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A key-encapsulation mechanism (KEM) is a set of algorithms that can be used by two par-
ties under certain conditions to securely establish a shared secret key over a public channel. 
A shared secret key that is established using a KEM can then be used with symmetric-key 
cryptographic algorithms to perform essential tasks in secure communications, such as 
encryption and authentication. This document describes the basic definitions, properties, 
and applications of KEMs. It also provides recommendations for implementing and using 
KEMs in a secure manner.

Keywords

cryptography; encryption; key-encapsulation mechanism; key establishment; public-key 
cryptography.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, 
test methods, reference data, proof of concept implementations, and technical analyses 
to advance the development and productive use of information technology. ITL’s respon-
sibilities include the development of management, administrative, technical, and physical 
standards and guidelines for the cost-effective security and privacy of other than national 
security-related information in federal information systems. The Special Publication 800-
series reports on ITL’s research, guidelines, and outreach efforts in information system se-
curity, and its collaborative activities with industry, government, and academic organiza-
tions.
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This public review includes a call for information on essential patent claims (claims whose use would 
be required for compliance with the guidance or requirements in this Information Technology Labo-
ratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL 
Publication or by reference to another publication. This call also includes disclosure, where known, 
of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication 
and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 
written or electronic form, either:

1. assurance in the form of a general disclaimer to the effect that such party does not hold and
does not currently intend holding any essential patent claim(s); or

2. assurance that a license to such essential patent claim(s) will be made available to applicants
desiring to utilize the license for the purpose of complying with the guidance or requirements

in this ITL draft publication either:

(a) under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination; or

(b) without compensation and under reasonable terms and conditions that are demon-

strably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 
on its behalf) will include in any documents transferring ownership of patents subject to the as-
surance, provisions sufficient to ensure that the commitments in the assurance are binding on the 
transferee, and that the transferee will similarly include appropriate provisions in the event of fu-
ture transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest regard-
less of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: sp800-227-comments@nist.gov
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1.1. Background

A key-establishment scheme is a set of algorithms that can be used to securely establish 
a shared secret key between two or more parties. Such a shared secret key can then be 
used to perform tasks that are suitable for symmetric-key cryptography, such as efficient 
confidential communication.

Many widely-deployed key-establishment schemes — including those specified in NIST 
Special Publication (SP) 800-56Ar3 [1] and SP 800-56Br2 [2] — are vulnerable to crypto-
graphic attacks that make use of a large-scale, cryptanalytically-relevant quantum com-

puter. In 2016, NIST initiated a process to select and standardize post-quantum key-establishment 
schemes (i.e., key-establishment schemes that would not be vulnerable to attacks even 
by cryptanalytically-relevant quantum computers). In response, NIST received feedback 
from the cryptographic community that the post-quantum key-establishment schemes 
best suited for standardization and widespread deployment are key-encapsulation mecha-

nisms (KEMs). The first KEM standard that resulted from this NIST post-quantum cryptogra-
phy (PQC) standardization process was ML-KEM, which is specified in Federal Information 
Procession Standards (FIPS) 203 [3].

At the time of standardization of ML-KEM, NIST had not provided extensive guidance on 
the basic definitions, properties, and applications of KEMs. This recommendation is meant 
to provide this guidance, supplement the current and future standardization of KEMs, and 
provide recommendations for implementing and using KEMs in a secure manner.

1.2. Scope and Purpose

In combination with the appropriate FIPS or SPs that specify a particular KEM, this recom-

mendation is intended to provide the necessary information for implementing that KEM 
in FIPS 140-validated modules. This recommendation also provides guidance for vendors 
who wish to securely combine keying material produced via quantum-vulnerable methods 
with keying material produced via post-quantum methods.

This recommendation does not discuss how or when to migrate from quantum-vulnerable 
key-establishment procedures to post-quantum KEMs (see [4]). This recomendation does 
not provide a specification for any particular KEM; such specifications will be provided in 
other FIPS and/or SPs, such as the specification of ML-KEM in FIPS 203 [3].

This recommendation includes purely explanatory and educational material to aid in the 
general understanding of KEMs. While NIST SPs typically only include material that pertains 
to what is approved, this SP describes KEMs both generally and with respect to what is
approved. Specific requirements will be clearly noted with “shall” and “must” statements.

1
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2. Definitions and Requirements232 

2.1. Definitions233 

approved FIPS-approved and/or NIST-recommended. An algorithm or technique that is 234 
either 1) specified in a FIPS or NIST recommendation, 2) adopted in a FIPS or NIST 235 
recommendation, or 3) specified in a list of NIST-approved security functions.236 

(KEM) ciphertext A bit string that is produced by the encapsulation algorithm and used as 237 
an input to the decapsulation algorithm.238 

computationally-bounded For a bit security strength λ , an adversarial algorithm is compu-239 
tationally-bounded if it is allowed at most 2λ  basic operations.240 

cryptanalytically-relevant quantum computer A device capable of using quantum algo-241 
rithms to break a cryptosystem that is secure against classical (i.e., non-quantum) 242 
computers.243 

decapsulation The process of applying the Decaps algorithm of a KEM. This algorithm ac-244 
cepts a KEM ciphertext and the decapsulation key as input and produces a shared 245 
secret key as output.246 

decapsulation key A cryptographic key produced by a KEM during key generation and 247 
used during decapsulation.248 

efficient (cryptographic) algorithm An algorithm whose running time is practical for the 249 
relevant security strength. At a minimum, such an algorithm runs in time polyno-250 
mial in the bit security strength λ .251 

encapsulation The process of applying the Encaps algorithm of a KEM. This algorithm ac-252 
cepts the encapsulation key as input, requires private randomness, and produces 253 
a shared secret key and an associated ciphertext as output.254 

encapsulation key A cryptographic key produced by a KEM during key generation and 255 
used by the encapsulation algorithm.256 

hash function A function on arbitrarily-long bit strings in which the length of the output 257 
is fixed.258 

identifier A bit string that is associated with a person, device, or organization. It may be 259 
an identifying name or something more abstract (e.g., a string consisting of an IP 260 
address).261 

key agreement A (pair-wise) key-establishment procedure in which the resultant secret 262 
keying material is a function of information contributed by both participants so 263 
that neither party can predetermine the value of the secret keying material inde-264 
pendent of the contributions of the other party. Contrast with key transport.265 
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key confirmation A procedure that provides assurance to one party (the key-confirmation266 
recipient) that another party (the key-confirmation provider) possesses the correct267 
secret keying material and/or shared secret from which that secret keying material268 
is derived.269 

key-confirmation provider The party that provides assurance to the other party (the re-270 
cipient) that the two parties have indeed established a shared secret key or shared 271 
keying material.272 

key-confirmation recipient The party that receives assurance from the other party (the 273 
provider) that the two parties have indeed established a shared secret key or 274 
shared keying material.275 

key-derivation method A method used to derive keying material from an initial shared 276 
secret(s) and possibly other information.277 

key-derivation key A key used as an input to a key-derivation function to derive additional 278 
keying material.279 

key-encapsulation mechanism (KEM) A set of three cryptographic algorithms: KeyGen280 
(key generation), Encaps (encapsulation), and Decaps (decapsulation). These al-281 
gorithms can be used by two parties to securely establish a shared secret key over282 
a public channel.283 

key establishment A procedure that results in secret keying material that is shared among 284 
different parties. Key agreement, KEM, and key transport are all types of key es-285 
tablishment.286 

keying material A bit string such that any non-overlapping, contiguous segments of the 287 
string with required lengths can be used as secret keys, secret initialization vectors, 288 
and other secret parameters.289 

key pair A public key and its corresponding private key.290 

key transport A (pair-wise) key-establishment procedure whereby one party (the sender) 291 
selects a value for the secret keying material and then securely distributes the 292 
value to another party (the receiver). Contrast with key agreement.293 

message authentication code (MAC)   A family of symmetric-key cryptographic algorithms 294 
acting on input data of arbitrary length to produce an output value of a specified295 
length (called the MAC of the input data). The MAC can be employed to provide296 
authentication of the origin of the input data and/or data integrity protection.297 

message authentication code (MAC) tag Data obtained from the output of a MAC algo-298 
rithm (possibly by truncation) that can be used by an entity to securely verify the 299 
integrity and origination of the information used as input to the MAC algorithm.300 

must Indicates a requirement of this SP that might not be testable by a CMVP testing lab.301 
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negligible A quantity is negligible for bit security strength λ  if it is smaller than 2−λ .302 

party An individual (person), organization, device, or process. In this recommendation, 303 
there are typically two parties (e.g., Party A and Party B or Alice and Bob) that 304 
jointly perform the key-establishment process using a KEM.305 

pseudorandom A process (or data produced by a process) is said to be pseudorandom 306 
when the outcome is deterministic yet also appears random to computationally-307 
bounded adversaries as long as the internal action of the process is hidden from 308 
observation. For cryptographic purposes, “effectively random” means “computa-309 
tionally indistinguishable from random within the limits of the intended security 310 
strength.”311 

public channel A communication channel between two honest parties that can be ob-312 
served and compromised by third parties.313 

post-quantum algorithm A cryptographic algorithm that is believed to be secure even 314 
against adversaries who possess a cryptanalytically-relevant quantum computer.315 

quantum-vulnerable algorithm A cryptographic algorithm that is believed to be secure 316 
against adversaries who possess only a classical computer but is known to be in-317 
secure against adversaries who possess a cryptanalytically-relevant quantum com-318 
puter.319 

shared secret A secret value that has been computed during a key-establishment scheme, 320 
is known by all participating parties, and is used as input to a key-derivation method 321 
to produce keying material.322 

shared secret key A shared secret that can be used directly as keying material, or as a 323 
symmetric key.324 

security strength A number associated with the amount of work that is required to break 325 
a cryptographic algorithm or system.326 

shall Used to indicate a requirement of this SP that will be tested by a CMVP testing lab.327 

should Used to indicate a strong recommendation but not a requirement of this SP. Ignor-328 
ing the recommendation could lead to undesirable results.329 

side-channel attack An attack enabled by the leakage of information from a deployed 330 
cryptosystem. Characteristics that could be exploited in a side-channel attack in-331 
clude timing, power consumption, and electromagnetic and acoustic emissions.332 

symmetric-key algorithm A cryptographic algorithm that uses the same secret key for an 333 
operation and its complement (e.g., encryption and decryption). Also called a 334 
secret-key algorithm.335 
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2.2. Requirements336 

Conforming implementations of approved KEMs are required to satisfy all of the below.337 

Requirements that are testable by a CMVP validation lab (i.e., shall statements):338 

RS1 (Section 4.1) KEM implementations shall comply with the specific NIST FIPS or SP339 
that concretely specifies the algorithms of the relevant KEM. For example, imple-340 
mentations of ML-KEM shall comply with FIPS 203 [3]. (Note: the CMVP will per-341 
form random input-output tests in an attempt to ascertain whether this requirement342 
is satisfied. Ensuring full functional equivalence to the specification via testing is not343 
possible; see also the “must” requirement RM1 below.)344 

RS2 (Section 4.1) KEM implementations shall comply with the guidance given in FIPS345 
140-3 [5] and associated implementation guidance.346 

RS3 (Section 4.1) KEM implementations shall use approved components with security347 
strengths that are chosen appropriately for each KEM parameter set.348 

RS4 (Section 4.1) Random bits shall be generated using approved techniques, as de-349 
scribed in the latest revisions of SP 800-90A, SP 800-90B, and SP 800-90C [6–8].350 

RS5 (Section 4.2) Except for random seeds and data that can be easily computed from351 
public information, all intermediate values used in any given KEM algorithm (i.e.,352 
KeyGen, Encaps, and Decaps) shall be destroyed before the algorithm terminates.353 

RS6 (Section 5.4.1) When a nonce is used by the decapsulator during key confirmation (as354 
specified herein), a nonce with a bit length (at least) equal to the targeted security355 
strength of the KEM key-establishment process shall be used (see Appendix A.3).356 

RS7 (Section 5.4.1) For key confirmation, the MAC algorithm and KC_Key used shall357 
have security strengths equal to or greater than the security strength of the KEM358 
and parameter set used.359 

RS8 (Section 5.4.2) The KC_Key shall only be used for key confirmation and destroyed 360 
after use.361 

RS9 (Section 5.5.1) In multi-algorithm key-establishment schemes, shared secrets shall362 
be combined via an approved key-combiner, as described in Section 5.5.2.363 

RS10 (Appendix A.1) When key confirmation requires the use of a MAC, it shall be an364 
approved MAC algorithm (i.e., HMAC, AES-CMAC, or KMAC).365 

RS11 (Appendix A.1) When a MAC tag is used for key confirmation, an entity shall compute366 
the MAC tag on received or derived data using a MAC algorithm with a MacKey that 367 
is determined from a shared secret key.368 

Requirements that are not testable by a validation lab (i.e., must statements):369 
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RM1 (Section 4.1). Implementations must correctly implement the mathematical func-370 
tionality of the target KEM. (Note: the CMVP will perform random input-output tests 371 
in an attempt to ascertain whether this requirement is satisfied. Ensuring full func-372 
tional equivalence to the specification is not possible.)373 

RM2 (Section 5.2) In applications of KEMs, a parameter set with application-appropriate 374 
security strength must be selected (see [9, Section 2.2]).375 
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3. Overview of Key-Encapsulation Mechanisms376 

This section gives a high-level overview of key-encapsulation mechanisms (KEMs). It con-377 
siders a KEM to be a collection of mathematical functions, together with data that specify 378 
parameters. Section 4 describes how to implement a KEM as a collection of computer 379 
programs. Section 5 describes how to deploy KEMs in applications.380 

3.1. Introduction381 

Modern symmetric-key cryptography provides a wide range of useful functionalities, in-382 
cluding secure and highly efficient computation and communication. Before symmetric-383 
key cryptography can be used, the participating parties need to establish a shared (i.e., 384 
symmetric) secret key. One approach to establishing such a key is over a public communi-385 
cation channel. Any algorithmic method that establishes a shared secret key over a public 386 
channel is called a key-establishment scheme. A general key-establishment scheme can 387 
require multiple rounds of communication and involve any number of parties.388 

A KEM is a specific type of key-establishment scheme. Typical key establishment via a KEM 389 
involves two parties (here referred to as Alice and Bob) and consists of the following three 390 
stages (see Figure 1):391 

1. (Key Generation) Alice generates a (private) decapsulation key and a (public) encap-392 
sulation key.393 

2. (Encapsulation) Bob uses Alice’s encapsulation key to generate a shared secret key 394 
and an associated ciphertext. The ciphertext is sent to Alice.395 

3. (Decapsulation) Alice uses the ciphertext and her decapsulation key to compute an-396 
other copy of the shared secret key.397 

Security of KEMs. When a KEM is used as in Figure 1, the result should be a shared secret 398 
key that is random, unknown to adversaries, and identical for Alice and Bob. Ensuring that 399 
security holds in practice is a complex task that relies on three conditions:400 

1. Theoretical security: Selecting a KEM that (as a collection of mathematical functions) 401 
is well-defined, correct, and satisfies an application-appropriate mathematical no-402 
tion of security (see Sections 3.2 and 3.3)403 

2. Implementation security: Implementing the selected KEM in a real-world algorithm 404 
(e.g., a collection of routines) in a secure manner (see Section 4)405 

3. Deployment security: Deploying the implemented KEM in a manner that is secure 406 
for the relevant application and using the shared secret key in a secure manner (see 407 
Section 5.2)408 

Each of these three conditions are essential for security. For example, a KEM that is the-409 
oretically secure (i.e., it satisfies condition 1) but is implemented without side-channel 410 
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countermeasures (so that it does not satisfy condition 2) or is deployed on a device with 411 
physical vulnerabilities (so that it does not satisfy condition 3) is likely to be insecure in 412 
practice.413 

History and development. KEMs were first introduced by Cramer and Shoup [10, 11] as a 414 
building block for constructing highly efficient public-key encryption (PKE) schemes. Their 415 
approach combines a Key Encapsulation Mechanism with a Data Encryption Mechanism 416 
(DEM); a DEM is simply a symmetric-key encryption scheme. The KEM is used to gener-417 
ate a shared secret key, while the DEM is used to encrypt an arbitrarily long stream of 418 
messages under that key. This is commonly referred to as the KEM/DEM paradigm (see 419 
the HPKE example in Section 6.2.1). This approach to constructing highly efficient public-420 
key encryption has been the subject of several standards  [1, 2, 10, 12–15]. Most recently, 421 
KEMs have attracted significant attention due to all of the post-quantum key-establishment 422 
candidates in the NIST PQC standardization process being KEMs. This ongoing process has 423 
produced one new KEM standard — ML-KEM in FIPS 203 [3] — with more KEM standards 424 
likely to follow.425 

3.2. Basic Definitions and Examples426 

This section establishes the basic definitions and properties of KEMs. Note that probabilis-427 
tic algorithms require randomness, while deterministic algorithms do not.428 

Definition 1. A KEM denoted by Π consists of the following four components:429 

1. Π.ParamSets (parameters): A collection of parameter sets430 
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2. Π.KeyGen (key-generation algorithm): An efficient probabilistic algorithm that ac-431 
cepts a parameter set p ∈Π.ParamSets as input and produces an encapsulation key 432 
ek and a decapsulation key dk as output433 

3. Π.Encaps (encapsulation algorithm): An efficient probabilistic algorithm that ac-434 
cepts a parameter set p ∈ Π.ParamSets and an encapsulation key ek as input and 435 
produces a shared secret key K and a ciphertext c as output436 

4. Π.Decaps (decapsulation algorithm): An efficient deterministic algorithm that ac-437 
cepts a parameter set p ∈ Π.ParamSets, a decapsulation key dk, and a ciphertext c438 
as input and produces a shared secret key K′ as output439 

As this section views KEMs purely as mathematical objects, the labels p, ek, dk, c, K, and 440 
K′ in Definition 1 are viewed as abstract variables that represent, for example, numbers 441 
or bit strings. In implementations, these variables will be represented with concrete data 442 
types (see Section 4).443 

In general, Definition 1 only requires some very basic properties from the four components 444 
that make up a KEM (see Example 1 below). In order to be useful and secure, a KEM should 445 
fulfill a number of additional properties. The first such property is correctness of the KEM 446 
algorithm. Correctness ensures that, in an ideal setting, the process in Figure 1 almost 447 
always produces the same shared secret key value for both parties.448 

Definition 2. The key-encapsulation correctness experiment for a KEM Π and parameter 
set p ∈Π.ParamSets consists of the following three steps:

1. (ek,dk)←Π.KeyGen(p) (perform key generation) (1)

2. (K,c)←Π.Encaps(p,ek) (perform encapsulation) (2)

3. K′←Π.Decaps(p,dk,c) (perform decapsulation) (3)

The KEM Π is correct if, for all p ∈ Π.ParamSets, the correctness experiment for p results 449 
in K = K′ with all but negligible probability.450 

When Π.KeyGen and Π.Encaps are invoked in the correctness experiment, it is implied 451 
that their randomness is generated internally and uniformly at random. If one wishes to 452 
explicitly refer to the randomness used by these algorithms, then the following expressions 453 
can be used:454 

Key generation (using randomness r): (ek,dk)←Π.KeyGen(p;r) (4)

Encapsulation (using randomness s): (K,c)←Π.Encaps(p,ek;s) (5)

These expressions can, for example, refer to the process of re-expanding a key pair (ek,dk)455 
by running KeyGen using a stored seed r.456 
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The following two simple but instructive examples show abstract KEMs that satisfy Defini-457 
tion 1 and Definition 2.458 

Example 1: Simple but insecure. As the following example shows, a correct and efficient 459 
KEM can still be completely insecure. Define a KEM DONOTUSE as follows:460 

• DONOTUSE.ParamSets: Contains a single, empty parameter set461 

• DONOTUSE.KeyGen: On randomness r, outputs dk := r and ek := r462 

• DONOTUSE.Encaps: On input ek and randomness s, outputs K := s and c := s463 

• DONOTUSE.Decaps: On input dk and c, outputs K′ := c464 

While DONOTUSE is obviously a correct KEM since K′ always equals K, it is also completely 465 
insecure since the shared secret key K is transmitted in plaintext. This shows that a KEM 466 
needs to satisfy additional properties in order to be secure (see Section 3.3).467 

Example 2: key transport using PKE. The following is a simple construction of a KEM 468 
from any public-key encryption scheme. A public-key encryption scheme PKE consists 469 
of a collection PKE.ParamSets of parameter sets and three algorithms: key generation 470 
PKE.KeyGen (that accepts a parameter set), encryption PKE.Encrypt (that accepts a param-471 
eter set, an encryption key, and a plaintext), and decryption PKE.Decrypt (that accepts a 472 
parameter set, a decryption key, and a ciphertext). One can construct a KEM KEMFROMPKE473 
from the public-key encryption scheme PKE as follows:474 

• KEMFROMPKE.ParamSets= PKE.ParamSets475 

• KEMFROMPKE.KeyGen= PKE.KeyGen476 

• KEMFROMPKE.Encaps: On input p, ek and randomness s, output key K := s and 477 
ciphertext c← PKE.Encrypt(p,ek,s).478 

• KEMFROMPKE.Decaps: On input p, dk and c, output key K′ := PKE.Decrypt(p,dk,c).479 

The efficiency, correctness, and security properties of KEMFROMPKE depend on the respec-480 
tive properties of PKE.481 

Approved examples. Section 6.1 briefly discusses three additional examples of KEMs, each 482 
of which is an approved algorithm.483 

1. In Section 6.1.1, ECDH-KEM is a KEM based on ECDH key exchange.484 

2. In Section 6.1.2, RSASVE-KEM is RSA key transport.485 

3. In Section 6.1.3, ML-KEM is a lattice-based post-quantum KEM.486 

ECDH-KEM and RSASVE-KEM are based on NIST-standardized key-establishment schemes 487 
that can easily be viewed as KEMs. ML-KEM is the first key-establishment scheme to be 488 
standardized by NIST directly as a KEM.489 
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A remark on key transport and key agreement. There are various ways to categorize two-490 
party key-establishment schemes. One particular categorization distinguishes between key 491 
agreement and key transport. In key agreement (e.g., a Diffie-Hellman key exchange), both 492 
parties contribute information that influences the final shared secret key. In key transport 493 
(e.g., RSA-OAEP [2]), one party selects the key and then transmits it (in some form) to the 494 
other party.495 

Depending on the internal structure of the encapsulation function, a KEM could be viewed 496 
as either a key-agreement scheme or a key-transport scheme. For example, the shared 497 
secret key in ML-KEM [16] is a function of both the randomness provided by Bob and the 498 
(randomly generated) encapsulation key of Alice. Therefore, ML-KEM could be viewed as a 499 
key agreement scheme. However, as the example KEMFROMPKE shows, the encapsulation 500 
operation in a KEM might simply consist of Bob generating the shared secret key and then 501 
encrypting it; this is precisely key transport. If an application requires a particular type of 502 
key establishment (either key agreement or key transport), this can be achieved using any 503 
KEM by taking appropriate additional steps using standard symmetric-key cryptography 504 
techniques.505 

3.3. Theoretical Security of KEMs506 

This section discusses the theoretical security of KEMs. Section 4 discusses KEM imple-507 
mentation security, and Section 5.2 discusses the secure deployment of KEMs.508 

Semantic security. Informally speaking, a secure key-establishment procedure produces a 509 
shared secret key K that is uniformly random and unknown to adversaries. This property 510 
should hold despite the fact that adversaries can freely observe the messages transmitted 511 
by Alice and Bob. In the case of KEMs, the encapsulation key ek and ciphertext c should 512 
reveal no information about the underlying shared secret key K or the decapsulation key 513 
dk. Moreover, even adversaries who somehow learn some partial information (e.g., if the 514 
first half of K is accidentally leaked) should not be able to combine that information with 515 
ek and c to learn more (e.g., the last bit of K). This informal notion of security can be 516 
rigorously formalized, and the resulting definition is called semantic security [17].517 

Passive adversaries and IND-CPA. The formal definition of semantic security for KEMs is 518 
somewhat complex and unwieldy. Thankfully, it has an equivalent definition that is sim-519 
ple to describe and easy to work with. It is defined in terms of an imaginary “ciphertext 520 
indistinguishability” experiment (see Figure 2). In this experiment, an adversary is given 521 
an encapsulation key ek, a ciphertext c, and either the true shared secret key underlying 522 
c or a freshly generated random string. The adversary’s goal is to distinguish these two 523 
scenarios, and they are free to use ek to generate their own encapsulations to help them 524 
in this task. This experiment is called “indistinguishable ciphertexts under chosen plaintext 525 
attack” (IND-CPA).526 
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Challenger: Adversary:

(ek,dk)←Π.KeyGen(p)

(K0,c)←Π.Encaps(p,ek)

K1←{0,1}|K0|

b←{0,1}
ek, c, Kb−−−−−−−−−→

b′←−−−−−−−−−
output WIN iff b = b′.

Fig. 2. The IND-CPA security experiment for a KEM Π

Definition 3 (IND-CPA, informal). A KEM Π has indistinguishable ciphertexts (or is IND-527 
CPA) if, for every computationally-bounded adversary A, the probability that A wins the 528 
experiment IND-CPA[Π] is negligibly close to 1/2.529 

In the IND-CPA experiment, the adversary is free to study the encapsulation key ek and 530 
the ciphertext c in order to identify whether Kb is the true key. However, the adversary is 531 
not capable of actively interfering with the challenger’s use of the decapsulation key. As a 532 
result, IND-CPA only captures security against passive adversaries (i.e., eavesdroppers).533 

Challenger: Adversary:

(ek,dk)←Π.KeyGen(p)

(K0,c)←Π.Encaps(p,ek)

K1←{0,1}|K0|

b←{0,1}
ek, c, Kb−−−−−−−−−→

� Π.Decaps(dk,?)

b′←−−−−−−−−−
output WIN iff b = b′.

Fig. 3. The IND-CCA security experiment for a KEM Π

Active adversaries and IND-CCA. Real-world experience indicates that adversaries can 534 
sometimes actively interfere with key-establishment processes and use this ability to un-535 
cover the shared secret key. For example, an active adversary may be able to convince an 536 
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honest user to decapsulate some ciphertexts of the adversary’s choosing. In such a sce-537 
nario, it is natural to ask whether other ciphertexts are still protected. In this setting, IND-538 
CPA security is insufficient. Instead, one must consider security against so-called chosen-539 
ciphertext attacks (CCA).540 

The IND-CCA[Π] experiment for a KEM Π is described in Figure 3. It is similar to the 541 
IND-CPA experiment, except that the adversary is now also granted “black-box oracle ac-542 
cess” to the decapsulation function c 7→ Π.Decaps(p,dk,c). This means that the adver-543 
sary is allowed to submit ciphertexts c∗ that they generate and get the response K∗ ←544 
Π.Decaps(p,dk,c∗). The only restriction is that they cannot submit the actual ciphertext 545 
c produced by the challenger since that would make the game trivial to win for any KEM.546 

Definition 4 (IND-CCA, informal). A KEM Π is IND-CCA if, for every efficient adversary A, 547 
the probability that A wins the experiment IND-CCA[Π] is negligibly close to 1/2.548 

Note that ML-KEM, the first post-quantum KEM standardized by NIST, is believed to satisfy 549 
IND-CCA security [3].550 

13



NIST SP 800-227 ipd
January 2025 Recommendations for KEMs

4. Requirements for Secure KEM Implementations551 

As discussed in Section 3.1, a KEM (as a mathematical object) should satisfy both correct-552 
ness (Definition 2) and an appropriate notion of security (Definition 3 or Definition 4). In 553 
order for such a KEM to be used in real-world applications, it needs to be implemented in 554 
actual code as part of a cryptographic module. The quality of the resulting implementation 555 
has a dramatic impact on usability and security in real-world applications.556 

The following subsections detail some requirements for cryptographic modules that im-557 
plement a KEM. While adherence to these requirements is required for conforming imple-558 
mentations of approved KEMs, it does not guarantee that a given implementation will be 559 
secure.560 

For a discussion of requirements for applications that make use of a KEM cryptographic 561 
module, see Section 5.2.562 

4.1. Compliance to NIST Standards and Validation563 

Conforming implementations of approved KEMs are required to comply with the require-564 
ments outlined in this section, as well as all other applicable NIST standards. In addition, 565 
such implementations are required to use only approved cryptographic elements, and to 566 
pass FIPS-140 validation.567 

Implementing according to NIST standards. Implementations shall comply with a specific 568 
NIST FIPS or SP that concretely specifies the algorithms of the relevant KEM. For example, 569 
a conforming implementation of ML-KEM shall comply with FIPS 203 [3]. Each FIPS or SP 570 
that specifies a KEM will have special requirements for the particular scheme in question. 571 
These requirements will include specifications for all algorithms and parameter sets of the 572 
relevant KEM. In particular, concrete data types will be specified for the parameter sets, 573 
keys, ciphertexts, and shared secret keys (recalling Definition 1) of the relevant KEM.574 

The requirements in any FIPS or SP that standardizes a particular KEM are in addition to 575 
the general requirements described in this section. Any implementations shall follow the 576 
guidance given in FIPS 140-3 [5] and associated implementation guidance.577 

Approved cryptographic elements. KEMs commonly make use of other cryptographic el-578 
ements (see Appendix A), such as random bit generators (RBGs) and hash functions. KEM 579 
implementations shall use approved cryptographic elements with security strengths that 580 
are appropriately chosen for each KEM parameter set. In particular, random bits shall be 581 
generated using approved techniques, as described in the latest revisions of SP 800-90A, 582 
SP 800-90B, and SP 800-90C [6–8].583 

Testing and validation. Mistakes in implementations can easily lead to security vulnera-584 
bilities or a loss of usability. Therefore, it is crucial that implementations are validated for 585 
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conformance to the appropriate cryptographic specifications and FIPS 140 by the Crypto-586 
graphic Algorithm Validation Program (CAVP) and Cryptographic Module Validation Pro-587 
gram (CMVP).588 

It is important to note that validation testing typically only tests that a given implemen-589 
tation correctly computes the desired output for a small number of (often randomly sam-590 
pled) inputs. This means that validation testing does not guarantee correct functioning on 591 
all inputs—in fact, this is often impossible to ensure. Nonetheless, implementations must592 
correctly implement the mathematical functionality of the target KEM.593 

As validation only tests input-output behavior, implementations need not follow the exact 594 
step-by-step algorithmic specifications in the NIST standard specifying the relevant KEM. 595 
Any implementation that produces the correct output for every input will pass validation.596 

Requiring equivalence only at the level of input-output functionality (e.g., rather than in 597 
terms of step-by-step behavior) is desirable, as different implementations can then be op-598 
timized for different goals. For example, some implementations will focus on maximizing 599 
efficiency, while other implementations will employ numerous side-channel and leakage 600 
protection techniques.601 

4.2. Managing Cryptographic Data602 

KEM implementations need to manage all cryptographic data appropriately. This applies 603 
to data used during the execution of the three KEM algorithms as well as data-at-rest. 604 
As a cryptographic module has no control over data that exists outside the module (e.g., 605 
while in transit from one module to another), such data is not discussed here. However, 606 
a cryptographic module can exert control over what data it outputs to the outside world 607 
(e.g., by ensuring correct implementations of all functions, as discussed above). It can 608 
also exert control over what data it accepts from the outside world (e.g., by performing 609 
appropriate input-checking and importing, as discussed below).610 

In general, data needs to be destroyed as soon as it is no longer needed. Some examples 611 
include destroying intermediate computation values at the end of an algorithm, destroying 612 
randomness generated by RBGs after encapsulation, and destroying keys after all relevant 613 
communication sessions are completed.614 

Input checking. The correct and secure operation of cryptographic operations depends 615 
crucially on the validity of the provided inputs. Even relatively benign faults, such as an 616 
input that is too long or too short, can have serious security consequences. KEM imple-617 
mentations need to perform input checking in an appropriate manner for all KEM algo-618 
rithms (i.e., KeyGen, Encaps, and Decaps). The exact form of the required input checking 619 
is described in the FIPS or SP that specifies the relevant KEM.620 
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Sometimes, an input will not need to be checked. Instead, the implementer can acquire 621 
assurance that the input was validly generated or has already been checked, as in the fol-622 
lowing cases:623 

1. If the cryptographic module generated an input internally using an algorithm that 624 
ensures validity and stored that input in a manner that prevents modification, then 625 
the module is not required to check that input. For example, if the module gener-626 
ated a decapsulation key dk via KeyGen and then stored dk in a manner that prevents 627 
modification, then the module can later invoke Decaps directly on dk without per-628 
forming any input checking.629 

2. If the cryptographic module checks an input once and stores that input in a man-630 
ner that prevents modification, then the module is not required to check that input 631 
again. For example, if the module performed input-checking on a given encapsula-632 
tion key ek and stored it in a manner that prevents modification, then the module 633 
may invoke Encaps directly on ek (even repeatedly) without performing any further 634 
input checking.635 

3. If the cryptographic module imports the relevant input from a trusted third party 636 
(TTP) and the TTP can provide assurance that the input does not need input-checking, 637 
then the module is not required to check the input.638 

Intermediate values. All intermediate values used in any given KEM algorithm (i.e., KeyGen, 639 
Encaps, Decaps) shall be destroyed before the algorithm terminates. However, there are 640 
two exceptions to this rule:641 

1. A random seed used for key generation may be stored for the purpose of recomput-642 
ing the same key pair at a later time.643 

2. Data that can be easily computed from public information (e.g., from the encapsu-644 
lation key) may be stored to improve efficiency.645 

When values are stored under either of these exceptions, the storage needs to be per-646 
formed according to the rules for data-at-rest.647 

The outputs of an algorithm are not considered to be intermediate values and will thus not 648 
be immediately destroyed in typical situations. The format in which outputs and inputs are 649 
stored depends on the implementation (see discussion of data formats below.)650 

Data at rest. A cryptographic module that implements a KEM needs to maintain certain 651 
data-at-rest. This can include both private data (e.g., seeds and decapsulation keys) and 652 
public data (e.g., encapsulation keys). In general, private data needs to be stored within 653 
the cryptographic module in a manner that is secure and protected against both leakage 654 
and unauthorized modification. Private data needs to be destroyed as soon as it is no 655 
longer needed. The import and export of private data (e.g., seeds, decapsulation keys, 656 
shared secret keys) need to be performed in a secure manner. In general, public data 657 
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stored within the cryptographic module needs to be stored in a manner that is secure and 658 
protected against unauthorized modification [5, 18].659 

Data formats, import and export. FIPS validation tests input and output behavior of the 660 
relevant KEM algorithms using a specific data format. Typically, this format is byte arrays 661 
containing the relevant inputs and outputs as described in the FIPS or SP specifying the rel-662 
evant KEM. This format is required for testing, but is not to be viewed as a requirement for 663 
internal storage, data import, or data export. A given cryptographic module may choose to 664 
store, import, or export data (whether sensitive or not) using other formats. The desired 665 
format can vary significantly depending on the application. For example, some applica-666 
tions might call for storing keys using only a short seed, while other applications might call 667 
for storing keys in an expanded format that allows for faster computations. In any case, 668 
storage, import, and export of sensitive data needs to be performed securely, regardless 669 
of the chosen data format.670 

4.3. Additional Requirements671 

The following are additional requirements for cryptographic modules implementing ap-672 
proved KEMs.673 

Failures and aborts. Each of the KEM algorithms (i.e., KeyGen, Encaps, Decaps) and any 674 
algorithms of their cryptographic elements (e.g., DRBGs or hash functions) can potentially 675 
fail or abort. This could be a result of normal KEM operations (e.g., decapsulating a cipher-676 
text that was corrupted by the environment during transmission), a hardware or software 677 
failure (e.g., a failed DRBG execution due to a memory fault), or an adversarial attack. Im-678 
plementers need to take precautions to ensure that the cryptographic module handles fail-679 
ures and aborts appropriately. In particular, leaking information about failures and aborts 680 
outside of the perimeter of the cryptographic module should be avoided.681 

Side-channel protection. Cryptographic modules for KEMs should be designed with ap-682 
propriate countermeasures against side-channel attacks. This includes protecting against 683 
timing attacks with constant-time implementations and protecting memory from leakage. 684 
Universal guidance is unlikely to be helpful as exposure to side-channel attacks varies sig-685 
nificantly with the desired application, and countermeasures are often costly.686 
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5. Using KEMs Securely in Applications687 

This section describes how to deploy a KEM in real-world applications in a manner that is 688 
useful and secure, assuming that the KEM under discussion satisfies an appropriate notion 689 
of theoretical security (see Section 3.3) and has been securely implemented in a crypto-690 
graphic module (see Section 4).691 

5.1. How to Establish a Key With a KEM692 

693 
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This section describes how a KEM can be used to establish a shared secret key between 
two parties. The description will go into greater detail than the brief outline of Section 3.1. 
However, since KEMs are highly flexible and can be used in a wide range of applications and 
contexts, no single description can account for all variations. Sections 6.2.1, 6.2.2 and 6.2.3 
provide more detailed examples of special cases of key establishment using a KEM.

For simplicity of exposition, the two parties in the key establishment process will be re-
ferred to as Alice and Bob. It is assumed that Alice and Bob are communicating over a 
single bidirectional channel and will only use that channel to transmit data to each other.

The key establishment process using a KEM Π proceeds as follows:

1. Preparation. Before key establishment can begin, a parameter set p∈Π.ParamSets
needs to be selected. Depending on the application, p may be selected by Alice, 
by Bob, or through an interactive negotiation between Alice and Bob. (In fact, the 
choice of the KEM Π itself could be made at this stage.)

2. Key generation. Alice begins by running the key generation algorithm in her crypto-
graphic module:

(ekA,dkA)←Π.KeyGen(p) . (6)

During the execution of KeyGen, Alice’s module internally generates private random-

ness using an appropriate RBG. Alice then transmits ekA to Bob and keeps dkA pri-
vate.

3. Encapsulation. Bob receives ekA from Alice and uses it to execute the encapsulation 
algorithm in his cryptographic module:

(KB,cB)←Π.Encaps(p,ekA) . (7)

During the execution of Encaps, Bob’s module internally generates private random-

ness using an appropriate RBG. Bob then transmits cB to Alice and keeps KB private.

4. Decapsulation. Alice receives cB from Bob and runs the decapsulation algorithm in 
her module using her decapsulation key and Bob’s ciphertext:

KA←Π.Decaps(dkA,cB) . (8)

Alice keeps KA private.
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5. Using the shared secret key. If the appropriate conditions are satisfied (see Section 718 
5.2), then KA will equal KB and can be used by Alice and Bob for any symmetric-719 
key cryptographic protocol. A typical choice is to use KA = KB as the key for an 720 
authenticated encryption scheme (e.g., AES-GCM [19]), thereby establishing a com-721 
munication channel between Alice and Bob that satisfies both confidentiality and 722 
integrity.723 

Figure 4 depicts the high-level stages of this process.724 

Alice: Bob:

1.
Π, p←−−−−−−−→

2. (ekA,dkA)←Π.KeyGen(p)
ekA−−−−−−−−−→

3. (KB,cB)←Π.Encaps(ekA)
cB←−−−−−−−−

4. KA←Π.Decaps(dkA,cB)

5. output: KA output: KB

Fig. 4. Simple key establishment using a KEM

725 
Additional considerations. The steps 1-5 in the key establishment process above might 726 
need to be modified depending on the security and functionality needs of the application. 727 
Some common modifications are as follows.728 

Static versus ephemeral. Consider an application in which Alice independently decides on 729 
a parameter set, performs key generation, and publishes the resulting encapsulation key 730 
ekA. Alice might then accept many connections from multiple parties over a long period 731 
of time, each initiated via ekA. Each such connection would follow stages 3-5 described 732 
above. While the other party in each connection would always encapsulate with ekA, each 733 
ciphertext is freshly generated and only applicable to the connection between Alice and 734 
that party. In this scenario, Alice’s encapsulation key is said to be static.735 

In other applications, Alice might want to use a particular key pair to establish only a sin-736 
gle connection (e.g., as part of a protocol that ensures forward secrecy). In that case, she 737 
will perform key generation, send her encapsulation key ekA to a specific party (Bob), and 738 
discard ekA once the connection with Bob is established. In this scenario, Alice’s encapsu-739 
lation key is said to be ephemeral. In some applications, Alice might decide to use ekA for 740 
multiple connections but only for a brief period of time, which is typically still considered 741 
an ephemeral setting.742 
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Authentication. In most applications, some form of authentication and cryptographic in-743 
tegrity checking is required (e.g., to prevent “machine-in-the-middle” attacks). Assuring 744 
this is highly application-dependent and typically requires additional cryptographic ele-745 
ments, such as digital signatures and certificates. Section 6.2.2 and Section 6.2.3 provide 746 
some illustrative examples.747 

Key confirmation and derivation. In some applications, Alice and Bob will use KA and KB748 
directly as symmetric keys as soon as the decapsulation and encapsulation stages are suc-749 
cessfully completed, respectively. If KA 6= KB, a failure in the desired symmetric-key func-750 
tionality will likely follow. For other applications, Alice and Bob might need to first post-751 
process KA and KB appropriately and then use the results of that post-processing step—if 752 
successful—as their symmetric keys. This post-processing might include key confirmation 753 
steps to confirm that KA = KB and reject them otherwise (see Section 5.4). It might also 754 
include key derivation steps that securely produce multiple symmetric keys from the ini-755 
tial shared secret key (see Section 5.3). In some cases, key confirmation might also involve 756 
performing additional computations during the encapsulation and decapsulation stages to 757 
reduce the number of communication rounds.758 

5.2. Conditions for Using KEMs Securely759 

This section discusses general requirements for securely using approved KEMs in applica-760 
tions. As discussed in point 1 below, the first step involves selecting an approved KEM that 761 
has been implemented in a validated cryptographic module (see Section 4). Deploying 762 
such a cryptographic module in applications entails a number of additional requirements 763 
that are outlined below. Adherence to these requirements does not guarantee that the 764 
relevant KEM application will be secure.765 

The overall requirements fall into four general categories: KEM algorithm security, device 766 
security, channel security, and key usage security. Below, each category is briefly sum-767 
marized in one prescriptive statement; a more detailed description of the requirements 768 
applicable to that category then follow.769 

1. KEM algorithm security: the selected KEM Π is approved, appropriate for the ap-770 
plication, and implemented and deployed in a secure manner.771 

Being an approved KEM, Π will satisfy correctness (Definition 2) and either IND-CPA 772 
or IND-CCA security (see Section 3.3). Whenever possible, IND-CCA-secure KEMs773 
should be used. For some specific applications (e.g., ephemeral key establishment), 774 
IND-CPA security might be sufficient.775 

Cryptographic module implementation. The implementations of Π used by Alice and 776 
Bob need to satisfy the requirements in Section 4. Whether a given implementation 777 
is sufficiently secure is an application-dependent question. For example, an imple-778 
mentation might be secure enough for use on a web server in a physically secure 779 
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location but have insufficient side-channel protections for use on an embedded de-780 
vice.781 

Parameter set selection. A parameter set of Π with application-appropriate security 782 
strength must be selected (see [9, Section 2.2]).783 

KEM key management. If the application calls for an ephemeral-ephemeral key ex-784 
change, each key pair is only used for a brief period of time. In any case, all KEM 785 
keys and any seeds are destroyed as soon as they are no longer needed.786 

2. Device security: the devices used to execute KEM algorithms and store any inter-787 
mediate data (e.g., decapsulation keys) are appropriately secured.788 

Physical protection. The devices need to be appropriately protected against attacks 789 
(see [18, Section 5]). This includes protection against leakage, physical intrusion, 790 
remote access, and corruption.791 

Secure storage. The device needs to provide appropriate secure storage for sensitive 792 
data (e.g., KEM keys, seeds, shared secret keys, and any derived keys) and destroy 793 
that data when required by the cryptographic module (See Section 4.2).794 

3. Channel security: the key-establishment process that takes place over the channel 795 
used by Alice and Bob needs to satisfy an application-appropriate notion of integrity.796 

Pre-established versus simultaneous. Ensuring the integrity of the key-establishment 797 
process could be achieved by first ensuring the integrity of the channel and then 798 
performing key establishment. More commonly, integrity is assured simultaneously 799 
with key establishment by augmenting the key-establishment process with addi-800 
tional steps and checks.801 

Unilateral versus bilateral. For some applications, only Alice is assured of Bob’s iden-802 
tity and the integrity of Bob’s messages. This is commonly called a unilaterally au-803 
thenticated key exchange (see Section 6.2.3). In other applications, both Alice and 804 
Bob will require assurances of the other party’s identity and the integrity of their 805 
messages. This is commonly called a bilaterally authenticated key exchange.806 

Secure authentication algorithms. For all applications, the cryptographic algorithms 807 
(e.g., signatures, other KEMs) and other elements (e.g., certificates) required to es-808 
tablish channel integrity need to be selected and deployed securely.809 

4. Key usage security: the shared secret key produced by the KEM is used appropriately 810 
and securely.811 

Key processing and management. Key confirmation and key derivation steps are 812 
performed appropriately, as required by the application (see Sections 5.4 and 5.3). 813 
Each shared secret key and any derived keys are destroyed as soon as they are no 814 
longer needed (see Section 4.2).815 
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Secure symmetric-key algorithms. The KEM shared secret key and any derived keys 816 
should only be used with appropriately secure symmetric-key cryptographic algo-817 
rithms. In particular, the security of the symmetric-key algorithms used is appropri-818 
ate for the security provided by the KEM so that the combined algorithm (consisting 819 
of key establishment followed by symmetric cryptography operations) fulfills the de-820 
sired security properties.821 

5.3. Key Derivation822 

Certain key-establishment schemes (e.g., Diffie-Hellman key exchange) can be viewed as 823 
first generating a shared secret, and then performing a key derivation step that transforms 824 
the shared secret into a shared secret key. KEMs, on the other hand, by definition output a 825 
key that is ready to use. As a result, key derivation is not required when using KEMs. Still, 826 
some applications using KEMs will require key derivation. This is the case, for example, 827 
when the application requires that the shared secret key K is expanded in order to create 828 
a collection of keys whose total length exceeds the length of K.829 

As specified in SP 800-108 [20], key derivation consists of applying a key-derivation method830 
(KDM) to a key-derivation key. A KDM is an algorithm for transforming a given key-derivation 831 
key (along with possibly some other data) into keying material (e.g., a list of keys).832 

An example of a key-derivation method is:833 

1. Concatenate the key-derivation key K with optional data z.834 

2. Apply a key-derivation function KDF.835 

The final output of key derivation is then simply KDF(K||z).836 

In SP 800-56C [21], several key-derivation methods are defined for the setting in which 837 
the input to key derivation is a shared secret for one of the key-establishment schemes 838 
specified in [1, 2] (rather than a key-derivation key).839 

When key derivation for a KEM Π is needed, the shared secret key output by Π (i.e., as 840 
an output of Π.Encaps or Π.Decaps) may be used as a key-derivation key supplied to an841 
approved key-derivation method specified in SP 800-108 [20], SP 800-56C [21], or SP 800-842 
133 [22]. In the case where a KDM from SP 800-56C is used, the shared secret key of the 843 
KEM is used as an input to the KDM in place of the shared secret.844 

A simple example of key derivation is included in the example protocol in Section 6.2.3.845 

5.4. Key Confirmation846 

Key confirmation (KC) refers to the actions taken to provide assurance to one party (the 847 
key-confirmation recipient) that another party (the key-confirmation provider) possesses 848 
matching keying material. In the case of KEMs, this confirmation is done for keying material 849 
that was produced by encapsulation and/or decapsulation.850 
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Key confirmation should be used during KEM usage, as it may enhance the security proper-851 
ties of the overall key-establishment process. Confirming successful establishment of the 852 
shared secret key can also address potential errors in transmission or decapsulation. While 853 
this section describes an explicit process, key confirmation can be accomplished in a vari-854 
ety of other ways. For example, successful use of the shared secret key for authenticated 855 
encryption can act as key confirmation.856 

Key confirmation is typically achieved by exchanging a value that can only be calculated 857 
correctly with very high probability if the key establishment was successful. Some com-858 
mon protocols perform key confirmation in a manner that is integrated into the steps of 859 
the protocol. For example, bilateral key confirmation is provided during a TLS handshake 860 
protocol by the generation and verification of a MAC over all previous messages in the 861 
handshake using a symmetric MAC key that was established during the handshake.862 

In some circumstances, it may be appropriate to perform key confirmation by including 863 
dedicated key-confirmation steps into a key-establishment scheme. An acceptable method 864 
for providing key confirmation during a key-establishment scheme is provided below. In 865 
this method, key confirmation is provided by the KC provider calculating a MAC tag and 866 
sending it to the KC recipient for confirmation of the provider’s correct calculation of the 867 
shared secret key. Unilateral key confirmation is provided when only one of the parties 868 
serves as the key-confirmation provider. If mutual key confirmation is desired (i.e., bilateral 869 
key confirmation), then the parties swap roles for the second KC process, and the new 870 
provider (i.e., the previous recipient) sends a MAC value on a different data string (i.e., 871 
MAC_Data) to the new recipient (i.e., the previous provider).872 

If other methods are used, this recommendation makes no statement as to their adequacy.873 

874 
Key-confirmation key. The key-confirmation steps specified in this recommendation can 875 
be incorporated into any scheme using a KEM to establish a shared secret key. To per-876 
form key confirmation, a dedicated KC key will be determined from the shared secret key 877 
produced by the KEM. The KC provider will then use the KC key with an approved MAC 878 
algorithm to create a MAC tag on certain data and provide the tag to the KC recipient. The 879 
KC recipient will then obtain the KC key from their copy of the shared secret key produced 880 
by the KEM and use it to verify the MAC tag.881 

5.4.1. Creating the MAC Data882 

During key confirmation, the KC provider creates a message with a MacTag that is com-883 
puted on MAC_Data that contains context-specific information. The MAC_Data is for-884 
matted as follows:885 

MAC_Data = KC_Step_Label‖ IDP ‖ IDR ‖EphP ‖EphR ‖ExtraP ‖ExtraR886 
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• KC_Step_Label is a six-byte character string that indicates that the MAC_Data is 887 
used for key confirmation, whether the MAC_Data is used for the first or second 888 
key-confirmation message, and the party serving as the KC provider, either the en-889 
capsulator (E) or decapsulator (D). The four valid options are ”KC_1_E”, ”KC_2_E”, 890 
”KC_1_D”, or ”KC_2_D”. As an example, ”KC_1_D” indicates that the decapsu-891 
lator (D) is the KC provider and sends the first KC message. ”KC_2_E” could then 892 
be used by the encapsulator (E) to provide bilateral key confirmation.893 

• IDP and IDR are the identifiers used to label the KC provider and recipient, respec-894 
tively.895 

• EphP and EphR are ephemeral data provided by the KC provider and recipient, re-896 
spectively. The encapsulator’s ephemeral data is the ciphertext. The decapsulator’s 897 
ephemeral data is encapsulation key ek if ek is ephemeral; otherwise, the decap-898 
sulator’s ephemeral data shall be a nonce with a bit length that is at least equal to 899 
the targeted security strength of the KEM key-establishment process (see Appendix 900 
A.3).901 

When a nonce is used during key confirmation, it needs to be provided to the encap-902 
sulator before they can complete MAC_Data for MacTag generation or verification.903 

• ExtraP and ExtraR are optional additional data provided by the KC provider and re-904 
cipient, respectively. This could include additional identifiers, values computed dur-905 
ing the key-establishment process, or any other information that the party wants to 906 
include. This information can be known ahead of time by both parties or transmitted 907 
during key confirmation.908 

The MAC algorithm and KC_Key used shall have security strengths that are equal to or 909 
greater than the security strength of the KEM and parameter set used. See Appendix A.1 910 
for permitted MAC algorithms and further details.911 

5.4.2. Obtaining the Key-Confirmation Key912 

In order to create and validate the MAC tag for the created MAC_Data, the parties create 913 
a dedicated key-confirmation key, or KC_Key. This can be either a section of the KEM 914 
shared secret key or part of the derived keying material from the KEM shared secret key 915 
when using a derivation function (see Section 5.3). The KC_Key shall only be used for key 916 
confirmation and destroyed after use.917 

When a derivation function is used. After computing the plaintext shared secret 918 
value and applying the key-derivation method to obtain the derived keying material 919 
Derived_Keying_Material, the key-confirmation provider uses agreed-upon bit lengths to 920 
parse Derived_Keying_Material into two parts — the key-confirmation key (KC_Key) and 921 
the key(s) to subsequently protect data (Data_Key):922 

Derived_Keying_Material = KC_Key || Data_Key.923 
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When a derivation function is NOT used. The key-confirmation provider parses the plain-924 
text output of the encapsulation process into KC_Key and Data_Key:925 

KEM_plaintext_output = KC_Key || Data_Key.926 

5.4.3. Key-Confirmation Example927 

The key-confirmation process can be achieved in multiple ways. The provided example 928 
showcases unilateral key confirmation from the encapsulator to the decapsulator, which 929 
can be used for a client (i.e., Alice) requesting confirmation of successful key establishment 930 
from the server (i.e., Bob). Figure 5 shows this process.931 

Alice (Decapsulator, Client): Bob (Encapsulator, Server):

1. (ek,dk)←Π.KeyGen(p)
ek, IDA,ExtraA−−−−−−−−−→

2. (c,KB0)←Π.Encaps(p,ek)

KBkc||KB1← KDF(KB0)

3. Construct MAC_Data
tag← MAC(KBkc, MAC_Data)

c, tag, IDB,ExtraB←−−−−−−−−−−−
4. KA0←Π.Decaps(p,dk,c)

KAkc||KA1← KDF(KA0)

5. Construct MAC_Data
if MAC.Ver(KAkc,MAC_Data, tag)
rejects, abort.

6. result: KA1 result: KB1

Fig. 5. Key-confirmation example with an ephemeral key pair

1. The decapsulating party (i.e., Alice) begins by generating a set of ephemeral keys 932 
(ek,dk) for KEM Π under the agreed parameter set p. Alice then sends ek, Alice’s 933 
identifying string (IDA), and any extra data ExtraA to include in the key confirmation 934 
to Bob.935 

2. The encapsulating party (i.e., Bob) performs encapsulation with the received ek to 936 
generate ciphertext c and initial key KB0. Bob then derives two keys from KB0: a 937 
key-confirmation key KBkc to perform key confirmation and additional key material 938 
KB1.939 

3. Bob constructs MAC_Data using the following in order:940 
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• The constant string ”KC_1_E”, which indicates that the encapsulator (i.e., Bob) 941 
is providing key confirmation and that this is the first KC message942 

• IDB, which is Bob’s identifier string943 

• IDA, which is Alice’s identifier string944 

• Ciphertext c, which is the KC provider’s (Bob’s) ephemeral value945 

• Encapsulation key ek, which is the KC recipient’s (Alice’s) ephemeral value946 

• ExtraB, which refers to any extra data that Bob (the KC provider) would like to 947 
include948 

• ExtraA, which refers to any extra data provided by Alice (the KC recipient)949 

Bob calculates the MAC tag tag using KBkc on MAC_Data and sends the following 950 
to Alice: 1) ciphertext c, 2) the generated tag tag, 3) and any extra data (ExtraB) that 951 
Bob included in the MAC_Data.952 

4. Alice performs decapsulation on the received ciphertext c using the previously gen-953 
erated decapsulation key dk to calculate initial key KA0. Alice then derives two keys 954 
from KA0 similarly to Bob (in step 2) with key-confirmation key KAkc and other keying 955 
material KA1.956 

5. Alice constructs MAC_Data as Bob did in step 3 and verifies the received tag for 957 
the MAC_Data using key KAkc. Alice aborts if the tag is rejected or continues if it is 958 
verified.959 

6. Alice now has additional assurance that KA1 matches KB1. Alice and Bob destroy the 960 
key-confirmation keys KAkc and KBkc and can proceed to use KA1 and KB1 as planned.961 

5.5. Multi-algorithm KEMs and PQ/T Hybrids962 

Combining multiple key-establishment schemes into a single key-establishment scheme 963 
can be advantageous for some applications, e.g., during the migration to post-quantum 964 
cryptography. The discussions of such schemes in this document will adhere to the termi-965 
nology established in [23].966 

A multi-algorithm key-establishment scheme combines shared secrets that are generated 967 
using two or more key-establishment schemes. The underlying schemes are called the 968 
components of the overall scheme. In general, it is not necessary that the multi-algorithm 969 
scheme has the same interface as its components. In this document, for example, multi-970 
algorithm schemes will always be KEMs, while their components need not be.971 

A well-designed multi-algorithm scheme will be secure if at least one of the component 972 
schemes is secure. This may provide some protection against vulnerabilities that are dis-973 
covered in one of component schemes after deployment. The migration to post-quantum 974 
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key-establishment techniques, for example, might initially include multi-algorithm so-975 
lutions that combine one new post-quantum algorithm with one tried-and-tested but 976 
quantum-vulnerable (or traditional) algorithm. This is sometimes referred to as hybrid 977 
PQ/T (post-quantum / traditional) key establishment. For example, X-Wing is a hybrid 978 
PQ/T KEM built from two components: ML-KEM (a lattice-based post-quantum KEM) and 979 
X25519 (a traditional Diffie-Hellman-style key exchange) [24].980 

This section outlines approved approaches for multi-algorithm key establishment. Such an 981 
approach proceeds in two stages, as follows.982 

1. Establish shared secrets. All component key establishment schemes are run (typi-983 
cally in parallel), resulting in Alice and Bob sharing a collection of shared secrets, one 984 
for each component scheme.985 

2. Combine shared secrets. Alice and Bob individually use a key combiner to combine 986 
their individual shared secrets into a single shared secret each. Approved key com-987 
biners are described in Section 5.5.2.988 

For simplicity, the exposition below focuses on a particular case: constructing a single KEM 989 
from two component KEMs. Since both the components and the multi-algorithm scheme 990 
in this case are of the same type (i.e., KEMs), the result is called a composite KEM. Note 991 
that most key-establishment schemes of interest can easily be adapted into KEMs (see, e.g., 992 
ECDH-KEM in Section 6.1.1 and RSA-KEM in Section 6.1.2). Moreover, the hybrid PQ/T ap-993 
plication typically calls for two component schemes: one post-quantum scheme, and one 994 
traditional scheme. The two-algorithm composite KEM described below is easily adapted 995 
to other cases, such as combining more than two schemes, or combining KEMs with non-996 
KEMs.997 

5.5.1. Constructing a Composite KEM998 

Given two KEMs Π1 and Π2, one can construct a composite KEM C[Π1,Π2] via the following 999 
sequence of steps:1000 

1. Choose parameter sets. Choose a collection C[Π1,Π2].ParamSets of parameter 1001 
sets. Each parameter set will be a pair p = (p1, p2), where p1 ∈Π1.ParamSets and 1002 
p2 ∈Π2.ParamSets.1003 

2. Select a key combiner. Choose a key combiner algorithm KeyCombine. The inputs 1004 
to KeyCombine consist of a pair of shared secret keys (one from Π1 and one from 1005 
Π2), as well as a pair of ciphertexts, a pair of encapsulation keys, and a parameter 1006 
set; the output is a single shared secret key. Section 5.5.2 discusses NIST-approved 1007 
key combiners.1008 

3. Construct a composite key-generation algorithm. When a parameter set p =1009 
(p1, p2) is input, the algorithm C[Π1,Π2].KeyGen will perform:1010 
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1. (ek1,dk1)←Π1.KeyGen(p1).1011 

2. (ek2,dk2)←Π2.KeyGen(p2).1012 

3. Output composite encapsulation key ek1‖ek2.1013 

4. Output composite decapsulation key dk1‖dk2.1014 

4. Construct a composite encapsulation algorithm. When a parameter set p =1015 
(p1, p2) and encapsulation key ek1‖ek2 are input, the algorithm C[Π1,Π2].Encaps1016 
will perform:1017 

1. (K1,c1)←Π1.Encaps(p1,ek1).1018 

2. (K2,c2)←Π2.Encaps(p2,ek2).1019 

3. Output combined shared secret key1020 

K← KeyCombine(K1,K2,c1,c2,ek1,ek2, p) . (9)

4. Output composite ciphertext c := c1‖c2.1021 

5. Construct a composite decapsulation algorithm. When a parameter set p =1022 
(p1, p2), decapsulation key dk1‖dk2, and ciphertext c1‖c2 are input, the algorithm 1023 
C[Π1,Π2].Decaps will perform:1024 

1. K′1←Π1.Decaps(p1,dk1,c1).1025 

2. K′2←Π2.Decaps(p2,dk2,c2).1026 

3. Output combined shared secret key1027 

K′← KeyCombine(K′1,K
′
2,c1,c2,ek1,ek2, p) . (10)

Note that, since the inputs to KeyCombine include the composite encapsulation key, the 1028 
decapsulating party must retain a copy of that key (or maintain the ability to re-create it) 1029 
after performing key generation.1030 

General multi-algorithm schemes. The above construction can be extended in the obvi-1031 
ous way to composite constructions that use more than two component KEMs. Extend-1032 
ing to the case of a completely general multi-algorithm key-establishment scheme can be 1033 
more complex, as the components in such a scheme can vary widely. For example, such 1034 
schemes could potentially include pre-shared keys or shared secrets established via Quan-1035 
tum Key Distribution. Still, most multi-algorithm schemes will likely include a step in which 1036 
a series of shared secrets are combined via a key combiner algorithm of a form similar to 1037 
KeyCombine above. In those cases, an approved key-combiner discussed in Section 5.5.2 1038 
shall be used.1039 
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5.5.2. Approved Key Combiners1040 

This section describes approved methods for combining shared secrets as part of a multi-1041 
algorithm key-establishment scheme. Choosing such a method amounts to selecting a key 1042 
combiner KeyCombine. At a minimum, KeyCombine accepts two shared secrets as in-1043 
put. Optionally, KeyCombine can also accept additional information, such as ciphertexts, 1044 
encapsulation keys, parameter sets, or other context-dependent data (see, e.g., the com-1045 
posite KEM in Section 5.5.1). As output, KeyCombine produces a shared secret key.1046 

This section describes how cryptographic methods standardized in other NIST publications 1047 
can, under an appropriate interpretation, be used as key combiners. There are two cate-1048 
gories of such key combiners:1049 

1. Key combiners from key derivation methods approved in SP 800-56Cr2 [21]1050 

2. Key combiners from key combination methods approved in SP 800-133r2 [22]1051 

Key derivation in SP800-56Cr2, in brief. SP 800-56Cr2 [21] specifies a collection of ap-1052 
1053 
1054 
1055 

1056 

1057 
1058 

1059 
1060 
1061 
1062 

1063 

proved methods for performing key derivation. In SP 800-56Cr2, a key derivation method 
(KDM) is applied to a shared secret Z generated as specified in SP 800-56A [1] or SP 800-
56B [2] along with some additional input, and results in keying material K:

K← KDM(Z,OtherInput) . (11)

The key derivation method KDM can take one of two forms:

1. One-step key derivation. In this case, K is computed by applying a key-derivation 
function KDF to the concatenation of the two inputs Z and OtherInput.

K← KDF(Z‖OtherInput) . (12)

2. Two-step key derivation. In this case, one requires two functions: Extract (which 
is a randomness extractor) and Expand. The process begins with applying Extract
to Z, using a salt as the seed. Expand is then applied to the result along with the 
remaining part of OtherInput.

K← Expand(Extract(salt,Z),OtherInput) . (13)

In this method, it is required that extraction is applied to the shared secret Z.

SP 800-56Cr2 describes the specific approved choices of KDF, Extract, and Expand, as 1064 
well as the format and content of OtherInput. These details will not be discussed in this 1065 
document.1066 

As discussed in Section 5.3, this publication approves the application of SP 800-56Cr2 KDMs 1067 
to the shared secret keys of approved KEMs. In particular, this means that the quantity Z1068 
in Equation (11) (and hence also in (12) and (13)) can be the shared secret key of ML-KEM.1069 
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Key combiners from SP800-56C. In both one-step and two-step key derivation, SP 800-1070 
1071 
1072 
1073 
1074 
1075 

1076 

56Cr2 allows the shared secret Z to have the form Z = S1‖S2, where S1 is a shared secret 
generated as specified in SP 800-56A [1] or SP 800-56B [2], while S2 is a shared secret 
generated in some other (not necessarily approved) manner. This yields a key combiner 
K←KDM(S1‖S2,OtherInput) for a two-algorithm key-establishment scheme. Since one 
is free to choose S2 arbitrarily, one can also combine many shared secrets:

K← KDM(S1‖S2‖· · ·‖St ,OtherInput) (14)

This publication approves the use of the key combiner (14) for any t > 1, so long as at 
least one shared secret (i.e., S j for some j) is a shared secret generated from the key-1077 
establishment methods of SP 800-56A [1] or SP 800-56B [2], or an approved KEM. It is 1078 
important to note that, in the case where the KDM in the combiner (14) is a two-step 1079 
method (i.e., using (13)), extraction is performed with all shared secrets as the input.1080 

SP 800-56Cr2 allows OtherInput to contain an input that is chosen arbitrarily by the al-1081 
gorithm designer; this optional input is contained in a parameter called FixedInfo in SP 1082 
800-56Cr2. By choosing FixedInfo appropriately, one can also construct approved key 1083 
combiners of the form (14) that, in addition to shared secrets, also receive additional in-1084 
puts like encapsulation keys, ciphertexts, parameter sets, and domain separators.1085 

As an example, consider the following simple special case. Choose KDM to be the one-1086 
1087 
1088 
1089 
1090 

1091 

step key derivation method where KDF is a hash function H (chosen from the list of hash 
functions approved for this purpose by SP 800-56Cr2). Set OtherInput to contain only 
the concatenation of ciphertexts, encapsulation keys, and the parameter set. Then define 
a key combiner algorithm KeyCombine simply by setting

KeyCombine(K1,K2,c1,c2,ek1,ek2, p) := H(K1‖K2‖c1‖c2‖ek1‖ek2‖p) . (15)

One can then instantiate the composite KEM example from Section 5.5 by using this key 
combiner. The resulting composite KEM will have a shared secret key whose length is the 1092 
output length of H.1093 

Key combiners derived from SP 800-133r2. Section 6.3 of SP 800-133r2 [22] provides 1094 
three approved methods for combining cryptographic keys that were generated in an ap-1095 
proved way. These methods can be broadly described as concatenation, XORing, and key 1096 
extraction using HMAC. Some of these methods can also be applied to just a single key. 1097 
As discussed in Section 5.3, these methods are approved for key derivation for approved 1098 
KEMs.1099 

When combining multiple keys K1,K2, . . . ,Kt , the key-combination methods found in SP 1100 
800-133 [22] require every key K j for j ∈ {1,2, . . . , t} to be generated using approved 1101 
methods. These methods can thus be used directly as key combiners for constructing 1102 
multi-algorithm schemes in cases where all of the component schemes are approved, and 1103 
each one produces a key.1104 
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5.5.3. Security Considerations for Composite Schemes1105 

The typical goal of a composite KEM construction is to ensure that security will hold if either1106 
of the component KEMs is secure. There are some important security considerations when 1107 
constructing composite KEMs.1108 

Theoretical security. The two main security properties that KEMs can satisfy (see Section 1109 
3.3) are:1110 

1. IND-CPA security (i.e., security against passive eavesdropping attacks)1111 

2. IND-CCA security (i.e., security against active attacks)1112 

A well-constructed composite KEM C[Π1,Π2] should preserve the security properties of 1113 
its component KEMs Π1 and Π2. This crucially depends on how the composite KEM is 1114 
constructed and particularly on the choice of key combiner.1115 

An important example is the case in which the goal is active (i.e., IND-CCA) security, but 1116 
1117 
1118 
1119 

1120 

only one of the two schemes Π1 and Π2 is itself IND-CCA (and of course, the designer of the 
composite scheme does not know which one it is). In this case, the choice of key combiner 
is particularly relevant here. As shown in [25], the straightforward key combiner

K← KDF(K1‖K2) (16)

that only uses the two shared secret keys K1 (of Π1) and K2 (of Π2) does not preserve 
IND-CCA security. So, for example, the scheme Π2 could be so broken that C[Π1,Π2] is not 1121 
IND-CCA, even if Π1 is IND-CCA and regardless of what KDF is used.1122 

Therefore, NIST encourages the use of key combiners that generically preserve IND-CCA 1123 
security. One example of such a key-combiner is as follows [25]. Let H denote a hash 1124 
function approved for one-step key-derivation in SP 800-56C [21]. Define the key combiner 1125 
KeyCombineCCA

H  as follows (recalling the notation of Section 5.5):1126 

• Inputs from Π1: ek1, c1, K11127 

• Inputs from Π2: ek2, c2, K21128 

• Output: H(K1‖K2‖c1‖c2‖ek1‖ek2‖domain_separator)1129 

The domain_separator should be used to uniquely identify the composite scheme in use 1130 
(e.g., Π1, Π2, the order of composition, the choice of key combiner and KDF)1131 

Security in practice. While composite schemes are meant to increase security, they nec-1132 
essarily add a layer of additional complexity to the basic KEM framework. This additional 1133 
complexity will be reflected in implementations and applications and could introduce se-1134 
curity vulnerabilities. Moreover, adding composite schemes introduces additional choices 1135 
in protocols, which could also introduce vulnerabilities (e.g., in the form of “downgrade” 1136 
attacks). Implementers and users should be aware of the potential challenges in imple-1137 
menting and deploying composite schemes.1138 
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6. Examples1139 

This section contains a number of examples. It does not contain any requirements or spe-1140 
cific guidance. Instead, its purpose is to aid the reader in understanding some aspects of 1141 
how KEMs are constructed and used in a manner that is consistent with NIST guidance.1142 

6.1. Examples of KEMs1143 

The following subsections discuss three key-encapsulation mechanisms: ECDH-KEM, RSA-1144 
KEM, and ML-KEM. While ECDH and RSA key transport are perhaps not typically described 1145 
as KEMs, the discussions below will give a high-level description of how both can be natu-1146 
rally viewed as KEMs. The goal of these descriptions is illustrative only. As FIPS 203 already 1147 
contains a complete description of ML-KEM, the relevant discussion below will simply ref-1148 
erence the relevant parts of FIPS 203 [3].1149 

6.1.1. A KEM From Diffie-Hellman1150 

A KEM may be constructed from a Diffie-Hellman (DH) key-agreement scheme. The high-1151 
level idea is that, if the two parties in a DH scheme send their messages in sequential order 1152 
(e.g., Alice first, then Bob), then:1153 

1. the public message and private randomness of Alice can be viewed as an encapsu-1154 
lation key and a decapsulation key (respectively), and1155 

2. the public message and private randomness of Bob can be viewed as a ciphertext 1156 
and a shared secret (respectively).1157 

For example, a KEM can be constructed from the C(1e, 1s, ECC CDH) Scheme from SP 800-1158 
56Ar3 [1] as follows:1159 

• ECDH-KEM.ParamSets. The parameter sets are the same as those specified for ECDH 1160 
in Section 5.5.1.2 of SP 800-56Ar3.1161 

• ECDH-KEM.KeyGen. The key-generation algorithm is the same as the one specified 1162 
in Section 5.6.1.2 of SP 800-56Ar3.1163 

• ECDH-KEM.Encaps. To encapsulate, perform Party U’s actions from Section 6.2.2.2 1164 
of SP 800-56Ar3. The output is the key (i.e., the derived secret keying material) along 1165 
with the ciphertext (i.e., the ephemeral public key Qe,U ).1166 

• ECDH-KEM.Decaps. To decapsulate, perform Party V’s actions from Section 6.2.2.2 1167 
of SP 800-56Ar3. The output key is the derived secret keying material.1168 

Use of this KEM would require that all assumptions for the scheme specified in SP 800-1169 
56Ar3 are met and that all necessary assurances have been obtained. In similar ways, 1170 
KEMs could be constructed from the C(1e, 1s, FFC DH), C(2e, 0s, ECC CDH), and C(2e, 0s, 1171 
FFC DH) schemes.1172 
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6.1.2. A KEM from RSA Secret-Value Encapsulation1173 

As discussed in Section 3.2, any public-key encryption (PKE) scheme can be used to con-1174 
struct a KEM. A concrete example of this is RSA Secret-Value Encapsulation (RSASVE). The 1175 
high-level idea is described as follows.1176 

1. Alice sends an RSA public-key to Bob. (Optionally, Alice can send some other public 1177 
information to Bob such as a nonce for key derivation.)1178 

2. Bob generates a secret value and encapsulates it with the RSA public-key to produce 1179 
the ciphertext. A key is derived from the secret value. The output of encapsulation 1180 
is the ciphertext and derived key.1181 

3. Alice decapsulates the ciphertext using her RSA private key to obtain the secret value 1182 
that is used to derive the key.1183 

For example, a KEM can be constructed from RSASVE from SP 800-56Br2 [2] as follows:1184 

1. RSASVE-KEM.ParamSets. The parameter set is the binary length of the modulus as 1185 
specified as in Table 2, Section 6.3 of SP 800-56Br2, along with the exponent e.1186 

2. RSASVE-KEM.KeyGen. The key generation algorithm is specified in Section 6.3 of SP 1187 
800-56Br2 (see also Appendix C.2 of FIPS 186-5).1188 

3. RSASVE-KEM.Encaps. To encapsulate, perform RSASVE.GENERATE as specified in 1189 
Section 7.2.1.2 of SP 800-56Br2. The output is the secret value (from which to derive 1190 
a key) and ciphertext. With a nonce for key derivation provided by Party V, this step 1191 
is the same as the operation of Party U in the KAS1-basic scheme specified in Section 1192 
8.2.2 of SP 800-56Br2.1193 

4. RSASVE-KEM.Decaps. To decapsulate, perform RSASVE.RECOVER as specified in Sec-1194 
tion 7.2.1.3 of SP 800-56Br2. The output key is derived from the secret value output 1195 
by RSASVE.RECOVER. With a nonce for key derivation (previously provided to Party 1196 
U), this step is the same as the operation of Party V in the KAS1-basic scheme spec-1197 
ified in Section 8.2.2 of SP 800-56Br2.1198 

Use of this KEM would require that all assumptions for the scheme specified in SP 800-1199 
56Ar2 are met and that all necessary assurances have been obtained. In similar ways, 1200 
KEMs could be constructed from RSA-OAEP-basic as specified in Section 9.2.3.1201 

6.1.3. ML-KEM1202 

ML-KEM is a high-performance, general-purpose, lattice-based key-encapsulation mecha-1203 
nism. It is a NIST-approved KEM and was standardized in FIPS 203 [3]. ML-KEM is based on 1204 
CRYSTALS-Kyber [26], which was a candidate submitted to the NIST PQC standardization 1205 
process. It is believed to satisfy IND-CCA security (Definition 4), even against adversaries 1206 
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in possession of a cryptanalytically-relevant quantum computer [17, 27, 28]. The asymp-1207 
totic, theoretical security of ML-KEM is based on the presumed hardness of the Module 1208 
Learning with Errors (MLWE) problem [29, 30].1209 

FIPS 203 describes ML-KEM directly as a KEM in a manner that closely matches the notation 1210 
of this document. Specifically, the components of ML-KEM are described in FIPS 203 as 1211 
follows [3]:1212 

• ML-KEM.ParamSets. There are three parameter sets described in Section 8 of FIPS 1213 
203: ML-KEM-512, ML-KEM-768, and ML-KEM-1024.1214 

• ML-KEM.KeyGen. The key generation algorithm of ML-KEM is specified as Algorithm 1215 
19 in Section 7.1 of FIPS 203.1216 

• ML-KEM.Encaps. The encapsulation algorithm of ML-KEM is specified as Algorithm 1217 
20 in Section 7.2 of FIPS 203.1218 

• ML-KEM.Decaps. The decapsulation algorithm of ML-KEM is specified as Algorithm 1219 
21 in Section 7.3 of FIPS 203.1220 

Note that this document treats parameter sets as an explicit input for the KEM algorithms 1221 
KeyGen, Encaps, and Decaps. By contrast, the algorithms of ML-KEM as described in FIPS 1222 
203 expect the chosen parameter set to be stored in a set of global variables that are 1223 
accessible to each of the algorithms of ML-KEM. This is only a difference in presentation 1224 
and does not imply any particular implementation requirement.1225 

6.2. Examples of Applications of KEMs1226 

This section provides a high-level overview of a few example applications of KEMs.1227 

6.2.1. Hybrid Public-Key Encryption (HPKE)1228 

A KEM can be combined with a symmetric-key encryption scheme to yield very effi-1229 
cient public-key encryption. This is sometimes referred to as a hybrid PKE (HPKE), which 1230 
should not be confused with “hybrid PQC.” The former refers to combining a KEM with 1231 
symmetric-key encryption, and the latter refers to combining a quantum-vulnerable key-1232 
establishment scheme with a quantum-resistant KEM.1233 

The prescription for constructing an HPKE scheme is as follows. Let Π be a KEM, and let 1234 
Ξ= (Encrypt,Decrypt) be a symmetric-key encryption scheme. One then constructs a PKE 1235 
called HPKE as follows:1236 

• HPKE.ParamSets= Π.ParamSets1237 

• HPKE.KeyGen= Π.KeyGen1238 

• HPKE.Encrypt: Using input p, ek, and message m:1239 
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1. Compute (K,cΠ)←Π.Encaps(p,ekA);1240 

2. Compute cΞ← Ξ.Encrypt(K,m); and1241 

3. Output (cΠ,cΞ).1242 

• HPKE.Decrypt: Using input p, dk, and (cΠ,cΞ),1243 

1. Compute K′←Π.Decaps(p,dk,cΠ); and1244 

2. Output m′← Ξ.Decrypt(K′,cΞ).1245 

Here, the keys of Ξ are assumed to be the same length as the shared secret keys pro-1246 
duced by Π. If not, appropriate key-derivation steps (see Section 5.3) can be added to 1247 
HPKE.Encrypt and HPKE.Decrypt to transform the shared secret key of Π into a key that is 1248 
appropriate for use with Ξ.1249 

Figure 6 shows the procedure for sending an encrypted message m from Bob to Alice using 1250 
HPKE.1251 

Alice Bob

(ek,dk)←Π.KeyGen(p)
ek, p−−−−−−−−→

(K,cΠ)←Π.Encaps(p,ek)

cΞ← Ξ.Encrypt(K,m)
cΠ,cΞ←−−−−−−−−

K′←Π.Decaps(p,dk,cΠ)

m← Ξ.Decrypt(K′,cΞ)

Fig. 6. Sending a message using HPKE

This same procedure can also be used to perform key transport by choosing m uniformly 1252 
at random.1253 

6.2.2. Static-Ephemeral Key Establishment1254 

Most applications of key establishment require at least one party to authenticate their 1255 
identity, such as KEM key establishment with a static encapsulation key that is authen-1256 
ticated by a chain of certificates. A description of such a procedure is given below and 1257 
depicted in Figure 7.1258 

1. At the outset, Alice has a long-term key pair that she generated earlier via (ek,dk)←1259 
Π.KeyGen(p). Here, Π is some KEM, and p is some parameter set of Π. Alice also 1260 
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Alice (server) Bob (client)
1. static: (ek,dk)

cert[ek, p, Alice]
cert[ek, p,Alice]−−−−−−−−−−→

2. if cert[ek, p, Alice]invalid, abort.
(KB,c)←Π.Encaps(p,ek)

c←−−−−−−−−−−−
3. KA←Π.Decaps(p,dk,c)

4. t← MAC(KA,c)
t−−−−−−−−−−→

if MAC.Ver(KB,c, t)rejects, abort.
5. result: KA result: KB

Fig. 7. Static-ephemeral key establishment using a KEM

has a certificate cert[ek, p,Alice] that contains ek and p and associates them both to 1261 
Alice’s identity.1262 

2. When Bob wants to connect to Alice, he acquires cert[ek, p,Alice] (e.g., from Alice), 1263 
verifies that the certificate is valid, and extracts ek and p from the certificate. He 1264 
then performs encapsulation with ek, saves the resulting shared secret key KB, and 1265 
sends the ciphertext c to Alice.1266 

3. Alice decapsulates c and gets a shared secret key KA.1267 

4. Alice and Bob perform key confirmation to ensure that key establishment was suc-1268 
cessful. Alice uses a message authentication code MAC to generate a tag t ←1269 
MAC(KA,c) for the ciphertext c and sends t to Bob. Bob then runs MAC verification 1270 
and aborts unless the tag t is accepted.1271 

5. Alice and Bob can now use their shared secret keys to communicate efficiently and 1272 
securely using symmetric-key cryptography.1273 

It is assumed that if the certificate chain was valid, then only Alice was capable of perform-1274 
ing decapsulation of ciphertexts encapsulated using ek.1275 

6.2.3. Ephemeral Authenticated Key Establishment1276 

This section describes an alternative approach to unilaterally authenticated key establish-1277 
ment using a KEM. Compared to the example in Section 6.2.2, Alice and Bob will now have 1278 
the opposite roles in the protocol. Specifically, Bob is now the authenticated party (e.g., 1279 
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a web server), while Alice is the unauthenticated party (e.g., a browser client). KEM key 1280 
generation will now be performed by the client (i.e., Alice), and Alice will discard the KEM 1281 
key pair once the connection is established. As the server (i.e., Bob) no longer uses a static 1282 
KEM encapsulation key, he will need to establish his identity through other means. In this 1283 
example, that will be done via a digital signature verification key provided in a certificate 1284 
and verified as part of a certificate chain.1285 

The protocol proceeds as follows (see Figure 8.) Let Σ be a digital signature scheme with 1286 
algorithms Σ.KeyGen, Σ.Sign, and Σ.Ver. Recall that KEM key pairs are denoted by ek1287 
(encaps key, public) and dk (decaps key, private). For the digital signature, key pairs are 1288 
denoted by vk (verification key, public) and sk (signing key, private).1289 

Alice (client) Bob (server)
1. static: (vkB,skB)

cert[vkB,Bob]

2. (ekA,dkA)←Π.KeyGen(p)
ekA, p−−−−−−−−−−−→

3. (KB,cB)←Π.Encaps(p,ekA)

σ ← Σ.Sign(skB, transcript)
(K′B,K

′′
B)← KDF(KB)

cert[vkB,Bob],σ ,cB←−−−−−−−−−−−
4. if cert[vkB, Bob]invalid, abort.
if Σ.Ver(vkB,σ , transcript) =⊥,  abort.
KA←Π.Decaps(p,dkA,cB)

(K′A,K
′′
A)← KDF(KA)

5. result: K′A,K
′′
A result: K′B,K

′′
B

Fig. 8. Using a KEM for key establishment with unilateral authentication

1. The protocol begins with Alice (who will not need to authenticate herself) and Bob 1290 
(who has previously generated a static digital signature key pair (vkB,skB)).1291 

2. Alice generates a KEM key pair (ekA,dkA) and sends the encapsulation key ekA and 1292 
the relevant parameter set p to Bob, keeping the decapsulation key dkA private.1293 

3. Bob performs encapsulation using ekA, which results in a KEM ciphertext cB and a 1294 
shared secret key KB. Bob then uses his private signing key skB to sign the transcript 1295 
of all communications with Alice, including what he will send in this transmission. 1296 
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This transcript includes ekA, p, vkB, cB, and a certificate chain cert[vkB,Bob] that 1297 
establishes that vkB is associated with Bob’s identity. He then sends the ciphertext, 1298 
certificate chain, and signature to Alice. Finally, he applies a key-derivation function 1299 
KDF to KB in order to produce two symmetric keys K′B and K′′B , destroys KB, and 1300 
keeps K′B and K′′B private.1301 

4. Next, Alice performs two checks. First, she checks the validity of Bob’s claimed cer-1302 
tificate chain with the appropriate certification authority. Second, she verifies Bob’s 1303 
signature on the transcript. If either check fails, Alice aborts. Otherwise, she decap-1304 
sulates cB and keeps the resulting shared secret key KA private. She also derives two 1305 
keys K′A and K′′A via KDF applied to KA.1306 

5. Alice and Bob can now use the keys K′A and K′′A for symmetric-key cryptography. For 1307 
example, they could use K′A for encryption and K′′A for authentication.1308 
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Appendix A. Cryptographic Components1425

1426

 

Appendix A.1. Message Authentication Codes (MACs) 

A message authentication code (MAC) algorithm defines a family of cryptographic func-1427 
tions that is parameterized by a symmetric key. It is computationally infeasible to de-1428 
termine the MAC of a newly formed MacData output value without knowledge of the 1429 
MacKey value, even if one has seen the MACs corresponding to other MacData values 1430 
that were computed using that same MacKey value.1431 

The input to a MAC algorithm includes a symmetric key MacKey and a binary data string 1432 
MacData that serves as the “message.” That is, a MAC computation is represented as 1433 
MAC(MacKey, MacData). In this recommendation, a MAC algorithm is used if key confir-1434 
mation is performed during key establishment (see Section 5.4).1435 

When key confirmation requires the use of a MAC, it shall be an approved MAC algorithm 1436 
(i.e., HMAC, AES-CMAC, or KMAC). HMAC is specified in SP 800-224 [31] and requires the 1437 
use of an approved hash function. AES-CMAC is specified in SP 800-38B [32] for the AES 1438 
block cipher algorithm specified in FIPS 197. KMAC is specified in SP 800-185 [33].1439 

When a MAC tag (MacTag) is used for key confirmation, an entity shall compute the MAC 1440 
tag on received or derived data using a MAC algorithm with a MacKey that is determined 1441 
from a shared secret key. The MAC tag is sent to the other entity participating in the key-1442 
establishment scheme in order to provide assurance that the shared secret key or derived 1443 
keying material was correctly computed. MAC-tag computation and verification are de-1444 
fined in Sections A.1.3.1 and A.1.3.2.1445 

MAC Tag Computation for Key Confirmation. Key confirmation can be performed as one 1446 
or more additional steps in a KEM scheme. The computation of a MacTag is represented 1447 
as follows:1448 

MacTag = TMacTagBits[MAC(MacKey, MacData)].1449 

To compute a MacTag:1450 

1. The agreed-upon MAC algorithm (see Section A.1.3) is used with MacKey to com-1451 
pute the MAC on MacData, where MacKey is a symmetric key, and MacData rep-1452 
resents the input “message” data. The minimum length of MacKey is specified in 1453 
Table 1.1454 

MacKey is obtained from the Derived_Keying_Material when a KEM scheme em-1455 
ploys key confirmation, as specified in Section 5.4.1456 

The output MacOut put of the MAC algorithm is a bit string whose length in bits is 1457 
MacOut putBits.1458 
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Table 1. Approved MAC algorithms for key confirmation

Mac Algorithm MacOutputBits
Permissible 
Lengths (µ bits)

KC_Key 
Supported Security 
Strengths for Key 
Confirmation (s bits)

HMAC_SHA-256 256

s≤ µ ≤ 512
128≤ s≤ 256

HMAC_SHA-512/256 256

HMAC_SHA-384 384

HMAC_SHA-512 512

HMAC_SHA3-256 256

HMAC_SHA3-384 384

HMAC_SHA3-512 512

KMAC128 ≤ 22040−1
s = 128

KMAC256 128≤ s≤ 256
AES-128-CMAC 128 µ = 128 s = 128
AES-192-CMAC 128 µ = 192 128≤ s≤ 192
AES-256-CMAC 128 µ = 256 128≤ s≤ 256

2. Those bits are input to the truncation function TMacTagBits, which returns the 1459 
leftmost (i.e., initial) bits of MacOut put to be used as the value of MacTag. 1460 
MacTagBits shall be less than or equal to MacOut putBits. When MacTagBits1461 
equals MacOut putBits, TMacTagBits acts as the identity function. The minimum value 1462 
for MacTagBits is 64, as specified in Section 5.4.1.1463 

MacTag Verification for Key Confirmation. To verify a received MacTag (i.e., received dur-1464 
ing key confirmation), a new MacTag MacTag′ is computed using the values of MacKey, 1465 
MacTagBits, and MacData possessed by the recipient (as specified in Section 5.4.1). 1466 
MacTag′ is compared with the received MacTag. If their values are equal, then it may 1467 
be inferred that the same MacKey, MacTagBits, and MacData values were used in the 1468 
two MacTag computations.1469 

Appendix A.2. Random Bit Generators1470 

When this recommendation requires the use of a randomly generated value (e.g., for ob-1471 
taining the randomness use in KeyGen and Encaps), the values shall be generated using an 1472 
approved random bit generator that supports the targeted security strength (see the SP 1473 
800-90 series of publications).1474 

Appendix A.3. Nonces1475 

A nonce is a time-varying value with a negligible chance of repeating (where the meaning 1476 
of “negligible” may be application-specific). A decapsulator may be required to provide a 1477 
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public nonce that is used for key-confirmation purposes. This circumstance arises when 1478 
the decapsulator’s public key is static.1479 

A nonce may be composed of one or more of the following components, though other 1480 
components may also be appropriate:1481 

1. A random bit string that is generated anew for each nonce using an approved ran-1482 
dom bit generator. A nonce containing a component of this type is called a random 1483 
nonce.1484 

2. A timestamp of sufficient resolution so that it is different each time it is used.1485 

3. A monotonically increasing sequence number.1486 

4 A combination of a timestamp and a monotonically increasing sequence num-1487 
ber such that the sequence number is reset when and only when the timestamp 1488 
changes. For example, a timestamp may show the date but not the time of day, so 1489 
a sequence number is appended that will not repeat during a particular day.1490 

Whenever a nonce is required for key-confirmation purposes as specified in this recom-1491 
mendation, it should be a random nonce containing a random bit string output from an 1492 
approved random bit generator, where both the security strength supported by the instan-1493 
tiation of the random bit generator and the bit length of the random bit string are greater 1494 
than or equal to the targeted security strength of the key-establishment scheme in which 1495 
the nonce is used during key confirmation. When feasible, the bit length of the random 1496 
bit string should be at least twice the targeted security strength. For details concerning 1497 
the security strength supported by an instantiation of a random bit generator, see the SP 1498 
800-90 series of publications [6? , 7].1499 

As part of the proper implementation of this recommendation, system users and/or agents 1500 
trusted to act on their behalf should determine that the components selected for inclusion 1501 
in any required nonces meet their security requirements.1502 
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