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Abstract

The Bugs Framework (BF) is a classification of security bugs and related faults that fea-
tures a formal language for the unambiguous specification of software and hardware se-
curity weaknesses and vulnerabilities. BF bugs models, multidimensional weakness and
failure taxonomies, and vulnerability models define the lexis, syntax, and semantics of the
BF formal language and form the basis for the definition of secure coding principles. The
BF formalism supports a deeper understanding of vulnerabilities as chains of weaknesses
that adhere to strict causation, propagation, and composition rules. It enables the gen-
eration of comprehensively labeled weakness and vulnerability datasets and multidimen-
sional vulnerability classifications. It also enables the development of new algorithms for
code analysis and the use of Al models and formal methods to identify bugs and detect,
analyze, prioritize, and resolve or mitigate vulnerabilities.
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vulnerability dataset; vulnerability classification; software bug; firmware bug; hardware
defect; hardware logic bug; bug triaging; software error; software fault; software weak-
ness; hardware weakness; software vulnerability; hardware vulnerability; exploit; security
failure; secure coding; vulnerability resolution; vulnerability mitigation; labeled dataset;
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Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,
test methods, reference data, proof of concept implementations, and technical analyses
to advance the development and productive use of information technology. ITL's respon-
sibilities include the development of management, administrative, technical, and physical
standards and guidelines for the cost-effective security and privacy of other than national
security-related information in federal information systems. The Special Publication 800-
series reports on ITL’s research, guidelines, and outreach efforts in information system se-
curity, and its collaborative activities with industry, government, and academic organiza-
tions.
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1. Introduction

The Bugs Framework (BF) [1] is a classification of security bugs and related faults with mul-
tidimensional weakness and failure taxonomies that features a formal language for the
unambiguous specification of security weaknesses and vulnerabilities. The goal of BF is to
help better understand and detect software, firmware, or hardware security weaknesses
and vulnerabilities, as well as to resolve or mitigate them. Both cybersecurity experts and
automated systems need precise descriptions of the publicly disclosed vulnerabilities and
the weakness types related to them. Automated analysis via formal methods requires for-
mal definitions of the weakness and vulnerability concepts. The automated analysis via
artificial intelligence (Al) models requires comprehensively labeled weakness and vulner-
ability datasets.

The BF organizes bugs by the operations of orthogonal software, firmware, or hardware
execution phases; faults by their input operands; and errors by their output results. An
error either propagates to a fault or is final and enables a security failure. Bugs and faults
are causes of security weaknesses, and errors and final errors are their consequences. A
bug is a code or specification defect. A fault is a name, data, type, address, or size error.

A BF weakness class is a taxonomic category of a weakness type that relates to a distinct
execution phase defined by a set of operations and their input operands and output results.
It defines finite sets of (cause, operation)— consequence causal relations, operation and
operand attributes, and code sites. Causes are bugs or faults, and consequences are errors
or final errors.

A weakness is an instance of a BF class with one cause, one operation, and one conse-
quence that is expressed as a (bug, operation)—error, (fault, operation)—-error, (bug,
operation)—final error, or (fault, operation)—final error triple and specific operation and
operand attributes and sites.

A vulnerability is a chain of weaknesses linked by causality via a consequence~cause prop-
agation that eventually enables a security failure. It starts with a bug or hardware-induced
fault, propagates through errors that become faults, and ends with a final error that intro-
duces an exploit vector toward a failure. The first weakness relates to the root cause of
the vulnerability, and the last relates to its sink.

BF bugs models, weakness and failure taxonomies, and vulnerability models define the
BF formal language lexis, syntax, and causal semantics. The BF bugs models define the
sets of operations for related execution phases and the proper flow between these oper-
ations. The BF weakness taxonomies comprise structured, orthogonal, multidimensional,
and context-free BF weakness classes. The BF failure taxonomy comprises correspond-
ing BF failure classes. The BF vulnerability models define state and specification views of a
vulnerability, possibly converged and chained with other vulnerabilities. The BF formal lan-
guage is generated by the BF left-to-right leftmost derivation one-symbol lookahead (LL(1))
attribute context-free grammar (ACFG) based on the BF taxonomies and models.
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Analogous to the periodic table, the BF weakness taxonomies allow for the identification
or prediction of as yet unencountered security weakness types, which would allow for the
prediction of new kinds of vulnerabilities.

The BF taxonomies and models also form the basis for defining secure coding principles,
such as input/output check safety (e.g., injection safety), memory safety (e.g., buffer over-
flow safety or use-after-free safety), and data type safety (e.g., floating point safety or
subtype confusion safety). While the BF formal language is descriptive of weaknesses and
vulnerabilities, the BF secure coding principles are prescriptive against them — they pre-
vent bugs and faults that compromise code safety.

The BF formalism supports a deeper understanding of vulnerabilities as chains of weak-
nesses that adhere to strict causation, propagation, and composition rules and allows for
backward bug identification from a failure. It enables a new range of research and de-
velopment efforts for the creation of comprehensively labeled weakness and vulnerability
datasets and the generation of formal vulnerability specifications and multidimensional
vulnerability classifications.

The BF also supports the development of new static or dynamic analysis and simulation or
emulation algorithms [2], as well as Al models and capabilities to identify bugs and detect
vulnerabilities. Given the formal specification of code and the BF definitions of weakness
and vulnerability, formal methods could also be applied to detect vulnerabilities. The next
steps would be to prioritize and resolve or mitigate each of these vulnerabilities (i.e., fix
the bug or a fault) to secure critical infrastructure and supply chains.

The datasets of weakness and vulnerability BF specifications formally augment the Com-
mon Weakness Enumeration (CWE) [3], the Common Vulnerabilities and Exposures (CVE)
[4], and the National Vulnerability Database (NVD) [5]. However, the BF has the expressive
power to clearly describe any other security weaknesses and vulnerabilities.

This NIST Special Publication (SP) provides a detailed overview of the Bugs Framework (BF)
systematic approach and methodologies for classifying bugs and faults by orthogonal exe-
cution phases, formally specifying weaknesses and vulnerabilities, defining secure coding
principles, generating comprehensively labeled weakness and vulnerability datasets and
vulnerability classifications, and developing BF-based algorithms and systems.

Further details will be available in the following forthcoming NIST SPs:

SP 800-231A, Bugs Framework: Security Concepts

SP 800-231B, Bugs Framework: Bugs Models

SPs 800-231Cx, Bugs Framework: _yyy Taxonomy, where _yyy is a BF class type
SP 800-231D, Bugs Framework: Vulnerability Models

SP 800-231E, Bugs Framework: Formal Language

SP 800-231F, Bugs Framework: Tools and APIs

SP 800-231G, Bugs Framework: Secure Coding Principles

SP 800-231l, Bugs Framework: Datasets and Applications
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2. Current State of the Art

The current state of the art in describing security weaknesses and vulnerabilities are the
CWE [3] and CVE [4]. The current state of the art in labeling security weaknesses and
vulnerabilities is the NVD [5], which assigns to a CVE the CWE weakness type that most
closely matches the vulnerability. The Known Exploited Vulnerabilities (KEV) catalog [6] is
also closely related to the CVE.

The CWE and CVE are widely used. The CWE is a community-developed list of software
and hardware weakness types. It was developed to address “the issue of categorizing soft-
ware weaknesses” and establish “acceptable definitions and descriptions of these common
weaknesses” and recently added "support for hardware weaknesses” [7]. Each CWE entry
is assigned a CWE-x ID (identifier), where x is one to four digits. It provides a weakness-
type description, an extended description, modes of introduction, possible mitigations,
detection methods, and demonstrative examples.

The CVE is a catalog of publicly disclosed security vulnerabilities. It was initiated to address
the problem of having “no common naming convention and no common enumeration of
the vulnerabilities in disparate databases” [8, 9]. Each CVE entry is assigned a CVE-yyyy-
x 1D, where yyyy is the year of disclosure and x is a unique sequential number. Each CVE
entry provides a vulnerability description, references to reports, and possibly links to proof
of concept and code.

The CWE and CVE adopted a one-dimensional list (i.e., enumeration) approach to orga-
nizing the entries by unique IDs with natural language descriptions. The CWE added
tree-based pillar, class, base, variant, and compound abstractions. Both repositories are
regu-larly refined, and new weakness types, vulnerabilities, and related content are
added [7].

The NVD maps CVE entries to CWE entries and assigns Common Vulnerability Scoring
Sys-tem (CVSS) [10, 11] severity scores. The KEV catalog organizes publicly exploited CVEs
pri-oritized for remediation, although they are not necessarily the most severe.

However, the CWE hierarchical structure implies that the weakness types are
interdepen-dent and may be too broad, not orthogonal, and ambiguous. Many of the
CWE and CVE descriptions are not sufficient, accurate, or precise enough [12-15]; have
unclear causal-ity [16-18]; and include programming language and domain-specific
notions. The CWE has gaps and overlaps in coverage [16-18], and while some gaps are
being identified, new overlaps may be created [19]. Many CVEs do not describe the
entire chain of weaknesses underlying the vulnerability. Some list the final error at the
sink as the root cause instead of the bug or hardware-induced fault that starts the
chain. Focusing on the final error helps identify mitigation techniques, but the actual
root cause must be known and fixed to resolve the vulnerability. In the case of CVEs that
overlap by root cause [20], fixing that one root cause would resolve all of them. These
CWE and CVE challenges propagate to the NVD and KEV and may lead to imprecise or
wrong CWE-to-CVE assignments by NVD.
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Additionally, the CWE and CVE do not exhibit strict methodologies for tracking the weak-
nesses underlying a vulnerability, systematic comprehensive vulnerability labeling, or back-
ward root cause identification from a security failure. There are no tools to aid the creation
and visualization of weakness and vulnerability descriptions (see Table 1).

Table 1. CWE, CVE, and NVD challenges

Repository Imprecise Unclear Gaps Overlaps Wrong CWE No No Description
Challenges Descriptions Causality Assignments  Tracking Tools
CWE v v v v v v
CVE v v v v v
NVD v v v v v v

The imprecise descriptions and lack of explainability make CWEs and CVEs difficult to use
in modern cybersecurity research [21]. For example, the description of CWE-502 mixes the
notions of validation (syntax check) and verification (semantics check), for which BF defines
two distinct weakness classes [16]. The descriptions of some CWEs reveal possible causing
weaknesses and even chains of weaknesses, which could be helpful but may also imply
that these are the only possible causing weaknesses. They also introduce terms that are
unrelated to the main weakness and may mislead experts and automated analysis about
the single weakness that the CWE is meant to describe. Augmenting the CWE and CVE nat-
ural language descriptions with unambiguous formal specifications that adhere to within
and between weaknesses causation rules will make them more suitable for algorithms and
as comprehensively labeled datasets for training Al models [22].

Unclear causality in CVEs leads to incorrect CWE assignments. For example, in the case
of CVE-2018-5907, the lack of input validation leads to integer overflow and then buffer
overflow [16]. However, the NVD labels it with CWE-190: Integer Overflow or Wraparound,
even though the root cause is CWE-20: Improper Input Validation. The entire chain is CWE-
20—CWE-190—CWE-119, and the last one is “Improper Restriction of Operations within
the Bounds of a Memory Buffer.” CVE-2014-0160 Heartbleed [23] lists the final error at
the sink — buffer over-read — as the root cause, while it is missing input verification that
leads to pointer reposition over the upper bound and then to buffer over-read. For lack of
a better match, NVD assigns the broader CWE-125, which covers both under-lower-bound
and over-upper-bound reads from a buffer.

CVEs that have the same root cause are also difficult to identify. For example, the CVE-
2016-7523 and CVE-2016-7524, CVE-2016-7518 and CVE-2017-6500, and CVE-2019-13295
and CVE-2019-13297 couples each have the same bug with the last couple patched in two
versions of the product via two different commits [20]. As the chains are incomplete for
many CVEs, there is no way to go backward from the failure to reveal the root cause.

The BF addresses the challenges with the CWE and CVE descriptions via its orthogonal,
multidimensional, and context-free classification structure. The BF weakness and vulner-
ability specifications provide formal augmentation to the CWE, CVE, and NVD entries.


https://cwe.mitre.org/data/definitions/502.html
https://nvd.nist.gov/vuln/detail/CVE-2018-5907
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/119.html
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://cwe.mitre.org/data/definitions/125.html
https://nvd.nist.gov/vuln/detail/CVE-2016-7523
https://nvd.nist.gov/vuln/detail/CVE-2016-7523
https://nvd.nist.gov/vuln/detail/CVE-2016-7524
https://nvd.nist.gov/vuln/detail/CVE-2016-7518
https://nvd.nist.gov/vuln/detail/CVE-2017-6500
https://nvd.nist.gov/vuln/detail/CVE-2019-13295
https://nvd.nist.gov/vuln/detail/CVE-2019-13297
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3. Bugs Framework Formalism

The BF is a structured multidimensional classification of security bugs and related faults
as causes for the operations of distinct execution phases over their operands to result in
errors and final errors as consequences. Its approach is different from the exhaustive ID-
based list approach exhibited by enumerations. The BF weakness classes are organized by
orthogonal sets of operations, so a BF class is identifiable by any of its operations. They
allow for the expression of a weakness as a (cause, operation)—consequence triple with
operation and operand attributes and a vulnerability as a chain of underlying weaknesses.

A BF weakness class is a taxonomic representation of a weakness type defined by finite sets
of operations, causes, consequences, attributes, and sites. It is associated with the opera-
tions of a distinct phase of software, firmware, or hardware execution, where weaknesses
of this type could happen, as well as their input operands and output results.

A BF operation is the minimal input-process-output code that can produce or propagate
improper data. A cause is a bug in the operation or a fault of an input operand. A con-
sequence is an erroneous output result from the operation over the operands. The error
propagates to a fault or is a final error that enables a failure. Consequently, a BF operation
is the minimal input-process-output code that can produce an error from a bug or fault,
where the error propagates to another fault or is final (i.e., it is a final error).

The attributes describe the operations and operands with details on what, how, and where
it went wrong. They help understand the severity of the bug or fault causing the weakness.
For example, pointer overbounds faults on the stack are more severe than those on the
heap because buffer overflows on the stack, although easier to exploit, are more severe
than those on the heap. The sites point to syntactic places in code that should be checked
for bugs or faults that cause such weaknesses.

The BF specification of a weakness is based on one taxonomic BF class; it is an instance of
that BF class with one cause, one operation, one consequence, and their attributes. The
operation binds the causation within a weakness as a (cause, operation)—consequence
relation. For example, the deallocation via a dangling pointer leading to a final error
known as double free is a weakness that is expressed formally via BF as (Dangling Pointer,
Deallocate)— Double Deallocate. The BF specification of a vulnerability is a chain of such
instances and their consequence~.cause between weakness propagations.

The BF is a formal system that comprises:

e Strict definitions of bug, fault, error, final error, weakness, vulnerability, exploit vec-
tor, and failure in the context of cybersecurity to elucidate causation and propagation
rules

e Bugs models that define distinct execution phases with orthogonal sets of operations
in which specific bugs and faults could occur and the proper flow of operations
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e Structured, multidimensional, orthogonal, and context-free weakness taxonomies
as weakness class types and a failure taxonomy as a failure class type

¢ A vulnerability state model as a chain of improper-state (operation, operand;, ...,
operand,,) tuples with a bug in the operation or a fault of an operand that enables a
failure

e A vulnerability specification model as a chain of (cause, operation)— consequence
instances of BF weakness classes that ends with an instance of a BF failure class

e Aformal language for the unambiguous causal specification of security weaknesses
and vulnerabilities

e Secure coding principles, such as input/output check safety, memory safety, and data
type safety

e Tools that facilitate the generation of CWE2BF and CVE2BF mappings and formal
weakness and vulnerability specifications and their graphical representations

e Comprehensively labeled weakness and vulnerability datasets

e Multidimensional vulnerability classifications by common properties and similarities
based on the BF taxonomies and secure coding principles

The BF taxonomies are structured, orthogonal, multidimensional, and context-free. Struc-
tured means that a weakness is expressed as a (cause, operation)— consequence triple
with a precise causal relation. The transition from a weakness is expressed as an error~fault
or final error~exploit vector propagation. These ensure clear causality within a weakness,
between weaknesses, and for an exploit toward a failure.

Orthogonal means that the intersection of the sets of operations of any two BF classes is
the empty set. It ensures that the BF weakness types do not overlap in coverage.

Multidimensional means that weaknesses are organized not only by their operations but
also by their causes, consequences, and operation and operand attributes. It ensures the
BF’s expressive power.

Context-free means an operation cannot have different meanings depending on the lan-
guage or domain. It ensures that the BF is applicable for code in any programming language
and for any platform or application technology.

The BF formal language (see Sec. 8) is generated by the BF LL(1) ACFG, whose lexis, syntax,
and semantics reflect the BF weakness taxonomies and bugs and vulnerability models that
utilize the strict BF concept definitions for security bug, final error, weakness, vulnerability,
exploit vector, and failure as well as fault and error. The LL1 CFG is pivotal, as it ensures
precise, unambiguous specifications.

The BF bugs models and weakness taxonomies are developed iteratively according to the
BF methodology (see Sec. 6.3) and alongside the BF, BFCWE, and BFCVE tools (see Sec. 10).

6
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The BF formalism guarantees precise descriptions with clear causality of weaknesses (in-
cluding CWE) and vulnerabilities (including CVE) and complete, orthogonal, and context-
free weakness-type coverage. It forms the basis for the formal definition of secure coding
principles, such as memory safety. It also enables the creation of comprehensively labeled
weakness and vulnerability datasets, vulnerability classifications, and BF-based systems for
bug identification and vulnerability detection, analysis, and resolution or mitigation.

3.1. BF Operation

A BF operation is the minimal input-process-output code that can produce or propagate
improper data (see Fig. 1). Aninput operand or output result data is of a specific data type.
A data type defines a set or range of data values and the operations allowed on them. It
can be primitive (e.g., char, int, double, string, boolean) or structured (e.g.,
array, record, class). A data value is stored in a finite region of memory called
an object. The boundaries of that memory define the size of the object. The address of
the memory must be held by at least one pointer or determined as an offset on the stack.
Otherwise, the object would be unreachable. Code (i.e., functions) and data type metadata
are also stored in memory and can be referred to by pointers. A function is an organized,
reusable block of code that takes inputs and returns outputs of specific data types.

BF Input Operands—Operation —Improper Output Model

Input Process Output
BF Operands BF Operation Improper Name, Data,
A Type, Address, Size

Memory
Fault objects, functions, type metadata

Fig. 1. BF operation

Consequently, the possible entities stored in memory are objects, functions, and types.
The possible BF input operands and output results are: name, data (i.e., the data value),
type (i.e., the data type), address, and size. A BF operation then is the minimal input-
process-output code that can produce or propagate improper name, data, type, address,
or size (see the purple terms in Fig. 1).

BF operations could be as simple as dereferencing or repositioning a pointer or as com-
plex as encryption or authentication involving sophisticated algorithms. Other examples
include data verification, type coercion, and reading or deallocating an object. Examples
of improper output results and input operands are wrong value and wrap-around as data,
insufficient size and cast pointer as type, dangling pointer and over-bounds pointer as ad-
dress, and wrong resolved object and wrong generic function bound as name.
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The output result of a BF operation is always erroneous; for that, either the operation or
an input operand is improper. An operation is improper if it has a bug, and an operand is
improper if it is ill-formed (i.e., it is at fault). The erroneous output propagates to become
the improper input of another BF operation or eventually is final. Consequently, a BF oper-
ation is the minimal input-process-output code that — because of a bug or fault — results
in an error that propagates to another fault or is final (i.e., it is a final error). The fault is of
a name, data, type, address, or size (see Fig. 1).

3.2. BF Bug, Fault, and Weakness

The BF bugs and faults landscape covers the operations in software, firmware, and hard-
ware execution phases at appropriate levels of abstraction. The software operations relate
to code in applications, libraries, utilities, programming languages, services, and OSs. The
firmware operations relate to code in device drivers, basic input/output systems (BIOS),
bootloaders, and microcontrollers, as well as to microcode in central processing units (CPU)
and other hardware components that require low-level control and flexibility. The hard-
ware operations relate to electronic circuit logic, which adheres to the same input-process-
output model as software and firmware operations.

A BF security bug is a defect in the code or specification (i.e., metadata or algorithm) of
software, firmware, or hardware circuit logic. A bug could be introduced in an operation
(i.e., theimproper operation) by a programmer, be the result of a design flaw, or be induced
by a hardware defect. Hardware defects can result from overheating, radiation effects,
electromagnetic interference (EMI), electrical noise, voltage variations, electromagnetic
fields, photon injection, wear and tear, or other physical factors.

Examples of code bugs include missing code (i.e., part of an operation or an entire op-
eration is missing) or erroneous code (e.g., use of a wrong operator in an operation). A
memory bit flip due to a hardware defect can corrupt a low-level instruction. Examples of
specification bugs include the use of an under-restrictive safelist for input validation or a
wrong algorithm for encryption.

A bug could also resurface from design flaws, such as an unaccounted-for system config-
uration or environment. For example, while an operation may run perfectly in a 64-bit
operating system (OS) environment, it may exhibit a security bug on a 32-bit platform. The
declaration of an int instead of uint object would lead to a wraparound from a 32-bit
calculation that would eventually propagate to a buffer overflow.

A BF fault' is a name, data, type, address, or size error (i.e., an improper operand). Name
relates to a resolved or bound object, function, or data type. Data, type, address, and size
relate to an object. A fault of an operand (i.e., the improper operand) could result from

"The IEEE defines fault as “an incorrect step, process, or data definition in a computer program” [24]. The BF
differentiates bug, fault, and error as a code or specification defect of a BF operation, data-related error of
an operand, and the result of an operation with a bug or faulty operand, respectively (also see Sec. 4).
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a bug or another fault or be induced by a hardware defect. Only in the case of low-level
storage (e.g., cache and CPU registers) is there no type fault.

Adding to the examples of improper input operands in Sec. 3.1, other faults include invalid
data, wild pointer, wrong type, or missing overridden function. A wrong value could result
from a missing validation or an erroneous calculation bug, but also from bit flips or signal
disruption due to overheating or other physical factors.

The BF models a security weakness as an improper execution state and its transition to
another weakness or a failure (see Fig. 2). An improper state is defined as an (operation,
operandy, ..., operand,) tuple with at least one improper element (depicted in Fig. 2
in purple). A transition is defined by the erroneous output from the operation over its
input operands. An improper operation or operand is the cause of a security weakness.
The erroneous result from the operation over the operands is the consequence of that
weakness and becomes a cause of another weakness or enables a failure. An operation is
improper if it has a bug. An operand is improper if it is ill-formed (i.e., it is at fault).

BF Security Weakness

Results in Error, —
Improper Operand,

Improper State;
] Improper State, Results in
(operation,, .
(operation,, ..., Final Error
operand;, ... — )
operandy;, ...) Are T T

Improper State,

(operation,,, ...
operand,, ... )

Improper State—an (operation, operand,, ..., operand,) tuple with at least oneimproper element

¥ Transition — Erroneous resultfrom the operation over the operands

Initial State Intermediate State Final State A Failure

Fig. 2. BF security weakness

The initial state (depicted in Fig. 2 in blue) is caused by a bug that, if fixed, will resolve
the weakness. An intermediate state (in light purple) is caused by a fault. The final state
(in dark purple) results in an undefined or exploitable system behavior (i.e., a final error).
For example, in Fig. 2, the improper operation; from Improper State; results in improper
operand,; that causes Improper State,. The last operation,, results in a Final Error that
enables a Failure.

The possible improper states depending on the cause and consequence of a security weak-
ness are presented in Fig. 3. An improper state is caused by a security bug (i.e., the oper-
ation is improper) or a fault (i.e., an input operand is improper). The consequence of an
improper state is an error that propagates to another fault or is a security final error.
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Cause Consequence Cause Consequence

Improper State; Improper State,

(operation;, (operation,, ...,

operand;q, ...

operand,;, ...)
operandy;, ... )
Cause Consequence Cause Consequence
Improper State; Improper State,
(operationy, (operationy, ...
operandyy, ... operand,, ...)
operandy, ... )
BF,
Initial Bug State Intermediate (or HW Defect-Induced) Fault State Final State

Fig. 3. BF weakness states

A BF security weakness is a (cause, operation)— consequence relation triple, which is for-
mally a (bug, operation)—serror, (fault, operation)—error, (bug, operation)—final error,
or (fault, operation)—final error causal triple of a bug or fault weakness type. A bug in-
forms that the operation is improper, while a fault informs about an improper operand.

Examples of weaknesses include (Missing Code, Sanitize)—SQL Injection, (Wrong Size,
Reposition)—Overbound Pointer, and (Dangling Pointer, Read)— Use After Deallocate. In
the C programming language, the last final error is known as use after free.

3.3. BF Vulnerability

The BF models a security vulnerability as a chain of improper states that propagate as the
error (i.e., the erroneous output) from one state becomes the fault (i.e., the improper
input) for the next state until a final error that can be exploited toward a security failure
is reached (see Fig. 4). That is, a vulnerability is a causal chain of weaknesses. The initial
state (depicted in blue) is caused by a software or firmware bug (i.e., an operation defect)
(see the blue solid arrow), which if fixed will resolve the vulnerability. A vulnerability chain
may also start from a hardware defect-induced bug or fault (see the green dashed arrows),
which if fixed will resolve that vulnerability.

A propagation state (depicted in light purple) is caused by a fault (i.e., an operand er-
ror). The final state (shown in dark purple) results in a final error (i.e., an undefined or
exploitable system behavior) and can lead to a failure (i.e., a violation of a system security
requirement). It usually directly relates to a CWE, but there are also CWEs that correspond
to initial or propagation weakness states. An error is the result of an improper state opera-
tion over its operands. It becomes an improper operand — a fault — for the next improper
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state. A final error is the result of the operation from the final improper state. It introduces
an exploit vector — that is, the pathway for exploitation — toward a security failure.

BF Security Vulnerability

SW/FM Bug in Error; — Fault of Error, — Fault of Error,,., — Fault of Final Error —
Operation; Operand,; Operandsy Operand,, Exploit Vector
Iierser SEiy Improper State, Improper State,

(operation;,
operand;q, ...
operandy;, ... )

(operation,, ... (operation,, ...
operand,;, ...) operandyp, ... )

Failure

or or (exploit, vector)

HW Defect- 4 HW Defect- 4
induced Bug " induced Fault .

Improper State —an {(operation, operand, ..., operand,) tuple with at least oneimproper element

Initial State — caused by a Bug Final State —introduces an Exploit Vector
Propagation State — caused by a Fault A Failure —result of the exploit of the vector supplied by the Final Error
SW - Software, FM - Firmware, HW— Hardware ~ Chaining

Fig. 4. BF security vulnerability

For example, in Fig. 4, operation from Improper State; is improper due to a bug and re-
sults in Error; that propagates to the improper operand, ;, which leads to Improper State;.
The last operation,, with improper operand,,, results in a Final Error that propagates to an
Exploit Vector to enable a Failure.

As errors propagate to faults, the examples of faults also apply to errors. However, an error
may be on a higher level of abstraction than a specific fault. For example, an inconsistent
value error may propagate to the more specific wrong argument data fault (e.g., see the
discussion about Fig. 5) or wrong size fault (e.g., see the discussion about Fig. 17).

Examples of final errors include integer overflow, query injection, buffer overflow, and side
communication channels. Legitimate and side channels may also be direct exploit vectors
without prior causation. Examples of failures include information exposure (IEX) (i.e., con-
fidentiality loss), data tampering (TPR) (i.e., integrity loss), denial of service (DOS) (i.e.,
availability loss), and arbitrary code execution (ACE) (i.e., everything could be lost).

The initial bug state is of an improper operation over proper operands. It is the state with a
defect in the operation. The bug must be fixed to resolve the vulnerability. A fault state is of
a proper operation over an improper operand. It is a state with a defect in an operand that
— if fixed — would only mitigate a vulnerability. If the initial state is caused by a hardware
defect-induced fault, its fix will resolve the vulnerability.

Vulnerabilities may also converge at their final states and chain via faults resulting from
exploits. The converged final states enable a security failure, which would not have been
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harmful if only one were present. The chained faults-only vulnerabilities propagate toward
a final security failure.

A particular BF security vulnerability chain may correspond to more than one CVE. For
example, BadAlloc is a vulnerability pattern that covers more than 25 similar CVEs [25] re-
lated to memory allocators, suchasmalloc () and calloc (). They were found in widely
used real-time operating systems (RTOS), standard C libraries, loT device SDKs, and other
self-memory management applications going as far back as the early ‘90s [26].

The BF causal chain of the BadAlloc vulnerability pattern comprises five BF weaknesses
[1]: DVRATCM~AMMN~MAD~MUS (see Fig. 5). The first weakness is at the input data
verification phase of software execution. The memory allocation implementation has no
proper size verification toward the maximum allowed value accounting for how the re-
guested memory size is calculated — that is, a BF Data Verification (DVR) weakness [1].
This input becomes a wrong argument for a calculation that produces a value greater than
the maximum integer allowed for the particular operating environment (e.g., 232 — 1 for a
32-bit OS) and wraps around the result (i.e., integer overflow error) — that is, a BF Type
Computation (TCM) weakness [1].

BF BadAlloc Pattern

Missing/Erroneous Inconsistent Value — Wrap Around — Insuffi . bound P Buffer Overflow
Code Bug Wrong Argument Wrong Size nsufficient Size Overbound Pointer Final Error
DVR TCM MMN MAD MUS
(Verify, Data) (Calculate, Name, (Allocate, Data, (Reposition, Data, (Write, Data, Type,
Data) Address, Size) Type, Address, Size) Address, Size)

Improper States—an (operation, operand,, ..., operand,) tuples with at least oneimproper element:

Initial State — caused by a Bug Final State —introduces an Exploit Vector v Chaining

Propagation State — caused by a Fault A Failure — result of the exploit of the vector supplied by the Final Error

DVR — Data Verification, TCM— Type Computation, MMN— Memory Management MAD — Memory Addressing MUS — Memory Use
DoS — Denial of Service, ACE— Arbitrary Code Execution, RCE— Remote Code Execution

Fig. 5. BF BadAlloc pattern

Consequently, a much smaller wrong size is used at allocation resulting in a memory buffer
with an insufficient size — that is, a BF Memory Management (MMN) weakness [1]. This al-
lows a pointer to be repositioned outside the buffer boundary — a BF Memory Addressing
(MAD) weakness [1]— and data to be written there — a BF Memory Use (MUS) weakness
[1]. The buffer overflow final error can then be exploited toward a DOS or ACE (specifically,
remote code execution [RCE] on a targeted device) failure.

CVE-2021-21834 is one particular vulnerability that strictly follows the BadAlloc pattern (see
its BF CVE-2021-21834 specification at [1]).
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3.4. BF Bug Identification

If there is a cybersecurity failure, there should be a way to identify the root cause (i.e., the
security bug) and the chain of triggered improper execution states that enables the failure.

Theoretically, addressing the problem of identifying a security bug would be first to gen-
erate the graph of all possible vulnerability chains of weaknesses. Then, search the graph
via brute force recursive backtracking with specific constraints to find the set of possible
valid paths. Finally, select the only proper path via code analysis.

However, the BF formalism ensures predictive recursive-descent parsing that does not re-
quire backtracking, as the BF formal language is generated by an LL(1) CFG. Knowing the
failure and the possible transitions at execution that adhere to the BF causation within a
weakness as a (cause, operation)—consequence relation and between weaknesses via a
consequence.cause propagation (see Sec. 7.2), the bug can be identified going backward
A from the final weakness until an operation is improper (see Fig. 6). Fixing the bug within
that operation would resolve the vulnerability.

BF Backward Bug Identification

Identify Backward to Backward to Backward to Backward from the Failure to
the Bug Improper Operation; Improper Operand, Improper Operand,, 1 Improper Operand,,
/Q ?\‘\ Q Q Q A
Bug Improper Improper Improper Final Error /
| Stat Operand, Operandsy Operand,,, /
MPTOPET >tatey P “  Improper State, P ’ P " Improper State, /
(operation;, . . / \
operand {eperations . (operation,, ... /  Failure \
e operand,;, ... ) operand,y, ... ) /

/ . \
/ (exploit, vector) \
/ \\
/ \

operandy;, ... )

Improper State— an (operation, operand,, ..., operand,) tuple with at least oneimproper element

Initial State — caused by a Bug Final State — results in an Exploitable Error v Chaining

Propagation State — caused by a Fault /\ Failure — caused by exploitation of the Final Error “™ Backwards to previous State

LA\
Fig. 6. BF backward bug identification

Using the BF formal language syntax and semantics that are based on the BF taxonomies,
models, and causation and propagation rules, (see Sec. 5, 6, 7, and 8) a state tree can be
directly generated backward starting from a failure and a final error or weakness. The state
tree is an undirected graph with exactly one simple path between any pair of nodes. The
failure is the root of the tree, and each path is a reverted possible vulnerability specification
chain of weaknesses from the final error through faults to a bug. A weakness is specified
as a (bug/fault, operation)—error/final error causal triple.

This methodology allows for the generation of a reasonable number of possible BF speci-
fication chains of weaknesses for a particular CVE. The only proper path can then be iden-
tified as the rest get eliminated via code analysis.
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4. BF Security Concepts

A BF security bug or weakness type relates to a distinct software, firmware (including
microcode), or hardware circuit logic execution phase defined by a set of BF opera-
tions and their input operands and output results.

A BF operation is the minimal input-process-output code that can produce or prop-
agate an improper name, data, type, address, or size.

The BF defines the concepts of bug, fault, error, final error, weakness, vulnerability, ex-
ploit vector, and failure in the context of cybersecurity to provide the level of detail and
granularity needed to understand the causation within a weakness and the causation and
propagation between weaknesses and between vulnerabilities.

e Asecurity bug is a code or specification defect (i.e., an operation defect) in software,
firmware, or hardware circuit logic — that is, proper operands over an improper
operation. The specification includes the operation metadata and algorithm.

A bug could be introduced by a programmer, be the result of a design flaw, or induced
by a hardware defect (e.g., due to overheating). A bug could also resurface from a
design flaw (e.g., an unaccounted-for system configuration or environment).

e Afaultis a name, data, type, address, or size error (i.e., an operand error) — that is,
an improper operand over a proper operation.

A fault could result from a bug or another fault or be induced by a hardware defect.
In the case of low-level storage (e.g., cache and CPU registers), there is no type fault.

e An error is the result of an operation with a bug or faulty operand that propagates
to a fault of an operand of another operation.

e A security final error is an undefined or exploitable system behavior. A final error
results from an operation with a bug or faulty operand.

e A security weakness is a (bug, operation)—error, (fault, operation)—-error, (bug,
operation)—final error, or (fault, operation)—final error causal triple.

e Asecurity vulnerability is a causal chain of weaknesses that starts with a bug or hard-
ware defect-induced fault, propagates through errors that become faults, and ends
with a final error that introduces an exploit vector.

The first weakness concerns the root cause of the vulnerability, and the last weak-
ness concerns its sink.

o A security exploit vector is the pathway for the exploitation of a vulnerability.
e A security failure is a violation of a system security requirement caused by the ex-

ploitation of a security vulnerability.
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The BF security concept definitions are contextually visualized in Fig. 7. Following the blue
solid initial arrow, a security vulnerability may start with a software or firmware security
bug (i.e., a code or specification defect within an operation). Following the green dashed
arrow, a vulnerability chain may also start from a hardware defect-induced fault.

Fixing the bug or hardware defect-induced fault will resolve the vulnerability, as well as
any other vulnerability with the same root cause. Fixing a propagated fault, including the
cause of the final error at the sink, will only mitigate the vulnerability. Occasionally, several
vulnerabilities must converge at their final errors for an exploit to be harmful. Fixing the
bug or starting fault of at least one of the chains would avoid the failure. An exploit of a
vulnerability may result in a fault starting a new faults-only vulnerability. Fixing the bug or
starting fault of the first vulnerability will resolve the entire chain of vulnerabilities.

For more details, refer to the forthcoming SP 800-231A, Bugs Framework: Security Con-
cepts.

BF Security Concepts Model

Security Vulnerability

\  BugType Improper Operation Error Type,
Weakness Type ; Operation
. i —_— g >
Security Weakness security Bug Operandy, ... Operandy;, ... Errory

Fault Type, Improper Operand Error Type,

Weakness Type, Operation,
Fault, —> ! > Error,

Operand,y, ..., Operand,, ...

Security Weakness ,

Fault Typey.1 Improper Operand Final Error Type
Weakness Type y Operation, -
Security Weakness,, Faulty.q — Operandy, , ..., Operandyp, ... E— Security Final Error

Failure Type; Failure Typer
/\ /\
/// \ /// \
. /Securit%\ /Securit%\
Bug |:|Operanon / Failure, \ / Failureg \

//\
; I\ pai
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Fig. 7. BF security concepts

15



NIST SP 800-231
July 2024

5. BF Bugs Models

The BF security bugs and related faults landscape covers the operations (i.e., the BF op-
erations) in software, firmware, and hardware execution phases at appropriate levels of
abstraction. A BF operation is the minimal input-process-output code that — because of a
bug or fault — results in an error that propagates to another fault or is final (see Sec. 3.1).

The BF bugs models define related execution phases with orthogonal sets of operations
in which particular types of bugs or faults could occur. They also define the proper flow
of operations within and between the phases, which helps identify causation between
weaknesses, as well as missing operations (i.e., missing code bugs) backward from a failure.

Some execution phases may only be on an application level (e.g., input/output check),
while others may cover deeper levels of abstraction (e.g., the programming language type
system, the OS file system, or the CPU). In any case, if there is a security failure, there
must have been an operation with a security bug or a hardware defect-induced fault that
propagated through faults of other operations until a security final error that introduces
an exploit vector is reached.

5.1. BF Input/Output Check (_INP) Bugs Model

The BF Input/Output Check (_INP) Bugs Model shows that input/output data check bugs
could be introduced at the data validation (DVL) or data verification (DVR) execution phase
(see Fig. 8). The phases determine the BF _INP classes: Data Validation (DVL) and Data
Verification (DVR) [1, 16].

BF Input/Output Check (_INP) Bugs Model

Unchecked
Data

e ™ e ~
DVL \ DVR \

Validate

Sanitize

S/ N S/
\ . Checked
” Data
> Data
BF, I. Bojanova Lifetime

Fig. 8. BF Input/Output Check (_INP) Bugs Model

Each input/output check-related bug or fault involves a Validate, Sanitize, Verify, or Correct
operation. According to the flow of operations, input/output data must be validated and
sanitized and/or verified and corrected.
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5.2. BF Memory (_.MEM) Bugs Model

The BF Memory (_.MEM) Bugs Model shows that memory-related bugs could be introduced
at any phase in the life cycle of an object: memory addressing (MAD), memory allocation
(MAL), memory use (MUS), or memory deallocation (MDL) (see Fig. 9). The phases de-
termine the BF _MEM classes: Memory Addressing (MAD), Memory Management (MMN)
that combines the MAL and MDL phases, and Memory Use (MUS) [1, 17].

Memory Bugs Model

Object
Space Other Object
A / NULL

MAD (pointer/owner )

Initialize
A T[essign & position

Reposition g -l

Dereference

after object is initialized | |

MAL ( object)

Upper ¢
L L
Bound e
X
Reallocate-Extend | -~ ¥
\ K
MUS (object)
Object
Size

MDL (object)

Lower Reallocate-Reduce |-~

Deallocate
Bound

F, I. Bojanova

. Object
Create Destroy Lifetime
Object Object In Use Object

Fig. 9. BF Memory (_.MEM) Bugs Model

Each memory-related bug or fault involves an Initialize Pointer, Dereference, Reposition,
Reassign, Allocate, Extend, Reallocate-Extend, Initialize Object, Read, Write, Clear, Reduce,
Reallocate-Reduce, or Deallocate operation.
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The main memory-related operations flow is presented in Fig. 9 via blue and black solid
arrows. The green dashed arrows show the flow for allocation at a specific address. The
red dot-dashed arrows show the extra flow in case of reallocation. Following the blue
arrows, the first operation is MAL Allocate an object. Following the green arrows, the first
operation is MAD Initialize Pointer. The next operation following the blue arrows must
be MAD Initialize Pointer for the allocated object to the address returned by the Allocate
operation. In contrast, the next operation following the green arrows must be MAL Allocate
an object at the address that the pointer holds.

After an object is allocated and its pointer initialized, MUS Initialize Object (i.e., the first
write) must follow. Then, it may be accessed via MAD Dereference and used via MUS Read
or Write at any point before it is cleared and deallocated.

The boundaries and size of an object set at allocation can be changed via MAL Extend,
MAL Reallocate-Extend, MDL Reduce, or MDL Reallocate-Reduce. Operations that involve
reallocation must be followed by MAD Reposition for all of the pointers that own the object.
MDL Deallocate an object must be preceded by MUS Clear (i.e., the last write) and followed
by MAD Reassign for all of its pointers to either NULL or another object.

5.3. BF Data Type (_DAT) Bugs Model

BF Data Type (_DAT) Bugs Model shows that data type bugs could be introduced at the
declaration (DCL), name resolution (NRS), data type conversion (TCV), or data type-related
computation (TCM) execution phase (see Fig. 10). The phases determine the BF _DAT
classes: Declaration (DCL), Name Resolution (NRS), Type Conversion (TCV), or Type Com-
putation (TCM) [1, 18]. Each data type-related bug or fault involves a Declare, Define, Refer,
Call, Cast, Coerce, Calculate, or Evaluate operation.

According to the data type-related operations flow shown in Fig. 10, the first operations
over an entity (i.e., object, function, data type, or namespace) are DCL Declare and DCL
Define. Then, it can be referred to in code by its name via NRS Refer. Names that are
referred to in remote scopes get resolved via namespaces. Resolved data types get bound
to objects, functions, or generic data types according to their declarations (see the purple
dot-dashed arrow flow). Resolved functions get bound to implementations and may be
called via NRS Call.

A resolved and bound object may be explicitly converted to another data type via TCV
Cast and used to call a member function via NRS Call or as an argument or return of a
computation function. A passed-in argument is expected to be of the declared parameter
data type, and the passed-out result is expected to be of the return data type. Otherwise,
TCV Cast is expected before or at the end of the call (see the blue large-dashed arrow flow),
or the value will get implicitly converted via TCV Coerce to the parameter or return data
type, respectively (see the green dashed arrow flow).
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Fig. 10. BF Data Type (_DAT) Bugs Model

The green arrow flow is only about passed-in or passed-out objects that are coerced. It
starts from NRS Call and never from DCL Declare.

A comprehensive BF bugs model would combine and connect all BF bugs models via the
proper flow between their operations. For example, _DAT DCL Declare and _INP DVR Verify
may be followed by "MEM MAD Reposition, _DAT TCM Calculate, or _DAT TCV Coerse. _DAT
TCV Coerse may be followed by _.MEM MMN Allocate, "MEM MAD Reposition, _-DAT TCM
Calculate, or .MEM MMN Deallocate. _DAT TCM Calculate may be followed by _"MEM MMN
Reallocate-Reduce.

For more bugs models and details, refer to the forthcoming SP 800-231B, Bugs Framework:
Bugs Models.
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6. BF Taxonomy

The BF taxonomy comprises weakness and failure categories. The BF Weakness category
comprises BF weakness class types, such as:

e BF Input/Output Check(_INP) class type — Weaknesses that lead to input/output
data check-related errors or introduce injection exploit vectors

e BF Memory (_.MEM) class type — Weaknesses that lead to memory-related errors or
introduce memory corruption/disclosure exploit vectors

e BF Data Type (_DAT) class type — Weaknesses that lead to data type-related errors
or introduce type compute exploit vectors

The BF Failure category comprises the BF failure class type:

e BF Failure (_FLR) class type — Failures that lead to the loss of a security property due
to the exploit of a vulnerability

6.1. BF Weakness Classes

The BF weakness taxonomy structure is based on orthogonal by operations phases of soft-
ware, firmware, and hardware execution. A BF weakness class defines sets of possible bugs
and faults as causes for the operations of a specific phase over their operands to result in
errors and final errors as consequences.

As an error propagates to a fault (see Sec. 4), the set of errors is the same as the set of
faults across classes. However, a specific propagation may be via values on different levels
of abstraction (see Sec. 3.2). Similarly, the set of final errors across classes is the same as
the set of exploit vectors toward failures. A BF weakness class also defines operation and
operand attributes and code sites.

A BF weakness class type encompasses strictly defined weakness classes of closely related
execution phases. For example, the BF _INP class type comprises the Data Validation (DVL)
and Data Verification (DVR) classes. The BF _MEM class type comprises the Memory Ad-
dressing (MAD), Memory Management (MMN), and Memory Use (MUS) classes [17]. The
BF _DAT class type comprises the Declaration (DCL), Name Resolution (NRS), Type Conver-
sion (TCV), and Type Computation (TCM) classes [18]. For all current BF class types, refer
to the BF Taxonomy at at [1].

The definition of the BF Data Validation (DVL) class (see Fig. 11) is “Data is validated (i.e.,
syntax check) or sanitized (i.e., escape, filter, or repair) improperly.” It organizes security
bugs by the Validate and Sanitize operations and faults by their Data operand as causes
[16]. Possible causes are the Missing Code bug and Corrupted Policy Data fault. Possible
consequences are the Invalid Data error and Query Injection and Command Injection final
injection errors, which relate to input/output check safety (see 9.1).
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Fig. 11. BF Data Validation (DVL) class

The definition of the BF Memory Use (MUS) class (see Fig. 12) is “An object is initial-
ized, read, written, or cleared improperly.” It organizes security bugs by the Initialize Ob-
ject, Read, Write, and Clear operations and faults by their Data, Type, Address, and Size
operands as causes [17]. Possible causes are the Wrong Size and Cast Pointer faults. Pos-
sible consequences are the Uninitialized Object error and Buffer Overflow and Use After
Deallocate (e.g., use after free or use after return) memory corruption or disclosure final
errors, which relate to memory safety (see 9.2).

The definition of the BF Type Conversion (TCV) class (see Fig. 13) is “Data is converted or
coerced into other types improperly.” It organizes security bugs by the Cast and Coerce
operations and faults by their Name, Data, and Type operands as causes [18]. Possible
causes are the Over Range and Wrong Type faults. Possible consequences are the Rounded
Value and Downcast Pointer errors, which relate to data type safety (see 9.3).

The BF strictly defines the type taxons (e.g., see the terms in black in Figs. 11, 12, and 13) for
causes as bugs or faults, for consequences as errors or final errors, and for operation and
operand attributes. For example, the Specification Bug, Data Fault, Injection and Memory
Corruption/Disclosure Final Errors (see Figs. 11 and 12) taxon types are defined in Table 2.

The BF also strictly defines the value taxons (e.g., see the terms in purple in Figs. 11, 12,
and 13) for class, operations, causes (as bugs or faults), consequences (as errors or final er-
rors), and operation and operand attributes. For example, the Under-Restrictive Policy bug,
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Fig. 12. BF Memory Use (MUS) class

Wrong Size fault, Sanitize and Write operations, and Query Injection and Buffer Overflow
final errors (see Figs. 11 and 12) taxon values are defined in Table 3.

The operation attribute types are defined in Table 4. Their values per BF class may be dif-
ferent for the same operation attribute type (e.g., the Mechanism for MUS Write is Direct
or Sequential, while for TCV Coerce, it is Pass in or Pass out). The possible operand at-
tribute types are defined in Table 5. Their values per BF class may be different for the same
operand attribute type.

Each BF class taxonomy defines a matrix of semantic rules for causation within a weak-
ness, as some combinations of its cause, operation, and consequence value taxons may not
be meaningful. They are expressed as (bug, operation)—serror, (fault, operation)—serror,
(bug, operation)—final error, and (fault, operation)—final error triples. For example,
(Wrong Size, Write)— Buffer Overflow is a valid triple, while (Wrong Size, Write)—Buffer
Over-Read is not, as the operation is Write but the final error is about reading.
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Fig. 13. BF Type Conversion (TCV) class

Each BF class taxonomy also defines a matrix of semantic rules for propagation between
weaknesses, as error to fault match is always by type but may be on different levels of
abstraction by value (for details, see the forthcoming SPs 800-231Cx and [1]).

Formally, the specification of a security weakness is an instance of a BF weakness class
with one cause, one operation, one consequence, and operation and operand attribute
values from the sets with value taxons of that class. The operation binds the causation
within a weakness as a (cause, operation)—consequence relation that must adhere to the
within-weakness causation semantic rules for that class.

For example, the two most severe weaknesses — missing validation of input data leads to a
SQL query injection and writing data via a pointer beyond the upper bound of an array leads
to a buffer overflow [27] — are specified with BF as follows: (Missing Code, Validate)—
Query Injection and (Overbound Pointer, Write)—Buffer Overflow.

The BF class taxonomies with built-in taxon definitions are available in machine-readable
formats (e.g., see the BF in XML format in Fig. 14 and query it via the BF API at [1]).

The type and value taxon definitions are visualized in the graphical representation of the
BF class taxonomies (e.g., see the BF MUS class at [1]) and BFCVE specifications (e.g., the
BF CVE-2014-0160 specification at [1]), and as tooltips of the BF tool (see Sec. 10.3).
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Table 2. Type taxon definition examples

Name

Definition

Specification Bug

Data Fault
Injection

Memory Corruption/
Disclosure

A defect in the metadata or algorithm of an operation (i.e., proper operands
over an improper operation). It is the root cause of a security vulnerability.
The data of an object has harmed semantics or an inconsistent or wrong value.
An exploitable or undefined system behavior caused by

validation or sanitization bugs.

An exploitable or undefined system behavior caused by memory addressing,
allocation, use, or deallocation bugs.

Table 3. Value taxon definition examples

Name

Definition

Under-Restrictive Policy  Accepts bad data. For example, permissive safe list or regular expression,

Wrong Size
Sanitize
Write

Query Injection

Buffer Overflow

or incomplete deny list.

The value used as size or length (i.e., the number of elements) does not
match the object’s memory size or length.

Modify data (e.g., neutralize/escape, filter/remove, repair/add symbols)

to make it valid (well-formed).

Change the data value of an object in memory to another meaningful value.
Maliciously inserted condition parts (e.g., or 1 == 1) or entire commands
(e.g., drop table)into an input used to construct a query (e.g., SQL

or NoSQL Injection, XPath Injection, XQuery Injection, or LDAP Injection).
Write data above the upper bound of an object (i.e., buffer overwrite).

Table 4. Operation attribute types

Name

Definition

Mechanism
Source Code
Execution Space

Shows how the operation with a bug or faulty operand is performed.

Shows where the code of the operation with a bug or faulty operand resides.
Shows where the operation with a bug or faulty operand is executed and

the privilege level at which it runs.

Table 5. Operand attribute types

Name Definition

Name Kind Shows what the entity with this name is.
Name State Shows what the stage of the entity name is.
Data Kind Shows what the type or category of data is.
Data State Shows where the data comes from.

Type Kind Shows what the data type composition is.

Address Kind  Shows how much memory is accessed (i.e., the span) outside of a bound of an object.
Address State  Shows where the address is (i.e., its location) in the memory layout.
Size Kind Shows what is used as the size or length (i.e., the number of elements) of an object.
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<!--Bugs Framework (BF) Version 1.0, I. Bojanova, NIST-—>
v<BF Name="BF" Title="Bugs Framework">

<

<-<-<-

<Category Name="Weakness" Definition="A security weakness is a (bug, operation, error), (4

<ClassType Name="_INP" Title="Input/Output Check" Definition="Input/Output Check (_INP)

<Class Name="DVL" Title="Data Validation" Definition="Data Validation (DVL) class - D
<Operations>

<Operation Name="Validate" Definition="Validate operation - Check data syntax (e.c

<Operation Name="Sanitize" Definition="Sanitize operation - Modify data (e.g., net

<AttributeType Name="Mechanism" Definition="Mechanism operation attribute type - ¢
<Attribute Name="Safelist" Definition="Safelist operation attribute - The operat
<Attribute Name="Denylist" Definition="Denylist operation attribute - The operat
<Attribute Name="Format" Definition="Format operation attribute - The operation
<Attribute Name="Length" Definition="Length operation attribute — The operation

</AttributeType>

i<AttributeType Name="Source Code" Definition="Source Code ope">...</AttributeType:

<AttributeType Name="Execution Space" Definition="Execution Space">...</Attribute

</Operations>

[<Operands>. . .</Operands>|

<Causes>

<BugType Name="Code" Definition="Code Bug type - An error in the implementation of
<Bug Name="Missing Code" Definition="Missing Code bug - The operation is entirel
<Bug Name="Erroneous Code" Definition="Erroneous Code bug - There is a coding e1

</BugType>

<BugType Name="Specification" Definition="Specification B">...</BugType>|

<FaultType Name="Data" Definition="Data Fault/Erro">...</FaultType>|

</Causes>

<Consequences>. . .</Consequences>]

<Sites>...</Sites>|

</Class>

[<Class Name="DVR" Title="Data Verificati" Definition="Data Verificati">...</Class>|

</ClassType>
<ClassType Name="_MEM" Title="Memory Corruption/Disclosure" Definition="Memory Corruptic

<Class Name="MAD" Title="Memory Addressi" Definition="Memory Addressi">...</Class>|

<Class Name="MMN" Title="Memory Manageme" Definition="Memory Manageme">...</Class>

<Class Name="MUS" Title="Memory Use" Definition="Memory Use (MUS">...</Class>|

</ClassType>
<ClassType Name="_DAT" Title="Data Type" Pefinition="Data Type (_DAT) class type - Weakr

l<Class Name="DCL" Title="Declaration" Definition="Declaration (DC">...</Class#

<Class Name="NRS" Title="Name Resolution" Definition="Name Resolution">...</Class>

<Class Name="TCV" Title="Type Conversion" Definition="Type Conversion">...</Class>

<Class Name="TCM" Title="Type Computatio" Definition="Type Computatio">...</Class>

</ClassType>

</Category>

<Category Name="Failure" Definition="A security failure is a violation of a system securit
<ClassType Name="_FLR" Title="Security Failure" Definition="Failure (_FLR) class type -

<Class Name="IEX" Title="Information Exp" Definition="Information Exp">...</Class>

<Class Name="ACE" Title="Arbitrary Code " Definition="Arbitrary Code ">...</Class>

<Class Name="DOS" Title="Denial of Servi" Definition="Denial of Servi">...</Class>

<Class Name="TPR" Title="Data Tampering" Definition="Data Tampering ">...</Class>|

e N =WV =W WV = s L e W eV WV 2V = e W eV e WV s e Ve VS W e V= W e = N e N =V

</BF>

</ClassType>
</Category>

Fig. 14. BF taxonomy in XML
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6.2. BF Failure Class

A BF failure class defines sets of possible exploit vectors used for the exploits of a specific
vulnerability to result in the loss of security properties. The exploit vectors propagate from
the final errors of BF weakness classes.

The BF Failure (_FLR) class type encompasses strictly defined failure classes, such as:

e Information Exposure (IEX) — Inadvertent disclosure of information that leads to
confidentiality loss.

e Arbitrary Code Execution (ACE) — Execution of unauthorized commands or code ex-
ecution that could lead to everything being lost.

Remote code execution (RCE) is a sub-case of ACE on a target system or device from
a remote location, typically over a network.

e Denial of Service (DOS) — Disruption of access to or use of information or informa-
tion systems that leads to availability loss.

e Data Tampering (TPR) — Unauthorized modification or destruction of information
that leads to integrity loss.

An IEX, ACE, or TPR failure may result in a fault that starts a new chained vulnerability.

6.3. BF Methodology

The methodology for developing BF bugs models and weakness classes involves the fol-
lowing 12 steps (also see Fig. 15):

1. Phases: Analyse common weakness types (including CWEs) and publicly disclosed
vulnerabilities (including CVEs) and identify related software, firmware, or hardware
execution phases in which specific types of bugs could be introduced and faults prop-
agated. Each execution phase would be the basis for defining a new BF weakness
class. The BF classes of related execution phases would define a new BF class type.

For example, the MAD and MUS classes (see Fig. 12) correspond to the related mem-
ory addressing and memory use execution phases. They are also of the BF _"MEM
class type [1, 17].

2. Operations and Operands: Identify the operations and their input operands for each
execution phase so that all BF classes remain orthogonal by operation. They would
define the possible values of operations for the (cause, operation)—consequence
weakness triples for each of the new BF classes.

For example, the DVL class has two operations (see Fig. 11), MUS has four operations
(see Fig. 12), TCV has two operations (see Fig. 13), and their sets of operations do
not overlap.
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Fig. 15. BF class methodology

3. Bugs Model: Define the BF bugs model reflecting the identified phases, operations,
and the proper flow between the operations. It would be the basis for the definition
of a semantic graph of meaningful operation flow.

For example, the BF Memory Bugs Model covers the MAD, MAL, MUS, and MDL
phases and the flow between their operations (see Fig. 9).

4. Bug Causes: Identify the possible code and specification defects for the operations
of each phase. They would define the bug values of the (bug, operation)—-error or
(bug, operation)—final error weakness triples (see Fig. 3) for each of the new BF
classes.

For example, the DVL class has two values for each of the Code Bug and Code Speci-
fication bug types — Missing Code and Erroneous Code, and Under-Restrictive Policy
and Over-Restrictive Policy, respectively (see Fig. 11).

5. Fault Causes: Identify which of the Name, Data, Type, Address, and Size input operands
apply to the operations of each phase. They would define the possible fault and er-
ror types. Identify the possible operand errors, which would define the fault values
of the (fault, operation)—serror or (fault, operation)—final error weakness triples
(see Fig. 3) for each of the new BF classes.

For example, the MUS class has Data Fault, Type Fault, Address Fault, Size Fault, and
Data Error types — the first four as causes, the last one as a consequence. It also
has 11 fault values (see Fig. 12).
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6.

10.

1.

12.

Error Consequences: ldentify the possible output result errors from the operations
that propagate as faults of other weaknesses (i.e., improper input operands for other
operations). These would define the error values of the weakness triples (see Fig. 3).

For example, there is one error value for DVL — Invalid Data (see Fig. 11), one for
MUS — Uninialized Object (See Fig. 12), and eight for TCV — five of Data Error and
three of Type Error type (see Fig. 13).

Final Error Consequences: Identify the possible output result errors from the oper-
ations that do not propagate to faults of other weaknesses and instead propagate
to exploit vectors toward failures. They would define the final error values of the
weakness triples (see Fig. 3).

For example, MUS has one final error type — Memory Corruption/Disclosure — with
eight final error values (see Fig. 12).

Sites: Identify syntactic places in code where such bugs or faults can occur. This step
is mainly applicable to low-level bugs and faults.

Operation Attributes: Identify specific descriptive values for the Execution Space,
Mechanism, and Source Code operation attribute types for each of the new BF classes.

For example, DVL has the Safelist, Denylist, Format, and Length values for the Mech-
anism attribute type (see Fig. 11), while TCV has Pass In and Pass Out (see Fig. 13).

Operand Attributes: Identify specific descriptive values for the relevant Name, Data,
Type, Address, and Size attribute types for each of the new BF classes.

For example, the TCV class has the Resolved and Bound values for the Name State
operand attribute type; Numeric, Text, Pointer, and Boolean values for Data Kind,
and Primitive and Structure values for Type Kind (see Fig. 13).

Semantic Matrices: Identify the meaningful (cause, operation)—consequence causal
relations for each of the new BF classes, and same-type different-value consequence~
cause propagations for classes of different BF class types.

Semantic Graph: Define the graph of meaningful operation flow based on the BF
Bugs Model.

Finally, create the BF weakness class taxonomies in machine-readable formats, generate
graphical representations to enhance understanding, regenerate the BF LL(1) CFG to in-
clude the new taxonomies, and update the BFDB database (see Sec. 10).

The methodology for developing BF failure classes is analogous but also simpler, as final
errors of BF weakness classes directly match to exploit vectors of BF Failure classes, and
the exploit, at least for now, is on an abstract level.

For more BF classes and details, refer to the forthcoming SPs 800-231Cx, Bugs Framework:
_yyy Taxonomy, where _yyy is a BF class type.
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7. BF Vulnerability Models

The BF vulnerability models define state and specification views of a security vulnerabil-
ity as a chain of weaknesses linked by causality that may converge and chain with other
vulnerabilities to enable harmful failures. The state view represents the weaknesses as
improper-state (operation, operand;, ..., operand,) tuples and their causal transitions.
The specification view reflects the BF taxonomic representation of a weakness as a (cause,
operation)— consequence relation and consequence~cause between weaknesses propa-
gation.

7.. BF Vulnerability State Model

The BF Vulnerability State Model defines a vulnerability as deterministic state automata of
improper states and their transitions (see Fig. 16). A transition is to another weakness or to
a failure. An improper state is an (operation, operand;, ..., operand,) tuple with at least
one improper element (depicted in purple). A BF operation is the minimal input-process-
output code that — because of a bug or fault — results in an error that propagates to
another fault or is final (see Sec. 3.1). A transition is defined by the erroneous result from
the operation over the input operands (i.e., the output of the improper state).

The initial state corresponds to a weakness caused by a bug in the operation or a hardware
defect-induced fault of an operand. It results in an error or — if it is the only state —
is a final error (i.e., an undefined or exploitable system behavior). A propagation state
corresponds to a weakness that is caused by a fault of an operand and results in an error.
The final state corresponds to a weakness caused by a fault of an operand or — if it is the
only state — by a bug in the operation. It results in a final error that introduces an exploit
vector that enables a failure. The initial state relates to the root cause of the vulnerability,
and the final state relates to its sink. For simplicity, Fig. 16 does not detail vulnerability
chains that start with a hardware defect-induced bug or fault, as Fig. 4 does.

Fixing the bug or a hardware defect-induced fault will resolve the vulnerability, while fixing
a non-hardware-defect-induced fault will only mitigate it. Fixing a bug may relate to fixing
a design flaw, such as an unaccounted-for system configuration or environment. For a one-
chain improper states example, recall the BadAlloc pattern in Fig. 5.

Vulnerabilities composition is via convergence at their final errors or failure-to-fault-based
chaining. In some cases, for an exploit at the sink to be harmful, several vulnerabilities
must converge (depicted with & in Fig. 16) at their final errors. Fixing the root cause (i.e.,
the bug) of at least one of the chains would avoid the failure. An exploit of a vulnerability
may also result in a failure that creates a fault that starts a new vulnerability of only fault-
type weaknesses. There must be an exploit for the failure to occur and a fault that results
from it to start the new chain (see the gaps between the arrows and failures in Fig. 16 that
indicate that there is no direct weakness-to-weakness transition there). Fixing the root
cause (i.e., the bug) of the first vulnerability will resolve the entire chain of vulnerabilities.
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For example, in Fig. 16, Chain A starts from the Initial State,;, where operations; has a
software, firmware, or hardware defect-induced bug. The Errors; result propagates to a
fault of operand,, j, which leads to the Propagation States,. The last operationy, in this
chain with faulty operandy,,, results in the Final Error,. Chain B analogously propagates
through improper states, and its Final Errorg converges with Final Error, toward Failure;
and possibly more failures. Once the exploit vector introduced by the final errors is used
to exploit the vulnerability, Failure; possibly creates a faulty operandy; that starts a new
vulnerability chain, and so on until the final security Failurey is reached.

Heartbleed, CVE-2014-0160 — as a real-world example — was a severe vulnerability in the
OpenSSL cryptographic library [23]. A server (or client) with a vulnerable heartbeat exten-
sion would bleed data via a small heartbeat message with a large requested length (i.e.,
larger than the actual array size). Each exploit could reveal up to 64KB of raw memory of
highly sensitive information (e.g., private keys and login credentials) via buffer over-reads.
However, NVD labels it with CWE-125: Out-of-bounds Read, which covers both under-
lower-bound and over-upper-bound reads from a buffer. In addition, it reflects only the
weakness with the final error at the sink, not the weakness with the bug as the root cause.

The BF state view of Heartbleed is presented in Fig. 17 as two converging vulnerability
chains of underlying weaknesses. The BF taxonomy helps identify and comprehensively
label three weaknesses in the main chain and one more in the secondary chain.

BF CVE-2014-0160 — Heartbleed

Missing Code Inconsistent Value — Wrong Size  gyer Bound Pointer Buffer Over-Read
Bug Data Error/Fault Address Error/Fault Final Error

MUS
DVR M (Read, Data, Type,

(Verify: Missing Code, (Reposiion Address: Over

Data) DEiER Witehs S|z.e, Bound Pointer,
Type, Address, Size) See)

Not Cleared
Object

MUS
(Clear: Missing Code,
Data, Type,
Address, Size)

Improper State— An operation, operand;, .., operand,) tuple withatleast oneimproper element (depicted in purple)
Initial State Intermediate State Final State A Failure
v Chaining weaknesses underlying a vulnerability @ Cconverging vulnerabilities

Fig. 17. BF states of Heartbleed

31


https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://cwe.mitre.org/data/definitions/125.html

NIST SP 800-231
July 2024

The bug was both in the ss1\d1 both.cand ss1\t1_1ib. c files of the OpenSSL imple-
mentation of the TLS protocol [28]. Analysis of the C code before the fix (see Fig. 18 for
d1_both.c) shows that the very first improper BF state is in the data verification phase,
where the semantics of the input should be checked and corrected. The pointer p (see line
1450 in Fig. 18) is to a record of type SSL3_RECORD (see the top of Fig. 18) whose second
field holds the 1ength. The payload variable is declared as an unsigned int (see line
1452) and can be a huge number. It is assigned the value of the 1ength field of p via the
n2s macro (see line 1457). That is input data that supplies the length of an array (i.e., a
buffer), but it is not checked before use toward the actual array size (i.e., the number of
elements in the record data). Its value is not verified. This BF bug state is the first of a chain
of improper states that would lead to buffer over-read. It is an instance of the BF Data Ver-
ification (DVR) class [1] as the (Verify: Missing Code, Data) tuple with an improper Verify
operation element (see the first state in Fig. 17) — the entire data verification operation is
absent — that results in an Inconsistent Value error.

Then, memcpy () reads payload number of bytes from the object pointed by p1 and
copies them to the object pointed by bp (see line 1480 in Fig. 18). Following the naive
C implementation of memcpy () at the bottom in Fig. 18, bp and p1 are passed by ref-
erence via the dst and src arguments, and the huge payload length is passed via the n
argument. First, one byte is read from p1 and copied to bp. Until the huge payload length
is reached, both pointers move one byte up, and the newly pointed by p1 byte is read
and copied. However, while bp is allocated large enough at up to 1+2+65535+16 bytes
(seelines 1474 and 1475 in Fig. 18), p1 points to an array with a reasonable size (see line
1458). As the content of this array is read and copied to bp, so too is a huge amount of
data from over its upper bound.

The analysis reveals two fault states: when p1 is repositioned over the array upper bound
and when data values are read from there. The former is an instance of the BF Memory
Addressing (MAD) class [1] as the (Reposition, Data: Wrong Size, Type, Address, Size) tuple
with an improper Data operand element (see the second state in Fig. 17) that results in
an Overbound Pointer error. There is no bug in the Reposition operation itself, but a value
that is inconsistent with the size of the p1 object is used to control the iteration. The latter
is an instance of the BF Memory Use (MUS) class [1] as the (Read, Data, Type, Address:
Overbound Pointer, Size) tuple with an improper Address operand element (see the third
state in Fig. 17) that results in a Buffer Over-Read final error. Again, there is no bug in the
Read operation itself, but because pl points overbound, it is possible to read data that
should not be read (i.e., buffer over-read).

The three-state BF chain so far (see the upper row in Fig. 17) shows that data can be read
from over the bound of the array pointed by p1. However, it does not show why an exploit
would reach sensitive information, such as private keys or login credentials. The vulnera-
bility triggered by the missing size verification bug is only a part (although the main one)
of the puzzle.
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typedef struct ssl3 record st

{
int type; X
unsigned int length;
unsigned int off;
unsigned char *data; */
unsigned char *input;
unsigned char *comp;
unsigned long epoch;
unsigned char seq num[8];

} SSL3_RECORD;

1448 dtlsl process_heartbeat (SSL *s)
1449 {

1450 unsigned char *p = &s->s3->rrec.datal[0], *pl;
1451 unsigned short hbtype;

1452 unsigned int payload;

1453 unsigned int padding = 16;
1454

1455

1456 hbtype = *p++;

1457 n2s (p, payload);

1458 | pl = p; %

1465 if (hbtype == TLS1 HB REQUEST)

1466 {

1467 unsigned char *buffer, *bp;

1470

1471

1472

1473

1474 buffer = OPENSSL malloc(l + 2 + payload + padding);
1475 bp = buffer; "
1476 h
1477

1478 *bp++ = TLS1 HB RESPONSE;

1479 s2n (payload, bp); ‘/

1480 memcpy (bp, pl, payload);

void *memcpy (void *dst, const void *src, size_t n)

{

size t i payload
for Yi=0; i<n; i++)
* (char *) dst++ = *(char *) src++;
return dst;
} bp pl

Fig. 18. C code of heartbeat () and naive memcpy ()

There must have been another coding error due to which an unused object with sensitive
data was left in memory unaware of the risks. The bug state of this parallel vulnerability is
again an instance of the BF MUS class but as the (Clear: Missing Code, Data, Type, Address)
tuple with animproper Clear operation (see the second chain in Fig. 17) that results in a Not
Cleared Object final error. Converging the final errors from both chains (i.e., buffer over-
read and not cleared object), the vulnerable software can now reach and expose sensitive
information.
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The bug and fault state automata of Heartbleed (see Fig. 17) expresses it as two converging
vulnerability chains of underlying weaknesses. Missing input data verification leads to the
use of inconsistent size for a buffer and allows for a pointer reposition over its bound, which
— converging with missing clear — allows for remote reads and the exposure of sensitive
information. Multiple exploits of Heartbleed, each exposing up to 64KB of memory, can
accumulate huge amounts of data, such as “secret keys used for certificates, user names
and passwords, instant messages, emails, and business-critical documents and communi-
cation” [29].

The fix of the bug in the main Heartbleed chain was to add input data semantics checks and
silently ignore the heartbeat message if the requested length was larger than the actual
array size (see Fig. 19) [30]. Lines 1468 and 1469 discard heartbeats with zero length. Lines
1472 and 1473 ensure that the actual length of the record data is sufficiently large.

+

v -3 26 mEEE  ss1/d1_both.c [OJ

g @@ -1459,26 +1459,36 @@ dtlsl_process_heartbeat(SSL *s)
1459 1459 unsigned int payload;
1460 1460 unsigned int padding = 16; /* Use minimum padding *
1462 - /* Read type and payload length first */
1463 hbtype = *p++;
1464 n2s(p, payload);
1465 pl =p;
1466
1467 1462 if (s allback)

ck(@, s->version, TLS1_RT_HEARTBEAT,

1469 1464 &s->s3->rrec.data[@], s->s3->rrec.length,
147 s, s->msg_callback_arg);

1467 + /* Read type and payload length first */

1468 + if (1 + 2 + 16 > s->s3->rrec.length)

1469 + return @; /* silently discard */

1470+ hbtype = *p++;

1471 + n2s(p, payload);

1472  + if (1 + 2 + payload + 16 > s->s3->rrec.length)

1473 + return @; /* silently discard per RFC 6520 sec. 4 */

1474 + Pl = p;

Fig. 19. Heartbleed fix in Heartbeat

For more details on the BF Vulnerability State Model, refer to the forthcoming SP 800-231D,
Bugs Framework: Vulnerability Models.
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7.2. BF Vulnerability Specification Model

The BF Vulnerability Specification Model defines a vulnerability specification as a chain
of (cause, operation)—consequence relations (i.e., weakness triples) with operation and
operand attributes and consequence~.cause between weaknesses propagation (see Fig.
20). The model reflects the BF taxonomy structure (see Sec. 6) and the BF Vulnerability
State Model (see Sec. 7.1). For simplicity, Fig. 20 does not visualize vulnerability conver-
gence and chaining as Fig. 16 does. However, see Fig. 21 for a demonstrative example of
vulnerability convergence.

The BF allows for the expression of a weakness as a (cause, operation)—consequence
causal triple with operation and operand attributes. A cause is a bug in an operation or
a fault of an operand, and a consequence is the erroneous result from the operation. Bugs
are code or specification defects, and faults are input operand defects. The output errors
from operations propagate to faults or are final errors that introduce exploit vectors toward
failures. A fault is of a name, data, type, address, or size. (see Sec. 3 and 4).

Causation within a weakness is by meaningful (cause, operation)—consequence relations.
That is, the sets of valid relations defined for each BF taxonomy (see Sec. 6) restrict it.
The bug or faulty input operand of an operation results in an error or a final error as
a valid (bug, operation)—error, (fault, operation)—-error, (bug, operation)—final error,
or (fault, operation)—final error weakness triple. For example, (Under-Restrictive Policy,
Validate)— Source Code Injection and (Mismatched Argument, Coerce)— Truncated Value
are meaningful weakness triples, but (Underbound Pointer, Write)— Buffer Overflow is not,
as the pointer is below the lower bound while the Write is over the upper bound.

Causation between weaknesses is by error type to fault type match, and error value~fault
value match or — for weaknesses of different BF class types — a meaningful values prop-
agation (see Sec. 6). It is also guided by the valid flow of operations defined by the
BF Bugs Models. If the causation between weaknesses does not follow the proper op-
eration flow, an operation must be missing, which indicates an Missing Code bug. For
example, (Wrong Type, Coerce)—Flipped Sign ~(Wrong Argument, Evaluate)— Under
Range is a valid weakness causation because the triples specify valid within-weakness re-
lations, the Evaluate operation may follow the Coerce operation (see Fig. 10), and Flipped
Sign~Wrong Argument is a valid data error-to-fault by value propagation.

The (Erroneous Code, Verify)— Inconsistent Value~.(Wrong Size, Reposition)—Overbound
Pointer~.(Overbound Pointer, Write)—Buffer Overflow are valid weakness causations, as
the data and address by type, Inconsistent Value~Wrong Size by value, and Overbound
Pointer exact value propagation are all valid. For a similar one-chain example, recall the
BadAlloc pattern from Sec. 3.3, Fig. 5 and see the BF CVE-2021-21834 specification at [1]).
For a convergence involving example, see the BF specification of Heartbleed below.
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Causation between vulnerabilities is by exploit result type~fault type propagation (i.e.,
the fault starts a new faults-only vulnerability). For example, exposed private keys may

become the fault that starts a new vulnerability.

BF Security Vulnerability Specification Model

Bug Type Buggy Operation Error Type,
Weakness Type y Operation, R o
Weakness; e Operandy,, ... Operandy;, ... !
Mechanism Source Code Execution Space Operand;; Kind Operand;; Kind
Valueyy, Valueq. Value . Valueq Valuesg
Operand; State Operand s State
(Bug, Operation,, Error;) « lookup_relation() Valueqqy Value sy
(Operation,, Operation,) «— lookup_flow()
Fault,.Type « Error,.Type
(Fault,, Error;) <« lookup_propagation()
Fault Type, Operation with Faulty Operand Error Type,
Weakness Type, ]
Fault Operation, _—
Weakness, ! Operandy, , ..., Operand,;, ... 2

Mechanism
Value,,,

Source Code
Value,.

Execution Space
Value,,

Operand,; Kind
Value,;s
Operand,; State

(Fault,, Operation,, Error,) « lookup_relation() Value,qy

(Operation,, Operation;) < lookup_flow()
Fault,.Type « Error,.Type
(Fault,, Error,) « lookup_propagation()

Fault Typey.1 Operation with Faulty Operand
Weakness Typey -
Operationy
Weaknessy Faulty. Operandy,, ..., Operand g, ...
Mechanism Source Code Execution Space Operandy; Kind
Valueym Valuey, Valuey, Valuey;s

Operandy; State
Valueyq

(Fault, ,, Operation,, Final Error) «<— lookup_relation()
(Final Error, Exploit,) < lookup_flow()

(Final Error, Exploit;) «— lookup_flow()

Failure Type,
Failure,

Exploit;
Vector;

Operand,s Kind
Value,ss

Operand,s State
Value,s,

Final Error Type

Final Error

Operand s Kind
Valueyss

Operand s State
Valueysy

Failure Typeg
Failureg

Exploitg
Vectorg

Bug Type — Code or Specification

Fault/Error Type— Data, Name, Type, Address, or Size

—> Causation within weaknesses— by valid (<cause, operation> — consequence) relations
¥ Causation between weaknesses— guided by flow of operations

Propagation between weaknesses — by same error type to fault type and by valid by name transition

Bug I:lOperation
Fig. 20. BF Vulnerability Specification Model

Fault / Error Final Error
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For example, the BF specification view of Heartbleed, CVE-2014-0160, is presented in Fig.
21. It expands the Heartbleed improper states view (see Fig. 17) via the BF taxonomic
representation of a weakness as a (cause, operation)—consequence triple with attributes
and its consequence~.cause propagation.

BF Specification of CVE -2014-0160 — Heartbleed
in OpenSSL v1.0.1 before v1.0.1g

_INP Weakness Code Defect Bug Operation Data Error

Data Verification Missing Code Verify Inconsistent Value

(DVR) in 'dtls1_process_heartbeat(SSL *s) length 'payload'
Mechanism Source Code Execution Space Data State
Range Third-Party Local Transferred
1+ 2+ 16 <=s->s3->rrec.length ssl /d1_both.c: 1462 via network

1+ 2+ payload + 16 <= s>s3->rrec.length ssl /t1_lib.c: 2591

_MEM Weakness

Data Fault

Operation Address Error

Memory Addressing Wrong Size Reposition Over Bound Pointer
(MAD) in 'memcpy(bp, pl, payload)' pointer 'pl'
Mechanism Source Code Execution Space Address State Size Kind
Sequential Third-Party Userland Heap Used

ssl /d1_both.c:1487
ssl /t1_lib.c:2620

for s=>s3->rrec.datal0]

Memory Corruption/Disclosure

_MEM Weakness Address Fault Operation Final Error
Memory Use Over Bound Pointer Read Buffer Over-Read
(MUS) . , T ; I [
in 'memcpy(bp, pl, payload) object pl
Mechanism Source Code Execution Space Address Kind Address State Size Kind
Sequential Third-Party Userland Huge Heap Used
ssl /d1_both.c:1487 up to 64kb per exploit
ssl /t1_lib.c:2620
Memory Corruption/Disclosure Failure
_MEM Weakness Code Defect Bug Operation Final Error
Memory Use Clear
(MUS) Missing Code — object > Not Cleared Object
Mechanism Source Code Execution Space Address Kind Address State Size Kind BF Tool, I. Bojanova
Sequential Codebase Userland Huge Heap Actual
up to 64kb per exploit
Bug |:| Operation Fault / Error Final Error A Failure

Fig. 21. BF specification of Heartbleed

Using the BF taxonomies of the involved weakness types, the (Missing Code, Verify)—
Inconsistent Value weakness (see the first triple in the first chain in Fig. 21) is an instance
of the BF DVR class. The missing input data verification (i.e., semantics check) security bug
leads to a Data Error — a data value that is inconsistent with the size of the array.
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The operation and operand attributes provide details on what, how, and where it went
wrong. The Mechanism, Source Code, and Execution Space attributes are about the Ver-
ify operation. Mechanism shows that the missing verification should have been checked
against range (i.e., the actual length). Source Code shows that the bug is in third-party soft-
ware — the d1l both.candt1_1ib. c files. Execution Space shows that the code with the
bug is running in an environment with local user (i.e., limited) permissions. The Data State
attribute is about the Data operand and shows that the data was transferred.

Next, the (Wrong Size, Reposition)— Overbound Pointer weakness (see the second triple
in the first chain in Fig. 21) is an instance of the BF MAD class. The wrong size Data Fault
at repositioning leads to a pointer pointing overbound (i.e., an address error). The Mech-
anism attribute for this weakness shows that the repositioning is sequential and iterates
over the buffer elements. The Execution Space is userland — an environment with priv-
ilege levels but in unprivileged mode. The Address State attribute shows that the buffer
is dynamically allocated in the heap. The Size Kind attribute shows that the iteration over
the elements of the buffer is limited by a used value (supplied with the request); it is not
limited by the actual size of the array.

Last in this chain, the (Overbound Pointer, Read)—Buffer Over-Read weakness (see the
third triple in the first chain in Fig. 21) is an instance of the BF MUS class. The overbound
pointer Address Fault results in a buffer over-read Memory Disclosure Final Error. The
Address Kind attribute shows that the accessed out-of-bounds memory is huge — up to
64KB of memory per request.

The converging vulnerability (see the second chain in Fig. 21) chain comprises another BF
MUS instance — a (Missing Code, Clear)—Not Cleared Object weakness. The missing clear
(change to a non-meaningful value, such as via zeroization) bug leads to an object with not
cleared data — a memory disclosure final error. The attributes are the same as for the BF
MUS weakness in the main vulnerability (see Chain 1in Fig. 21). However, this is a different
vulnerability, and the source code is in different software.

Combined, the memory disclosure final errors Buffer Over-Read and Not Cleared Object
cause an information exposure (IEX) security failure. Either the missing Verify bug or the
missing Clear bug has to be fixed to avoid this security failure.

The corresponding BF specification of Heartbleed — CVE-2014-0160.bfcve — in XML for-
mat is shown in Fig. 26. For more details, see BF CVE-2014-0160 Heartbleed at [1].

For more details on the BF Vulnerability Specification Model, refer to the forthcoming SP
800-231D, Bugs Framework: Vulnerability Models.
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8. BF Formal Language

The BF formal language is generated by the BF left-to-right leftmost derivation one-symbol
lookahead (LL(1)) attribute context-free grammar (ACFG) derived from the BF CFG. Since it
is based on an LL(1) grammar, the BF formal language is guaranteed to be unambiguous,
and the BF weakness and vulnerability specifications are guaranteed to be clear and pre-
cise.? The BF lexis, syntax, and semantics are based on the BF structured causal taxonomies
(e.g., Fig. 12), bugs models (e.g., Fig. 9), and vulnerability models (e.g., Fig. 16 and 20). Lexis
refers to the vocabulary (i.e., words and symbols) used by a specification language. Syntax
is about validating the grammatical structure (i.e., the form) of a specification. Semantics
is about verifying the logical structure (i.e., the meaning) of a specification.

The BF CFG is a powerful tool for specifying and analyzing security weaknesses and vulner-
abilities. It is defined in Listing 1 as a four-tuple

G=(V,X,R,S), (1)

where:

e Y defines the BF lexis (i.e., the alphabet of the CFG) as a finite set of tokens (termi-
nals) comprised by the sets of BF taxons and BF symbols

= {oa|a € XTaxon U LSymbol

¢ V and R define the BF syntax (i.e., the types of phrases and the rules of the CFG) as

o A finite set of variables (nonterminals)
V={8Vi,....Vy
and
o A finite set of syntactic rules (productions) in the form
R={Ar—w|AeV Awe (VUI)" ,

where:
(V U Z) “isa string of tokens and/or variables, and
A —— ® means that any variable A occurrence may be replaced by ®.

e § ¢V isthe predefined start variable from which all BF specifications derive.

2Clear means easy to understand, straightforward, and unambiguous with no room for confusion or misin-
terpretation. Precise means exact, accurate, and specific, which also implies unambiguous.
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A BF specification starts from S and ends with the empty string. The derivation is via a se-
guence of steps in which nonterminals are replaced by the right-hand side of a production.
The production rules are applied to a variable regardless of its context.

The BF formal language is generated by the BF LL(1) ACFG G = (V,%,R,S) (see Listing 8)
that augments the syntax of the BF CFG with semantic rules (see Listing 7). It is defined in
Listing 2 as the set L(G) of all strings of tokens @ derivable from the start variable S.

L(G)={wec X : 5= 0}, (2)
where:
e Y* is the set of all possible strings that can be generated from X tokens
e Sis the start variable
e o == f3 means string o derives string .

Strings involving nonterminals are not part of the language (i.e., @ must be in ¥* — the set
of strings made from terminals).

8.1. BF Lexis

The BF formal language lexis refers to the vocabulary of the BF formal language: the set of
tokens X. Listing 3 defines it as the set of BF taxons (see Sec. 6) and the set of symbols for
converging and chaining vulnerabilities (see Fig. 16):

¥ = {ETaxon,£Symbol (3)

YTaxon = {Operation, BugType, Bug, FaultType, Fault, ErrorType, Error,
FinalErrorType, FinalError,OperationAttribute, OperandAttribute, ...

YX.Symbol = {CausationSymbol, ChainingSymbol,ConvergingSymbol ,
SemicolonSymbol,CommaSymbol, Le ftAngleSymbol, RightAngleSymbol

The BF CFG lexis defines the BF taxons (e.g., for BF operations, bugs, faults, final errors,
operation attributes, operand attributes, and failures). It also defines the set of BF symbols
for specifying causation within a weakness (—), chaining weaknesses or vulnerabilities
(m), and converging vulnerabilities (®). The taxons are in quotes (e.g., ‘Missing Code’ or
‘Query Injection’) and considered literal words.

The BF classes are of a ‘Weakness’ or ‘Failure’ category. Listing 4 provides an excerpt of
the BF lexis expressed via the Extended Backus-Naur Form (EBNF) [31] using the following
meta-notations:
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Symbol ‘ Meaning

= defining
| definition separator
; terminator

Category = '"Weakness' | 'Failure'; (4)
ClassType ='_INP"|' MEM' |'_DAT' | ...
Class='DVL' |'DVR |"MAD' |'"MMN' |'MUS' |'DCL’ |'NRS" |'TCV' |'TCM' | ...;

Operation = 'Validate' |'Sanitize' |'Verify' |'Correct' |'Initialize Pointer’ |'Dereference
| 'Reposition’ |'Reassign’ |'Allocate’ |'Extend' |'Reallocate — Extend’
| 'Reallocate — Reduce' |'Reduce’ |'Deallocate’ |'Initialize Ob ject’ |'Read’
| 'Write' |'Clear’ |'Declare’ |'Define' |'Refer’ |'Call’ |'Cast’ |'Coerce

| 'Calculate’ |'Evaluate’ .. .;
BugType ='Code Bug' |'Specification Bug';

Bug = 'Missing Code' |'Erroneous Code' |'Mismatched Operation’ | ...
| 'Under — Restrictive Policy' | Over — Restrictive Policy
| 'Missing Modifier' |'Wrong Modifier
| ’AnonymousScope’ |'W rongScope'
| 'Missing Qualifier' |'Wrong Qualifier'| ...;

FaultType ='Name Fault' |'Data Fault' |'Type Fault' |'Address Fault';

Fault ='Missing Overridden Function' |'Missing Overloaded Function’
| 'Wrong Object Resolved' |'Wrong Function Resolved' | ...;
| "Corrupted Datd' |'Tampered Datd' |'Corrupted Policy Datd
| 'Tampered Policy Datd' |'Invalid Data' |'NULL Pointer’
| 'Hardcoded Address’ |'Single Owned Address' |'Wrong Index' |"'Wrong Size'
| 'Flipped Sign' |'Wrong Argument’ |'Re ference vs. Dereference’ | ...
| 'Cast Pointer’ |"'Wrong Type' | 'Wrong Index Type' |'Insuf ficient Size'
| 'Downcast Pointer’ |'Wrong Argument Type' |'Wrong Object Type Resolved' | ...
| 'Wild Pointer’ | 'Dangling Pointer’ |'Untrusted Pointer’

| 'Overbound Pointer’ |'Underbound Pointer’ | "'Wrong Position Pointer’ | ...
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ErrorType ='Name Error’ |'Data Error’ |'Type Error’ |'Address Error’;

FinalErrorType ='Injection FinalError' |'"Memory Corruption/Disclosure FinalError’ |

'Entity Access FinalError’

FinalError = 'Query Injection’' |'Command Injection' |'Source Code Injection' | ...;
| 'NULL Pointer Dereference' |'Untrusted Pointer Dere ference
| 'Uninitialized Pointer Dereference’ |'Memory Leak' |'Memory Overflow'
| 'Double Deallocate’ |'Object Corruption’ |'Not Cleared Ob ject’
| 'Type Confusion' | 'Use After Deallocate’ |'Buf fer Overflow
| 'Buffer Underflow'|'Buf fer Over — Read' |'Buf fer Under — Read’
| 'Subtype Confusion’ |'Undefined' | ...;

/

CausationSymbol =" —'; SemicolonSymbol =""; LeftAngleSymbol ='{/;
ChainingSymbol =" ~'; CommaSymbol =" ; RightAngleSymbol =")’
ConvergingSymbol ='d/;;

8.2. BF Syntax

The BF formal language syntax is about validating the grammatical structure of a BF spec-
ification. It adheres to the BF production rules (i.e., nonterminals) for constructing (pro-
ducing) valid specifications of the language that correspond to the BF Vulnerability Specifi-
cation Model structure and flow (see Fig. 20), including the converging and chaining rules
(see Fig. 16) defined by the BF Vulnerability State Model.

The BF CFG syntax defines a vulnerability that possibly converges with other vulnerabilities,
leading to one or more failures. The CFG production rules are expressed via the EBNF using
the following meta-notations:

Symbol(s) | Meaning

= defining

| definition separator

[] option — zero or one occurrences

{} repetition — zero or more occurrences
() grouping

; terminator

(5)
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S = Vulnerability," ~', Failure;
Vulnerability = WeaknessChain, {'®', WeaknessChain};
WeaknessChain = Weakness, {'~', Weakness};
Weakness = ’<’, Cause,’',, Operation,’)',” —' Consequence;
Cause = Bug
| Fault,
Consequence = Error
| FinalError;

Error = Fault;

A vulnerability is defined as a chain of weaknesses, possibly converged and chained with
other vulnerabilities. A weakness is defined as a (cause, operation)— consequence triple.
A cause is defined as a bug or a fault. A consequence is defined as an error or a final error
(see Listing 5). However, according to the BF Vulnerability Specification Model (see Fig.
20), only the cause of the first weakness can be a bug, and only the last consequence can
be a final error.

The last production in Listing 5 expresses that the same set of taxons corresponds to Fault
and Error, although they are different non-terminals — the former is a cause of a weakness,
the latter is a consequence of a weakness. An Error ~ Fault propagation may be on a
different level of abstraction (e.g., Inconsistent Value ~ Wrong Size).

A vulnerability with a single weakness is the only case in which a weakness is defined with
both a bug cause and a final error consequence. A propagation weakness is caused by a
fault and results in an error. Listing 6 reflects these rules in the productions of Listing 5 and
eliminates the Cause and Consequence variables.

(6)

S = Vulnerability," ~', Failure;
Vulnerability = WeaknessChain, {'®', WeaknessChain};
WeaknessChain = SingleWeakness
| FirstWeakness, {'~', Weakness},' ~', LastWeakness;

SingleWeakness = '{', (Bug | Fault), '), Operation,')'," —', FinalError;

FirstWeakness = '{', Bug | Fault),'), Operation, '), —', Error;

/

(
Weakness = '(
(

/ !/ . ANANA /!
, Fault, ', Operation,")'," —', Error;

17!

LastWeakness = '{', Fault,’,, Operation,")," —'  FinalError;

To ensure that the BF specifications are unambiguous, the next step is to demonstrate the
successful derivation of a BF LL(1)® formal grammar from the BF CFG. A CFG is an LL(1)

3The most restrictive LL(1) is chosen for the simplicity and efficiency of parser implementations.
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grammar if and only if only one token (terminal) or variable (nonterminal) is needed to
make a parsing decision [32]. LL(1) grammars are not ambiguous and not left-recursive.

The BF LL(1) formal CFG is derived from the BF EBNF productions on Listing 6 via left fac-
torization and left recursion elimination. It is suitable for recursive descent parsing, as the
start of each production option is unique. The rule to choose on each step is uniquely
determined by the current variable and the next taxon (if there is one).

Listing 7 defines the BF LL(1) CFG production rules for constructing valid, unambiguous BF
specifications. Compared to Listing 6, it also details the bug, fault, error, and final error
type non-terminals.

(7)

S = Vulnerability, Converge_Failure;
Vulnerability = '(', Bug_Fault,’,, Operation,’)," —',
OperAttrs_Error_FError;
Bug_Fault = BugType, ', Bug
| T_Fault;
OperAttrs_Error_FError = OperationAttribute, OperAttrs_Error_FError
| ErrorType, ', Error,’ ~/,
/<', T _Fault,’), OprndAttrs_Operation
| FinalErrorType,’ ', FinalError;
OprndAttrs_Operation = OperandAttribute, OprndAttrs_Operation
| Operation, '), —', OperAttrs_Error_FError;
Converge_Failure ='a®', Vulnerability, Converge_Failure
| —', Failure;
T _Fault = FaultType, ', Fault;

The BF specifications are derived from the start symbol S by step-by-step production appli-
cation, substituting for the leftmost terminal one at a time until the string is fully expanded
(i.e., consists of only terminals).

8.3. BF Semantics

The BF formal language semantics is about verifying the logical structure of a BF specifi-
cation. It is defined by extending the BF LL(1) CFG to a BF LL(1) ACFG with static semantic
rules that adhere to the BF Vulnerability Models causation and propagation rules (see Fig.
16 and 20). The static semantic rules are expressed via a set of grammar attributes (i.e.,
properties to which values can be assigned), a set of semantic functions for computing the
attribute values, and a possibly empty set of predicate functions for each production rule
(e.g., Donald Knuth'’s attribute grammars [33]).
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Listing 8 presents the BF LL(1) ACFG syntax and semantic rules. If a nonterminal appears in
more than one rule, it gets subscripted. The semantic rules prevent invalid within weak-
nesses relations and error~fault by value between weaknesses propagation and check for
valid flow by operation.

The BF LL(1) ACFG adds the Type synthesized attribute for the nonterminals Fault and Er-
ror to store the operand types (i.e., Name, Data, Type, Address, or Size) and FinalError to
store the final error types (e.g., Injection, Memory Corruption/Disclosure, Access, and Type
Compute). The predicates express propagation by error type and fault type.

(8)
Syntax Rules:

S = Vulnerability, Converge_Failure;
Vulnerability = (', Bug_Fault,’, Operation,,") ' —',
OperAttrs_Error_FError;
Bug_Fault = BugType, ', Bug
| FaultType, ', Fault;
OperAttrs_Error_FError = OperationAttribute, OperAttrs_Error_FError
| ErrorType, ' Error,’ A/,
’(’, FaultType, ', Fault;,',, OprndAttrs_Operation
| FinalErrorType,':', FinalError;
OprndAttrs_Operation = OperandAttribute, OprndAttrs_Operation
| Operationy, "', " —', OperAttrs_Error _FError,
Converge_Failure ='®', Vulnerability, Converge_Failure
| Failure;
T_Fault = FaultType,', Fault;

Semantic Rules:

(Bug, Operationy, Error) < lookup_relation()

(Bug, Operationy, FinalError) < lookup_relation()

(Faultl, Operationy, Error), k> 1 <« lookup_relation()

(Faultl, Operationy, FinalError), k> 1 « lookup_relation()
(Operationy, ... , Operationy), k > 1 <+ lookup_flow()

Fault; < if (Fault,.ClassType == Error.ClassType) then Error

else (Faulty, Error) < lookup_propagation()

Predicates:
Fault,.Type == Error.Type
ExploitVector.Type == FinalError.Type
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For example, listing 9 expresses the formal BF specification of CVE-2014-0160 Heartbleed.
(9)

BF INP DVR
(Code Bug: Missing Code, Verify) — Data Error: Inconsistent Value
Mechanism: Range, Source Code: Third — Party, Execution Space: Local
Data State: Transferred

%

BF _MEM MAD
(Data Fault: Wrong Size, Reposition) — Address Error: Over Bound Pointer
Mechanism : Sequential, Source Code : Third — Party, Execution Space : Userland
Address State: Heap, Size Kind : Used

%

BF _MEM MUS
(Address Fault: Over Bound Pointer, Read) — Memory Corruption/Disclosure
Final Error: Buf fer Over — Read
Mechanism: Sequential, Source Code: Third — Party, Execution Space: Userland
Size Kind: Used, Address Kind: Huge, Address State: Heap
S

BF _MEM MUS
(Code Bug: Missing Code, Clear) — Memory Corruption/Disclosure
Final Error: Not Cleared Ob ject
Mechanism: Sequential, Source Code: Third — Party, Execution Space: Userland
Address Kind : Huge, Address State : Heap, Size Kind : Actual

%

IEX

For the fully expressed BF lexis, syntax, and semantics in EBNF, refer to the forthcoming SP
800-231E, Bugs Framework: Formal Language.
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9. BF Secure Coding Principles

The Software Engineering Institute (SEI) Computer Emergency Response Team (CERT) Cod-
ing Standards (e.g., [34] and [35]) and the Open Worldwide Application Security Project
(OWASP) Secure Coding Practices [36] set the current state of the art in secure coding.
They provide rules and practices that are grouped by topic and described in natural lan-
guage. The CERT rules are also programming language-specific, though they do provide
useful non-compliant code examples and compliant solutions.

In contrast, the BF bugs models, weakness and failure taxonomies, and vulnerability mod-
els (see Sec. 5, 6, and 7) form the basis for the formal definition of secure coding principles
by software, firmware, or hardware execution phase, that are also programming language-
independent. For example, the BF Input/Output Check Bugs Model (see Fig. 8) and classes
(see BF _INP at [1]) address input/output check safety (e.g., no SQL injections or use of
wrong input values). The BF Memory Bugs Model (see Fig. 9) and classes (see BF _"MEM at
[1]) address memory safety (e.g., no use after frees or buffer overflows). The BF Data Type
Bugs Model (see Fig. 10) and classes (see BF _DAT at [1]) address data type safety (e.g., no
integer overflows or subtype confusions). The BF Vulnerability Models rules (see Sec. 7),
which are reflected in the BF semantics, help identify the dependencies between different
kinds of code safety.

The BF bugs models define the sets of operations where code safety could break. They
also define the proper operation flow within and between execution phases that — if not
followed — could also break code safety. The x-axis of a model reflects temporal safety.
The y-axis of a model may reflect spatial safety. The BF weakness taxonomies are organized
by the bugs models phases and define why (i.e., bugs and faults), where (i.e., operations),
and how (i.e., errors and final errors) the code safety could break. The BF vulnerability
models define the causation, propagation, and convergence rules that can help identify
code safety dependencies.

9.1. Input/Output Check Safety

Input/output check safety ensures the use of proper input/output data in code. That is,
data is properly validated and sanitized and/or verified and corrected. It is addressed by
the BF Input/Output Check Bugs Model (see Fig. 8) operation flow and the BF DVL and
DVR classes (see BF _INP at [1]) that define why, where, and how input/output check safety
could break. It relates to the BF data operations Validate, Sanitize, Verify, and Correct.
Input/output data must be validated (syntax check) and then sanitized (escaped, filtered,
or repaired) and/or verified (semantics check) and then corrected (assigned a new value
or removed), if needed.

Avoiding the meaningful (bug/fault, operation) couples of the BF _INP classes would guar-
antee input/output check safety. That is, avoiding the BF DVL bugs (i.e., missing or erro-
neous validation, or under-restrictive or over-restrictive validation policy) and faults (i.e.,
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corrupted or tampered data or validation policy) guarantees safety from errors, such as
Invalid Data and final errors, such as Query Injection (e.g., SQL injection) and Source Code
Injection (e.g., Cross Site Scripting (XSS)). Injections enable the following security failures:
IEX, TPR, ACE, and its sub-case RCE. Avoiding the BF DVR bugs (i.e., missing or erroneous
verification or under-restrictive or over-restrictive verification) and faults (i.e., invalid data)
guarantees safety from errors, such as Wrong Value, Inconsistent Value, and Wrong Type.

9.2. Memory Safety

Memory safety ensures the proper access and use of memory in code. That is, pointers
to objects are properly initialized, dereferenced, repositioned, or reassigned, and objects
are properly allocated, initialized, read, written, resized, cleared, or deallocated. It is ad-
dressed by the BF Memory Bugs Model (see Fig. 9) operation flow and the BF MAD, MMN,
and MUS classes (see BF _"MEM at [1]) that define why, where, and how memory safety
could break.

Memory safety has both temporal and spatial aspects that depend on pointer safety. Tem-
poral memory safety ensures that an object memory is only accessed or used during its
life cycle and only via its proper pointers (owners). Access is via BF MAD Dereference of
a pointer to the object; use is via BF MUS Read or Write of object data. The first opera-
tion over an allocated object must be BF MUS Initialize Object, and the last one before it
is deallocated must be BF MUS Clear (see Fig. 9).

Examples of temporal memory safety are uninitialized object, use after deallocate (i.e.,
use after free or use after return in C), and double deallocate (i.e., double free in C) safety.
The first prevents the use of non-meaningful data values, the second prevents the use of
data values via dangling pointers, and the third prevents the deallocation of deallocated
objects via dangling pointers. The following BF weakness specifications detail what bugs or
faults could break these three kinds of temporal memory safety: (Missing Code/Erroneous
Code, Initialize Object)— Uninitialized Object, (Dangling Pointer, Read)— Use After Deal-
locate, and (Dangling Pointer, Deallocate)—Double Deallocate. A dangling pointer holds
the address of its successfully deallocated object (i.e., a pointer to a freed heap object or
address of a stack object returned by a function) and is the consequence of a (Missing
Code, Reassign)—Dangling Pointer (see the discussion on pointer safety below) after a
Deallocate operation.

Spatial memory safety ensures access or use within the bounds of an allocated object and
only via its pointers (owners). In addition to the MAD Dereference and MUS Read and Write
operations, it also relates to the MAD and MDL operations along the y-axis of the _"MEM
Bugs Model (see Fig. 9) that affect the object boundaries: Allocate, Extend, Reallocate-
Extend, Reduce, and Reallocate-Reduce. The size of the object is always strictly defined,
and the pointer must not exceed its boundaries.
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Examples of spatial memory safety are buffer overflow and underflow safety, and buffer
over-read and under-read safety. The following BF weakness specifications detail what
bugs or faults could break these two kinds of spatial memory safety: (Overbound Pointer,
Write)— Buffer Overflow and (Underbound Pointer, Read)— Buffer Under-Read. For con-
sideration, there are also the fault weaknesses that may cause them, such as (Wrong Size,
Allocate/Reduce)— Insufficient Size, (Wrong Size, Reposition)— Underbound Pointer, and
(Insufficient Size, Reposition)—Overbound Pointer, which in turn are caused by the decla-
ration of verification bug weaknesses. Buffer overflows and underflows enable TPR, DOS,
and ACE failures. Buffer over-reads and under-reads enable IEX failures.

Allocation in excess or failure to deallocate unused objects (see the MMN Memory Over-
flow and Memory Leak final errors, correspondingly) could exhaust memory. The former
impacts spatial memory safety. The latter directly impacts temporal safety and indirectly
impacts spatial memory safety. Both enable DOS failures.

Pointer Safety ensures that an object is only accessed via its proper pointers (owners). It
relates to the MAD, MAL, and MDL operations (see Fig. 9) that assign or reassign the object
pointer (owner): Initialize Pointer, Allocate, and Reassign. Use of Wild Pointer, Untrusted
Pointer, Cast Pointer, or Forbidden Address (including Null Pointer) would break pointer
safety and lead to final errors such as Object Corruption, Memory Leak, Type Confusion,
and NULL Pointer Dereference, respectively. Subsequently, bugs and faults covered by any
non-_MEM classes, whose operations produce such pointers, should also be avoided.

According to the proper memory-related operation flow (see Fig. 9), a pointer may be ini-
tialized before or after the allocation of its object. However, it must be initialized before
it is used to address its object, repositioned after the reallocation of its object, and reas-
signed after the deallocation of its object. These correspond to the MAD Wild Pointer and
Dangling Pointer errors. If an object is reallocated because of being extended or reduced,
all of its owners must be repositioned.

An object must not be read before it is initialized (i.e., the first write) and must be cleared
(i.e., the last write) before it is deallocated. An unneeded object must be cleared and
deallocated, and all of its pointers (owners) must be reassigned. It should not be possible to
access and use its data after it is deallocated. These correspond to the BF MUS Uninitialized
Object error and Not Cleared Object, Memory Leak, and Use After Deallocate (i.e., use after
free or use after return) final errors. Memory leaks enable IEX and DOS failures. The use
of deallocated objects enables IEX, TPR, DOS, and ACE failures.

Temporal memory safety may depend on input data safety. For example, verification of
an input size toward the actual size of a buffer before Read or Write will eliminate related
buffer overflows. Spatial memory safety may depend on data type safety. For example,
avoiding Cast-related data errors that may lead to the use of an incorrect element size and
Reposition overbound or underbound will eliminate related buffer overflows.
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Avoiding the meaningful (bug/fault, operation) couples of the BF _"MEM classes would
guarantee temporal and spatial memory safety, as well as general pointer safety. Avoiding
erroneous pointer arithmetics will also eliminate related buffer overflows. For example,
proper type declaration would avoid type coercion at argument passing to functions that
calculate the size of a buffer and result in flipped signs and wrap-around (e.g., integer
overflows), rounded (i.e., breaking floating point safety), or truncated values.

9.3. Data Type Safety

Data type safety ensures the proper use of entities (e.g., objects, functions, and data types)
in code. That is, objects, functions, and data types are properly declared, defined, and
referenced; objects are properly typecast or coerced; and functions are correctly called
to perform error-free type-related computations. It is addressed by the BF Data Type Bugs
Model (see Fig. 10) operation flow and the BF DCL, NRS, TCM, and TCV classes (see BF _DAT
at [1]) that define why, where, and how data type safety could break.

Data type safety has both temporal and spatial aspects. Temporal data type safety ensures
the use of data values that are compatible and data types that are non-confused with the
declared data type of an object. Entities must not only be declared but also defined and
their names properly resolved and bound. Compute and evaluate functions must also be
defined with the appropriate argument data types. Temporal data type safety is mostly
covered by the type system of the programming language. However, DCL bugs that cause
errors (e.g., Missing Overloaded Function) or propagate to faults (e.g., Wrong Argument
Type) could still break data type safety.

Spatial data type safety ensures proper object type conversions and use of its layout. It
is addressed by the operations that affect the interpretation of the object layout or the
elements’ size along the y-axis of the _DAT Bugs Model (see Fig. 10): TCV Cast and Coerse.

Examples of spatial data type safety are cast pointer safety, coerced object safety, and
subtype safety. The first prevents a pointer and its object from having incompatible data
types. A declared overloaded function must have implementations for all of the needed
argument types. Otherwise, Coerce will be forced on the argument values. The last exam-
ple prevents a pointer and its object from having confused data types. A cast pointer can
cause different element size interpretations and overall object size that may lead to buffer
overflows. A wrong argument type coercion can result in truncated or rounded data val-
ues. Downcasting a pointer to a sibling class can cause Subtype Confusion and enable an
ACE or RCE (of functions of the sibling class) failure.

Data type safety may depend on input data safety. For example, verification of the target
data type toward the object (source) data type before the Cast of an object pointer will
eliminate related Cast Pointer errors and Type Confusion final errors.

Avoiding the meaningful (bug/fault, operation) couples of the BF _DAT classes would guar-
antee temporal and spatial data type safety.
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The methodology for the definition of secure coding principles by software, firmware, or
hardware execution phase involves the following seven steps (also see Fig. 22):

1. BF Bugs Model: Identify the BF Bugs Model that corresponds to the execution phase
for which secure coding principles are to be defined.

2. Temporal and Spatial Operations: Determine the operations along the x-axis of the
Bugs Model that relate to the temporal safety for the BF class type. If a y-axis exists,
determine which operations relate to its spatial safety for the BF class type.

3. Operations Flow Rules: Formally describe the proper operations flow according to
the semantic graphs of the BF Bugs Model.

4. BF Class Type: Identify the BF Class Type that corresponds to the BF Bugs Model and
the semantic matrices for each of its BF classes.

5. Spatial Safety Rules: Formally describe what (i.e., bugs or faults) how (i.e., errors
and final errors) could break the code safety via spatial operations according to the
within weakness causation semantic rules of the BF classes.

6. Temporal Safety Rules: Formally describe what (i.e., bugs or faults) and how (i.e.,
errors and final errors) could break the code safety via temporal operations according
to the within weakness causation semantic rules of the BF classes.

7. Dependency Rules: Identify code safety dependencies according to the BF between
weaknesses causation and propagation semantic rules.

BF Secure Coding Principles Methodology

1. BF Bugs Model \‘ 4. BF Class Type
/ BF Class

3. BF Semantic Graph ) )
2. Temporal Safety Operations Semantic Matrix

Operations Flow Rules

\4

Spatial Safety Operations

\> 5. Spatial Safety Rules

6. Temporal Safety Rules 7. Dependency Rules

Fig. 22. BF secure coding principles methodology

While the BF formal language is descriptive, the secure coding principles are prescriptive
against bugs and faults per operation that break specific kinds of code safety.

For more secure coding principles and details, refer to the forthcoming SP 800-231G, Bugs
Framework: Secure Coding Principles.
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10. BF Tools

The BF features generation tools that reflect the BF taxonomy, models, and formal lan-
guage syntax and semantics. The BFCWE tool and the BFCVE tool facilitate the generation
of formal weakness and vulnerability specifications. The BF tool guides the creation of com-
plete BF vulnerability specifications. The related BF APIs at [1] provide BF data retrieval and
specific tool functionalities.

The BFDB database hosts the BF data. The BF taxonomy structure and semantics rules are
organized via a relational database with graph features and via XML and JSON data inter-
change formats (query them via the BF API at [1]). The BFDB contains the types, names, and
definitions of the BF taxons, their relationships within the taxonomy, and the BF weakness
and vulnerability semantic relation and propagation matrices and operation flow graphs.
The BF mashup database organizes additional data for querying BF toward the CWE, CVE,
NVD, GitHub [37], KEV [6], and Exploit Prediction Scoring System (EPSS) [38].

10.1. BFCWE Tool

The BFCWE tool facilitates the creation of CWE-to-BF (CWE2BF) mappings by weakness op-
eration, error, final error, and possibly entire (cause, operation)—consequence) weakness
triples [39]. It also generates BFCWE formal specifications as entries of the BFCWE security
weakness types dataset and graphical representations of the CWE2BF mappings and the
BFCWE specifications to enhance understanding (e.g., see [16-18, 22]).

Meticulous analysis of the natural language descriptions of CWEs, relevant code exam-
ples, and descriptions of related CVEs is conducted to create CWE2BF mappings by weak-
ness operation, error, and final error and then by detailed (bug, operation)—error, (fault,
operation)—-error, (bug, operation)—final error, and (fault, operation)—final error weak-
ness triples [40].

The BFCWE tool is utilized to generate the graphical representations of the CWE2BF map-
pings for enhanced understanding as directed graphs with parent-child CWE relationships.
Examples include _INP CWE2BF [16], .MEM CWE2BF [17], and _DAT CWE2BF [18].

Since a specific CWE should be about a single weakness, any parts of its description that
reveal possible causing weaknesses are not considered for the BFCWE specification. How-
ever, they are considered for the partial BFCVE specifications (see Sec. 11.3 and BFCVE
Partial). All identified weakness triples are checked against the BF matrix of valid (cause,
operation)— consequence within weakness relations, which defines part of the BF formal
language semantics. The same methodology helps reveal overlaps among the CWEs, as
many of them have the same BF specification — that is, the same BF weakness triple.

The BFCWE tool is utilized to generate the formal BF specification of each weakness as
an entry of the BFCWE security weakness dataset and its graphical representation. How-
ever, there could be a set of corresponding BF specifications for some CWEs. For exam-
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ple, the natural language descriptions, demonstrative examples, and potential mitigations
for CWE-125 reveal the (Overbound Pointer, Read)— Buffer Over-Read and (Underbound
Pointer, Read)— Buffer Over-Read possible weakness triples. Subsequently, these are the
possible BF specifications for the main weakness of a CVE mapped to CWE-125. Figure 23
shows their generated graphical representation.

BF Specifications of CWE -125

Memory Corruption/Disclosure

_MEM Weakness Address Fault Operation Final Error
Memory Use Read

O B ds Point — Buffer Over-Read
(MUS) ver Bounds romnter (Improper Operand: Address) " BinEly QR ANt

Memory Corruption/Disclosure

_MEM Weakness Address Fault Operation Final Error
Memory Use Read

: N .
(MUS) Under Bounds Pointer — (Improper Operand: Address) Buffer Under-Read

Class Type Definition
Memory Corruption/Disclosure (_MEM) Weaknesses that lead to memory related errors or introduce memory corruption/disclosure exploit vectors.
Class Definition
Memory Use (MUS) An object is initialized, read, written, or cleared improperly.
Operation Definition
Read Retrieve the data value of an object from memory.
Cause Definition
Address Fault The object address in use is wrong.
Overbound Pointer Holds an address that is above the upper boundary of its object.
Underbound Pointer Holds an address that is below the lower boundary of its object.
Consequence Definition

Memory Corruption/Disclosure Final Error  An exploitable or undefined system behavior caused by memory addressing, allocation, use, or deallocation bugs.
Buffer Over-Read Read data above the upper bound of an object.

Buffer Under-Read Read data below the lower bound of an object.

Fig. 23. BF specifications of CWE-125

The BFCWE tool is also useful for the generation and analysis of CWE directed graphs by
other criteria. For example, see the directed graphs of hardware CWEs and their analysis
in NIST IR 8517 [41].

For more details, refer to the forthcoming SP 800-231F, Bugs Framework: Tools and APIs.

10.2. BFCVE Tool

The BFCVETool facilitates the creation of CVE-to-BF (CVE2BF) mappings by final error and
possibly entire (bug/fault, operation)—final error weakness triple. It also generates possi-
ble chains of weaknesses for a vulnerability (e.g., a CVE) by an identified failure, final error,
or entire final weakness; generates possible BFCVE formal specifications and their graphi-
cal representations; and identifies CWEs for NVD assignment [42]. Code analysis and the
BF graphical user interface (GUI) functionality can be used to identify and complete the
unique unambiguous BF vulnerability specification.
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The BF relational database, the NVD Representational State Transfer Application Program-
ming Interface (REST API), and the GitHub REST API are utilized to extract CVEs with as-
signed CWEs for which Code with Fix is available. For example, as of June 20, 2024, there
are 5162 CVEs that map to BF _INP [1, 16] weakness triples by CWE, 4 484 CVEs that map
to BF _.MEM [1, 17], and 629 CVEs that map to BF _DAT [1, 18] for which GitHub diffs are
available via the NVD. Other repositories may also provide fix commits and even the code
of vulnerable functions (e.g., DiverseVul [43]).

Information on the failure and the final weakness is gained from CVE reports, CVE descrip-
tions, and CWE2BF weakness triple mappings if a CWE is assigned by the NVD. The BFCVE
tool utilizes the BFDB relational database and the NVD REST API to extract the CWE2BF
triples for that CVE. It then generates CVE2BF mappings by possible final error or final
weakness and failure. For a specific CVE, the BFCVE tool applies the BF causation and
propagation rules (i.e., the BF formal language syntax and semantics) to go backward from
the failure through the final weakness to generate all possible BF chains of weaknesses for
that specific CVE independently of whether the CVE Code with Fix is available.

Going backward from the failure, the BFCVE tool builds a connected acyclic undirected
graph (i.e., a tree whose root is the failure) of all possible weakness chains with type-based
backward fault type.~error type match and fault value~error value propagation or — for
weaknesses of the same BF class type — direct match. The chains undergo scrutiny to
ensure further alignment with the BF formal language semantics, the causation matrices
of meaningful (cause, operation)— consequence within weakness relations, the graphs of
meaningful (operationy, ..., operation,,) bug or fault state paths, and the matrices of mean-
ingful consequence~cause between weaknesses propagations. The identified failure and
final weakness triple dramatically reduce the number of generated possible paths in the
acyclic graph. This is also a good starting point for specifying vulnerabilities that are not
recorded in the CVE.

The CVE Code with Fix can then be examined by security researchers or utilizing Al and
compared with the generated chains of weakness triples to pinpoint the unique unam-
biguous BF vulnerability specification. For that, the BF tool functionality and automated
code analysis — including via large language models (LLMs) — can be used.

For example, the main vulnerability for CVE-2014-0160 Heartbleed (see Sec. 7.1) is mapped
to CWE-125 in the NVD, and the CWE2BF mappings for CWE-125 restrict the final weakness
options for Heartbleed to (Overbound Pointer, Read)—Buffer Over-Read and (Underbound
Pointer, Read)—Buffer Under-Read (see Sec. 10.1). However, the CVE-2014-0160 descrip-
tion reveals the word over, which indicates that CWE-125 is too abstract for it and elimi-
nates the second final weakness option. In addition, as Heartbleed leads to information
exposure, the last part of the BF weaknesses chain is (Overbound Pointer, Read)— Buffer
Over-Read~IEX. The Read operation uniquely identifies the weakness as an instance of
the BF MUS class, as BF classes do not overlap by operation.
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Going backward from Overbound Pointer via the BF causation and propagation rules, the
BFCVE tool generates a tree of suggested weakness chains for Heartbleed (see Fig. 24). The
failure is the root, the final weakness is the first node, and a bug weakness is the last node
of each path. The only options for the weakness causing the final weakness are (Wrong In-
dex, Reposition)—Overbound Pointer and (Wrong Size, Reposition)—Overbound Pointer.
Both have the same options for causing chains, only two of which do not start with a
bug, though the preceding weakness options start with a bug. Exhausting these few op-
tions via deep code analysis or the use of LLMs would confirm that the unique unam-
biguous chain for Heartbleed is (Missing Code, Verify)—Inconsistent Value~ (Wrong Size,
Reposition)—Overbound Pointer~.(Overbound Pointer, Read)— Buffer Over-Read~IEX.

Information Exposure (IEX)
(Over Bounds Pointer, Read, Buffer Over-Read)
(Wrong Index/Wrong Size, Reposition, Over Bounds Pointer)
(Missing Code/Erroneous Code/Under-Restrictive Policy/Over-Restrictive Policy,
Validate/Sanitize, Invalid Data)
(Missing Code/Erroneous Code/Under-Restrictive Policy/Over-Restrictive Policy,
Verify/Correct, Wrong Value/Inconsistent Value)
(Erroneous Code, Calculate, Wrap Around)
(Erroneous Code, Calculate/Evaluate, Wrong Result)
(Wrong Type, Calculate/Evaluate, Wrong Result)
(Missing Code/Erroneous Code/Under-Restrictive Policy/Over-Restrictive Policy, Verify, Wrong Type)
(Erroneous Code, Define, Incomplete Type)
(Wrong Object Type Resolved, Coerce, Wrong Type)
(Missing Qualifier/Wrong Qualifier, Refer, Wrong Object Type Resolved)

Fig. 24. Generated BF weakness chains for Heartbleed

The BFCVE tool generates graphical representations of the BFCVE formal specifications to
enhance understanding (see Fig. 21). Related BF tools functionality is the generation of the
webpages for the BF class taxonomies (e.g., BF MUS) and the BFCVE specifications (e.g.,
BF CVE-2014-0160) of the BF website [1].

For more details, refer to the forthcoming SP 800-231F, Bugs Framework: Tools and APIs.

10.3. BF GUI Tool

The BF tool is a GUI application that works with both the BF relational database and the BF
in XML or JSON format; the latter is useful when the database is unavailable [44]. It allows
users to create a new BF CVE specification, save it as a machine-readable .bfcve file, and
open and browse previously created .bfcve specifications [22].

The BF tool (see Fig. 25) guides the specification of a security vulnerability as a chain of
underlying weaknesses. A security bug causes the first weakness, which leads to an error.
This error becomes the cause (i.e., the fault) of the next weakness and propagates through
subsequent weaknesses until a final error is reached, enabling a security failure. The causa-
tion within a weakness is by a meaningful (cause, operation)— consequence relation. The
causation between weaknesses is by error type to fault type match and operation flow or
errornvfault by value propagation.
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If a CVE is being specified, the user can select CVE Year and CVE 1D in the CVE Details
GroupBox to display its description, vendor, and product from the CVE repository and its
CVSS [10, 11] severity score from the NVD. To create a BFCVE specification of that CVE, the
user is guided to define an initial weakness, possible propagation weaknesses, and a final
weakness leading to a failure. If a vulnerability has only one underlying weakness, it would
be both the initial and final weakness.

To start defining a weakness, the user has to select a BF weakness class fromthe BF Class
TreeView in the Weakness GroupBox container, where the classes are grouped by BF class
types as parent nodes. The selection of a class populates the five TreeView controls in the
Weakness GroupBox container: Bug/Fault, Operand, Error/Final Error, Opera-—
tion Attributes, and Operand Attributes. To specify the weakness, the user has
to select child nodes from the five TreeView controls and enter comments in the text boxes
beneath them.

The BF tool can enforce that the initial weakness starts with a bug and the rest of the
weaknesses start with a fault. However, this is not necessary for partial specifications or if
a vulnerability starts with a hardware defect-induced fault. The Bug/Fault label changes
to Bug when the initial weakness is viewed and to Fault when the propagation or final
weakness is viewed. In the case of a bug, the child nodes are only allowed under the
Code and specification nodes. In the case of a fault, the child nodes are only allowed
under the Data, Type, and Address nodes. Tooltips with term definitions are displayed
over all TreeView nodes. The BF tool also enforces that the weakness with the final error
consequence is the final weakness leading to a failure.

Once a weakness is specified, the user can proceed via the >> button and create the next
weakness of the vulnerability chain. Weakness chaining is restricted by the error-to-fault
by type match rule, which — to a large extent — also restricts to meaningful operation flow,
as the BF classes are developed to adhere to the BF bugs models that are specific to their
BF class types. The Generate BF Description button displays a draft BF description
based on the selected values from the five TreeView controls and Comment text boxes.

Figure 26 presents the BF specification of the main vulnerability chain of Heartbleed in
XML format generated by the BF tool. In addition to the XML attributes that relate to the
BF Taxonomy, the CVE-2014-0160.bfcve also contains generated natural language de-
scriptions, programming language, links to reports, code with bugs, code with fixes, com-
mit IDs, authors, and code locations (i.e., lines) per weakness. For more details, see BF
CVE-2014-0160 at [1].

The BF tool demonstrates how the BF taxonomy and causation and propagation rules tie
together into the strict BF formal language. It uses the BFCVE tool functionality to generate
graphical representations of the BF formal specifications to enhance understanding. For
example, refer to the BF CVE-2014-0160 and related BF taxons definitions at [1].

For more details, refer to the forthcoming SP 800-231F, Bugs Framework: Tools and APIs.

57


https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/
https://usnistgov.github.io/BF/info/bf-cve/cve-2014-0160/

NIST SP 800-231
July 2024

<!--Bugs Framework (BF) Verions 1.0, BFCVE Tool, Irena Bojanova, NIST-->
v<BFCVE ID="CVE-2014-0160" Title="Heartbleed Heap Buffer Over-Read in OpenSSL v1.0.1 before vl

v <DefectWeakness Class="DVR" ClassType="_INP" Language="C" File="https://github.com/openssl/

<Cause Comment="in 'dtlsl_process_heartbeat(SSL *s)'" Type="Code">Missing Code</Cause>
<Operation Comment="length">Verify</Operation>

<Consequence Comment=""'payload'" Type="Data">Inconsistent Value</Consequence>

v <Attributes>

v <Operand Name="Data">

<Attribute Comment="via network" Type="State">Transferred</Attribute>
) </Operand>
v <Operation>

<Attribute Comment="1 + 2 + 16 &lt;= s-&gt;s3-&gt;rrec.length 1 + 2 + payload + 16 &
<Attribute Comment="ssl/dl_both.c#L1462&#xD;&#xA;ss1/t1_1ib.c#L2591" Type="Source Cods
<Attribute Type="Execution Space">Local</Attribute>
</Operation>
</Attributes>
</DefectWeakness>
v <lleakness Class="MAD" ClassType="_MEM" Language="C" File="https://github.com/openssl/openss’
<Cause Comment="in 'memcpy(bp, pl, payload)'" Type="Data">Wrong Size</Cause>
<Operation Comment="pointer">Reposition</Operation>
<Consequence Comment="'pl'" Type="Address">Overbound Pointer</Consequence>
v <Attributes>

v <Operand Name="Address">
<Attribute Type="State">Heap</Attribute>
</Operand>
v <Operand Name="Size">
<Attribute Comment="for s9s3-rrec.datal[0@]" Type="Kind">Used</Attribute>
</Operand>
v <Operation>

<Attribute Type="Mechanism">Sequential</Attribute>
<Attribute Comment="ss1/d1_both.c#L1487&#xD;&#xA;ss1/t1_1ib.c#L2620" Type="Source Cods
<Attribute Type="Execution Space">Userland</Attribute>
</Operation>
</Attributes>
</Weakness>
v <lWleakness Class="MUS" ClassType="_MEM" Language="C" File="https://github.com/openssl/openss’
<Cause Comment="in 'memcpy(bp, pl, payload)'" Type="Address">Overbound Pointer</Cause>
<Operation Comment="object">Read</Operation>
<Consequence Comment="'bp'" Type="Memory Corruption/Disclosure">Buffer Over-Read</Consequ
v <Attributes>
v <Operand Name="Address">
<Attribute Comment="up to 64kb per exploit" Type="Kind">Huge</Attribute>
<Attribute Type="State">Heap</Attribute>

</Operand>
v <Operand Name="Size">
<Attribute Type="Kind">Used</Attribute>
</Operand>
v <Operation>

<Attribute Type="Mechanism">Sequential</Attribute>
<Attribute Comment="ss1/dl_both.c#L1487&#xD;&#xA;ss1/t1_1ib.c#L2620" Type="Source Cod:
<Attribute Type="Execution Space">Userland</Attribute>
</Operation>
</Attributes>
</Weakness>
v <Failures ClassType="_FLR">
<Cause Type="Memory Corruption/Disclosure">Buffer Over-Read</Cause>
<Failure Class="IEX" Comment="(confidentiality loss)" />
</Failures>
| </BFCVE>

Fig. 26. BF Heartbleed in XML
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11. BF Datasets and Systems

The BF formalism enables systematic comprehensive labeling of common weakness types
(including CWESs) and publicly disclosed vulnerabilities (including CVEs). The BF tools and
APIs enable the generation of weakness and vulnerability specifications.

As of June 20, 2024, 31 % of the CWEs and 64 % of the CVEs labeled by the NVD with CWEs
map to BF _INP, _MEM, and _DAT classes. These provide a solid base for the creation of
comprehensively labeled BFCWE weakness and BFCVE vulnerability datasets.

The BF and the continuous development of BFCWE and BFCVE datasets would allow for
multidimensional representations of vulnerabilities in contrast to the one-dimensional rep-
resentation provided by the CVE enumeration [8].

11.1. BFCWE Dataset

There are 938 CWEs [3] as of June 20, 2024. Of those, 157 map to the BF _INP [1, 16]
class type; 60 map to BF _MEM [1, 17]; and 72 map to BF _DAT [1, 18]. These 289 unique
CWEs form 31 % (see Fig. 27) of the CWE repository and provide the basis for the sys-
tematic creation of a comprehensively labeled BFCWE weakness dataset. Most of them
represent the most dangerous weakness types by BF final error: Injection and Memory
Corruption/Disclosure [45].

CWEs by BF Class Type

157 (17%)

60 (6%)
72 (8%)

649 (69%)

BF _INP =BF_MEM  BF _DAT  Others

Fig. 27. CWEs by BF class types

The NVD uses the 130 “most commonly seen weaknesses” from CWE View-1003 [46] to
label CVEs but may also list other CWEs assigned by third-party contributors. The BFCWE
dataset may cover software, firmware, or hardware weakness types that are not listed in
the CWE.
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The methodology for the creation of a BFCWE dataset that utilizes the BF formal language
involves the following four steps:

1. CWEs: Identify CWEs and other weakness types that correspond to a specific soft-
ware, firmware, or hardware execution phase.

2. CWE2BF Mappings: Create CWE2BF mappings by BF operation, error, final error, and
detailed (bug/fault, operation)—error/final error weakness triples [16-18, 22].

3. BF Specifications: Generate BFCWE formal specifications as entries of the BFCWE
security weakness types dataset.

4. Graphical Representations: Generate BFCWE graphical representations to enhance
understanding of the CWE2BF mappings by operation, error, final error, and com-
plete weakness triples with parent-child CWE relations.

As the BFCWE specifications are essentially partial BFCVE specifications, the matrix and
dataset are also continuously enriched by newly developed BF specifications of CVEs and
other reported security vulnerabilities. All developed BFCWE specifications are added to
the comprehensively labeled BFCWE dataset (query it via the BFCWE API at [1]).

The BFCWE dataset augments the NVD (see [47]) and the CWE via formal BF specifications
of common weaknesses as BF weakness triples and severity-related attributes. However,
the BF has the expressive power to clearly describe any security weakness, not only the
types listed in the CWE.

11.2. BFCVE Dataset

There are over 180 472 CVEs labeled with CWEs by the NVD [5] as of June 20, 2024. Of
those, 68 513 map to the BF _INP [1, 16] class type by final error, 46 231 map to _.MEM
[1, 17], and 3 631 map to _DAT [1, 18] (see Fig. 28). These 118 375 unique CVEs represent
64 % of the CVEs labeled with CWEs and provide the basis for the systematic creation of
a comprehensively labeled BFCVE vulnerability dataset. Most of them relate to the most
dangerous weakness types by BF final error: Injection and Memory Corruption/Disclosure
[45].

The methodology for the creation of a BFCVE dataset that utilizes the BF formal language
involves the following nine steps:

1. CVEs with Code: Query the NVD and other vulnerability repositories for CVEs and
other vulnerabilities with available GitHub commits — that is, CVEs for which Code
with Fix is available.

2. Failure Mapping: Analyze each CVE to determine the reported failures, and map
them to BF Failure classes.
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CVEs by BF Final Error

73517 (38%) 68513 (36%)

46231 (24%)
3631 (2%)

BF _INP ®BF_MEM  BF _DAT  Other

Fig. 28. CVEs by BF class types

3. Final Error Mapping: Analyze each CVE to determine the reported sink — in some
cases, itis also the root cause or wrongly reported as such — and map it to a BF Final
Error consequence.

4. CVE2BF Mappings: Utilize steps from the methodology for the creation of BFCWE,
and create CVE2BF mappings by final weakness and failure for CVEs with assigned
CWEs for which Code with Fix is available.

5. Backward State Tree: Generate possible backward chains of weaknesses for a vul-
nerability by its identified failure and some or all of the elements of the final (fault,
operation)—final error weakness or — in the case of a one-weakness vulnerability
— (bug, operation)—final error weakness (see Sec. 3.4).

6. Bug or Fault Location: Identify where in the code (i.e., file and lines) the resolved
bug or a mitigated fault happened. Comparison of available Code with Bug and Code
with Fix commits would help identify these locations. Improper operation flow by
BF bugs models would reveal missing operations (i.e., Missing Code bugs).

7. BF Specifications: Conduct deep code analysis — including via LLMs — to filter the
generated chains, and use the BF formal language to complete the unambiguous BF
vulnerability specifications.

8. Graphical Representations: Generate BFCVE graphical representations to enhance
understanding of the BF vulnerability specifications as entries for the BFCVE security
vulnerability dataset.

9. CWE Assignments: Identify, refine, and recommend CWEs for NVD assignment. Al-
though this step may seem illogical since a BF specification already provides com-
prehensive information, it may be useful when comparing CWE-based testing tool
reports or if a more appropriate CWE is identified.
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A key part of the BFCVE dataset generation is the use of preliminary sets of partial BF
specifications of CVEs for which Code with Fix is available. These CVE sets are generated
by querying the NVD and specific GitHub repositories toward the BFDB. For example, Fig.
29 shows a SQL query for vulnerabilities related to the BF _"MEM class type [1, 17] toward
a repository with fix commits that are extracted via the GitHub REST API. The query also
identifies the possible BF chains of weaknesses for each vulnerability. Security experts
and LLMs can then conduct deep code analysis to create the complete BF vulnerability
specifications.

with cweClass as |

select distinct c.Type, class = c.Name, wo.cwe
from bf.class ¢

join bf.operation o on c.Name = o.Class
joir

in cwebf.operation wo on o.Name = wo.operation

inner

inner

select m.cve [CVE], m.cwe [CWE], n.score [CVSS], ci.url [CodeWithFix], c.Type [BFClassType],
c.class [BFClass], v.cause [Cause], v.operation [Operation], v.consequence [Consequence]
from cweClass ¢

~ join nvd.cve n on m.cve n.cve

~ join nvd.mapCveCwe m on m.cwe = C.cwe
u

in gitHubVul.cve u on u.cve = n.cve
in gitHubVul.commitId ci on ci.id = u.commitId

in cwe.cwe w on w.id = m.cwe

in cwebf.specification s on s.cwe = m.cwe
oin cwebf.mainWeakness mw on mw.mainWeakness = s.mainWeakness

in bf.validWeakness v on v.id = mw.weakness
~ join cwebf.otherWeakness cw on cw.cwe = m.cwe and cw.mainWeakness = s.mainWeakness
oin bf.validWeakness vv on vv.id = cw.weakness
oin bf.operation oo on oo.Name = vv.operation

left outer join bf.class cc on oo.Class = cc.Name
where (c.Type = '_MEM')

order by n.score desc, m.cve, s.cwe, cw.chainld

Fig. 29. NVD-GitHub-BF query for _.MEM CVEs

A similar NVD-GitHub-BF query is used to generate the BFCVE Partial dataset of CVEs for
which GitHub Code with Fix is available. As of June 20, 2024, there are 5 162 BF _INP CVEs
with GitHub commits in NVD, 4 484 _"MEM CVEs, and 629 _DAT CVEs.

This methodology would also guide the creation of BF specifications of vulnerabilities for
which code is not available, and insights from existing BF specifications would contribute
to their analyses. Going backward from a final weakness would reveal options for previous
weaknesses until a weakness with a bug as a cause is reached. For example, going back-
ward from (Wrong Size, Reposition)—Overbound Pointer reveals that the previous causing
weakness is a BF Data Validation (DVL) initial weakness among (Missing Code / Erroneous
Code / Under-Restrictive Policy / Over-Restrictive Policy, Verify / Correct)—Wrong Value /
Inconsistent Value.

Developed BFCVE specifications are added to the comprehensively labeled BFCVE dataset
(query it via the BFCVE API at [1]). The BF semantic matrices, graphs, and datasets are also
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continuously enriched by the newly developed formal BF specifications of CVEs and other
reported security vulnerabilities.

The BFCVE dataset augments the NVD (see [47]) and CVE via formal BF specifications of
the publicly disclosed vulnerabilities as chains of weaknesses. However, the BF has the ex-
pressive power to clearly describe any security weakness and vulnerability, not only those
listed in the CWE and CVE. It has its own databases with causal weakness taxonomies and
formal vulnerability specifications composed of underlying weaknesses specifications.

For more details, refer to the forthcoming SP 800-2311, Bugs Framework: Datasets and
Applications.

11.3.  BF Vulnerability Classifications

The BF Vulnerability Classification Model (see Fig. 30) defines how the BF taxonomy and
tools are utilized to generate BFCWE and BFCVE datasets (see Sec. 11) and query them and
possibly other vulnerability-related repositories to create the BFVul dataset of diverse mul-
tidimensional vulnerability classifications based on common properties and similarities.

The methodology for the creation of a BF-based Vulnerability classification may involve the
following seven steps:

1. BFCWE Dataset: Create a comprehensively labeled weakness dataset.
2. BFCVE Dataset: Create a comprehensively labeled vulnerability dataset.

3. Severity: Query the CVE for CVSS scores, or use other automated approaches to
determine the vulnerability severity score.

4. Platform: Query the CVE for associated CPEs.

5. Exploitation: Query the NVD and EPSS for the probability of a CVE being exploited in
the next 30 days.

6. Priority: Query the NVD and KEV or use other automated approaches to determine
prioritization for remediation.

7. Vulnerability Classifications: Generate multidimensional vulnerability classifications
based on common properties and similarities.

Security vulnerabilities could be classified by common root causes (i.e., software or firmware
bugs or hardware defect-induced bugs or faults), such as declaring a variable of a wrong
data type. They could also be classified by any other BF taxons, such as propagating faults,
common final errors, operation and operand attributes, identical BF specifications (i.e.,
chains of weaknesses), and even the number of underlying weaknesses.

The BF operation and operand attributes provide insight into the severity of the weak-
nesses and how they relate to commonly used scores, such as CVSS [11] and EPSS [38].
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BF Vulnerability Classification Model
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Their analysis would allow for deeper research on the most significant [45] and most ex-
ploited [48] weaknesses and vulnerabilities. Intriguing classifications by BF classes and
CPE [49] data may reveal systematic input/output check safety, memory safety, data type
safety, and other secure coding problems by particular vendors and products.

These multidimensional BF vulnerability classifications (query some of them via the BFVul
API at [1]) would contribute to a deeper analysis and refined understanding of security
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weaknesses, vulnerabilities, exploits, and failures. They would enable more focused cy-
bersecurity research and the highly informed development of effective countermeasures
against potential security threats and specific exploits.

For more details, refer to the forthcoming SP 800-2311, Bugs Framework: Datasets and
Applications.

11.4. BF Systems

The BF supports the development of diverse systems, such as those related to bug iden-
tification and triaging, vulnerability detection, analysis, prioritization, reporting, and res-
olution or mitigation. The methodology for the development of a BF-based system may
involve the following six steps:

1. Bug ldentification: Utilize steps from the methodology for the creation of BFCVE and
BFVul datasets, and identify and label the root cause of the vulnerability.

2. Vulnerability Detection: Utilize steps from the methodology for the creation of BFCVE
and BFVul datasets, and identify and label the weaknesses underlying the vulnerabil-
ity. This may include automated analysis via static and dynamic code analysis tools,
and simulation or emulation algorithms that reflect the BF methodologies. Given
the formal specification of code and the BF definitions of weakness, vulnerability,
and failure, formal methods may also be applied to detect vulnerabilities.

3. Report Generation: Utilize steps from the methodology for the creation of BFCVE and
BFVul datasets, and generate a BF formal specification, natural language description,
and machine-readable and graphical representations of the vulnerability.

An LLM may also be prompted to generate the report for that CVE given a CVE de-
scription, examples, reports, other references, the code with bug, the code with fix,
BF security concept definitions, machine-readable representations of BF taxonomies
(including definitions for the taxons and taxon types), and exemplary BF specifica-
tions (i.e., entries from the BFCVE dataset).

4. Severity and Prioritization: Determine the vulnerability severity score, and assess
whether it needs to be resolved or mitigated urgently. This would be based on the
BF-labeled weaknesses and operation and operand attributes per weakness and may
include analysis of data from services and repositories, such as the EPSS [38], CVSS
[11], and KEV [6].

5. Resolution: Determine how the vulnerability should be resolved based on fixing the
identified and BF-labeled bug of the vulnerability chain or more than one bug in the
cases of converging vulnerabilities.

6. Mitigations: Determine the possible ways to mitigate the detected vulnerability based
on fixing one of the BF-labeled faults through the vulnerability chain.
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12. Conclusion

This Special Publication presents an overview of the Bugs Framework (BF) [1] systematic
approach and methodologies for the classification of bugs and faults per orthogonal by
operation execution phases, formal specification of weaknesses and vulnerabilities, defi-
nition of secure coding principles, generation of comprehensively labeled weakness and
vulnerability datasets and vulnerability classifications, and development of BF-based algo-
rithms and systems.

The BF weakness and failure taxonomies and bugs and vulnerability models form the basis
for the BF ACFG that generates the BF formal language. The BF also helps formally de-
fine secure coding principles, such as input/output check safety, memory safety, and data
type safety. The BF formal language is descriptive in that it is used to formally specify en-
countered or predicted weaknesses and vulnerabilities. The BF secure coding principles
are prescriptive in that they prevent the bugs and faults per operation that break specific
related kinds of code safety.

The BF formalism supports a deeper understanding of vulnerabilities as chains of weak-
nesses and allows for backward bug identification from a failure. It enables the develop-
ment of new static and dynamic analysis, simulation, and emulation algorithms (e.g., see
[2]). Al or formal methods-enabled capabilities could be used to identify bugs and detect,
analyze, prioritize, and resolve or mitigate vulnerabilities (i.e., fix the bug or a fault of each
vulnerability, respectively) to secure critical infrastructure and supply chains.

The weakness and vulnerability BF specification datasets augment the CWE, CVE, and NVD.
However, the BF has the expressive power to clearly describe any other security weak-
nesses and vulnerabilities. It also allows for the prediction and identification of as yet un-
encountered security weakness types, which allows for the prediction and detection of
new kinds of vulnerabilities.

The BF aims to become the new standard for the specification and labeling of security
weaknesses and vulnerabilities. It enables the clear and precise expression of security
bugs, weaknesses, vulnerabilities, and failures. Government institutions could improve the
descriptions in public vulnerability repositories and create advanced policies and guide-
lines for software, firmware, and hardware testing. Security companies could improve
their testing tools and bug and vulnerability reports. Academics could teach better about
security bugs, weaknesses, and vulnerabilities and conduct deeper security vulnerability
and failure research. All of these would lead to unambiguous communication about cy-
bersecurity, the increased precision of code review tools, and a decrease in security bugs,
weaknesses, and vulnerabilities.
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