random bit generator [6] where the instantiation of the random bit generator 570
supports at least 8n bits of security strength. 571

6.2 XMSS and XMSSMT Random Number Generation Requirements 572

The n-byte values SK_PRF and SEED shall be generated using an approved random bit 573
generator (see the SP 800-90 series of publications [6]) where the instantiation of the random bit 574
generator supports at least 8n bits of security strength. 575

The private n-byte strings in the WOTS+ private keys (sk[i] in Section 3.1.3 of [1]) shall be 576
generated using the pseudorandom key generation method specified in Section 3.1.7 of [1]: 577
sk[i, j] = PRF(S_ots[j], toByte(i, 32)), where PRF is as defined in Section 5 for the parameter set 578
being used. The private seed, S_ots[j], for each WOTS+ private key, j, shall be as specified in 579
Section 4.1.11 of [1]: S_ots[j] = PRF(S_XMSS, toByte(j, 32)), where PRF is as defined in Section 580
5 for the parameter set being used. The private seed, S_XMSS, shall be generated using an 581
approved random bit generator [6] where the instantiation of the random bit generator supports 582
at least 8n bits of security strength. If more than one XMSS key pair is being created within a 583
cryptographic module (including XMSS keys that belong to a single XMSSMT instance), then a 584
separate random S_XMSS shall be generated for each XMSS key pair. 585

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

20

7 Distributed Multi-Tree Hash-Based Signatures 586

If a digital signature key will be used to generate signatures over a long period of time and 587
replacing the public key would be difficult, then storing the private key in multiple places to 588
protect against loss will be necessary. In the case of most digital signature schemes, this just 589
involves making copies of the private key. However, in the case of stateful HBS schemes, simply 590
copying the private key would create a risk of OTS key reuse. An alternative that avoids this risk 591
is to have multiple cryptographic modules that each generate their own OTS keys and then create 592
a single instance that includes all of the public keys from all of the modules. 593

While it would also be possible to have one cryptographic module generate all of the OTS keys 594
and then distribute different OTS keys to each of the other cryptographic modules, doing so is 595
not an option for cryptographic modules conforming to this recommendation. Due to the risks 596
associated with copying OTS keys, this recommendation prohibits exporting private keying 597
material (Section 8). 598

The easiest way to have OTS keys on multiple cryptographic modules without exporting private 599
keys is to use HSS or XMSSMT with two levels of trees where each tree is instantiated on a 600
different cryptographic module. First, a top-level LMS or XMSS key pair would be created in a 601
cryptographic module. The top level’s OTS keys would only be used to sign the roots of other 602
trees. Then, bottom-level LMS or XMSS key pairs would be created in other cryptographic 603
modules, and the public keys from those key pairs (i.e., the roots of their Merkle trees) would be 604
signed by OTS keys of the top-level key pair. The OTS keys of the bottom-level key pairs would 605
be used to sign ordinary messages. The number of bottom-level key pairs that could be created 606
would only be limited by the number of OTS keys in the top-level key pair. 607

7.1 HSS 608

In the case of HSS, the scheme described above can be implemented using multiple 609
cryptographic modules that each implement LMS without modifications. The top-level LMS 610
public key can be converted to an HSS public key by an external, non-cryptographic device. This 611
device can also submit the public keys of the bottom-level LMS keys to be signed by the top-612
level LMS key. In HSS, the operation for signing the root of a lower-level tree is the same as the 613
operation for signing an ordinary message. Finally, this external device can submit ordinary 614
messages to cryptographic modules holding the bottom-level LMS keys for signing and then 615
combine the resulting LMS signatures with the top-level key’s signature on the bottom-level 616
LMS public key in order to create the HSS signature for the ordinary messages (see Algorithm 8 617
and Algorithm 9 in [2]). 618

7.2 XMSSMT 619

Distributing the implementation of an XMSSMT instance across multiple cryptographic modules 620
requires each cryptographic module to implement slightly modified versions of the XMSS key 621
and signature generation algorithms provided in [1]. The modified versions of these algorithms 622
are provided in Section 7.2.1. The modifications are primarily intended to ensure that each 623
XMSS key uses the appropriate values for its layer and tree addresses when computing prefixes 624
and bitmasks. The modifications also ensure that every XMSS key uses the same value for SEED 625
and that the root of the top-level tree is used when computing the hashes of messages to be 626

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

21

signed. 627

Note that while Algorithm 15 in [1] indicates that an XMSSMT secret key has a single SK_PRF 628
value that is shared by all of the XMSS secret keys, Algorithm 10' in Section 7.2.1 has each 629
cryptographic module generate its own value for SK_PRF. While generating a different SK_PRF 630
for each cryptographic module does not exactly align with the specification in [1], doing so does 631
not affect either interoperability or security. SK_PRF is only used to pseudorandomly generate 632
the value r in Algorithm 16, which is used for randomized hashing, and any secure method for 633
generating random values could be used to generate r. 634

Section 7.2.2 describes the steps that an external, non-cryptographic device needs to perform in 635
order to implement XMSSMT key and signature generation using a set of cryptographic modules 636
that implement the algorithms in Section 7.2.1. While Algorithms 10' and 12' in Section 7.2.1 637
have been designed to work with XMSSMT instances that have more than two layers, the 638
algorithms in Section 7.2.2 assume that an XMSSMT instance with exactly two layers is being 639
created. 640

7.2.1 Modified XMSS Key Generation and Signature Algorithms 641

Algorithm 10': XMSS'_keyGen 642

 // L needs to be in the range [0 … d-1] 643
 // t needs to be in the range [0 … 2^((d-1-L)(h/d)) - 1] 644
 Input: level L, tree t, 645
 public key of top-level tree PK_MT (if L ≠ d - 1) 646
 Output: XMSS public key PK 647

 // Example initialization for SK-specific contents 648
 idx = t * 2^(h / d); 649
 for (i = 0; i < 2^(h / d); i++) { 650
 wots_sk[i] = WOTS_genSK(); 651
 } 652

 Initialize SK_PRF with an n-byte string using an approved 653
 random bit generator [6], where the instantiation of the 654
 random bit generator supports at least 8n bits of security 655
 strength. 656
 setSK_PRF(SK, SK_PRF); 657

 // SEED needs to be generated for the top-level XMSS key. 658
 // For all other XMSS keys, the value needs to be copied from 659
 // the top-level XMSS key. 660
 if (L = d – 1) { 661
 Initialize SEED with an n-byte string using an approved 662
 random bit generator [6], where the instantiation of the 663
 random bit generator supports at least 8n bits of security 664
 strength. 665
 } else { 666

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

22

 SEED = getSEED(PK_MT); 667
 } 668
 setSEED(SK, SEED); 669
 setWOTS_SK(SK, wots_sk); 670
 ADRS = toByte(0, 32); 671
 ADRS.setLayerAddress(L); 672
 ADRS.setTreeAddress(t); 673
 root = treeHash(SK, 0, h / d, ADRS); 674

 // The "root" value in SK needs to be the root of the top-level 675
 // XMSS tree, as this is the value used when hashing the message 676
 // to be signed. 677
 if (L = d – 1) { 678
 SK = L || t || idx || wots_sk || SK_PRF || root || SEED 679
 } else { 680
 SK = L || t || idx || wots_sk || SK_PRF || getRoot(PK_MT) || SEED 681
 } 682
 PK = OID || root || SEED 683

Algorithm 12': XMSS'_sign 684

 Input: Message M 685
 Output: signature Sig 686

 idx_sig = getIdx(SK); 687
 setIdx(SK, idx_sig + 1); 688
 L = getLayerAddress(SK); 689
 t = getTreeAddress(SK); 690
 ADRS = toByte(0, 32); 691
 ADRS.setLayerAddress(L); 692
 ADRS.setTreeAddress(t); 693

 if (L > 0) { 694
 // M must be the n-byte root from an XMSS public key 695
 byte[n] r = 0 // n-byte string of zeros 696
 byte[n] M' = M 697
 } else { 698
 byte[n] r = PRF(getSK_PRF(SK), toByte(idx_sig, 32)); 699
 byte[n] M' = H_msg(r || getRoot(SK) || (toByte(idx_sig, n)), M); 700
 } 701
 idx_leaf = idx_sig - t * 2^(h / d); 702
 Sig = idx_sig || r || treeSig(M', SK, idx_leaf, ADRS); 703

7.2.2 XMSSMT External Device Operations 704

XMSS^MT external device keygen 705

 Input: No input 706

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

23

 // Generate top-level key pair on a cryptographic module 707
 PK_MT = XMSS'_keyGen(1, 0, NULL); 708

 t = 0; 709
 for each bottom-level key pair to be created { 710
 // Generate bottom-level key pair on a cryptographic module 711
 PK[t] = XMSS’_keygen(0, t, PK_MT); 712

 // Submit root of bottom-level key pair’s public key 713
 // to be signed by the top-level key pair. 714
 SigPK[t] = XMSS'_sign(getRoot(PK[t])); 715

 // If the public key on the bottom-level tree was created using 716
 // a tree address of t, then its root needs to be signed by OTS 717
 // key t of the top-level tree. If it wasn’t, then try again. 718
 if (getIdx(SigPK[t]) ≠ t) { 719
 t = getIdx(SigPK[t]) + 1; 720
 PK[t] = XMSS'_keygen(0, t, PK_MT); 721
 SigPK[t] = XMSS'_sign(getRoot(PK[t])); 722
 } 723
 t = t + 1; 724
 } 725

XMSS^MT external device sign 726

 Input: Message M 727
 Output: signature Sig 728

 // Send XMSS'_sign() command to one of the bottom-level key pairs 729
 Sig_tmp = XMSS'_sign(M); 730

 idx_sig = getIdx(Sig_tmp); 731
 t = (h / d) most significant bits of idx_sig; 732

 // Append the signature of the signing key pair's root 733
 // (just the output of treeSig, not idx_sig or r). 734
 Sig = Sig_tmp || getSig(SigPK[t]); 735

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

24

8 Conformance 736

8.1 Key Generation and Signature Generation 737

Cryptographic modules implementing signature generation for a parameter set shall also 738
implement key generation for that parameter set. Implementations of the key generation and 739
signature algorithms in this document shall only be validated for use within hardware 740
cryptographic modules. The cryptographic modules shall be validated to provide FIPS 140-2 or 741
FIPS 140-3 [19] Level 3 or higher physical security, and the operational environment shall be 742
limited.4 In addition, a cryptographic module implementing the key generation or signature 743
algorithms shall only operate in an approved mode of operation and shall not implement a 744
bypass mode. The cryptographic module shall not allow for the export of private keying 745
material. 746

In order to prevent the possible reuse of an OTS key, when the cryptographic module accepts a 747
request to sign a message, the cryptographic module shall update the state of the private key in 748
non-volatile storage before exporting a signature value or accepting another request to sign a 749
message. 750

Cryptographic modules implementing LMS key and signature generation shall support at least 751
one of the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 752
cryptographic module, the cryptographic module shall support at least one LMS parameter set 753
from Section 4 that uses the same hash function as the LM-OTS parameter set. Cryptographic 754
modules implementing LMS key and signature generation shall generate random data in 755
accordance with Section 6.1. 756

Cryptographic modules implementing XMSS key and signature generation shall implement 757
Algorithm 10 and Algorithm 12 from [1] for at least one of the XMSS parameter sets in Section 758
5. Cryptographic modules supporting implementation of XMSSMT key and signature generation 759
shall implement Algorithm 10' and Algorithm 12' from Section 7.2.1 of this document for at 760
least one of the XMSSMT parameter sets in Section 5. Cryptographic modules implementing 761
XMSS or XMSSMT key and signature generation shall generate random data in accordance with 762
Section 6.2. 763

8.2 Signature Verification 764

Cryptographic modules implementing LMS signature verification shall support at least one of 765
the LM-OTS parameter sets in Section 4. For each LM-OTS parameter set supported by a 766
cryptographic module, the cryptographic module shall support at least one LMS parameter set 767
from Section 4 that uses the same hash function as the LM-OTS parameter set. 768

Cryptographic modules implementing XMSS signature verification shall implement Algorithm 769
14 of [1] for at least one of the parameter sets in Section 5. Cryptographic modules implementing 770
XMSSMT signature verification shall implement Algorithm 17 of [1] for at least one of the 771
parameter sets in Section 5. 772

4 See Section 4.6 of FIPS 140-2 [19].

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

25

9 Security Considerations 773

9.1 One-Time Signature Key Reuse 774

Both LMS and XMSS are stateful signature schemes. If an attacker were able to obtain 775
signatures for two different messages created using the same one-time signature (OTS) key, then 776
it would become computationally feasible for that attacker to create forgeries [13]. As noted in 777
[8], extreme care needs to be taken in order to avoid the risk that an OTS key will be reused 778
accidentally. While the conformance requirements in Section 8.1 prevent many of the actions 779
that could result in accidental OTS key reuse, cryptographic modules still need to be carefully 780
designed to ensure that unexpected behavior cannot result in an OTS key being reused. 781

In order to avoid reuse of an OTS key, the state of the private key must be updated each time a 782
signature is generated. If the private key is stored in non-volatile memory, then the state of the 783
key must be updated in the non-volatile memory to mark an OTS key as unavailable before the 784
corresponding signature generated using the OTS key is exported. Depending on the 785
environment, this can be nontrivial to implement. With many operating systems, simply writing 786
the update to a file is not sufficient as the write operation will be cached with the actual write to 787
non-volatile memory taking place later. If the cryptographic module loses power or crashes 788
before the write to non-volatile memory, then the state update will be lost. If a signature were 789
exported after the write operation was issued but before the update was written to non-volatile 790
memory, there would be a risk that the OTS key would be used again after the cryptographic 791
module starts up. 792

Some hardware cryptographic modules implement monotonic counters, which are guaranteed to 793
increase each time the counter’s value is read. When available, using the current value of a 794
monotonic counter to determine which OTS key to use for a signature may be very helpful in 795
avoiding unintentional reuse of an OTS key. 796

9.2 Fault Injection Resistance 797

Fault injection attacks involve the intentional introduction of an error at some point during the 798
execution of an algorithm, such as by varying the voltage supplied to a device executing the 799
algorithm, causing it to produce the wrong output, and providing the attacker with additional 800
information. These attacks are most relevant for users of embedded cryptographic devices where 801
an adversary may have physical access to the signing device and thus can control its operations. 802

Fault injection attacks have been shown to be effective against hash-based signatures, though 803
they are more severe when used against stateless schemes like SPHINCS and its variants [9][10]. 804
With hash-based signatures, the attack works by forcing the cryptographic device to sign two 805
different messages with the same OTS key. The attack takes advantage of the schemes where 806
multiple levels of Merkle trees are used and the roots of lower-level trees are signed using a one-807
time signature (XMSSMT and HSS) [10]. In some cases, the signatures on these roots are 808
recomputed each time a message is signed. Under normal circumstances, this is acceptable since 809
it just involves using an OTS key multiple times to sign the same message. However, by 810
injecting a fault that introduces an error in the computation of the Merkle tree root at any of the 811
non-top layers, an attacker can cause the device to sign a different message under the same key. 812
With both a valid and a faulty signature, the attacker can “graft” a new subtree into the hierarchy 813

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

26

and produce universal forgeries. 814

The faulted signature remains a valid signature, so checking that the signature verifies is 815
insufficient to detect or prevent this attack. The only reliable way to prevent this attack is to 816
compute each one-time signature once, cache the result, and output it whenever needed. When 817
implementing multiple levels of trees as described in Section 7, this is the only option since no 818
cryptographic module will use any OTS more than once. If multiple levels of trees are 819
implemented within a single cryptographic module, it is recommended to cache a single, one-820
time signature per layer of subtrees, refreshing them when a new subtree is used for signing [10]. 821
While this prevents an attacker from learning about the secret key when a corrupted signature is 822
cached, it does result in the cached one-time signature being incorrect and thus prevents the 823
hash-based signature scheme from working. 824

9.3 Hash Collisions 825

In LMS and XMSS, as in the other approved digital signature schemes [4], the signature 826
generation algorithm is not applied directly to the message but to a message digest generated by 827
the underlying hash function. The security of any signature scheme depends on the inability of an 828
attacker to find distinct messages with the same message digest. 829

There are two ways that an attacker might find these distinct messages. The attacker could look 830
for a message that has the same message digest as a message that has already been signed (a 831
second preimage), or the attacker could look for any two messages that have the same message 832
digest (a generic collision) and then try to get the private key holder (i.e., signer) to sign one of 833
them [21]. Finding a second preimage is much more difficult than finding a generic collision, 834
and it would be infeasible for an attacker to find a second preimage with any of the hash 835
functions allowed for use in this recommendation. 836

LMS and XMSS both use randomized hashing. When a message is presented to be signed, a 837
random value is created and prepended to the message, and the hash function is applied to this 838
expanded message to produce the message digest. Prepending the random value makes it 839
infeasible for anyone other than the signer to find a generic collision as finding a collision would 840
require predicting the randomizing value. The randomized hashing process does not, however, 841
impact the ability for a signer to create a generic collision since the signer, knowing the private 842
key, could choose the random value to prepend to the message. 843

The 196-bit hash functions in this recommendation, SHA-256/196 and SHAKE256/196, offer 844
significantly less resistance to generic collision searches than their 256-bit counterparts. In 845
particular, a collision of the 196-bit functions may be found as the number of sampled inputs 846
approaches 296, as opposed to 2128 for the 256-bit functions, and it may be possible for a signer 847
with access to an extremely large amount of computing resources to sample 296 inputs. 848

Consequently, one tradeoff for the use of 196-bit hash functions in LMS and XMSS is the 849
weakening of the verifier’s assurance that the signer will not be able to change the message once 850
the signature is revealed. This possibility does not affect the formal security properties of the 851
schemes because it remains the case that only the signer could produce a valid signature on a 852
message. 853

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

27

References 854

[1] Huelsing A, Butin D, Gazdag S, Rijneveld J, Mohaisen A (2018) XMSS:
eXtended Merkle Signature Scheme. (Internet Research Task Force (IRTF)),
IRTF Request for Comments (RFC) 8391.
https://doi.org/10.17487/RFC8391.

[2] McGrew D, Curcio M, Fluhrer S (2019) Leighton-Micali Hash-Based
Signatures. (Internet Research Task Force (IRTF)), IRTF Request for
Comments (RFC) 8554. https://doi.org/10.17487/RFC8554.

[3] National Institute of Standards and Technology (2015) Secure Hash Standard
(SHS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 180-4.
https://doi.org/10.6028/NIST.FIPS.180-4

[4] National Institute of Standards and Technology (2013) Digital Signature
Standard (DSS). (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 186-4.
https://doi.org/10.6028/NIST.FIPS.186-4

[5] National Institute of Standards and Technology (2015) SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. (U.S.
Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 202.
https://doi.org/10.6028/NIST.FIPS.202

[6] Special Publication 800-90 series:

Barker EB, Kelsey JM (2015) Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. (National Institute
of Standards and Technology, Gaithersburg, MD), NIST Special Publication
(SP) 800-90A, Rev. 1. https://doi.org/10.6028/NIST.SP.800-90Ar1

Sönmez Turan M, Barker EB, Kelsey JM, McKay KA, Baish ML, Boyle M
(2018) Recommendation for the Entropy Sources Used for Random Bit
Generation. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-90B.
https://doi.org/10.6028/NIST.SP.800-90B

Barker EB, Kelsey JM (2016) Recommendation for Random Bit Generator
(RBG) Constructions. (National Institute of Standards and Technology,
Gaithersburg, MD), (Second Draft) NIST Special Publication (SP) 800-90C.
Available at https://csrc.nist.gov/publications/detail/sp/800-90c/draft

[7] National Institute of Standards and Technology (2019) Post-Quantum
Cryptography. Available at https://csrc.nist.gov/projects/post-quantum-
cryptography

https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8554
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

28

[8] McGrew D, Kampanakis P, Fluhrer S, Gazdag S, Butin D, Buchmann J
(2016) State Management for Hash-Based Signatures. Cryptology ePrint
Archive, Report 2016/357. https://eprint.iacr.org/2016/357.pdf

[9] Genêt A, Kannwischer MJ, Pelletier H, McLauchlan A (2018) Practical Fault
Injection Attacks on SPHINCS. Cryptology ePrint Archive, Report
2018/674. https://eprint.iacr.org/2018/674

[10] Castelnovi L, Martinelli A, Prest T (2018) Grafting trees: A fault attack
against the SPHINCS framework. Post-Quantum Cryptography - 9th
International Conference (PQCrypto 2018), Lecture Notes in Computer
Science 10786, pp. 165–184. https://doi.org/10.1007/978-3-319-79063-3_8

[11] Fluhrer S (2017) Further Analysis of a Proposed Hash-Based Signature
Standard. Cryptology ePrint Archive, Report 2017/553.
https://eprint.iacr.org/2017/553.pdf

[12] Buchmann J, Dahmen E, Hulsing A (2011) XMSS – A Practical Forward
Secure Signature Scheme based on Minimal Security Assumptions.
Cryptology ePrint Archive, Report 2011/484.
https://eprint.iacr.org/2011/484.pdf

[13] Bruinderink LG, Hülsing A (2016) “Oops, I did it again” – Security of One-
Time Signatures under Two-Message Attacks. Cryptology ePrint Archive,
Report 2016/1042. https://eprint.iacr.org/2016/1042.pdf

[14] Perlner R, Cooper D (2009) Quantum Resistant Public Key Cryptography: A
Survey. 8th Symposium on Identity and Trust on the Internet (IDtrust 2009),
pp 85-93. https://doi.org/10.1145/1527017.1527028

[15] Eaton E (2017) Leighton-Micali Hash-Based Signatures in the Quantum
Random-Oracle Model. Cryptology ePrint Archive, Report 2017/607.
https://eprint.iacr.org/2017/607

[16] Hülsing A, Rijneveld J, Song F (2015) Mitigating Multi-Target Attacks in
Hash-based Signatures. Cryptology ePrint Archive, Report 2015/1256.
https://eprint.iacr.org/2015/1256

[17] Malkin T, Micciancio D, Miner S (2002) Efficient generic forward-secure
signatures with an unbounded number of time periods. Advances in
Cryptology — EUROCRYPT 2002, Lecture Notes in Computer Science
2332, pp. 400–417. https://doi.org/10.1007/3-540-46035-7_27

[18] Merkle RC (1979) Security, Authentication, and Public Key Systems. PhD
thesis, Stanford University, June 1979. Available at
https://www.merkle.com/papers/Thesis1979.pdf

https://eprint.iacr.org/2016/357.pdf
https://eprint.iacr.org/2018/674
https://doi.org/10.1007/978-3-319-79063-3_8
https://eprint.iacr.org/2017/553.pdf
https://eprint.iacr.org/2011/484.pdf
https://eprint.iacr.org/2016/1042.pdf
https://doi.org/10.1145/1527017.1527028
https://eprint.iacr.org/2017/607
https://eprint.iacr.org/2015/1256
https://doi.org/10.1007/3-540-46035-7_27
https://www.merkle.com/papers/Thesis1979.pdf

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

29

[19] National Institute of Standards and Technology (2001) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-2, Change Notice 2 December 03, 2002.
https://doi.org/10.6028/NIST.FIPS.140-2

National Institute of Standards and Technology (2019) Security
Requirements for Cryptographic Modules. (U.S. Department of Commerce,
Washington, DC), Federal Information Processing Standards Publication
(FIPS) 140-3. https://doi.org/10.6028/NIST.FIPS.140-3

[20] Chen L, Jordan S, Liu Y-K, Moody D, Peralta R, Perlner RA, Smith-Tone D
(2016) Report on Post-Quantum Cryptography. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal
Report (IR) 8105. https://doi.org/10.6028/NIST.IR.8105

[21] Sotirov A, Stevens M, Appelbaum J, Lenstra A, Molnar D, Osvik DA, de
Weger B (2008) MD5 considered harmful today: Creating a rogue CA
certificate. Available at https://www.win.tue.nl/hashclash/rogue-ca

 855

https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.IR.8105
https://www.win.tue.nl/hashclash/rogue-ca

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

30

Appendix A—LMS XDR Syntax Additions 856

In order to support the LM-OTS and LMS parameter sets defined in Sections 4.2 through 4.4, the 857
XDR syntax in Section 3.3 of [2] is extended as follows. 858

/* one-time signatures */ 859
 860
enum lmots_algorithm_type { 861
 lmots_sha256_n24_w1 = TBD, 862
 lmots_sha256_n24_w2 = TBD, 863
 lmots_sha256_n24_w4 = TBD, 864
 lmots_sha256_n24_w8 = TBD, 865
 lmots_shake_n32_w1 = TBD, 866
 lmots_shake_n32_w2 = TBD, 867
 lmots_shake_n32_w4 = TBD, 868
 lmots_shake_n32_w8 = TBD, 869
 lmots_shake_n24_w1 = TBD, 870
 lmots_shake_n24_w2 = TBD, 871
 lmots_shake_n24_w4 = TBD, 872
 lmots_shake_n24_w8 = TBD 873
}; 874
 875
typedef opaque bytestring24[24]; 876
 877
struct lmots_signature_n24_p200 { 878
 bytestring24 C; 879
 bytestring24 y[200]; 880
}; 881
 882
struct lmots_signature_n24_p101 { 883
 bytestring24 C; 884
 bytestring24 y[101]; 885
}; 886
 887
struct lmots_signature_n24_p51 { 888
 bytestring24 C; 889
 bytestring24 y[51]; 890
}; 891
 892
struct lmots_signature_n24_p26 { 893
 bytestring24 C; 894
 bytestring24 y[26]; 895
}; 896
 897
union lmots_signature switch (lmots_algorithm_type type) { 898
 case lmots_sha256_n24_w1: 899
 lmots_signature_n24_p200 sig_n24_p200; 900

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

31

 case lmots_sha256_n24_w2: 901
 lmots_signature_n24_p101 sig_n24_p101; 902
 case lmots_sha256_n24_w4: 903
 lmots_signature_n24_p51 sig_n24_p51; 904
 case lmots_sha256_n24_w8: 905
 lmots_signature_n24_p26 sig_n24_p26; 906
case lmots_shake_n32_w1: 907
 lmots_signature_n32_p265 sig_n32_p265; 908
 case lmots_shake_n32_w2: 909
 lmots_signature_n32_p133 sig_n32_p133; 910
 case lmots_shake_n32_w4: 911
 lmots_signature_n32_p67 sig_n32_p67; 912
 case lmots_shake_n32_w8: 913
 lmots_signature_n32_p34 sig_n32_p34; 914
case lmots_shake_n24_w1: 915
 lmots_signature_n24_p200 sig_n24_p200; 916
 case lmots_shake_n24_w2: 917
 lmots_signature_n24_p101 sig_n24_p101; 918
 case lmots_shake_n24_w4: 919
 lmots_signature_n24_p51 sig_n24_p51; 920
 case lmots_shake_n24_w8: 921
 lmots_signature_n24_p26 sig_n24_p26; 922
}; 923
 924
/* hash-based signatures (hbs) */ 925
 926
enum lms_algorithm_type { 927
 lms_sha256_n24_h5 = TBD, 928
 lms_sha256_n24_h10 = TBD, 929
 lms_sha256_n24_h15 = TBD, 930
 lms_sha256_n24_h20 = TBD, 931
 lms_sha256_n24_h25 = TBD, 932
 lms_shake_n32_h5 = TBD, 933
 lms_shake_n32_h10 = TBD, 934
 lms_shake_n32_h15 = TBD, 935
 lms_shake_n32_h20 = TBD, 936
 lms_shake_n32_h25 = TBD, 937
 lms_shake_n24_h5 = TBD, 938
 lms_shake_n24_h10 = TBD, 939
 lms_shake_n24_h15 = TBD, 940
 lms_shake_n24_h20 = TBD, 941
 lms_shake_n24_h25 = TBD 942
}; 943
 944
/* leighton-micali signatures (lms) */ 945
 946
union lms_path switch (lms_algorithm_type type) { 947

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

32

 case lms_sha256_n24_h5: 948
 case lms_shake_n24_h5: 949
 bytestring24 path_n24_h5[5]; 950
 case lms_sha256_n24_h10: 951
case lms_shake_n24_h10: 952
 bytestring24 path_n24_h10[10]; 953
 case lms_sha256_n24_h15: 954
 case lms_shake_n24_h15: 955
 bytestring24 path_n24_h15[15]; 956
 case lms_sha256_n24_h20: 957
case lms_shake_n24_h20: 958
 bytestring24 path_n24_h20[20]; 959
 case lms_sha256_n24_h25: 960
case lms_shake_n24_h25: 961
 bytestring24 path_n24_h25[25]; 962
 963
case lms_shake_n32_h5: 964
 bytestring32 path_n32_h5[5]; 965
 case lms_shake_n32_h10: 966
 bytestring32 path_n32_h10[10]; 967
 case lms_shake_n32_h15: 968
 bytestring32 path_n32_h15[15]; 969
 case lms_shake_n32_h20: 970
 bytestring32 path_n32_h20[20]; 971
 case lms_shake_n32_h25: 972
 bytestring32 path_n32_h25[25]; 973
}; 974
 975
struct lms_key_n24 { 976
 lmots_algorithm_type ots_alg_type; 977
 opaque I[16]; 978
 opaque K[24]; 979
}; 980
 981
union lms_public_key switch (lms_algorithm_type type) { 982
 case lms_sha256_n24_h5: 983
 case lms_sha256_n24_h10: 984
 case lms_sha256_n24_h15: 985
 case lms_sha256_n24_h20: 986
 case lms_sha256_n24_h25: 987
 case lms_shake_n24_h5: 988
 case lms_shake_n24_h10: 989
 case lms_shake_n24_h15: 990
 case lms_shake_n24_h20: 991
 case lms_shake_n24_h25: 992
 lms_key_n24 z_n24; 993
 994

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

33

case lms_shake_n32_h5: 995
 case lms_shake_n32_h10: 996
 case lms_shake_n32_h15: 997
 case lms_shake_n32_h20: 998
 case lms_shake_n32_h25: 999
 lms_key_n32 z_n32; 1000
}; 1001

 1002

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

34

Appendix B—XMSS XDR Syntax Additions 1003

In order to support the XMSS parameter sets defined in Sections 5.2 through 5.4, the XDR 1004
syntax in Appendices A, B, and C of [1] is extended as follows. 1005

B.1 WOTS+ 1006

/* ots_algorithm_type identifies a particular 1007
 signature algorithm */ 1008
 1009
enum ots_algorithm_type { 1010
 wotsp-sha2_192 = TBD, 1011
 wotsp-shake256_256 = TBD, 1012
 wotsp-shake256_192 = TBD, 1013
}; 1014

 1015
/* Byte strings */ 1016
 1017
typedef opaque bytestring24[24]; 1018
 1019
union ots_signature switch (ots_algorithm_type type) { 1020
 1021
 case wotsp-sha2_192: 1022
 case wotsp-shake256_192: 1023
 bytestring24 ots_sig_n24_len51[51]; 1024
 1025
 case wotsp-shake256_256: 1026
 bytestring32 ots_sig_n32_len67[67]; 1027
}; 1028
 1029
union ots_pubkey switch (ots_algorithm_type type) { 1030
 case wotsp-sha2_192: 1031
 case wotsp-shake256_192: 1032
 bytestring24 ots_pubk_n24_len51[51]; 1033
 1034
 case wotsp-shake256_256: 1035
 bytestring32 ots_pubk_n32_len67[67]; 1036
}; 1037

B.2 XMSS 1038

/* Definition of parameter sets */ 1039
 1040
enum xmss_algorithm_type { 1041
 xmss-sha2_10_192 = TBD, 1042
 xmss-sha2_16_192 = TBD, 1043
 xmss-sha2_20_192 = TBD, 1044
 1045

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

35

 xmss-shake256_10_256 = TBD, 1046
 xmss-shake256_16_256 = TBD, 1047
 xmss-shake256_20_256 = TBD, 1048
 1049
 xmss-shake256_10_192 = TBD, 1050
 xmss-shake256_16_192 = TBD, 1051
 xmss-shake256_20_192 = TBD, 1052
}; 1053
 1054
/* Authentication path types */ 1055
 1056
union xmss_path switch (xmss_algorithm_type type) { 1057
 case xmss-sha2_10_192: 1058
 case xmss-shake256_10_192: 1059
 bytestring24 path_n24_t10[10]; 1060
 1061
 case xmss-shake256_10_256: 1062
 bytestring32 path_n32_t10[10]; 1063
 1064
 case xmss-sha2_16_192: 1065
 case xmss-shake256_16_192: 1066
 bytestring24 path_n24_t16[16]; 1067
 1068
 case xmss-shake256_16_256: 1069
 bytestring32 path_n32_t16[16]; 1070
 1071
 case xmss-sha2_20_192: 1072
 case xmss-shake256_20_192: 1073
 bytestring24 path_n24_t20[20]; 1074
 1075
 case xmss-shake256_20_256: 1076
 bytestring32 path_n32_t20[20]; 1077
}; 1078
 1079
/* Types for XMSS random strings */ 1080
 1081
union random_string_xmss switch (xmss_algorithm_type type) { 1082
 case xmss-sha2_10_192: 1083
 case xmss-sha2_16_192: 1084
 case xmss-sha2_20_192: 1085
 case xmss-shake256_10_192: 1086
 case xmss-shake256_16_192: 1087
 case xmss-shake256_20_192: 1088
 bytestring24 rand_n24; 1089
 1090
 case xmss-shake256_10_256: 1091
 case xmss-shake256_16_256: 1092

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

36

 case xmss-shake256_20_256: 1093
 bytestring32 rand_n32; 1094
}; 1095
 1096
/* Corresponding WOTS+ type for given XMSS type */ 1097
 1098
union xmss_ots_signature switch (xmss_algorithm_type type) { 1099
 case xmss-sha2_10_192: 1100
 case xmss-sha2_16_192: 1101
 case xmss-sha2_20_192: 1102
 wotsp-sha2_192; 1103
 1104
 case xmss-shake256_10_256: 1105
 case xmss-shake256_16_256: 1106
 case xmss-shake256_20_256: 1107
 wotsp-shake256_256; 1108
 1109
 case xmss-shake256_10_192: 1110
 case xmss-shake256_16_192: 1111
 case xmss-shake256_20_192: 1112
 wotsp-shake256_192; 1113
}; 1114
 1115
/* Types for bitmask seed */ 1116
 1117
union seed switch (xmss_algorithm_type type) { 1118
 case xmss-sha2_10_192: 1119
 case xmss-sha2_16_192: 1120
 case xmss-sha2_20_192: 1121
 case xmss-shake256_10_192: 1122
 case xmss-shake256_16_192: 1123
 case xmss-shake256_20_192: 1124
 bytestring24 seed_n24; 1125
 1126
 case xmss-shake256_10_256: 1127
 case xmss-shake256_16_256: 1128
 case xmss-shake256_20_256: 1129
 bytestring32 seed_n32; 1130
}; 1131
 1132
/* Types for XMSS root node */ 1133
 1134
union xmss_root switch (xmss_algorithm_type type) { 1135
 case xmss-sha2_10_192: 1136
 case xmss-sha2_16_192: 1137
 case xmss-sha2_20_192: 1138
 case xmss-shake256_10_192: 1139

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

37

 case xmss-shake256_16_192: 1140
 case xmss-shake256_20_192: 1141
 bytestring24 root_n24; 1142
 1143
 case xmss-shake256_10_256: 1144
 case xmss-shake256_16_256: 1145
 case xmss-shake256_20_256: 1146
 bytestring32 root_n32; 1147
}; 1148

B.3 XMSSMT 1149

/* Definition of parameter sets */ 1150
 1151
enum xmssmt_algorithm_type { 1152
 1153
 xmssmt-sha2_20/2_192 = TBD, 1154
 xmssmt-sha2_20/4_192 = TBD, 1155
 xmssmt-sha2_40/2_192 = TBD, 1156
 xmssmt-sha2_40/4_192 = TBD, 1157
 xmssmt-sha2_40/8_192 = TBD, 1158
 xmssmt-sha2_60/3_192 = TBD, 1159
 xmssmt-sha2_60/6_192 = TBD, 1160
 xmssmt-sha2_60/12_192 = TBD, 1161
 1162
 xmssmt-shake256_20/2_256 = TBD, 1163
 xmssmt-shake256_20/4_256 = TBD, 1164
 xmssmt-shake256_40/2_256 = TBD, 1165
 xmssmt-shake256_40/4_256 = TBD, 1166
 xmssmt-shake256_40/8_256 = TBD, 1167
 xmssmt-shake256_60/3_256 = TBD, 1168
 xmssmt-shake256_60/6_256 = TBD, 1169
 xmssmt-shake256_60/12_256 = TBD, 1170
 1171
 xmssmt-shake256_20/2_192 = TBD, 1172
 xmssmt-shake256_20/4_192 = TBD, 1173
 xmssmt-shake256_40/2_192 = TBD, 1174
 xmssmt-shake256_40/4_192 = TBD, 1175
 xmssmt-shake256_40/8_192 = TBD, 1176
 xmssmt-shake256_60/3_192 = TBD, 1177
 xmssmt-shake256_60/6_192 = TBD, 1178
 xmssmt-shake256_60/12_192 = TBD, 1179
}; 1180
 1181
/* Type for XMSS^MT key pair index */ 1182
/* Depends solely on h */ 1183
 1184

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

38

union idx_sig_xmssmt switch (xmss_algorithm_type type) { 1185
 case xmssmt-sha2_20/2_192: 1186
 case xmssmt-sha2_20/4_192: 1187
 case xmssmt-shake256_20/2_256: 1188
 case xmssmt-shake256_20/4_256: 1189
 case xmssmt-shake256_20/2_192: 1190
 case xmssmt-shake256_20/4_192: 1191
 bytestring3 idx3; 1192
 1193
 case xmssmt-sha2_40/2_192: 1194
 case xmssmt-sha2_40/4_192: 1195
 case xmssmt-sha2_40/8_192: 1196
 case xmssmt-shake256_40/2_256: 1197
 case xmssmt-shake256_40/4_256: 1198
 case xmssmt-shake256_40/8_256: 1199
 case xmssmt-shake256_40/2_192: 1200
 case xmssmt-shake256_40/4_192: 1201
 case xmssmt-shake256_40/8_192: 1202
 bytestring5 idx5; 1203
 1204
 case xmssmt-sha2_60/3_192: 1205
 case xmssmt-sha2_60/6_192: 1206
 case xmssmt-sha2_60/12_192: 1207
 case xmssmt-shake256_60/3_256: 1208
 case xmssmt-shake256_60/6_256: 1209
 case xmssmt-shake256_60/12_256: 1210
 case xmssmt-shake256_60/3_192: 1211
 case xmssmt-shake256_60/6_192: 1212
 case xmssmt-shake256_60/12_192: 1213
 bytestring8 idx8; 1214
}; 1215
 1216
union random_string_xmssmt switch (xmssmt_algorithm_type type) { 1217
 case xmssmt-sha2_20/2_192: 1218
 case xmssmt-sha2_20/4_192: 1219
 case xmssmt-sha2_40/2_192: 1220
 case xmssmt-sha2_40/4_192: 1221
 case xmssmt-sha2_40/8_192: 1222
 case xmssmt-sha2_60/3_192: 1223
 case xmssmt-sha2_60/6_192: 1224
 case xmssmt-sha2_60/12_192: 1225
 case xmssmt-shake256_20/2_192: 1226
 case xmssmt-shake256_20/4_192: 1227
 case xmssmt-shake256_40/2_192: 1228
 case xmssmt-shake256_40/4_192: 1229
 case xmssmt-shake256_40/8_192: 1230
 case xmssmt-shake256_60/3_192: 1231

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

39

 case xmssmt-shake256_60/6_192: 1232
 case xmssmt-shake256_60/12_192: 1233
 bytestring24 rand_n24; 1234
 1235
 case xmssmt-shake256_20/2_256: 1236
 case xmssmt-shake256_20/4_256: 1237
 case xmssmt-shake256_40/2_256: 1238
 case xmssmt-shake256_40/4_256: 1239
 case xmssmt-shake256_40/8_256: 1240
 case xmssmt-shake256_60/3_256: 1241
 case xmssmt-shake256_60/6_256: 1242
 case xmssmt-shake256_60/12_256: 1243
 bytestring32 rand_n32; 1244
}; 1245
 1246
/* Type for reduced XMSS signatures */ 1247
 1248
union xmss_reduced (xmss_algorithm_type type) { 1249
 case xmssmt-sha2_20/2_192: 1250
 case xmssmt-sha2_40/4_192: 1251
 case xmssmt-sha2_60/6_192: 1252
 case xmssmt-shake256_20/2_192: 1253
 case xmssmt-shake256_40/4_192: 1254
 case xmssmt-shake256_60/6_192: 1255
 bytestring24 xmss_reduced_n24_t61[61]; 1256
 1257
 case xmssmt-sha2_20/4_192: 1258
 case xmssmt-sha2_40/8_192: 1259
 case xmssmt-sha2_60/12_192: 1260
 case xmssmt-shake256_20/4_192: 1261
 case xmssmt-shake256_40/8_192: 1262
 case xmssmt-shake256_60/12_192: 1263
 bytestring24 xmss_reduced_n24_t56[56]; 1264
 1265
 case xmssmt-sha2_40/2_192: 1266
 case xmssmt-sha2_60/3_192: 1267
 case xmssmt-shake256_40/2_192: 1268
 case xmssmt-shake256_60/3_192: 1269
 bytestring24 xmss_reduced_n24_t71[71]; 1270
 1271
 case xmssmt-shake256_20/2_256: 1272
 case xmssmt-shake256_40/4_256: 1273
 case xmssmt-shake256_60/6_256: 1274
 bytestring32 xmss_reduced_n32_t77[77]; 1275
 1276
 case xmssmt-shake256_20/4_256: 1277
 case xmssmt-shake256_40/8_256: 1278

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

40

case xmssmt-shake256_60/12_256: 1279
 bytestring32 xmss_reduced_n32_t72[72]; 1280
 1281
 case xmssmt-shake256_40/2_256: 1282
 case xmssmt-shake256_60/3_256: 1283
 bytestring32 xmss_reduced_n32_t87[87]; 1284
}; 1285
 1286
/* xmss_reduced_array depends on d */ 1287
 1288
union xmss_reduced_array (xmss_algorithm_type type) { 1289
 case xmssmt-sha2_20/2_192: 1290
 case xmssmt-sha2_40/2_192: 1291
 case xmssmt-shake256_20/2_256: 1292
 case xmssmt-shake256_40/2_256: 1293
 case xmssmt-shake256_20/2_192: 1294
 case xmssmt-shake256_40/2_192: 1295
 xmss_reduced xmss_red_arr_d2[2]; 1296
 1297
 case xmssmt-sha2_60/3_192: 1298
 case xmssmt-shake256_60/3_256: 1299
 case xmssmt-shake256_60/3_192: 1300
 xmss_reduced xmss_red_arr_d3[3]; 1301
 1302
 case xmssmt-sha2_20/4_192: 1303
 case xmssmt-sha2_40/4_192: 1304
 case xmssmt-shake256_20/4_256: 1305
 case xmssmt-shake256_40/4_256: 1306
 case xmssmt-shake256_20/4_192: 1307
 case xmssmt-shake256_40/4_192: 1308
 xmss_reduced xmss_red_arr_d4[4]; 1309
 1310
 case xmssmt-sha2_60/6_192: 1311
 case xmssmt-shake256_60/6_256: 1312
 case xmssmt-shake256_60/6_192: 1313
 xmss_reduced xmss_red_arr_d6[6]; 1314
 1315
 case xmssmt-sha2_40/8_192: 1316
 case xmssmt-shake256_40/8_256: 1317
 case xmssmt-shake256_40/8_192: 1318
 xmss_reduced xmss_red_arr_d8[8]; 1319
 1320
 case xmssmt-sha2_60/12_192: 1321
 case xmssmt-shake256_60/12_256: 1322
 case xmssmt-shake256_60/12_192: 1323
 xmss_reduced xmss_red_arr_d12[12]; 1324
}; 1325

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

41

 1326
/* Types for bitmask seed */ 1327
 1328
union seed switch (xmssmt_algorithm_type type) { 1329
 case xmssmt-sha2_20/2_192: 1330
 case xmssmt-sha2_20/4_192: 1331
 case xmssmt-sha2_40/2_192: 1332
 case xmssmt-sha2_40/4_192: 1333
 case xmssmt-sha2_40/8_192: 1334
 case xmssmt-sha2_60/3_192: 1335
 case xmssmt-sha2_60/6_192: 1336
 case xmssmt-sha2_60/12_192: 1337
 case xmssmt-shake256_20/2_192: 1338
 case xmssmt-shake256_20/4_192: 1339
 case xmssmt-shake256_40/2_192: 1340
 case xmssmt-shake256_40/4_192: 1341
 case xmssmt-shake256_40/8_192: 1342
 case xmssmt-shake256_60/3_192: 1343
 case xmssmt-shake256_60/6_192: 1344
 case xmssmt-shake256_60/12_192: 1345
 bytestring24 seed_n24; 1346
 1347
 case xmssmt-shake256_20/2_256: 1348
 case xmssmt-shake256_20/4_256: 1349
 case xmssmt-shake256_40/2_256: 1350
 case xmssmt-shake256_40/4_256: 1351
 case xmssmt-shake256_40/8_256: 1352
 case xmssmt-shake256_60/3_256: 1353
 case xmssmt-shake256_60/6_256: 1354
 case xmssmt-shake256_60/12_256: 1355
 bytestring32 seed_n32; 1356
 1357
}; 1358
 1359
/* Types for XMSS^MT root node */ 1360
 1361
union xmssmt_root switch (xmssmt_algorithm_type type) { 1362
 case xmssmt-sha2_20/2_192: 1363
 case xmssmt-sha2_20/4_192: 1364
 case xmssmt-sha2_40/2_192: 1365
 case xmssmt-sha2_40/4_192: 1366
 case xmssmt-sha2_40/8_192: 1367
 case xmssmt-sha2_60/3_192: 1368
 case xmssmt-sha2_60/6_192: 1369
 case xmssmt-sha2_60/12_192: 1370
 case xmssmt-shake256_20/2_192: 1371
 case xmssmt-shake256_20/4_192: 1372

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

42

 case xmssmt-shake256_40/2_192: 1373
 case xmssmt-shake256_40/4_192: 1374
 case xmssmt-shake256_40/8_192: 1375
 case xmssmt-shake256_60/3_192: 1376
 case xmssmt-shake256_60/6_192: 1377
 case xmssmt-shake256_60/12_192: 1378
 bytestring24 root_n24; 1379
 1380
 case xmssmt-shake256_20/2_256: 1381
 case xmssmt-shake256_20/4_256: 1382
 case xmssmt-shake256_40/2_256: 1383
 case xmssmt-shake256_40/4_256: 1384
 case xmssmt-shake256_40/8_256: 1385
 case xmssmt-shake256_60/3_256: 1386
 case xmssmt-shake256_60/6_256: 1387
 case xmssmt-shake256_60/12_256: 1388
 bytestring32 root_n32; 1389
}; 1390

 1391

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

43

Appendix C—Provable Security Analysis 1392

This appendix briefly summarizes the formal security model and proofs of security of the LMS 1393
and XMSS signature schemes and provides a short discussion comparing these models and 1394
proofs. 1395

C.1 The Random Oracle Model 1396

In the random oracle model (ROM), there is a publicly accessible random oracle that both the 1397
user and the adversary can send queries to and receive responses from at any time. A random 1398
oracle H is a hypothetical, interactive black-box algorithm that obeys the following rules: 1399

1. Every time the algorithm H receives a new input string s, it generates an output t 1400
uniformly at random from its output space and returns the response t. The algorithm H 1401
then records the pair (s, t) for future use. 1402

2. If the algorithm H is ever queried in the future with some prior input s, it will always 1403
return the same output t according to its recorded memory. 1404

Alternatively, the random oracle H can be described as a non-interactive but exponentially large 1405
look-up table initialized with truly random outputs t for each possible input string s. 1406

To say that a cryptographic security proof is done in the random oracle model means that every 1407
use of a particular function (for example, in the case here, the compression function that is used 1408
to perform hashes) is replaced by a query to the random oracle H. This simplifies security claims 1409
as, for example, it becomes easy to prove upper bounds on the likelihood of producing a second 1410
preimage within a fixed number of queries to H. On the other hand, (compression) functions in 1411
the real world are neither interactive nor have exponentially large descriptions, so they cannot 1412
truly behave like a random oracle. 1413

It is therefore desirable to have a cryptographic security proof that avoids using the random 1414
oracle model. However, this often leads to less efficient cryptographic systems, or it is not yet 1415
known how to perform a proof without appealing to the random oracle model, or both. So, as a 1416
matter of real-world pragmatism, the ROM is commonly used. 1417

C.2 The Quantum Random Oracle Model 1418

The quantum random oracle model (QROM) is similar to the ROM, except it is additionally 1419
assumed that all parties (in particular, the adversary) have quantum computers and can query the 1420
random oracle H in superposition. (In the real world, the random oracle H is still instantiated as a 1421
compression function or similar, as per the cryptosystem’s specification.) While this complicates 1422
security claims as compared to the ROM, it more accurately models the power of an adversary 1423
that has access to a large-scale quantum device for its cryptanalysis when attacking a real-world 1424
scheme. 1425

C.3 LMS Security Proof 1426

In [11], the author considers a particular experiment in the random oracle model in which the 1427

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

44

adversary is given a series of strings with prefixes (in a randomly chosen but structured manner) 1428
and hash targets. The attacker’s goal is to find one more string that has the same prefix and hash 1429
target as any of its input strings. The author proves an upper bound on the adversary’s ability to 1430
compute first or second preimages from these strings (by querying the compression function 1431
modeled as a random oracle). 1432

Then, the author reduces the problem of forging a signature in LMS to this stated experiment, 1433
concluding that the same upper bounds apply to the problem of producing forgeries against 1434
LMS. This random oracle model proof critically depends on the randomness of the prefixes used 1435
in LMS, which means that LMS in the real world critically depends on the pseudorandomness of 1436
the prefixes. 1437

Further, in [15], the same proof is carried out in the QROM. 1438

C.4 XMSS Security Proof 1439

In [12], a security analysis for the original (academic publication) version of XMSS is given 1440
under the following assumptions: 1441

1. The function family {fk} used to construct Winternitz signatures is pseudorandom. This 1442
means that if the bit string k is chosen uniformly at random, then an adversary given 1443
black-box access to the function fk cannot distinguish this black box from a random 1444
function within a polynomial number of queries (except with negligible probability). 1445

2. The hash function family {hk} is second preimage-resistant. This means that if bit strings 1446
k and m are chosen uniformly at random, then an adversary given k and m cannot 1447
construct m' ≠ m such that hk(m') = hk(m) in polynomial time (except with negligible 1448
probability). 1449

The proof in [12] asserts that if both of these assumptions are true, then XMSS is existentially 1450
unforgeable under adaptive chosen message attacks (EUF-CMA) in the standard model. 1451

However, in the current version of XMSSMT [1], the security analysis differs somewhat. In the 1452
standard model, [17] shows that XMSSMT is EUF-CMA. Further, [16] shows that XMSSMT is 1453
post-quantum existentially unforgeable under adaptive chosen message attacks with respect to 1454
the QROM. 1455

In a little more detail, the current version of XMSS uses two types of assumptions: 1456

1. A standard model assumption – that the hash function hk, used for the one-time 1457
signatures and tree node computations, is post-quantum, multi-function, multi-target 1458
preimage-resistant. 1459

2. A (quantum) random oracle model assumption – that the pseudorandom function fk, used 1460
to generate pseudorandom values for randomized hashing and computing bitmasks as 1461
blinding keys, may be validly modeled as a quantum random oracle H. 1462

NIST SP 800-208 (DRAFT) RECOMMENDATION FOR STATEFUL
 HASH-BASED SIGNATURE SCHEMES

45

C.5 Comparison of the Security Models and Proofs of LMS and XMSS 1463

Generally speaking, both LMS and XMSS are supported by sound security proofs under 1464
commonly used cryptographic hardness assumptions. That is, if these cryptographic assumptions 1465
are true, then both schemes are provably shown to be existentially unforgeable under chosen 1466
message attack, even against an adversary that has access to a large-scale quantum computer for 1467
use in its forgery attack. 1468

The main difference between these schemes’ security analyses comes down to the use (and the 1469
degree of use) of the random oracle or quantum random oracle models. Along these lines, the 1470
difference between the (standard model/real world) cryptographic assumption that some function 1471
family {fk} is pseudorandom and the use of the random oracle model is briefly pointed out. For a 1472
function fk to be a pseudorandom function in the real world, it should be the case that the bit 1473
string k used as the key to the function remains private, meaning that it is not in the view of the 1474
adversary at any point of the security experiment. On the other hand, a random oracle H achieves 1475
the same pseudorandomness (or even randomness) properties of a pseudorandom function fk, but 1476
there is no key k necessarily associated with the random oracle. Indeed, all inputs to the random 1477
oracle H may be known to all parties and, in particular, to the adversary. Therefore, using the 1478
random oracle model clearly involves making a stronger assumption about the (limits of the) 1479
cryptanalytic power of the adversary. 1480

That said, a security proof is either entirely a “real world proof,” which does not use the random 1481
oracle model, or it appeals to the random oracle methodology in some manner. The security 1482
analysis of the current version of XMSS only uses the random oracle H when performing 1483
randomized hashing and computing bitmasks, whereas LMS uses the random oracle H to a 1484
greater degree (modeling the compression function as a random oracle). However, it remains the 1485
case that both schemes in their modern form are ultimately proven secure using the ROM and 1486
QROM. 1487

Therefore, the cryptographic hardness assumptions made by LMS and XMSS in order to achieve 1488
existential unforgeability under chosen message attack (EUF-CMA) may be viewed as 1489
substantially similar and worthy of essentially equal confidence. As such, the practitioner’s 1490
decision to deploy one scheme or the other should primarily depend on other factors, such as the 1491
efficiency demands for a given deployment environment or the other security considerations 1492
enumerated earlier in this document. 1493

	Draft NIST SP 800-208, Recommendation for Stateful Hash-Based Signature Schemes
	1 Introduction
	1.1 Intended Applications for Stateful HBS Schemes
	1.2 The Importance of the Proper Maintenance of State
	1.3 Outline of Text

	2 Glossary of Terms, Acronyms, and Mathematical Symbols
	2.1 Terms and Definitions
	2.2 Acronyms
	2.3 Mathematical Symbols

	3 General Discussion
	3.1 One-Time Signature Systems
	3.2 Merkle Trees
	3.3 Two-Level Trees
	3.4 Prefixes and Bitmasks

	4 Leighton-Micali Signatures (LMS) Parameter Sets
	4.1 LMS with SHA-256
	4.2 LMS with SHA-256/192
	4.3 LMS with SHAKE256/256
	4.4 LMS with SHAKE256/192

	5 eXtended Merkle Signature Scheme (XMSS) Parameter Sets
	5.1 XMSS and XMSSMT with SHA-256
	5.2 XMSS and XMSSMT with SHA-256/192
	5.3 XMSS and XMSSMT with SHAKE256/256
	5.4 XMSS and XMSSMT with SHAKE256/192

	6 Random Number Generation for Keys and Signatures
	6.1 LMS and HSS Random Number Generation Requirements
	6.2 XMSS and XMSSMT Random Number Generation Requirements

	7 Distributed Multi-Tree Hash-Based Signatures
	7.1 HSS
	7.2 XMSSMT
	7.2.1 Modified XMSS Key Generation and Signature Algorithms
	7.2.2 XMSSMT External Device Operations

	8 Conformance
	8.1 Key Generation and Signature Generation
	8.2 Signature Verification

	9 Security Considerations
	9.1 One-Time Signature Key Reuse
	9.2 Fault Injection Resistance
	9.3 Hash Collisions

	References
	Appendix A— LMS XDR Syntax Additions
	Appendix B— XMSS XDR Syntax Additions
	B.1 WOTS+
	B.2 XMSS
	B.3 XMSSMT

	Appendix C— Provable Security Analysis
	C.1 The Random Oracle Model
	C.2 The Quantum Random Oracle Model
	C.3 LMS Security Proof
	C.4 XMSS Security Proof
	C.5 Comparison of the Security Models and Proofs of LMS and XMSS

