
NIST Special Publication 800

NIST SP 800-224 ipd

Keyed-Hash Message Authentication Code

(HMAC)

Specification of HMAC and

Recommendations for Message Authentication

Initial Public Draft

Meltem Sönmez Turan

Luís T. A. N. Brandão

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-224.ipd

https://doi.org/10.6028/NIST.SP.800-224.ipd
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-224.ipd

NIST Special Publication 800

NIST SP 800-224 ipd

Keyed-Hash Message Authentication Code

(HMAC)

Specification of HMAC and

Recommendations for Message Authentication

Initial Public Draft

Meltem Sönmez Turan

Computer Security Division

Information Technology Laboratory

Luís T. A. N. Brandão

Strativia

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-224.ipd

June 2024

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology

Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

https://doi.org/10.6028/NIST.SP.800-224.ipd

 NIST SP 800-224 ipd (Initial Public Draft)
 June 2024

 Keyed-Hash Message Authentication Code (HMAC)

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this

paper in order to specify the experimental procedure adequately. Such identification does not imply

recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or

equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in

accordance with its assigned statutory responsibilities. The information in this publication, including

concepts and methodologies, may be used by federal agencies even before the completion of such

companion publications. Thus, until each publication is completed, current requirements, guidelines, and

procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may

wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide

feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at

https://csrc.nist.gov/publications

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the

Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.)

113-283. NIST is responsible for developing information security standards and guidelines, including

minimum requirements for federal information systems, but such standards and guidelines shall not apply to

national security systems without the express approval of appropriate federal officials exercising policy

authority over such systems. This guideline is consistent with the requirements of the Office of Management

and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and

binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these

guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,

Director of the ORCID, or any other federal official. This publication may be used by nongovernmental

organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,

however, be appreciated by NIST.

NIST Technical Series Policies

Copyright, Use, and Licensing Statements

NIST Technical Series Publication Identifier Syntax

Publication History

Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added in the final publication.]

Supersedes Series XXX (Month Year) DOI [Will be added in the final publication.]

How to cite this NIST Technical Series Publication

Meltem Sönmez Turan, Luís T. A. N. Brandão (2024) Keyed-Hash Message Authentication Code (HMAC):

Specification of HMAC and Recommendations for Message Authentication. (National Institute of Standards

and Technology, Gaithersburg, MD), NIST SP 800-224 ipd. https://doi.org/10.6028/NIST.SP.800-224.ipd

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

 NIST SP 800-224 ipd (Initial Public Draft)
 June 2024

 Keyed-Hash Message Authentication Code (HMAC)

Author ORCID iDs

Meltem Sönmez Turan: 0000-0002-1950-7130

Luís T. A. N. Brandão: 0000-0002-4501-089X

Public Comment Period

June 28, 2024 – September 6, 2024

Submit Comments

SP800-224-comments@list.nist.gov

National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

All comments are subject to release under the Freedom of Information Act (FOIA).

https:/orcid.org/0000-0002-1950-7130
https:/orcid.org/0000-0002-4501-089X
mailto:SP800-224-comments@list.nist.gov?subject=Comments on NIST SP 800-224 ipd

81

A message authentication code (MAC) scheme is a symmetric-key cryptographic mechanism

that can be used with a secret key to produce and verify an authentication tag, which enables

detecting unauthorized modifications to data (also known as a message). This NIST Special

Publication (whose current version is an initial public draft) specifies the keyed-hash message

authentication code (HMAC) construction, which is a MAC scheme that uses a cryptographic

hash function as a building block. The publication also specifies a set of requirements for

using HMAC for message authentication, including a list of NIST-approved cryptographic

hash functions, requirements on the secret key, and parameters for optional truncation.

Keywords

Cryptography; hash function; HMAC; MAC; message authentication code; PRF; pseudoran-

dom function; standard; truncation.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and

Technology (NIST) promotes the U.S. economy and public welfare by providing technical lead-

ership for the Nation’s measurement and standards infrastructure. ITL develops tests, test

methods, reference data, proof of concept implementations, and technical analyses to ad-

vance the development and productive use of information technology. ITL’s responsibilities

include the development of management, administrative, technical, and physical standards

and guidelines for the cost-effective security and privacy of other than national security-

related information in federal information systems. The Special Publication 800-series

reports on ITL’s research, guidelines, and outreach efforts in information system security,

and its collaborative activities with industry, government, and academic organizations.

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose

use would be required for compliance with the guidance or requirements in this Information

Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may

be directly stated in this ITL Publication or by reference to another publication. This call

also includes disclosure, where known, of the existence of pending U.S. or foreign patent

applications relating to this ITL draft publication and of any relevant unexpired U.S. or

foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its

behalf, in written or electronic form, either:

1. assurance in the form of a general disclaimer to the effect that such party does not

hold and does not currently intend holding any essential patent claim(s); or

2. assurance that a license to such essential patent claim(s) will be made available

to applicants desiring to utilize the license for the purpose of complying with the

guidance or requirements in this ITL draft publication either:

(a) under reasonable terms and conditions that are demonstrably free of any unfair

discrimination; or

(b) without compensation and under reasonable terms and conditions that are

demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make

assurances on its behalf) will include in any documents transferring ownership of patents

subject to the assurance, provisions sufficient to ensure that the commitments in the assur-

ance are binding on the transferee, and that the transferee will similarly include appropriate

provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest

regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: SP800-224-comments@list.nist.gov

mailto:SP800-224-comments@list.nist.gov

Contents

1. Introduction . 1

2. HMAC Construction . 3

3. HMAC Requirements for Message Authentication 5

4. Testing and Validation . 7

5. Optimization via Pre-Computation of the Internal State 8

6. Security Considerations . 9

6.1. Key Strength . 9

6.2. HMAC Security Against Key-Recovery Attacks 9

6.3. HMAC Unforgeability . 10

6.3.1.HMAC with MD-based hash functions 11

6.3.2.HMAC with sponge-based hash functions 11

6.3.3. Impact of truncation and multiple tag verifications 12

Appendix A. Development of the HMAC Standard 18

Appendix B. Example Test Vector . 19

Appendix C. Glossary . 21

Appendix D. Summary of Changes . 23

List of Tables

Table 1. Notation . 3

Table 2. NIST-approved hash functions for HMAC 5

Table 3. Development of the HMAC standard . 18

Table 4. Example test vector for the HMAC construction 19

List of Figures

Figure 1. HMAC diagram . 4

List of Requirements

R1. Underlying hash functions . 5

R2. Key length . 5

R3. Key generation . 5

R4. Key strength . 6

R5. Secrecy of key and sensitive values . 6

R6. Specific use of key . 6

R7. Minimum length of truncated tag . 6

R8. Limited number of failed tag verifications per key 6

Preface

This NIST Special Publication (SP) 800-224 initial public draft (ipd) results from a conversion of

FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC) [1] (2008), and incorpo-

rates some requirements from SP 800-107r1 (Revision 1), Recommendation for Applications

Using Approved Hash Algorithms [2] (2012). This development was proposed by the NIST

Crypto Publication Review Board [3], based on two publication reviews in 2022: the FIPS

198-1 review [4] proposed converting the standard into an SP; the review of SP 800-107r1

[5] proposed that requirements (of hash functions) related to specific uses (e.g., for HMAC-

based message authentication) be moved to the relevant publications. The final version

of SP 800-224 is expected to be published concurrently with the withdrawal of FIPS 198-1.

Acknowledgments

The authors thank their NIST colleagues Elaine Barker, Chris Celi, Donghoon Chang, Yu Long

Chen, Quynh Dang, John Kelsey, and Yu Sasaki for helpful discussions and valuable com-

ments, and Isabel Wyk for editorial suggestions. The work by Luís Brandão was performed

in the position of Foreign Guest Researcher (non-employee) at NIST, while under a contract

with (employed by) Strativia.

Note to Reviewers

NIST requests comments on all technical and editorial aspects of the publication. Please

submit feedback comments to SP800-224-comments@list.nist.gov by September 6, 2024.

NIST will review all comments and post them on the NIST website.

There is a particular interest in receiving feedback on the following:

1. Hash functions. This draft publication lists (in R1) hash functions for use in HMAC-based

message authentication. Are there applications that would justify additionally approving

TupleHash [6] (a variable-length hash function designed to hash tuples of input strings)

and ParallelHash [6] (an efficiently parallelizable hash function, when hashing long

messages) for HMAC-based message authentication?

2. Maximum length of the HMAC key. When using HMAC for message authentication, this

draft publication recommends (in R4) not using, but does not disallow, keys with length

greater than the block size 𝑏 of the underlying hash function. Should NIST disallow HMAC

keys longer than the block size?

3. Fixed truncation length. When using HMAC for message authentication, the revised

requirement (R7) about the truncation length now explicitly requires that this length

be fixed across the life-span of each key. Are there applications that would justify an

exception to this requirement? See more details in Section 6.3.3.

mailto:SP800-224-comments@list.nist.gov

1. Introduction

The cryptographic protection of the integrity and authenticity of data is of paramount

importance for cybersecurity. The classic example is that of a two-party communication in

which a receiver needs assurance that a message supposedly sent by a sender was neither

altered nor created by a third party. In the symmetric-key cryptography setting, where

sender and receiver agree on a secret key, the assurance can be achieved by associating a

Message authentication code (MAC, also called a tag) to the message.

Using the secret key and the message as inputs, the tag is produced by the sender and

reproduced by the receiver to respectively claim and verify the authenticity of the message

without revealing the secret key. Concretely, the gained assurance is that of unforgeability,

which implies that the tag was generated by someone that knows the secret key and with

respect to the received message. However, this MAC-provided assurance (based on a secret

key between two parties) is not transferable to third parties, contrary to the property of

non-repudiation provided by digital signatures [7] (in the public-key setting).

The hash-function-based MAC scheme called keyed-hash message authentication code

(HMAC) was originally designed by Krawczyk, Bellare and Canetti [8], and shortly thereafter

specified in a Request For Comments (RFC) by the Internet Engineering Task Force (IETF) [9].

The specification was later transposed into a NIST Federal Information Processing Standards

(FIPS) Publication 198 [10] and then 198-1 [1]. The present NIST Special Publication (SP)

800-224-ipd is a draft replacement of FIPS 198-1 and additionally incorporates requirements

(revised from SP 800 107r1 [2]) for the use of HMAC for message authentication.

In addition to HMAC, NIST approves the following two MAC schemes:

(i) KMAC, specified in SP 800-185 [6], which is based on KECCAK, the underlying function

of the hash function family SHA-3. KMAC has two variants that support different

security levels: KMAC128 and KMAC256.

(ii) CMAC, specified in SP 800-38B [11], which is based on a block cipher, such as the

Advanced Encryption Standard (AES) [12].

Other applications of HMAC. The HMAC tag generation function is a pseudorandom function

(PRF) and may be used for cryptographic purposes other than the classical example of

message authentication between a sender and a receiver. At the time of the present

publication, other NIST publications consider the following uses of HMAC:

• Key confirmation, as a building block of pair-wise key establishment (see SP 800-56Ar3

[13] and SP 800-56Br2 [14])

• Key derivation [15], including as a building block of pair-wise key establishment (see

SP 800-56Cr2 [16])

• Randomness extraction and key expansion, as a building blocks for a key derivation

function (see SP 800-56Cr2 [16])

• Key extraction, by combining multiple keys (see SP 800-133r2 [17])

• Password-based key-derivation as a building block of PBKDF (see SP 800-132 [18])

• Random number generation as a building block of a deterministic random bit genera-

tor (DRBG), as in HMAC_DRBG (see SP 800-90Ar1 [19])

Organization. Section 2 specifies the HMAC construction and the truncation option. Sec-

tion 3 enumerates the HMAC requirements for message authentication. Section 4 covers

the testing and validation of HMAC, and the use of object identifiers. Section 5 describes

an implementation optimization by precomputing an internal state. Section 6 discusses

security, including the key strength and security strength against key-recovery and forgery

attacks. Appendix A displays a timeline of developments related to the HMAC specification.

Appendix B provides example test vectors. Appendix C includes a glossary. Appendix D lists

various changes introduced in this document, as compared to the previous HMAC specifica-

tion in FIPS 198-1 and its related requirements for message authentication in SP 800-107r1.

2. HMAC Construction

This section specifies the HMAC construction and the option for tag truncation. Table 1

provides the notation.

Table 1. Notation251

Notation252 Description

0xN253 Bitstring in hexadecimal notation, where N is a string of symbols in the
domain 0–9 A–F. Each hexadecimal symbol represents a sequence of four
bits, also known as a nibble.

0𝑥
254 A bitstring composed of 𝑥 consecutive bits with value 0.

𝑏255 Block size (bit-length) of the underlying hash function, assumed to be a
multiple of eight. See Table 2 for concrete values.

𝐻256 Underlying cryptographic hash function.

HMAC(𝐾,𝑀)257 The HMAC tag generation function, using as inputs a key 𝐾 and a message
𝑀, and outputting a tag 𝑇.

ipad258 Inner pad: 𝑏/8 repetitions of the bitstring 00110110 (i.e., 0x36).

𝐾259 Secret key.

𝐾0260 Intermediate 𝑏-bit key generated from the secret key 𝐾.

ℓ261 Bit-length of the output of the underlying hash function.

𝑙𝑒𝑛(𝑥)262 Length (number of bits) of a bitstring 𝑥.

left𝜆(𝑋)263 𝜆 leftmost bits of a bitstring 𝑋 (𝑙𝑒𝑛(𝑋) ≥ 𝜆).

𝑀264 Input message to be authenticated.

𝑛265 Internal-state size (in bits) of the underlying hash function.

opad266 Outer pad: 𝑏/8 repetitions of the bitstring 01011100 (i.e., 0x5C).

𝑇267 Output tag, with ℓ bits.

𝜆268 Bit-length of the truncated tag.

𝑥||𝑦269 Concatenation of strings 𝑥 and 𝑦.

⊕270 Exclusive-OR (XOR) operation.

Let 𝐻 be a cryptographic hash function with an output size of ℓ bits and a block size of 𝑏

bits, where 𝑏 is a multiple of eight and satisfies 𝑏 ≥ ℓ. The inputs and the output of the

HMAC tag generation algorithm are as follows:

• Inputs: secret key 𝐾 and message 𝑀.

• Output: tag 𝑇, satisfying 𝑙𝑒𝑛(𝑇) = ℓ.

The HMAC tag generation follows two steps (see a simplified illustration in Figure 1):

1. Key processing. The intermediate value 𝐾0 is determined as follows:

a. If 𝑙𝑒𝑛(𝐾) = 𝑏, then set 𝐾0 = 𝐾.

b. If 𝑙𝑒𝑛(𝐾) > 𝑏, then set 𝐾0 = 𝐻(𝐾) || 0𝑏−ℓ. That is, append (𝑏 −ℓ) zeros (bits)
to 𝐻(𝐾), in order to obtain a string 𝐾0 with 𝑏 bits.

c. If 𝑙𝑒𝑛(𝐾) < 𝑏, then set 𝐾0 = 𝐾 || 0𝑏−𝑙𝑒𝑛(𝐾). That is, append (𝑏 − 𝑙𝑒𝑛(𝐾))
zeros (bits) to 𝐾 in order to obtain a 𝑏-bit string 𝐾0.

2. Output tag (𝑇). The output tag 𝑇 is generated as follows:

𝑇 = HMAC(𝐾,𝑀) = 𝐻((𝐾0 ⊕ opad) || 𝐻((𝐾0 ⊕ipad) || 𝑀)), (1)

where the inner pad ipad is defined as the byte 0x36 repeated 𝑏/8 times, and the
outer pad opad is defined as the byte 0x5C repeated 𝑏/8 times. (Note: The division
is in the integer domain and assumes prior checking that 𝑏 is a multiple of eight.)

𝐾 Key Processing

⊕ipad

⊕opad

||

𝑀

𝐻

|| 𝐻 𝑇

𝐾0

Figure 1. HMAC diagram288

Truncation. Some applications may truncate the HMAC output to construct tags with a

specific length 𝜆 (≤ ℓ). The truncation outputs left𝜆(𝑇), the leftmost 𝜆 bits of 𝑇.

3. HMAC Requirements for Message Authentication

This section specifies requirements for validating HMAC implementations for message

authentication. Other NIST publications may provide different sets of requirements for

other applications of HMAC.

R1. Underlying hash functions. HMAC shall use a NIST-approved cryptographic hash

function listed in Table 2.

Table 2. NIST-approved hash functions for HMAC297

Hash function298
Block size

 (𝑏-bit)
Internal-state

size (𝑛-bit)
 Output size

 (ℓ-bit)

SHA-224[20]299 512 256 224
SHA-256 [20]300 512 256 256
SHA-384 [20]301 1024 512 384
SHA-512 [20]302 1024 512 512
SHA-512/224 [20]303 1024 512 224
SHA-512/256 [20]304 1024 512 256
SHA3-224 [21]305 1152 1600 224
SHA3-256 [21]306 1088 1600 256
SHA3-384 [21]307 832 1600 384
SHA3-512 [21]308 576 1600 512

NOTES:

1. This publication does not approve the use of SHA-1 for HMAC message authentication,

consistent with NIST’s plan to transition away from SHA-1 by 2030 [22].

2. It is expected that hash functions with ℓ = 224 bits of output will be disallowed after 2030

(see Table 4 of SP 800-57pt1r5 [23]). A future revision of SP 800-131Ar2 [24] or other NIST

publications may update the approval status of hash functions.

R2. Key length. The length of the HMAC key shall be at least 128 bits. The use of keys

larger than the block size should be avoided. (See Section 6.2 for more information).

NOTE: The use of shorter keys during key-length transition periods or for tag verification is

allowed for legacy purposes, as specified in SP 800-131Ar2 [24].

R3. Key generation. An HMAC key shall be generated as specified following the recom-

mendations for cryptographic key generation specified in SP 800-133 [17].

R4. Key strength. An HMAC key shall have a key strength that meets or exceeds the

security strength required to protect the data over which the HMAC is computed. (See

Section 6.1 for more information).

R5. Secrecy of key and sensitive values. The HMAC key 𝐾 and intermediate HMAC

computation values that are stored for reuse (e.g., in the optimization mentioned in

Section 5), shall be kept secret.

R6. Specific use of key. An HMAC key used in a message authentication application shall

not be used for other purposes.

R7. Minimum length of truncated tag. When an application uses truncated tags for

message authentication, the length of the truncated HMAC output shall be at least 32

bits, and shall remain constant across the life-span of the key. Any tag output length

that is less than 64 bits should only be selected after careful risk analysis is performed

with respect to the message authentication application.

R8. Limited number of failed tag verifications per key. An HMAC-based message au-

thentication application using truncated tags shall determine a maximum number

of failed tag verifications, based on an acceptable limit of forgery probability. If the

number of failed verifications reaches this number, the key shall stop being used. (See

Section 6.3.3 for an example.)

4. Testing and Validation

NIST guidelines for testing and validating HMAC implementations are managed by the

NIST Cryptographic Module Validation Program (CMVP) [25] and the NIST Cryptographic

Algorithm Validation Program (CAVP) [26]. Concrete requirements are expressed in the

“Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation

Program” [27]. For example, at the time of this publication, the Implementation Guidance

requires that an approval for truncation be subject to a CAVP algorithm validation and that

it be explicitly shown in the module’s security policy.

Test vectors. Detailed test vectors (including intermediate computation values) for the

validation of HMAC implementations are available online at the NIST Computer Security

Resource Center [28], and in the GitHub repository of the NIST CMVP [29]. For convenience,

Table 4 in Appendix B displays one test vector with one input/output entry for each of several

HMAC instantiations (i.e., those whose underlying hash function is from Table 2). The values

were obtained from the NIST CMVP GitHub repository of test vectors [29]. A valid implemen-

tation of HMAC with the corresponding underlying hash function must satisfy the described

relation between input (key, message) and output (tag). A proper validation requires

checking numerous other input/output relationships, as specified by the NIST CAVP [26].

Object IDentifiers. Each possible HMAC instantiation is identified by an Object IDentifier

(OID), which unequivocally specifies the used hash function, the key length, and whether or

not truncation is used. The OIDs approved for HMAC are posted on the Computer Security

Objects Register (CSOR) [30], along with procedures for adding new OIDs.

5. Optimization via Pre-Computation of the Internal State

Some computation of the HMAC algorithm is independent of the message. Therefore,

when an application uses the same key to produce various tags, pre-processing can be

used once to precompute a state that can be reused across various tag generations. This

optimization may be especially relevant in terms of efficiency when authenticating multiple

short messages under the same key.

Hashing a long key. When the key length is larger than the block size, then the computation

of the intermediate value 𝐾0 requires hashing the original key. Storing 𝐾0 can thus avoid

this hashing in subsequent tag computations.

Initialize the two hashings. The internal state of the two underlying hash computations

can also be pre-computed, when the underlying hash function 𝐻 processes the input from

left to right, in 𝑏-bit blocks, as is the case for any hash function approved by the requirement

R1. For each hash function call, the processing of the initial 𝑏-bits block — 𝐾0 ⊕ ipad or

𝐾0 ⊕ opad — is independent of the message 𝑀. Therefore, the internal states (after the

processing of each of these initial blocks) can be stored and reused to initialize the hash

function in subsequent tag generations.

Depending on the underlying hash function, this optimization reduces the number of calls

to the compression function (e.g., used in the SHA-2 family) or the permutation (e.g.,

Keccak used in the SHA-3 family). The effect on efficiency may be especially significant in

applications that require computing tags for many short messages. Choosing to implement

HMAC in this manner has no effect on interoperability, but conformance to requirement R5

requires ensuring the secrecy of these intermediate states.

6. Security Considerations

This section considers the HMAC security strength against key-recovery and forgery attacks.

6.1. Key Strength

Key strength is a measure of the difficulty of guessing a key. It is often expressed in terms

of entropy — a logarithmic measure of the guessing probability. When a secret key has

full entropy, its strength (before use in a cryptographic algorithm) is equal to its bit length

[31]. If a secret key has low entropy (either too short or with small entropy per bit), then an

adversary will have a non-negligible probability of correctly guessing the key. In practice, key

strength depends on the length of the key and multiple factors about how it is generated.

Key strength can also be measured with respect to a particular use in another cryptographic

algorithm (i.e., how it enables resisting various types of cryptographic attacks) such as

key-recovery attacks (Section 6.2) or forgery attacks (Section 6.3). Depending on how the

algorithm uses the key, the strength against some attacks may be less than the key strength.

The following discussion of HMAC security assumes the secret key has been obtained with

an acceptable security strength using a cryptographic random bit generator — see the

SP 800 90 series [19, 32, 33].

6.2. HMAC Security Against Key-Recovery Attacks

In an HMAC key-recovery attack, an adversary who is knowledgeable about the key length

has the goal of finding the original secret key or an equivalent key. The security strength

of HMAC against a key-recovery attack is a measure of the computational effort needed to

achieve this goal. The secure use of HMAC requires that key-recovery attacks are infeasible,

even for an adversary with access to a large number of valid pairs (𝑀,𝑇) of message

and authentication tag. The key-recovery attack requires computing roughly 2ℓ tags if

𝑙𝑒𝑛(𝐾) > 𝑏, and 2𝑙𝑒𝑛(𝐾) tags otherwise.

Equivalent Keys. For the HMAC construction, it is easy to find two keys of different sizes

that lead to the same intermediate value 𝐾0, which in turn will result in the same tag for

any given message. More precisely, 𝐾 and 𝐾′ are said to be “equivalent” if HMAC(𝐾,𝑀) =

HMAC(𝐾′,𝑀) for all possible messages. Two examples:

1. Key with a length larger than block size 𝑏. Given a key 𝐾 that satisfies the condition

of step 1b (see Section 2), (i.e., 𝑙𝑒𝑛(𝐾) > 𝑏), and assuming that ℓ ≤ 𝑏 (which is the

case for all hash functions from Table 2), then 𝐾′ = 𝐻(𝐾) is an equivalent key.

2. Key with a length smaller than block size 𝑏. Given a key 𝐾 that satisfies the condition

of step 1c (see Section 2), (i.e., 𝑙𝑒𝑛(𝐾) < 𝑏), then 𝐾′ = 𝐾|| 0, where 0 is a bit, is an

equivalent key.

On the use of large keys (𝑙𝑒𝑛(𝐾) > 𝑏). The HMAC construction accepts keys of arbitrary

lengths. However, using keys that are longer than 𝑏 bits does not provide extra security

(assuming that they have entropy larger than ℓ), since in that case, the HMAC algorithm

starts by first hashing the key to generate a 𝑏-bit intermediate value (ℓ-bit hash concatenated

with 𝑏 −ℓ zero bits). In other words, using a key with more than 𝑏 bits actually induces a

security strength (e.g., with respect to key-recovery attacks) that is lower than when using

a shorter key 𝐾 that satisfies ℓ < 𝑙𝑒𝑛(𝐾) ≤ 𝑏.

Note that FIPS 198-1 (from 2008) [1] is based on RFC 2101 (1997) [9], which was subse-

quently updated by an errata (in 2017) to disallow keys of lengths larger than the block size

𝑏 of the underlying hash function. This publication does not disallow such long keys but

recommends against their use (see R2 in Section 3).

6.3. HMAC Unforgeability

Without knowledge of the secret key, it should be infeasible for an adversary to generate

a valid (𝑀,𝑇) pair that has not been observed before. Depending on the adversarial goal,

there are various types of forgeries [34]. In an existential forgery attack, after observing

many (𝑀,𝑇) pairs, the goal is to produce a valid tag for some new message (which the

adversary can choose during the attack). In a universal forgery attack, the goal is to gain

the ability to forge a valid tag for any message. Other intermediate forgery goals can be

defined (e.g., selective forgery).

Universal forgery can be achieved by a key-recovery attack with complexity 2𝑙𝑒𝑛(𝐾). (In

the case of HMAC, given its internal transformation of the key, the attack can be done with

complexity 2ℓ if 𝑙𝑒𝑛(𝐾) > 𝑏.) However, other forgery attacks can have lower complexity,

depending on the internal state size 𝑛 of the underlying hash function. These attacks con-

sider the iterative nature of the hash function but do not otherwise exploit any weakness

in the internal function used in each iteration.

HMAC is considered secure with respect to unforgeability when instantiated with any ap-

proved hash function. However, a detailed analysis of its security strength with respect to

unforgeability depends on the type of construction of the hash function: SHA-2-based hash

functions follow the Merkle-Dåmgard (MD) construction (using a compression function);

SHA-3-based hash functions follow the sponge construction (using a permutation).

The strength of any instantiation also depends on the chosen parameters (e.g., key size, and

truncation length). For example, for each of the four output lengths ℓ ∈ {224,256,384,512}

of approved hash functions, the block size 𝑏 is different between the SHA-2 and the SHA-3

families. The parameter 𝑏 is also the key-length threshold 𝑏 after which the key is internally

hashed to a smaller size ℓ (before further use in the internal HMAC calculation).

6.3.1. HMAC with MD-based hash functions

The HMAC construction was originally designed [8] for use with hash functions subject to

length-extension attacks, such as those that follow the MD construction. The outer hashing

in HMAC prevents such attacks from being applicable for obtaining HMAC forgeries.

Suppose HMAC is instantiated with an MD-type of hash function (e.g., any hash function

from the SHA-2 family) with internal state size 𝑛 (Table 2). Then, the HMAC construction is

proven to be indistinguishable from a PRF up to the birthday-bound complexity 2𝑛/2, in

the sense of requiring at least 2𝑛/2 computations of the compression function, assuming

that the compression function is a PRF [35–37]. Since a secure PRF is a secure MAC, the

assumption implies that an MD-based HMAC is a secure MAC.

With this result, the complexity of generic attacks against HMAC with an underlying MD-

based hash function has established lower bounds, such as time complexity roughly 2𝑛/2

for some special parametrizations (e.g., when 𝑛 = ℓ = 𝑏/2, and 𝑙𝑒𝑛(𝐾) = 𝑏). It follows that

SHA-256 enables 128 bits of security, whereas SHA-512 provides 256 bits of security against

HMAC forgery attacks. The time complexity of concrete known attacks [38, 39] is always

smaller than 2𝑛, and in some cases (but not all) matches the established lower bound of

2𝑛/2. However, universal forgery is also possible via exhaustive key search (see Section 6.2),

which has lower complexity if 𝑙𝑒𝑛(𝐾) < 𝑛/2, or if simultaneously ℓ < 𝑛/2 and 𝑙𝑒𝑛(𝐾) > 𝑏,

as in the case of SHA-512/224.

6.3.2. HMAC with sponge-based hash functions

For message authentication, this publication approves (in R1) the use of HMAC based

on hash functions from the SHA-3 family. However, given the difference between SHA-2

(MD-based) and SHA-3 (sponge-based), the research results mentioned in Section 6.3.1

for HMAC unforgeability security do not directly apply to HMAC based on a SHA-3 hash

function. While there are known comparisons of security strength between SHA-3 and

SHA-2 instantiations of HMAC [40], this publication does not provide a detailed comparison.

6.3.3. Impact of truncation and multiple tag verifications

Security against existential forgeries attacks decreases when (i) multiple tag verifications

are allowed, or (ii) the tag is truncated to a length 𝜆 smaller than ℓ bits. For an adversary

that can try 𝑁 = 2𝑡 different tags of length 𝜆 (with 𝑡 ≤ 𝜆), the probability of producing a

valid tag is 2𝑡−𝜆. Therefore, the truncation to 𝜆 bits is only suitable for applications in which

(i) the maximum number of failed tag verifications 𝑁 allowed by the system for each HMAC

key can be enforced, and (ii) it is acceptable to have forgery probability 2𝑡−𝜆 for each HMAC

key. This motivated requirements R7 and R8 in Section 3.

Example. If the length of truncated tags is 𝜆 = 64, and the system accepts a forgery prob-

ability of at most 2−40, then the number of failed tag verifications needs to be limited to

𝑁 −264−40 = 224.

References

[1] National Institute of Standards and Technology (2008) The Keyed-Hash Message Au-

thentication Code (HMAC), (U.S. Department of Commerce, Washington, D.C.), Federal

Information Processing Standards (FIPS) Publication 198-1. DOI:10.6028/NIST.FIPS.198-

1.

[2] Dang Q (2012) Recommendation for Applications Using Approved Hash Algorithms,

(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special

Publication (SP) 800-107 Rev. 1. DOI:10.6028/NIST.SP.800-107r1.

[3] National Institute of Standards and Technology (2024) Crypto Publication Review

Project. Available at https://csrc.nist.gov/projects/crypto-publication-review-project.

[4] National Institute of Standards and Technology (2022) Decision to Convert FIPS 198-1

to a NIST Special Publication. Available at https://csrc.nist.gov/news/2022/decisi

on-to-convert-fips-198-1-to-nist-special-pub. See the initial conversion proposal

(from 2022-Sep-20) at https://csrc.nist.gov/news/2022/proposal-to-convert-fip

s-198-1-to-a-nist-sp.

[5] National Institute of Standards and Technology (2022) Withdrawal of NIST Special Publi-

cation 800-107 Revision 1. Available at https://csrc.nist.gov/news/2022/withdrawal-o

f-nist-sp-800-107-revision-1. See the initial withdrawal proposal (from 2022-June-08)

at https://csrc.nist.gov/news/2022/proposal-to-withdraw-sp-800-107-rev-1.

[6] Kelsey J, Chang S, Perlner R (2016) SHA-3 Derived Functions: cSHAKE, KMAC, Tuple-

Hash, and ParallelHash, (National Institute of Standards and Technology, Gaithersburg,

MD), NIST Special Publication (SP) 800-185. DOI:10.6028/NIST.SP.800-185.

[7] National Institute of Standards and Technology (2023) Digital Signature Standard

(DSS), (U.S. Department of Commerce, Washington, D.C.), Federal Information

Processing Standards (FIPS) Publication 186-5. DOI:10.6028/NIST.FIPS.186-5.

[8] Bellare M, Canetti R, Krawczyk H (1996) Keying Hash Functions for Message Authenti-

cation. Advances in Cryptology — CRYPTO ’96, ed Koblitz N (Springer Berlin Heidelberg,

Berlin, Heidelberg), LNCS, Vol. 1109, pp 1–15. DOI:10.1007/3-540-68697-5_1

https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.SP.800-107r1
https://csrc.nist.gov/projects/crypto-publication-review-project
https://csrc.nist.gov/news/2022/decision-to-convert-fips-198-1-to-nist-special-pub
https://csrc.nist.gov/news/2022/decision-to-convert-fips-198-1-to-nist-special-pub
https://csrc.nist.gov/news/2022/decision-to-convert-fips-198-1-to-nist-special-pub
https://csrc.nist.gov/news/2022/proposal-to-convert-fips-198-1-to-a-nist-sp
https://csrc.nist.gov/news/2022/proposal-to-convert-fips-198-1-to-a-nist-sp
https://csrc.nist.gov/news/2022/proposal-to-convert-fips-198-1-to-a-nist-sp
https://csrc.nist.gov/news/2022/withdrawal-of-nist-sp-800-107-revision-1
https://csrc.nist.gov/news/2022/withdrawal-of-nist-sp-800-107-revision-1
https://csrc.nist.gov/news/2022/withdrawal-of-nist-sp-800-107-revision-1
https://csrc.nist.gov/news/2022/proposal-to-withdraw-sp-800-107-rev-1
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.1007/3-540-68697-5_1

[9] Krawczyk H, Bellare M, Canetti R (1997) HMAC: Keyed-Hashing for Message

Authentication. RFC 2104 DOI:10.17487/RFC2104. Errata (2017-Feb-03) available at

https://www.rfc-editor.org/errata/eid4809

[10] National Institute of Standards and Technology (2002) The Keyed-Hash Message

Authentication Code (HMAC), (U.S. Department of Commerce, Washington, D.C.),

Federal Information Processing Standards (FIPS) Publication 198. Available at

https://csrc.nist.gov/pubs/fips/198/final.

[11] Dworkin M (2005) Recommendation for Block Cipher Modes of Operation: the CMAC

Mode for Authentication, (National Institute of Standards and Technology, Gaithers-

burg, MD), NIST Special Publication (SP) 800-38B. DOI:10.6028/NIST.SP.800-38B-2005.

[12] National Institute of Standards and Technology (2001) Advanced Encryption

Standard (AES), (U.S. Department of Commerce, Washington, D.C.), Federal Infor-

mation Processing Standards (FIPS) Publication 197-upd1, updated May 9, 2023.

DOI:10.6028/NIST.FIPS.197-upd1.

[13] Barker E, Chen L, Roginsky A, Vassilev A, Davis R (2018) Recommendation for Pair-Wise

Key-Establishment Schemes Using Discrete Logarithm Cryptography, (National

Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication

(SP) 800-56A Rev. 3. DOI:10.6028/NIST.SP.800-56Ar3.

[14] Barker E, Chen L, Roginsky A, Vassilev A, Davis R, Simon S (2019) Recommendation

for Pair-Wise Key-Establishment Using Integer Factorization Cryptography, (National

Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication

(SP) 800-56B Rev. 2. DOI:10.6028/NIST.SP.800-56Br2.

[15] Chen L (2022) Recommendation for Key Derivation Using Pseudorandom Functions,

(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special

Publication (SP) 800-108 Rev. 1. DOI:10.6028/NIST.SP.800-108r1.

[16] Barker E, Chen L, Davis R (2020) Recommendation for Key-Derivation Methods in Key-

Establishment Schemes, (National Institute of Standards and Technology, Gaithersburg,

MD), NIST Special Publication (SP) 800-56C Rev. 2. DOI:10.6028/NIST.SP.800-56Cr2.

[17] Barker E, Roginsky A, Davis R (2020) Recommendation for Cryptographic Key

Generation, (National Institute of Standards and Technology, Gaithersburg, MD), NIST

Special Publication (SP) 800-133 Rev. 2. DOI:10.6028/NIST.SP.800-133r2.

https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/errata/eid4809
https://csrc.nist.gov/pubs/fips/198/final
https://doi.org/10.6028/NIST.SP.800-38B-2005
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-108r1
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-133r2

[18] Sönmez Turan M, Barker E, Burr W, Chen L (2010) Recommendation for Password-

Based Key Derivation: Part 1: Storage Applications, NIST SP 800-132: (National

Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication

(SP) 800-132. DOI:10.6028/NIST.SP.800-132.

[19] Barker E, Kelsey J (2015) Recommendation for Random Number Generation

Using Deterministic Random Bit Generators, (National Institute of Standards

and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90A Rev. 1.

DOI:10.6028/NIST.SP.800-90Ar1.

[20] National Institute of Standards and Technology (2015) Secure Hash Standard (SHS),

(U.S. Department of Commerce, Washington, D.C.), Federal Information Processing

Standards (FIPS) Publication 180-4. DOI:10.6028/NIST.FIPS.180-4.

[21] National Institute of Standards and Technology (2015) SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions, (U.S. Department of Commerce,

Washington, D.C.), Federal Information Processing Standards (FIPS) Publication 202.

DOI:10.6028/NIST.FIPS.202.

[22] National Institute of Standards and Technology (2022) NIST Transitioning Away from

SHA-1 for All Applications. Available at https://csrc.nist.gov/news/2022/nist-trans

itioning-away-from-sha-1-for-all-apps.

[23] Barker E (2020) Recommendation for Key Management — Part 1: General, (National

Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication

(SP) 800-57 Part 1 Rev. 5. DOI:10.6028/NIST.SP.800-57pt1r5.

[24] Barker E, Roginsky A (2019) Transitioning the Use of Cryptographic Algorithms and

Key Lengths, (National Institute of Standards and Technology, Gaithersburg, MD), NIST

Special Publication (SP) 800-131A Rev. 2. DOI:10.6028/NIST.SP.800-131Ar2.

[25] National Institute of Standards and Technology (2024) Cryptographic Module

Validation Program (CMVP). Available at https://csrc.nist.gov/projects/cryptogra

phic-module-validation-program.

[26] National Institute of Standards and Technology (2023) Cryptographic Algorithm

Validation Program (CAVP). Available at https://csrc.nist.gov/projects/cryptograph

ic-algorithm-validation-program.

https://doi.org/10.6028/NIST.SP.800-132
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program

[27] National Institute of Standards and Technology, Canadian Centre for Cyber Security

(2024) Implementation Guidance for FIPS 140-3 and the Cryptographic Module

Validation Program (version 2024-Mar-26). (Note: Numerous future updates are

expected for this publication.) Available at https://csrc.nist.gov/projects/cryptog

raphic-module-validation-program/fips-140-3-standards.

[28] National Institute of Standards and Technology / Computer Security Resource

Center (CSRC) (2013) Examples with Intermediate Values. Available at ht tps :

//csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values.

[29] National Institute of Standards and Technology (2023) Github repository usnist-

gov/acvp-server: Automated cryptographic validation test system — gen/vals). Avail-

able at https://github.com/usnistgov/ACVP-Server/tree/master/gen-val/json-files.

[30] National Institute of Standards and Technology (2023) Computer Security Objects

Register. Available at https://csrc.nist.gov/projects/computer-security-objects-r

egister/algorithm-registration.

[31] Buller D, Kaufer A, Roginsky A, Sönmez Turan M (2023) Discussion on the Full Entropy

Assumption of the SP 800-90 Series, (National Institute of Standards and Technology,

Gaithersburg, MD), NIST Interagency Report (NIST IR) 8427. DOI:10.6028/NIST.IR.8427.

[32] Sönmez Turan M, Barker E, Kelsey J, McKay K, Baish M, Boyle M (2018)

Recommendation for the Entropy Sources Used for Random Bit Generation,

(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special

Publication (SP) 800-90B. DOI:10.6028/NIST.SP.800-90B.

[33] Barker E, Kelsey J, McKay K, Roginsky A, Turan MS (2022) Recommendation for

Random Bit Generator (RBG) Constructions, (National Institute of Standards and

Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90C 3pd (3rd public

draft). DOI:10.6028/NIST.SP.800-90C.3pd.

[34] Preneel B (1998) Cryptanalysis of message authentication codes. Information Security,

eds Okamoto E, Davida G, Mambo M (Springer Berlin Heidelberg, Berlin, Heidelberg),

LNCS, Vol. 1396, pp 55–65. DOI:10.1007/BFb0030408

[35] Gaži P, Pietrzak K, Rybár M (2014) The Exact PRF-Security of NMAC and HMAC.

Advances in Cryptology — CRYPTO 2014, eds Garay JA, Gennaro R (Springer Berlin

https://csrc.nist.gov/projects/cryptographic-module-validation-program/fips-140-3-standards
https://csrc.nist.gov/projects/cryptographic-module-validation-program/fips-140-3-standards
https://csrc.nist.gov/projects/cryptographic-module-validation-program/fips-140-3-standards
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://github.com/usnistgov/ACVP-Server/tree/master/gen-val/json-files
https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://doi.org/10.6028/NIST.IR.8427
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90C.3pd
https://doi.org/10.1007/BFb0030408

Heidelberg, Berlin, Heidelberg), LNCS, Vol. 8616, pp 113–130. DOI:10.1007/978-3-

662-44371-2_7

[36] Bellare M (2015) New Proofs for NMAC and HMAC: Security Without Collision-

Resistance. Journal of Cryptology 28:844–878. DOI:10.1007/s00145-014-9185-x. Also

available at https://ia.cr/2006/043

[37] Backendal M, Bellare M, Günther F, Scarlata M (2023) When Messages Are Keys:

Is HMAC a Dual-PRF? Advances in Cryptology — CRYPTO 2023, eds Handschuh H,

Lysyanskaya A (Springer Nature Switzerland, Cham), LNCS, Vol. 14083, pp 661–693.

DOI:10.1007/978-3-031-38548-3_22. Also available at https://ia.cr/2023/861

[38] Preneel B, van Oorschot PC (1996) On the Security of Two MAC Algorithms. Advances

in Cryptology — EUROCRYPT ’96, ed Maurer U (Springer Berlin Heidelberg, Berlin,

Heidelberg), LNCS, Vol. 1070, pp 19–32. DOI:10.1007/3-540-68339-9_3

[39] Guo J, Peyrin T, Sasaki Y, Wang L (2014) Updates on generic attacks against HMAC and

NMAC. Advances in Cryptology — CRYPTO 2014, Proceedings, Part I, eds Garay JA, Gen-

naro R (Springer), LNCS, Vol. 8616, pp 131–148. DOI:10.1007/978-3-662-44371-2_8

[40] Naito Y, Wang L (2016) Replacing SHA-2 with SHA-3 Enhances Generic Security of HMAC.

Topics in Cryptology — CT-RSA 2016, ed Sako K (Springer International Publishing,

Cham), LNCS, Vol. 9610, pp 397–412. DOI:10.1007/978-3-319-29485-8_23

[41] ANSI X9.71 (2000) Keyed Hash Message Authentication Code (MAC), ANSI X9.71-2000.

https://www.ansi.org.

[42] Nystrom M (2005) Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256,

HMAC-SHA-384, and HMAC-SHA-512. RFC 4231 DOI:10.17487/RFC4231

[43] Dang Q (2009) Recommendation for Applications Using Approved Hash Algorithms,

(National Institute of Standards and Technology, Gaithersburg, MD), NIST Special

Publication (SP) 800-107. DOI:10.6028/NIST.SP.800-107. (Has been superseded by

SP 800-107r1)

[44] National Institute of Standards and Technology (2008) Secure Hash Standard (SHS), (U.S.

Department of Commerce, Washington, D.C.), Federal Information Processing Stan-

dards (FIPS) Publication 180-3. Available at https://csrc.nist.gov/pubs/fips/180-3/final.

(Has been superseded by FIPS 180-4).

https://doi.org/10.1007/978-3-662-44371-2_7
https://doi.org/10.1007/978-3-662-44371-2_7
https://doi.org/10.1007/978-3-662-44371-2_7
https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/978-3-031-38548-3_22
https://doi.org/10.1007/3-540-68339-9_3
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1007/978-3-319-29485-8_23
https://www.ansi.org
https://doi.org/10.17487/RFC4231
https://doi.org/10.6028/NIST.SP.800-107
https://csrc.nist.gov/pubs/fips/180-3/final

Appendix A. Development of the HMAC Standard

Table 3 lists an historical sequence of developments about the HMAC standard.

Table 3. Development of the HMAC standard639

Year Event640

1996 Bellare, Canetti, and Krawczyk [8] proposed the HMAC construction.641

1997 RFC 2104 [9] specified the HMAC construction.642

2000 ANSI:X9.71-2000 [41] (standard by the X9 committee) incorporated the RFC
2104 [9].

643
644

2002 FIPS 198 [10] specified the keyed-hash MAC (HMAC).645

2005 RFC 4231 [42] listed the identifiers and test vectors for HMAC-SHA-224,
HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512.

646
647

2008 FIPS 198-1 [1] superseded FIPS 198 [10]. The discussions on length of truncated
HMAC outputs and their security implications were moved to SP 800-107.

648
649

2009 SP 800-107 [43] listed SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 as five
hash algorithms (from FIPS 180-3 [44]) approved for HMAC.

650
651

2012 SP 800-107r1 [2] added SHA-512/224 and SHA-512/256 (from the 2012 version
of FIPS 180-4 [20]) to the list of approved hash functions for HMAC.

652
653

2015 FIPS 202 [21] specified the SHA-3 family of hash functions and approved its use
within HMAC.

654
655

2022 The identifiers and test vectors for HMAC-SHA-3 were provided by reference to
the NIST website.

656
657

2023 The NIST Crypto Publication Review Board reviewed FIPS 198-1, The Keyed-Hash
Message Authentication Code (HMAC) [1], and SP 800-107r1, Recommendation
for Applications Using Approved Hash Algorithms [2], and proposed to withdraw
both, and move their relevant (and revised) content to a new Special Publication.

658
659
660
661

2024 SP 800-224 ipd (this document) was published.662

https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://csrc.nist.gov/groups/ST/toolkit/examples.html.

Appendix B. Example Test Vector

Table 4 provides a test vector for various HMAC instantiations, including one input/output

entry for each approved hash function (according to Table 2 in Section 3). In the first column

of the table, “tcid” denotes the identifier of the test vector item defined by CMVP [29] for

the considered HMAC instantiation. The values in the rightmost column are in hexadecimal.

Table 4. Example test vector for the HMAC construction668

Hash function
(test reference)

Parameter669
 Tag bit-
 length

Value in hexadecimal (0x)

SHA-224

 (tcid = 751)

key670 176 E44E3C28 37D83501 BD5B5403 AF653DC6
08A2B217 689E

message671 128 EA008790 F4F4BB46 93BD17FD 726517BE

tag672 160 7D832AE4 6647B47A EEE26B65 F5F1E518
05C78F1E

SHA-256

 (tcid = 151)

key673 136 C8D46CBF 65271FCC 60DB02E4 D7CC4BD8 75

message674 128 063F0B6E 8960826C FBE35EBD B01B47EA

tag675 128 6B800744 B38D0A9F 2B9D64C5 82F7D6D9

SHA-384

 (tcid = 751)

key676 448 D122EA65 7D8E3D5C 5B69C9FE 4AB7368D
508E500C 3EA2E528 D346547A 72987086
C97668B7 C139058A 3F454144 832FF7FF
31FFD48F 25936E3A

message677 128 3933069E 5E5A5BB0 AAB68C3C 1F9FCAF7

tag678 80 7DD24D9A E7A9D82E A6CA

SHA-512

 (tcid = 1)

key679 384 F9E2E43A 5FBAB3E2 4FEC3A76 C2496883
70544FFA D051FE90 4531C3FE B66DE453
DF0A24BB D1B3A43C 34788732 651EBA8A

message680 128 ED39A835 34D4D989 C6B25FA8 A563F51C

tag681 80 7A047975 A81D30E9 CF18

SHA-512/224

 (tcid = 301)

key682 240 6036DB04 6AAC5778 CEF2E795 A9787347
310907D7 11D0A2BF 1D15B1BF A5EB

message683 128 4407F708 FB4EB398 82E7FA55 2474C595

tag684 120 F5AA4154 7F04B336 AD6862F6 4D1F50

https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-224-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-256-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-384-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-512-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-512-224-1.0/internalProjection.json

Hash function
(test reference)

Parameter669
 Tag bit-
 length

Value in hexadecimal (0x)

SHA-512/256

 (tcid = 76)

key685 288 D3F8BBE4 10DC40EA 2BA2176B D99E0905
C8F8EDE6 7FA40A33 897F1CE3 8CBA34C3
AD4D5207

message686 128 7AFE75E5 D204235A 462BB282 C648278C

tag687 136 23C7CFBE 4921B9A4 D862B01B 6F86273E 24

SHA3-224

 (tcid = 1)

key688 264 F8A7ED55 62A7646A 22B4DBB1 4D3AD891
CA677877 DAE37860 2F09CE47 9D3B11E8 1A

message689 128 7627B19C B5559458 7EDAD2FF 0C22D292

tag690 88 1AF28609 D217BF6D FB1184

SHA3-256

 (tcid = 526)

key691 264 5F712D90 E610531A A24E2C5C B59B2B7F
0E1D2298 09B10F46 201E48D4 93EB6784 EC

message692 128 6D95CE1D ECC2212A F7B33A90 D6297E02

tag693 160 ED29D0D3 923524AE 417F0B30 DFF8A412
8DC202AE

SHA3-384

 (tcid = 601)

key694 584 63E7020D 5E017AA8 F86618BA 4A4ED4BE
03298E92 BA8EF97C 7396D260 61B12D5D
638C3E53 FF1B8052 B5E217A9 27EB7D9B
80CEDAC1 CEB227A1 3A0229DF 542F8B0F
1040A5C8 E9558CDD EB

message695 128 C4222888 AFAB77E7 C9206D28 94714E9A

tag696 160 0B546DF3 EF91E1DA 09E5E7EF C7258CA2
DA57CBE6

SHA3-512

 (tcid = 76)

key697 384 A471B461 43C47722 A4317F79 C3605F56
06210066 F7607F37 BFC05AB4 8AD624EC
DDAA5F2B CE0F5D68 CB900A94 041A388C

message698 128 676498A9 15CC5B77 3275034A 972B552A

tag699 152 CF38AA4B 510886A3 4FB3B67F 50F8FED5 9DE585

https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-512-256-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-224-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-256-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-384-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-512-1.0/internalProjection.json

Appendix C. Glossary

adversary An entity that is not authorized to access or modify information, or who works

to defeat any protections afforded to the information.

approved FIPS-approved or NIST-recommended: An algorithm or technique that is either

specified or adopted in a FIPS Publication or NIST Special Publication in Computer

Security (SP 800 series).

block size The number of bits in the message block processed in each iteration (e.g., by

the compression function call) of the hash function.

forgery A (message, tag) pair produced by an adversary who does not known the secret

key, yet accepted as valid by the HMAC tag verification procedure. The expression

forgery probability denotes the probability of an adversary producing such a valid

pair.

hash function A mathematical function that maps a string of arbitrary length (up to a

predetermined maximum size) to a fixed length string.

Internal state size In the context of a hash computation, it is the number of bits in the

intermediate state needed in memory between processing successive input blocks.

key strength The security strength (based on a notion of entropy) of a secret key for HMAC

is measured as the − log2 of the expected number of guesses that an adversary must

make to guess the key.

message authentication code (MAC) See tag.

pseudorandom function (PRF) A family of functions parameterized by a secret key, such

that when the key is unknown, the output upon evaluating an input (a message) is

indistinguishable from a random output (of the specified length).

secret key A cryptographic key that is used by a secret-key (symmetric) cryptographic

algorithm and is not made public.

security strength A number associated with the amount of work (i.e., the number of

basic operations of some sort) or resources (e.g., memory) required to break a

cryptographic algorithm or system. Security strength is often expressed in bits. If the

security strength is 𝑠 bits, then it is expected that (roughly) 2𝑠 basic operations or

resources are required to break the algorithm or system.

shall Used to express a requirement that needs to be fulfilled to conform with this specifi-

cation.

should Used to indicate a strong recommendation but not a requirement of this specifica-

tion. Ignoring the recommendation could result in undesirable results.

tag A cryptographic checksum that is designed to detect accidental and intentional modifi-

cations on the data (also called a message) to which it is applied. The computation

and verification of the tag requires knowledge of a secret key. The tag is also referred

to as a message authentication code.

tag verification The process of determining the validity of a provided tag in relation to

a message. It accepts or rejects the tag based on whether it matches the result

obtained by computing a tag for the provided message.

truncation A process that shortens an input bitstring and preserves only a substring of a

specified length.

Appendix D. Summary of Changes

This publication contains numerous editorial adjustments compared to the previous versions

in FIPS 198-1 [1] and SP 800-107r1 [2]. The following list summarizes the main updates:

1. Use of HMAC for message authentication versus other applications. Compared

to FIPS 198-1, this publication includes requirements to approve the use of HMAC

for message authentication, which was previously considered in SP 800 107r1. This

publication informs the reader that HMAC can have other uses (e.g., PRF and key-

derivation), but the corresponding requirements are not in the scope of the present

document. In particular, the revised introduction includes an enumeration of HMAC

applications considered across other NIST Special Publications.

2. Notation. The notation was revised, introducing a few changes:

• Binary notation. All mentions of lengths in bytes have been updated to bits,

allowing for better consistency with truncation, whose output bit-length need

not be a multiple of eight. Lengths 𝐵 and 𝐿 (in bytes) were changed to 𝑏 and

ℓ (in bits), respectively.

• Other updates to variable names. The variable 𝑡𝑒𝑥𝑡 has been changed to 𝑀

(the message being authenticated). The symbols HMAC (the tag generation al-

gorithm), 𝑙𝑒𝑛 (length function), and 𝑛 (bit-size of the internal state of a hash

function) were introduced.

3. Revised requirements (indexation and content). In this publication, the set of require-

ments (in Section 3) is explicitly scoped within the context of an HMAC application to

message authentication. The requirements (based on requirements from FIPS 198-1

and SP 800 107r1) are now indexed and titled for easier referencing.

4. Approved hash functions. The approved hash functions listed in SP 800 107r1 in-

cluded SHA-1 and did not include any SHA-3-based function. In comparison, this

publication (see R1) does not approve SHA-1 and approves four SHA-3 based functions

for use in HMAC-based message authentication.

5. Limited number of failed tag verifications. SP 800 107r1 required the key to be

changed before a maximum allowed number of failed tag verifications is reached.

This publication rewrote the requirement, scoping it only to the cases when trun-

cation is used. This publication (see R8) explicitly requires that in such cases it is

necessary to determine an acceptable maximum number of failed tag verifications.

6. Validation context and test vectors. Section 4 improved the explanation of the object

identifiers, test vectors, and validation context. The new Appendix B also adds a test

vector that covers one HMAC input/output example for each possible underlying

hash function.

7. Security notions. Section 6 explains some security notions at a high level, including

the key strength (see Section 6.1); security strength against key-recovery attacks (see

Section 6.2, which includes the notion of equivalent keys); and forgery attacks (see

Section 6.3).

8. References. The list of references has been substantially updated and extended.

9. Glossary items. The glossary in Appendix C does not include all entries of the glos-

saries of FIPS 198-1and SP 800 107r1. The new glossary introduces the following

terms: block size, forgery, internal state size, key strength, pseudorandom function,

secret key, should, tag, tag verification, truncation.

	Frontmatter
	NIST SP 800-224 ipd (Cover)
	NIST SP 800-224 ipd (Title Page)
	Publication context
	Disclaimer
	Authority
	NIST Technical Series Policies
	Publication History
	How to cite

	Contacts
	Author ORCID iDs
	Public Comment Period
	Submit Comments

	Abstract page
	Abstract
	Keywords
	Reports on Computer Systems Technology

	Call for Patent Claims
	Contents
	List of Requirements

	Preface
	Acknowledgments
	Note to Reviewers

	1. Introduction
	2. HMAC Construction
	3. HMAC Requirements for Message Authentication
	4. Testing and Validation
	5. Optimization via Pre-Computation of the Internal State
	6. Security Considerations
	6.1. Key Strength
	6.2. HMAC Security Against Key-Recovery Attacks
	6.3. HMAC Unforgeability
	6.3.1. HMAC with MD-based hash functions
	6.3.2. HMAC with sponge-based hash functions
	6.3.3. Impact of truncation and multiple tag verifications

	Appendix A. Development of the HMAC Standard
	Appendix B. Example Test Vector
	Appendix C. Glossary
	Appendix D. Summary of Changes

