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A message authentication code (MAC) scheme is a symmetric-key cryptographic mechanism 

that can be used with a secret key to produce and verify an authentication tag, which enables 

detecting unauthorized modifications to data (also known as a message). This NIST Special 

Publication (whose current version is an initial public draft) specifies the keyed-hash message

authentication code (HMAC) construction, which is a MAC scheme that uses a cryptographic 

hash function as a building block. The publication also specifies a set of requirements for 

using HMAC for message authentication, including a list of NIST-approved cryptographic 

hash functions, requirements on the secret key, and parameters for optional truncation.

Keywords

Cryptography; hash function; HMAC; MAC; message authentication code; PRF; pseudoran-

dom function; standard; truncation.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and 

Technology (NIST) promotes the U.S. economy and public welfare by providing technical lead-

ership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 

methods, reference data, proof of concept implementations, and technical analyses to ad-

vance the development and productive use of information technology. ITL’s responsibilities 

include the development of management, administrative, technical, and physical standards 

and guidelines for the cost-effective security and privacy of other than national security-

related information in federal information systems. The Special Publication 800-series 

reports on ITL’s research, guidelines, and outreach efforts in information system security, 

and its collaborative activities with industry, government, and academic organizations.










Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose 

use would be required for compliance with the guidance or requirements in this Information 

Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may 

be directly stated in this ITL Publication or by reference to another publication. This call 

also includes disclosure, where known, of the existence of pending U.S. or foreign patent 

applications relating to this ITL draft publication and of any relevant unexpired U.S. or 

foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its 

behalf, in written or electronic form, either:

1. assurance in the form of a general disclaimer to the effect that such party does not 

hold and does not currently intend holding any essential patent claim(s); or

2. assurance that a license to such essential patent claim(s) will be made available 

to applicants desiring to utilize the license for the purpose of complying with the 

guidance or requirements in this ITL draft publication either:

(a) under reasonable terms and conditions that are demonstrably free of any unfair 

discrimination; or

(b) without compensation and under reasonable terms and conditions that are 

demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make 

assurances on its behalf) will include in any documents transferring ownership of patents 

subject to the assurance, provisions sufficient to ensure that the commitments in the assur-

ance are binding on the transferee, and that the transferee will similarly include appropriate 

provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest 

regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: SP800-224-comments@list.nist.gov
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Preface

This NIST Special Publication (SP) 800-224 initial public draft (ipd) results from a conversion of 

FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC) [1] (2008), and incorpo-

rates some requirements from SP 800-107r1 (Revision 1), Recommendation for Applications 

Using Approved Hash Algorithms [2] (2012). This development was proposed by the NIST 

Crypto Publication Review Board [3], based on two publication reviews in 2022: the FIPS 

198-1 review [4] proposed converting the standard into an SP; the review of SP 800-107r1 

[5] proposed that requirements (of hash functions) related to specific uses (e.g., for HMAC-

based message authentication) be moved to the relevant publications. The final version 

of SP 800-224 is expected to be published concurrently with the withdrawal of FIPS 198-1. 
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Note to Reviewers

NIST requests comments on all technical and editorial aspects of the publication. Please 

submit feedback comments to SP800-224-comments@list.nist.gov by September 6, 2024. 

NIST will review all comments and post them on the NIST website.

There is a particular interest in receiving feedback on the following:

1. Hash functions. This draft publication lists (in R1) hash functions for use in HMAC-based 

message authentication. Are there applications that would justify additionally approving 

TupleHash [6] (a variable-length hash function designed to hash tuples of input strings) 

and ParallelHash [6] (an efficiently parallelizable hash function, when hashing long 

messages) for HMAC-based message authentication?

2. Maximum length of the HMAC key. When using HMAC for message authentication, this 

draft publication recommends (in R4) not using, but does not disallow, keys with length 

greater than the block size 𝑏 of the underlying hash function. Should NIST disallow HMAC 

keys longer than the block size?

3. Fixed truncation length. When using HMAC for message authentication, the revised 

requirement (R7) about the truncation length now explicitly requires that this length 

be fixed across the life-span of each key. Are there applications that would justify an 

exception to this requirement? See more details in Section 6.3.3.
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1. Introduction

The cryptographic protection of the integrity and authenticity of data is of paramount 

importance for cybersecurity. The classic example is that of a two-party communication in 

which a receiver needs assurance that a message supposedly sent by a sender was neither 

altered nor created by a third party. In the symmetric-key cryptography setting, where 

sender and receiver agree on a secret key, the assurance can be achieved by associating a 

Message authentication code (MAC, also called a tag) to the message.

Using the secret key and the message as inputs, the tag is produced by the sender and 

reproduced by the receiver to respectively claim and verify the authenticity of the message 

without revealing the secret key. Concretely, the gained assurance is that of unforgeability, 

which implies that the tag was generated by someone that knows the secret key and with 

respect to the received message. However, this MAC-provided assurance (based on a secret 

key between two parties) is not transferable to third parties, contrary to the property of 

non-repudiation provided by digital signatures [7] (in the public-key setting).

The hash-function-based MAC scheme called keyed-hash message authentication code

(HMAC) was originally designed by Krawczyk, Bellare and Canetti [8], and shortly thereafter 

specified in a Request For Comments (RFC) by the Internet Engineering Task Force (IETF) [9]. 

The specification was later transposed into a NIST Federal Information Processing Standards 

(FIPS) Publication 198 [10] and then 198-1 [1]. The present NIST Special Publication (SP) 

800-224-ipd is a draft replacement of FIPS 198-1 and additionally incorporates requirements 

(revised from SP 800 107r1 [2]) for the use of HMAC for message authentication.

In addition to HMAC, NIST approves the following two MAC schemes:

(i) KMAC, specified in SP 800-185 [6], which is based on KECCAK, the underlying function 

of the hash function family SHA-3. KMAC has two variants that support different 

security levels: KMAC128 and KMAC256.

(ii) CMAC, specified in SP 800-38B [11], which is based on a block cipher, such as the 

Advanced Encryption Standard (AES) [12].

Other applications of HMAC. The HMAC tag generation function is a pseudorandom function 

(PRF) and may be used for cryptographic purposes other than the classical example of 

message authentication between a sender and a receiver. At the time of the present 

publication, other NIST publications consider the following uses of HMAC:

• Key confirmation, as a building block of pair-wise key establishment (see SP 800-56Ar3 

[13] and SP 800-56Br2 [14])










• Key derivation [15], including as a building block of pair-wise key establishment (see 

SP 800-56Cr2 [16])

• Randomness extraction and key expansion, as a building blocks for a key derivation 

function (see SP 800-56Cr2 [16])

• Key extraction, by combining multiple keys (see SP 800-133r2 [17])

• Password-based key-derivation as a building block of PBKDF (see SP 800-132 [18])

• Random number generation as a building block of a deterministic random bit genera-

tor (DRBG), as in HMAC_DRBG (see SP 800-90Ar1 [19])

Organization.  Section 2 specifies the HMAC construction and the truncation option. Sec-

tion 3 enumerates the HMAC requirements for message authentication. Section 4 covers 

the testing and validation of HMAC, and the use of object identifiers. Section 5 describes 

an implementation optimization by precomputing an internal state. Section 6 discusses 

security, including the key strength and security strength against key-recovery and forgery 

attacks. Appendix A displays a timeline of developments related to the HMAC specification. 

Appendix B provides example test vectors. Appendix C includes a glossary. Appendix D lists 

various changes introduced in this document, as compared to the previous HMAC specifica-

tion in FIPS 198-1 and its related requirements for message authentication in SP 800-107r1. 










2. HMAC Construction

This section specifies the HMAC construction and the option for tag truncation. Table 1 

provides the notation.

Table 1. Notation251

Notation252 Description

0xN253 Bitstring in hexadecimal notation, where N is a string of symbols in the 
domain 0–9 A–F. Each hexadecimal symbol represents a sequence of four 
bits, also known as a nibble.

0𝑥
254 A bitstring composed of 𝑥 consecutive bits with value 0.

𝑏255 Block size (bit-length) of the underlying hash function, assumed to be a 
multiple of eight. See Table 2 for concrete values.

𝐻256 Underlying cryptographic hash function.

HMAC(𝐾,𝑀)257 The HMAC tag generation function, using as inputs a key 𝐾 and a message 
𝑀, and outputting a tag 𝑇.

ipad258 Inner pad: 𝑏/8 repetitions of the bitstring 00110110 (i.e., 0x36).

𝐾259 Secret key.

𝐾0260 Intermediate 𝑏-bit key generated from the secret key 𝐾.

ℓ261 Bit-length of the output of the underlying hash function.

𝑙𝑒𝑛(𝑥)262 Length (number of bits) of a bitstring 𝑥.

left𝜆(𝑋)263 𝜆 leftmost bits of a bitstring 𝑋 (𝑙𝑒𝑛(𝑋) ≥ 𝜆).

𝑀264 Input message to be authenticated.

𝑛265 Internal-state size (in bits) of the underlying hash function.

opad266 Outer pad: 𝑏/8 repetitions of the bitstring 01011100 (i.e., 0x5C).

𝑇267 Output tag, with ℓ bits.

𝜆268 Bit-length of the truncated tag.

𝑥||𝑦269 Concatenation of strings 𝑥 and 𝑦.

⊕270 Exclusive-OR (XOR) operation.










Let 𝐻 be a cryptographic hash function with an output size of ℓ bits and a block size of 𝑏

bits, where 𝑏 is a multiple of eight and satisfies 𝑏 ≥ ℓ. The inputs and the output of the 

HMAC tag generation algorithm are as follows:

• Inputs: secret key 𝐾 and message 𝑀.

• Output: tag 𝑇, satisfying 𝑙𝑒𝑛(𝑇 ) = ℓ.

The HMAC tag generation follows two steps (see a simplified illustration in Figure 1):

1. Key processing. The intermediate value 𝐾0 is determined as follows:





















a. If 𝑙𝑒𝑛(𝐾) = 𝑏, then set 𝐾0 = 𝐾.

b. If 𝑙𝑒𝑛(𝐾) > 𝑏, then set 𝐾0 = 𝐻(𝐾) || 0𝑏−ℓ. That is, append (𝑏 −ℓ) zeros (bits) 
to 𝐻(𝐾), in order to obtain a string 𝐾0 with 𝑏 bits.

c. If 𝑙𝑒𝑛(𝐾) < 𝑏, then set 𝐾0 = 𝐾 || 0𝑏−𝑙𝑒𝑛(𝐾). That is, append (𝑏 − 𝑙𝑒𝑛(𝐾))
zeros (bits) to 𝐾 in order to obtain a 𝑏-bit string 𝐾0.

2. Output tag (𝑇). The output tag 𝑇 is generated as follows:

𝑇 = HMAC(𝐾,𝑀) = 𝐻((𝐾0 ⊕ opad) || 𝐻((𝐾0 ⊕ipad) || 𝑀)), (1)

where the inner pad ipad is defined as the byte 0x36 repeated 𝑏/8 times, and the 
outer pad opad is defined as the byte 0x5C repeated 𝑏/8 times. (Note: The division 
is in the integer domain and assumes prior checking that 𝑏 is a multiple of eight.)

𝐾 Key Processing

⊕ipad

⊕opad

||

𝑀

𝐻

|| 𝐻 𝑇

𝐾0

Figure 1. HMAC diagram288

Truncation. Some applications may truncate the HMAC output to construct tags with a 

specific length 𝜆 (≤ ℓ). The truncation outputs left𝜆(𝑇 ), the leftmost 𝜆 bits of 𝑇. 










3. HMAC Requirements for Message Authentication

This section specifies requirements for validating HMAC implementations for message 

authentication. Other NIST publications may provide different sets of requirements for 

other applications of HMAC.

R1. Underlying hash functions. HMAC shall use a NIST-approved cryptographic hash 

function listed in Table 2.

Table 2. NIST-approved hash functions for HMAC297

Hash function298 
Block size

 (𝑏-bit)
Internal-state

size (𝑛-bit)
 Output size

 (ℓ-bit)

SHA-224[20]299  512  256  224
SHA-256 [20]300  512  256  256
SHA-384 [20]301  1024  512  384
SHA-512 [20]302  1024  512  512
SHA-512/224 [20]303  1024  512  224
SHA-512/256 [20]304  1024  512  256
SHA3-224 [21]305  1152  1600  224
SHA3-256 [21]306  1088  1600  256
SHA3-384 [21]307  832  1600  384
SHA3-512 [21]308  576  1600  512

NOTES:

1. This publication does not approve the use of SHA-1 for HMAC message authentication, 

consistent with NIST’s plan to transition away from SHA-1 by 2030 [22].

2. It is expected that hash functions with ℓ = 224 bits of output will be disallowed after 2030 

(see Table 4 of SP 800-57pt1r5 [23]). A future revision of SP 800-131Ar2 [24] or other NIST 

publications may update the approval status of hash functions.

R2. Key length. The length of the HMAC key shall be at least 128 bits. The use of keys 

larger than the block size should be avoided. (See Section 6.2 for more information).

NOTE:  The use of shorter keys during key-length transition periods or for tag verification is 

allowed for legacy purposes, as specified in SP 800-131Ar2 [24]. 

R3. Key generation. An HMAC key shall be generated as specified following the recom-

mendations for cryptographic key generation specified in SP 800-133 [17].










R4. Key strength. An HMAC key shall have a key strength that meets or exceeds the 

security strength required to protect the data over which the HMAC is computed. (See 

Section 6.1 for more information).

R5. Secrecy of key and sensitive values. The HMAC key 𝐾 and intermediate HMAC 

computation values that are stored for reuse (e.g., in the optimization mentioned in 

Section 5), shall be kept secret.

R6. Specific use of key. An HMAC key used in a message authentication application shall 

not be used for other purposes.

R7. Minimum length of truncated tag. When an application uses truncated tags for 

message authentication, the length of the truncated HMAC output shall be at least 32 

bits, and shall remain constant across the life-span of the key. Any tag output length 

that is less than 64 bits should only be selected after careful risk analysis is performed 

with respect to the message authentication application.

R8. Limited number of failed tag verifications per key. An HMAC-based message au-

thentication application using truncated tags shall determine a maximum number 

of failed tag verifications, based on an acceptable limit of forgery probability. If the 

number of failed verifications reaches this number, the key shall stop being used. (See 

Section 6.3.3 for an example.)










4. Testing and Validation

NIST guidelines for testing and validating HMAC implementations are managed by the 

NIST Cryptographic Module Validation Program (CMVP) [25] and the NIST Cryptographic 

Algorithm Validation Program (CAVP) [26]. Concrete requirements are expressed in the 

“Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation 

Program” [27]. For example, at the time of this publication, the Implementation Guidance 

requires that an approval for truncation be subject to a CAVP algorithm validation and that 

it be explicitly shown in the module’s security policy.

Test vectors. Detailed test vectors (including intermediate computation values) for the 

validation of HMAC implementations are available online at the NIST Computer Security 

Resource Center [28], and in the GitHub repository of the NIST CMVP [29]. For convenience, 

Table 4 in Appendix B displays one test vector with one input/output entry for each of several 

HMAC instantiations (i.e., those whose underlying hash function is from Table 2). The values 

were obtained from the NIST CMVP GitHub repository of test vectors [29]. A valid implemen-

tation of HMAC with the corresponding underlying hash function must satisfy the described 

relation between input (key, message) and output (tag). A proper validation requires 

checking numerous other input/output relationships, as specified by the NIST CAVP [26].

Object IDentifiers. Each possible HMAC instantiation is identified by an Object IDentifier 

(OID), which unequivocally specifies the used hash function, the key length, and whether or 

not truncation is used. The OIDs approved for HMAC are posted on the Computer Security 

Objects Register (CSOR) [30], along with procedures for adding new OIDs. 










5. Optimization via Pre-Computation of the Internal State

Some computation of the HMAC algorithm is independent of the message. Therefore, 

when an application uses the same key to produce various tags, pre-processing can be 

used once to precompute a state that can be reused across various tag generations. This 

optimization may be especially relevant in terms of efficiency when authenticating multiple 

short messages under the same key.

Hashing a long key.  When the key length is larger than the block size, then the computation 

of the intermediate value 𝐾0 requires hashing the original key. Storing 𝐾0 can thus avoid 

this hashing in subsequent tag computations.

Initialize the two hashings.  The internal state of the two underlying hash computations 

can also be pre-computed, when the underlying hash function 𝐻 processes the input from 

left to right, in 𝑏-bit blocks, as is the case for any hash function approved by the requirement 

R1. For each hash function call, the processing of the initial 𝑏-bits block — 𝐾0 ⊕ ipad or 

𝐾0 ⊕ opad — is independent of the message 𝑀. Therefore, the internal states (after the 

processing of each of these initial blocks) can be stored and reused to initialize the hash 

function in subsequent tag generations.

Depending on the underlying hash function, this optimization reduces the number of calls 

to the compression function (e.g., used in the SHA-2 family) or the permutation (e.g., 

Keccak used in the SHA-3 family). The effect on efficiency may be especially significant in 

applications that require computing tags for many short messages. Choosing to implement 

HMAC in this manner has no effect on interoperability, but conformance to requirement R5 

requires ensuring the secrecy of these intermediate states. 










6. Security Considerations

This section considers the HMAC security strength against key-recovery and forgery attacks.

6.1. Key Strength

Key strength is a measure of the difficulty of guessing a key. It is often expressed in terms 

of entropy — a logarithmic measure of the guessing probability. When a secret key has 

full entropy, its strength (before use in a cryptographic algorithm) is equal to its bit length 

[31]. If a secret key has low entropy (either too short or with small entropy per bit), then an 

adversary will have a non-negligible probability of correctly guessing the key. In practice, key 

strength depends on the length of the key and multiple factors about how it is generated. 

Key strength can also be measured with respect to a particular use in another cryptographic 

algorithm (i.e., how it enables resisting various types of cryptographic attacks) such as 

key-recovery attacks (Section 6.2) or forgery attacks (Section 6.3). Depending on how the 

algorithm uses the key, the strength against some attacks may be less than the key strength. 

The following discussion of HMAC security assumes the secret key has been obtained with 

an acceptable security strength using a cryptographic random bit generator — see the 

SP 800 90 series [19, 32, 33].

6.2. HMAC Security Against Key-Recovery Attacks

In an HMAC key-recovery attack, an adversary who is knowledgeable about the key length 

has the goal of finding the original secret key or an equivalent key. The security strength 

of HMAC against a key-recovery attack is a measure of the computational effort needed to 

achieve this goal. The secure use of HMAC requires that key-recovery attacks are infeasible, 

even for an adversary with access to a large number of valid pairs (𝑀,𝑇 ) of message 

and authentication tag. The key-recovery attack requires computing roughly 2ℓ tags if 

𝑙𝑒𝑛(𝐾) > 𝑏, and 2𝑙𝑒𝑛(𝐾) tags otherwise.

Equivalent Keys. For the HMAC construction, it is easy to find two keys of different sizes 

that lead to the same intermediate value 𝐾0, which in turn will result in the same tag for 

any given message. More precisely, 𝐾 and 𝐾′ are said to be “equivalent” if HMAC(𝐾,𝑀) =

HMAC(𝐾′,𝑀) for all possible messages. Two examples:

1. Key with a length larger than block size 𝑏. Given a key 𝐾 that satisfies the condition 

of step 1b (see Section 2), (i.e., 𝑙𝑒𝑛(𝐾) > 𝑏), and assuming that ℓ ≤ 𝑏 (which is the 

case for all hash functions from Table 2), then 𝐾′ = 𝐻(𝐾) is an equivalent key.










2. Key with a length smaller than block size 𝑏. Given a key 𝐾 that satisfies the condition 

of step 1c (see Section 2), (i.e., 𝑙𝑒𝑛(𝐾) < 𝑏), then 𝐾′ = 𝐾|| 0, where 0 is a bit, is an 

equivalent key.

On the use of large keys (𝑙𝑒𝑛(𝐾) > 𝑏).  The HMAC construction accepts keys of arbitrary 

lengths. However, using keys that are longer than 𝑏 bits does not provide extra security 

(assuming that they have entropy larger than ℓ), since in that case, the HMAC algorithm 

starts by first hashing the key to generate a 𝑏-bit intermediate value (ℓ-bit hash concatenated 

with 𝑏 −ℓ zero bits). In other words, using a key with more than 𝑏 bits actually induces a 

security strength (e.g., with respect to key-recovery attacks) that is lower than when using 

a shorter key 𝐾 that satisfies ℓ < 𝑙𝑒𝑛(𝐾) ≤ 𝑏.

Note that FIPS 198-1 (from 2008) [1] is based on RFC 2101 (1997) [9], which was subse-

quently updated by an errata (in 2017) to disallow keys of lengths larger than the block size 

𝑏 of the underlying hash function. This publication does not disallow such long keys but 

recommends against their use (see R2 in Section 3).

6.3. HMAC Unforgeability

Without knowledge of the secret key, it should be infeasible for an adversary to generate 

a valid (𝑀,𝑇 ) pair that has not been observed before. Depending on the adversarial goal, 

there are various types of forgeries [34]. In an existential forgery attack, after observing 

many (𝑀,𝑇 ) pairs, the goal is to produce a valid tag for some new message (which the 

adversary can choose during the attack). In a universal forgery attack, the goal is to gain 

the ability to forge a valid tag for any message. Other intermediate forgery goals can be 

defined (e.g., selective forgery).

Universal forgery can be achieved by a key-recovery attack with complexity 2𝑙𝑒𝑛(𝐾). (In 

the case of HMAC, given its internal transformation of the key, the attack can be done with 

complexity 2ℓ if 𝑙𝑒𝑛(𝐾) > 𝑏.) However, other forgery attacks can have lower complexity, 

depending on the internal state size 𝑛 of the underlying hash function. These attacks con-

sider the iterative nature of the hash function but do not otherwise exploit any weakness 

in the internal function used in each iteration.

HMAC is considered secure with respect to unforgeability when instantiated with any ap-

proved hash function. However, a detailed analysis of its security strength with respect to 

unforgeability depends on the type of construction of the hash function: SHA-2-based hash 

functions follow the Merkle-Dåmgard (MD) construction (using a compression function); 

SHA-3-based hash functions follow the sponge construction (using a permutation).










The strength of any instantiation also depends on the chosen parameters (e.g., key size, and 

truncation length). For example, for each of the four output lengths ℓ ∈ {224,256,384,512}

of approved hash functions, the block size 𝑏 is different between the SHA-2 and the SHA-3 

families. The parameter 𝑏 is also the key-length threshold 𝑏 after which the key is internally 

hashed to a smaller size ℓ (before further use in the internal HMAC calculation).

6.3.1. HMAC with MD-based hash functions

The HMAC construction was originally designed [8] for use with hash functions subject to 

length-extension attacks, such as those that follow the MD construction. The outer hashing 

in HMAC prevents such attacks from being applicable for obtaining HMAC forgeries.

Suppose HMAC is instantiated with an MD-type of hash function (e.g., any hash function 

from the SHA-2 family) with internal state size 𝑛 (Table 2). Then, the HMAC construction is 

proven to be indistinguishable from a PRF up to the birthday-bound complexity 2𝑛/2, in 

the sense of requiring at least 2𝑛/2 computations of the compression function, assuming 

that the compression function is a PRF [35–37]. Since a secure PRF is a secure MAC, the 

assumption implies that an MD-based HMAC is a secure MAC.

With this result, the complexity of generic attacks against HMAC with an underlying MD-

based hash function has established lower bounds, such as time complexity roughly 2𝑛/2


for some special parametrizations (e.g., when 𝑛 = ℓ = 𝑏/2, and 𝑙𝑒𝑛(𝐾) = 𝑏). It follows that 

SHA-256 enables 128 bits of security, whereas SHA-512 provides 256 bits of security against 

HMAC forgery attacks. The time complexity of concrete known attacks [38, 39] is always 

smaller than 2𝑛, and in some cases (but not all) matches the established lower bound of 

2𝑛/2. However, universal forgery is also possible via exhaustive key search (see Section 6.2), 

which has lower complexity if 𝑙𝑒𝑛(𝐾) < 𝑛/2, or if simultaneously ℓ < 𝑛/2 and 𝑙𝑒𝑛(𝐾) > 𝑏, 

as in the case of SHA-512/224.

6.3.2. HMAC with sponge-based hash functions

For message authentication, this publication approves (in R1) the use of HMAC based 

on hash functions from the SHA-3 family. However, given the difference between SHA-2 

(MD-based) and SHA-3 (sponge-based), the research results mentioned in Section 6.3.1 

for HMAC unforgeability security do not directly apply to HMAC based on a SHA-3 hash 

function. While there are known comparisons of security strength between SHA-3 and 

SHA-2 instantiations of HMAC [40], this publication does not provide a detailed comparison.










6.3.3. Impact of truncation and multiple tag verifications

Security against existential forgeries attacks decreases when (i) multiple tag verifications 

are allowed, or (ii) the tag is truncated to a length 𝜆 smaller than ℓ bits. For an adversary 

that can try 𝑁 = 2𝑡 different tags of length 𝜆 (with 𝑡 ≤ 𝜆), the probability of producing a 

valid tag is 2𝑡−𝜆. Therefore, the truncation to 𝜆 bits is only suitable for applications in which 

(i) the maximum number of failed tag verifications 𝑁 allowed by the system for each HMAC 

key can be enforced, and (ii) it is acceptable to have forgery probability 2𝑡−𝜆 for each HMAC 

key. This motivated requirements R7 and R8 in Section 3.

Example. If the length of truncated tags is 𝜆 = 64, and the system accepts a forgery prob-

ability of at most 2−40, then the number of failed tag verifications needs to be limited to 

𝑁 −264−40 = 224. 
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Appendix A. Development of the HMAC Standard

Table 3 lists an historical sequence of developments about the HMAC standard.

Table 3. Development of the HMAC standard639

Year Event640 

1996 Bellare, Canetti, and Krawczyk [8] proposed the HMAC construction.641 

1997 RFC 2104 [9] specified the HMAC construction.642 

2000 ANSI:X9.71-2000 [41] (standard by the X9 committee) incorporated the RFC 
2104 [9].

643 
644 

2002 FIPS 198 [10] specified the keyed-hash MAC (HMAC).645 

2005 RFC 4231 [42] listed the identifiers and test vectors for HMAC-SHA-224, 
HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512.

646 
647 

2008 FIPS 198-1 [1] superseded FIPS 198 [10]. The discussions on length of truncated 
HMAC outputs and their security implications were moved to SP 800-107.

648 
649 

2009 SP 800-107 [43] listed SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 as five 
hash algorithms (from FIPS 180-3 [44]) approved for HMAC.

650 
651 

2012 SP 800-107r1 [2] added SHA-512/224 and SHA-512/256 (from the 2012 version 
of FIPS 180-4 [20]) to the list of approved hash functions for HMAC.

652 
653 

2015 FIPS 202 [21] specified the SHA-3 family of hash functions and approved its use 
within HMAC.

654 
655 

2022 The identifiers and test vectors for HMAC-SHA-3 were provided by reference to 
the NIST website.

656 
657 

2023 The NIST Crypto Publication Review Board reviewed FIPS 198-1, The Keyed-Hash 
Message Authentication Code (HMAC) [1], and SP 800-107r1, Recommendation 
for Applications Using Approved Hash Algorithms [2], and proposed to withdraw
both, and move their relevant (and revised) content to a new Special Publication.

658 
659 
660 
661 

2024 SP 800-224 ipd (this document) was published.662 



https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://csrc.nist.gov/groups/ST/toolkit/examples.html.







Appendix B. Example Test Vector

Table 4 provides a test vector for various HMAC instantiations, including one input/output 

entry for each approved hash function (according to Table 2 in Section 3). In the first column 

of the table, “tcid” denotes the identifier of the test vector item defined by CMVP [29] for 

the considered HMAC instantiation. The values in the rightmost column are in hexadecimal.

Table 4. Example test vector for the HMAC construction668

Hash function
(test reference)

Parameter669 
 Tag bit-
 length

Value in hexadecimal (0x)

SHA-224

 (tcid = 751)

key670  176 E44E3C28 37D83501 BD5B5403 AF653DC6 
08A2B217 689E

message671  128 EA008790 F4F4BB46 93BD17FD 726517BE

tag672  160 7D832AE4 6647B47A EEE26B65 F5F1E518 
05C78F1E

SHA-256

 (tcid = 151)

key673  136 C8D46CBF 65271FCC 60DB02E4 D7CC4BD8 75

message674  128 063F0B6E 8960826C FBE35EBD B01B47EA

tag675  128 6B800744 B38D0A9F 2B9D64C5 82F7D6D9

SHA-384

 (tcid = 751)

key676  448 D122EA65 7D8E3D5C 5B69C9FE 4AB7368D 
508E500C 3EA2E528 D346547A 72987086 
C97668B7 C139058A 3F454144 832FF7FF 
31FFD48F 25936E3A

message677  128 3933069E 5E5A5BB0 AAB68C3C 1F9FCAF7

tag678  80 7DD24D9A E7A9D82E A6CA

SHA-512

 (tcid = 1)

key679  384 F9E2E43A 5FBAB3E2 4FEC3A76 C2496883 
70544FFA D051FE90 4531C3FE B66DE453 
DF0A24BB D1B3A43C 34788732 651EBA8A

message680  128 ED39A835 34D4D989 C6B25FA8 A563F51C

tag681  80 7A047975 A81D30E9 CF18

SHA-512/224

 (tcid = 301)

key682  240 6036DB04 6AAC5778 CEF2E795 A9787347 
310907D7 11D0A2BF 1D15B1BF A5EB

message683  128 4407F708 FB4EB398 82E7FA55 2474C595

tag684  120 F5AA4154 7F04B336 AD6862F6 4D1F50



https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-224-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-256-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-384-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-512-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-512-224-1.0/internalProjection.json







Hash function
(test reference)

Parameter669 
 Tag bit-
 length

Value in hexadecimal (0x)

SHA-512/256

 (tcid = 76)

key685  288 D3F8BBE4 10DC40EA 2BA2176B D99E0905 
C8F8EDE6 7FA40A33 897F1CE3 8CBA34C3 
AD4D5207

message686  128 7AFE75E5 D204235A 462BB282 C648278C

tag687  136 23C7CFBE 4921B9A4 D862B01B 6F86273E 24

SHA3-224

 (tcid = 1)

key688  264 F8A7ED55 62A7646A 22B4DBB1 4D3AD891 
CA677877 DAE37860 2F09CE47 9D3B11E8 1A

message689  128 7627B19C B5559458 7EDAD2FF 0C22D292

tag690  88 1AF28609 D217BF6D FB1184

SHA3-256

 (tcid = 526)

key691  264 5F712D90 E610531A A24E2C5C B59B2B7F 
0E1D2298 09B10F46 201E48D4 93EB6784 EC

message692  128 6D95CE1D ECC2212A F7B33A90 D6297E02

tag693  160 ED29D0D3 923524AE 417F0B30 DFF8A412 
8DC202AE

SHA3-384

 (tcid = 601)

key694  584 63E7020D 5E017AA8 F86618BA 4A4ED4BE 
03298E92 BA8EF97C 7396D260 61B12D5D 
638C3E53 FF1B8052 B5E217A9 27EB7D9B 
80CEDAC1 CEB227A1 3A0229DF 542F8B0F 
1040A5C8 E9558CDD EB

message695  128 C4222888 AFAB77E7 C9206D28 94714E9A

tag696  160 0B546DF3 EF91E1DA 09E5E7EF C7258CA2 
DA57CBE6

SHA3-512

 (tcid = 76)

key697  384 A471B461 43C47722 A4317F79 C3605F56 
06210066 F7607F37 BFC05AB4 8AD624EC 
DDAA5F2B CE0F5D68 CB900A94 041A388C

message698  128 676498A9 15CC5B77 3275034A 972B552A

tag699  152 CF38AA4B 510886A3 4FB3B67F 50F8FED5 9DE585



https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA2-512-256-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-224-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-256-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-384-1.0/internalProjection.json
https://github.com/usnistgov/ACVP-Server/blob/master/gen-val/json-files/HMAC-SHA3-512-1.0/internalProjection.json







Appendix C. Glossary

adversary An entity that is not authorized to access or modify information, or who works 

to defeat any protections afforded to the information.

approved FIPS-approved or NIST-recommended: An algorithm or technique that is either 

specified or adopted in a FIPS Publication or NIST Special Publication in Computer 

Security (SP 800 series).

block size The number of bits in the message block processed in each iteration (e.g., by 

the compression function call) of the hash function.

forgery A (message, tag) pair produced by an adversary who does not known the secret 

key, yet accepted as valid by the HMAC tag verification procedure. The expression 

forgery probability denotes the probability of an adversary producing such a valid 

pair.

hash function A mathematical function that maps a string of arbitrary length (up to a 

predetermined maximum size) to a fixed length string.

Internal state size In the context of a hash computation, it is the number of bits in the 

intermediate state needed in memory between processing successive input blocks.

key strength The security strength (based on a notion of entropy) of a secret key for HMAC 

is measured as the − log2 of the expected number of guesses that an adversary must 

make to guess the key.

message authentication code (MAC) See tag.

pseudorandom function (PRF) A family of functions parameterized by a secret key, such 

that when the key is unknown, the output upon evaluating an input (a message) is 

indistinguishable from a random output (of the specified length).

secret key A cryptographic key that is used by a secret-key (symmetric) cryptographic 

algorithm and is not made public.

security strength A number associated with the amount of work (i.e., the number of 

basic operations of some sort) or resources (e.g., memory) required to break a 

cryptographic algorithm or system. Security strength is often expressed in bits. If the 

security strength is 𝑠 bits, then it is expected that (roughly) 2𝑠 basic operations or 

resources are required to break the algorithm or system.

shall Used to express a requirement that needs to be fulfilled to conform with this specifi-

cation.

should Used to indicate a strong recommendation but not a requirement of this specifica-

tion. Ignoring the recommendation could result in undesirable results.










tag A cryptographic checksum that is designed to detect accidental and intentional modifi-

cations on the data (also called a message) to which it is applied. The computation 

and verification of the tag requires knowledge of a secret key. The tag is also referred 

to as a message authentication code.

tag verification The process of determining the validity of a provided tag in relation to 

a message. It accepts or rejects the tag based on whether it matches the result 

obtained by computing a tag for the provided message.

truncation A process that shortens an input bitstring and preserves only a substring of a 

specified length.










Appendix D. Summary of Changes

This publication contains numerous editorial adjustments compared to the previous versions 

in FIPS 198-1 [1] and SP 800-107r1 [2]. The following list summarizes the main updates:

1. Use of HMAC for message authentication versus other applications. Compared 

to FIPS 198-1, this publication includes requirements to approve the use of HMAC 

for message authentication, which was previously considered in SP 800 107r1. This 

publication informs the reader that HMAC can have other uses (e.g., PRF and key-

derivation), but the corresponding requirements are not in the scope of the present 

document. In particular, the revised introduction includes an enumeration of HMAC 

applications considered across other NIST Special Publications.

2. Notation. The notation was revised, introducing a few changes:

• Binary notation. All mentions of lengths in bytes have been updated to bits, 

allowing for better consistency with truncation, whose output bit-length need 

not be a multiple of eight. Lengths 𝐵 and 𝐿 (in bytes) were changed to 𝑏 and 

ℓ (in bits), respectively.

• Other updates to variable names. The variable 𝑡𝑒𝑥𝑡 has been changed to 𝑀

(the message being authenticated). The symbols HMAC (the tag generation al-

gorithm), 𝑙𝑒𝑛 (length function), and 𝑛 (bit-size of the internal state of a hash 

function) were introduced.

3. Revised requirements (indexation and content). In this publication, the set of require-

ments (in Section 3) is explicitly scoped within the context of an HMAC application to 

message authentication. The requirements (based on requirements from FIPS 198-1 

and SP 800 107r1) are now indexed and titled for easier referencing.

4. Approved hash functions. The approved hash functions listed in SP 800 107r1 in-

cluded SHA-1 and did not include any SHA-3-based function. In comparison, this 

publication (see R1) does not approve SHA-1 and approves four SHA-3 based functions 

for use in HMAC-based message authentication.

5. Limited number of failed tag verifications. SP 800 107r1 required the key to be 

changed before a maximum allowed number of failed tag verifications is reached. 

This publication rewrote the requirement, scoping it only to the cases when trun-

cation is used. This publication (see R8) explicitly requires that in such cases it is 

necessary to determine an acceptable maximum number of failed tag verifications.










6. Validation context and test vectors. Section 4 improved the explanation of the object 

identifiers, test vectors, and validation context. The new Appendix B also adds a test 

vector that covers one HMAC input/output example for each possible underlying 

hash function.

7. Security notions. Section 6 explains some security notions at a high level, including 

the key strength (see Section 6.1); security strength against key-recovery attacks (see 

Section 6.2, which includes the notion of equivalent keys); and forgery attacks (see 

Section 6.3).

8. References. The list of references has been substantially updated and extended.

9. Glossary items. The glossary in Appendix C does not include all entries of the glos-

saries of FIPS 198-1and SP 800 107r1. The new glossary introduces the following 

terms: block size, forgery, internal state size, key strength, pseudorandom function, 

secret key, should, tag, tag verification, truncation.
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