
 NIST Special Publication 800

NIST SP 800-232

Ascon-Based Lightweight Cryptography

Standards for Constrained Devices

Authenticated Encryption, Hash, and Extendable Output Functions

Meltem Sönmez Turan

Kerry A. McKay

Donghoon Chang

Jinkeon Kang

John Kelsey

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-232

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-232
https://doi.org/10.6028/NIST.SP.800-232

NIST Special Publication 800

NIST SP 800-232

Ascon-Based Lightweight Cryptography

Standards for Constrained Devices

Authenticated Encryption, Hash, and Extendable Output Functions

Meltem Sönmez Turan

Kerry A. McKay

Jinkeon Kang*

John Kelsey

Computer Security Division

Information Technology Laboratory

* Former Foreign Guest Researcher; all work for this publication was done while at NIST.

Donghoon Chang

Strativia

This publication is available free of charge from:

https://doi.org/10.6028/NIST.SP.800-232

August 2025

U.S. Department of Commerce

Howard Lutnick, Secretary

National Institute of Standards and Technology
Craig Burkhardt, Acting Under Secretary of Commerce for Standards and Technology and Acting NIST Director

https://doi.org/10.6028/NIST.SP.800-232

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply

recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such
companion publications. Thus, until each publication is completed, current requirements, guidelines, and
procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may

wish to closely follow the development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications

Authority

This publication has been developed by NIST in accordance with its statutory responsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.)
113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply to
national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management

and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,

Director of the ORCID, or any other federal official. This publication may be used by nongovernmental

organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements

NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2025-07-09

How to cite this NIST Technical Series Publication:
Meltem Sönmez Turan, Kerry A. McKay, Donghoon Chang, Jinkeon Kang, John Kelsey (2025) Ascon-Based
Lightweight Cryptography Standards for Constrained Devices. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-232. https://doi.org/10.6028/NIST.SP.800-232

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

 NIST SP 800-232
August 2025

Author ORCID iDs
Meltem Sönmez Turan: 0000-0002-1950-7130
Kerry A. McKay: 0000-0002-5956-587X
Donghoon Chang: 0000-0003-1249-2869
Jinkeon Kang: 0000-0003-2142-8236
John Kelsey: 0000-0002-3427-1744

Contact Information

SP800-232-comments@list.nist.gov

Additional Information

Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/232/final,
including related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https:/orcid.org/0000-0002-1950-7130
https:/orcid.org/0000-0002-5956-587X
https:/orcid.org/0000-0003-1249-2869
https:/orcid.org/0000-0003-2142-8236
https:/orcid.org/0000-0002-3427-1744
mailto:SP800-232-comments@list.nist.gov
https://csrc.nist.gov/pubs/sp/800/232/final

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Abstract

In 2023, the National Institute of Standards and Technology (NIST) announced the selection
of the Ascon family of algorithms designed by Dobraunig, Eichlseder, Mendel, and Schläffer
to provide efficient cryptographic solutions for resource-constrained devices. This decision
emerged from a rigorous, multi-round lightweight cryptography standardization process.
The Ascon family includes a suite of cryptographic primitives that provide Authenticated
Encryption with Associated Data (AEAD), hash function, and eXtendable Output Function
(XOF) capabilities. The Ascon family is characterized by lightweight, permutation-based

primitives and provides robust security, efficiency, and flexibility, making it ideal for resource-
constrained environments, such as Internet of Things (IoT) devices, embedded systems,

and low-power sensors. The family is developed to offer a viable alternative when the
Advanced Encryption Standard (AES) may not perform optimally. This standard outlines
the technical specifications and security properties of Ascon-AEAD128, Ascon-Hash256,
Ascon-XOF128, and Ascon-CXOF128.

Keywords

Ascon; authenticated encryption; constrained devices; eXtendable Output Function (XOF);
hash function; lightweight cryptography; permutation-based cryptography; standardization.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical lead-
ership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to ad-
vance the development and productive use of information technology. ITL’s responsibilities
include the development of management, administrative, technical, and physical standards
and guidelines for the cost-effective security and privacy of other than national security-
related information in federal information systems. The Special Publication 800-series
reports on ITL’s research, guidelines, and outreach efforts in information system security,
and its collaborative activities with industry, government, and academic organizations.

i

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent
claims to ITL. However, holders of patents are not obligated to respond to ITL calls for patents
and ITL has not undertaken a patent search in order to identify which, if any, patents may

apply to this publication.

As of the date of publication and following call(s) for the identification of patent claims

whose use may be required for compliance with the guidance or requirements of this
publication, no such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

ii

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table of Contents

1. Introduction . 1

2. Preliminaries. 3

2.1. Auxiliary Functions . 7

3. Ascon Permutations . 8

3.1. Internal State . 8

3.2. Constant-Addition Layer 𝑝𝐶 . 8

3.3. Substitution Layer 𝑝𝑆 . 9

3.4. Linear Diffusion Layer 𝑝𝐿 . 10

4. Authenticated Encryption Scheme: Ascon-AEAD128 . 11

4.1. Specification of Ascon-AEAD128 . 11

4.1.1. Encryption . 11

4.1.2. Decryption . 15

4.2. Implementation Options . 18

4.2.1. Truncation . 18

4.2.2. Nonce Masking . 18

4.3. AEAD Requirements . 19

4.4. Security Properties . 20

4.4.1. Single-Key Setting . 20

4.4.2. Multi-Key Setting . 20

4.4.3. Nonce-Misuse Setting . 21

5. Hash and eXtendable-Output Functions (XOFs) . 23

5.1. Specification of Ascon-Hash256 . 23

5.2. Specification of Ascon-XOF128 . 25

5.3. Specification of Ascon-CXOF128 . 28

5.4. Streaming API for XOF. 30

5.5. Security Strengths . 31

6. Conformance . 31

iii

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Appendix A. Implementation Notes . 35

A.1. Conversion Functions . 35

A.2. Implementing with Integers . 36

A.3. Precomputation . 39

Appendix B. Determination of the Initial Values . 40

iv

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

List of Tables

Table 1. Acronyms . 3

Table 2. Terms and definitions. 3

Table 3. Notations . 5

Table 4. Basic operations and functions . 6

Table 5. The constants const𝑖 to derive round constants of the Ascon permutations . 9

Table 6. Lookup table representation of SBOX . 10

Table 7. Security strength of Ascon-AEAD128 with 𝜆-bit tag in the 𝑢-key setting,
where (𝑁, 𝐴) pairs are distinct for encryption per key . 21

Table 8. Integrity security strength of Ascon-AEAD128 with 𝑢 keys in the nonce-
misuse setting . 22

Table 9. Security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128
algorithms . 31

Table 10. Address for each byte of Ascon state word 𝑆𝑖 in memory on little-endian
and big-endian machines, where the word 𝑆𝑖 begins at memory address 𝑎 36

Table 11. Examples of padding an unsigned integer 𝑥 to a 64-bit block, where 𝑥
encodes a sequence of bytes that each have value 0xFF in little-endian byte order . . . 38

Table 12. Precomputed initialization phase values for Ascon-Hash256, Ascon-XOF128,
and Ascon-CXOF128 provided in hexadecimal integer form . 40

Table 13. Parameters for initial value construction . 40

Table 14. Initial values as hexadecimal integers . 41

v

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

List of Figures

Figure 1. Application of constant-addition layer 𝑝𝐶 to Ascon state . 9

Figure 2. Application of substitution layer 𝑝𝑆 to Ascon state . 9

Figure 3. Circuit representation of the 5-bit S-box SBOX . 10

Figure 4. Application of linear diffusion layer 𝑝𝐿 to Ascon state . 10

Figure 5. Ascon-AEAD128 encryption . 11

Figure 6. Ascon-AEAD128 decryption . 15

Figure 7. Structure of Ascon-Hash256 and Ascon-XOF128 . 23

Figure 8. Structure of Ascon-CXOF128 . 30

Figure 9. Mapping between state words, bytes, and bits . 35

Figure 10. Representation of the Ascon state as 64-bit unsigned integers, byte se-
quences, and bitstrings . 37

vi

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Acknowledgments

The authors of the standard express their gratitude to the Ascon designers — Christoph
Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer — for their valuable
comments and suggestions during the standardization process.

The authors also acknowledge and appreciate contributions from their colleagues at NIST
during the selection process, including Lawrence Bassham, Çağdaş Çalık, Deukjo Hong, and
Noah Waller. The authors also thank Elaine Barker, Luís T. A. N. Brandão, Lily Chen, Andrew
Regenscheid, Noah Ross, Sara Kerman, Yu Long Chen, and Yu Sasaki for their technical and
administrative support.

vii

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

1. Introduction

This standard specifies the Ascon family of algorithms to provide Authenticated Encryption
with Associated Data (AEAD), a hash function, and two eXtendable Output Functions (XOFs).
The Ascon family is designed to be efficient in constrained environments. The algorithms

included in this standard are as follows:

1. Ascon-AEAD128 is a nonce-based AEAD scheme, offering 128-bit security strength
in the single-key setting.

2. Ascon-Hash256 is a cryptographic hash function that produces a 256-bit hash of the
input messages, offering a security strength of 128 bits.

3. Ascon-XOF128 is a XOF, where the output size of the hash of the message can be
selected by the user, and the supported security strength is up to 128 bits.

4. Ascon-CXOF128 is a customized XOF that allows users to specify a customization

string and choose the output size of the message hash. It supports a security strength
of up to 128 bits.

Development of the Ascon family. Ascon (version v1) [1] was first submitted to CAESAR (Com-

petition for Authenticated Encryption: Security, Applicability, and Robustness) 1

1CAESAR is a competition organized by a group of international cryptologic researchers to identify a portfolio
of authenticated encryption schemes that offer advantages over AES-GCM and are suitable for widespread
adoption. The final portfolio of the competition was announced in February 2019. For more information,

see https://competitions.cr.yp.to/caesar.html.

 in 2014. The
submission included two AEAD algorithms: a primary recommendation, Ascon-128, with
a 128-bit key and the secondary recommendation, Ascon-96, with a 96-bit key. Updated
versions v1.1 [2] for Round 2 and v1.2 [3] for Round 3 included minor tweaks, such as reorder-
ing the round constants, and the secondary recommendation was updated to Ascon-128a.
In 2019, Ascon-128 and Ascon-128a were selected as the first choice for the lightweight
authenticated encryption use case in the final portfolio of the CAESAR competition.

NIST Lightweight Cryptography Standardization Process. In 2015, the National Institute of
Standards and Technology (NIST) initiated the Lightweight Cryptography Standardization
Process to develop cryptographic standards that are suitable for constrained environments

in which conventional cryptographic standards (e.g., AES-GCM [4, 5], SHA-2 [6] and SHA-3 [7]
hash function families) may be resource-intensive. In February 2023, NIST announced the
decision to standardize the Ascon family [8] for lightweight cryptography applications. For
more information, refer to NIST Internal Report (IR) 8268 [9], IR 8369 [10], and IR 8454 [11].

Differences from the Ascon submission v1.2. The technical differences between this standard
and the Ascon submission [8] are provided below:

1. Permutations. The Ascon submission defined three Ascon permutations with 6, 8, and
12 rounds. This standard specifies additional Ascon permutations by providing round

1

https://competitions.cr.yp.to/caesar.html

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

constants for up to 16 rounds to accommodate potential functionality extensions in
the future.

2. AEAD variants. The Ascon submission package defined AEAD variants ASCON-128,
ASCON-128a, and ASCON-80pq. This standard specifies the Ascon-AEAD128 algorithm,
which is based on ASCON-128a.

3. Hash function variants. The Ascon submission defined ASCON-HASH and ASCON-HASHA.
This standard specifies Ascon-Hash256, which is based on ASCON-HASH.

4. XOF variants. The Ascon submission defined two XOFs, ASCON-XOF and ASCON-XOFA.
This standard specifies Ascon-XOF128, which is based on ASCON-XOF, and a new
customized XOF, Ascon-CXOF128.

5. Initial values. The initial values of the algorithms have been updated to support a
new format that accommodates potential functionality extensions.

6. Endianness. The endianness has been switched from big endian to little endian to
improve performance on little-endian microcontrollers.

7. Truncation and nonce masking. The implementation options of Ascon-AEAD128
with truncation and nonce masking have been added.

Main features of Ascon. The main features of the Ascon family are:

• Multiple functionalities. The same permutations are used to construct multiple func-
tionalities, which allows an implementation of AEAD, hash, and XOF functionalities
to share logic and, therefore, have a more compact implementation than functions
that were developed independently.

• Online and single pass. Ascon-AEAD128 is online, meaning that the 𝑖-th ciphertext
block is determined by the key, nonce, associated data, and first 𝑖 plaintext blocks.
Ascon family members require only a single pass over the data.

• Inverse-free. Since all of the Ascon family members only use the underlying permuta-

tions in the forward direction, implementing the inverse permutations is not needed.

Organization. Section 2 provides preliminaries, including the acronyms, terms, definitions,
notation, basic operations, and auxiliary functions. Section 3 specifies the Ascon permuta-

tions for up to 16 rounds. Section 4 specifies the Ascon-AEAD128AEAD scheme, provides
some implementation options for truncation and nonce masking, lists the requirements for
validation, and provides security properties. Section 5 specifies the Ascon-Hash256 hash
function, the Ascon-XOF128 XOF, and the Ascon-CXOF128 customized XOF and describes
their security properties. Section 6 provides information about conformance. Appendix A
provides additional notes and conversion functions for implementations. Appendix B pro-
vides additional information regarding the construction of initial values.

2

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

2. Preliminaries

Table 1 lists the acronyms used in this standard.

Table 1. Acronyms

Acronym Definition

AD Associated Data

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

CAESAR Competition for Authenticated Encryption: Security, Applicability, and
Robustness

CXOF Customized eXtendable-Output Function

GCM Galois/Counter Mode

NIST National Institute of Standards and Technology

SHA Secure Hash Algorithm

SPN Substitution–Permutation Network

SP Special Publication

XOF eXtendable-Output Function

XOR eXclusive OR

Table 2 defines the terms used in this standard.

Table 2. Terms and definitions

Term Definition

approved An algorithm or technique that is either specified or adopted in a FIPS
publication or NIST Special Publication (SP) in the Computer Security SP
800 series (i.e., FIPS-approved or NIST-recommended).

associated data Input data that is authenticated but not encrypted.

bit A binary digit, 0 or 1. In this standard, bits are indicated in the Courier
New font.

bitstring A finite, ordered sequence of bits.

3

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 2. Terms and definitions

Term Definition

capacity The width of the underlying permutation minus the rate.

digest Output of a hash function or XOF.

eXtendable-

Output Function
(XOF)

A function on bit strings in which the output can be extended to any
desired length.

forgery

hash function

message Input to the hash function.

nonce

nonce-misuse

nonce-respecting

rate

secret key

shall Term used to express a requirement that needs to be fulfilled to claim
conformance to this standard.

should Term used to indicate a strong recommendation but not a requirement of
this standard. Ignoring the recommendation could result in undesirable
results.

tag A cryptographic checksum on data that is designed to reveal both acciden-
tal errors and the intentional modification of the data whose computation

and verification require knowledge of a secret key.

truncation A process that shortens an input bitstring, preserving only a sub-string of
a specified length.

A cryptographic key that is used by a secret-key (i.e., symmetric) crypto-
graphic algorithm and not made public.

The number of input bits processed or output bits generated per invoca-
tion of the underlying permutation.

A setting in which a nonce is never repeated for the encryption algorithm
under a given key.

A setting in which a nonce is used more than once for the encryption
algorithm under a given key.

An input value to the authenticated encryption algorithm that is used
only once for encryption performed under a given key.

A mathematical function that maps a string of arbitrary length to a fixed-
length string.

A (ciphertext, tag) pair produced by an adversary who is not knowledge-
able of the secret key and yet is accepted as valid by the verified decryp-
tion procedure.

4

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 3 lists the notations used in this standard.

Table 3. Notations

Notation Definition

𝐾 128-bit secret key

𝑁 128-bit nonce

𝐴 Associated data

𝐴𝑖 𝑖th block of associated data 𝐴
𝑃 Plaintext

𝑃𝑖 𝑖th block of plaintext 𝑃
𝐶 Ciphertext

𝐶𝑖 𝑖th block of ciphertext 𝐶
𝑍 Customization string

𝑍𝑖 𝑖th block of customization string 𝑍
𝑇 128-bit authentication tag

𝐼𝑉 64-bit constant initial value

fail Error message to indicate that the verification of authenticated cipher-
text failed

𝑀 Message

𝑀𝑖 𝑖th block of message 𝑀
𝐻 Hash value 𝐻
𝐻𝑖 𝑖th block of hash value 𝐻

S 320-bit internal state of the underlying permutation

𝑆0,…,𝑆4 The five 64-bit words of the internal state S, where S =
𝑆0 ‖ 𝑆1 ‖ … ‖ 𝑆4

𝑠(𝑖,𝑗) 𝑗th bit of 𝑆 ,𝑖 0 ≤ 𝑖 ≤ 4, 0 ≤ 𝑗 ≤ 63
𝑆𝑖[𝑗] 𝑗𝑡ℎ byte of state word 𝑆𝑖 for 0 ≤ 𝑖 ≤ 4, 0 ≤ 𝑗 ≤ 7
𝑆[𝑖∶𝑗] The subset of stateS beginning at index and ending at index , inclusive.

When 𝑖 > 𝑗, 𝑆[𝑖∶𝑗] is the empty string. When 𝑖 = 𝑗, 𝑆[𝑖∶𝑗] is a single bit.
 𝑖 𝑗

𝜆 Length of the truncated tag in bits

𝑐𝑖 The constant value for round 𝑖 of the Ascon permutation

𝑝𝐶,𝑝𝑆,𝑝𝐿 Constant-addition, substitution, and linear layers of the round function 𝑝

5

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 4 lists the basic operations and functions used in this standard.

Table 4. Basic operations and functions

Functions Definition

{0,1}∗ The set of all finite bit strings, including the empty string

{0,1}𝑠 The set of all bit strings of length 𝑠
0𝑠 𝑠When 𝑠 ≥ 0, 0 is the bit string that consists of 𝑠 consecutive 0s.

When 𝑠 = 0, then 0𝑠 is the empty string.

|𝑋| Length of the bitstring 𝑋 in bits

𝑋 ‖𝑌 Concatenation of bitstrings 𝑋 and 𝑌
𝑥×𝑦 Multiplication of integers 𝑥 and 𝑦
𝑥+𝑦 Addition of integers 𝑥 and 𝑦
𝑥−𝑦 Subtraction of integers 𝑥 and 𝑦
𝑥/𝑦 Division of integer 𝑥 and non-zero integer 𝑦
𝑥 mod 𝑦 Remainder in the integer division of 𝑥 by 𝑦
⌈𝑥⌉ For a real number 𝑥, the smallest integer greater than or equal

to 𝑥
⌊𝑥⌋ For a real number 𝑥, the largest integer less than or equal to 𝑥
𝑓 ∘𝑔 Composition of functions 𝑓 and 𝑔 (e.g., for functions 𝑓(𝑥) and

𝑔(𝑥), 𝑓 ∘𝑔 is evaluated as 𝑓(𝑔(𝑥)))
⊙ Bitwise AND operation

⊕ Bitwise XOR operation

𝑋 ⋙ 𝑖 Right rotation (circular shift) by 𝑖 bits of the 64-bit word 𝑋, where
the least significant bit is the rightmost bit

𝑋 ≪ 𝑖 Left shift by 𝑖 bits
𝑋[𝑖∶𝑗] The subset of bitstring 𝑋 beginning at index 𝑖 and ending at

index 𝑗, inclusive. When 𝑖 > 𝑗, 𝑋 is the empty string. When[𝑖∶𝑗]
𝑖 = 𝑗, 𝑋[𝑖∶𝑗] is a single bit.

𝑥 == 𝑦 Boolean operator to perform an equality comparison, (i.e., true
if 𝑥 is equal to 𝑦; otherwise, false)

0x Hexadecimal notation

int64(𝑥) 64-bit representation of integer 𝑥

6

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

2.1. Auxiliary Functions

Parse function. The parse(𝑋,𝑟) function parses the input bitstring 𝑋 into a sequence of
blocks 𝑋0,𝑋1,…,𝑋ℓ, where ℓ ← ⌊|𝑋|/𝑟⌋ (i.e., 𝑋 ← 𝑋0 ‖𝑋1 ‖…‖𝑋ℓ). The 𝑋𝑖 blocks for
0 ≤ 𝑖 ≤ ℓ − 1 each have a bit length 𝑟, whereas 0 ≤ 𝑋ℓ ≤ 𝑟 − 1 (see Algorithm 1). When

|𝑋| mod 𝑟 = 0, the final block is empty (i.e., |𝑋ℓ| = 0).

Algorithm 1 parse(𝑋,𝑟)
Input: bitstring 𝑋, a positive integer 𝑟
Output: bitstrings 𝑋0,…,𝑋ℓ−1,𝑋ℓ

ℓ ← ⌊|𝑋|/𝑟⌋
for 𝑖 = 0 to ℓ −1 do
 𝑋𝑖 ← 𝑋[𝑖×𝑟∶(𝑖+1)×𝑟−1]
end for

𝑋ℓ ← 𝑋[ℓ×𝑟∶|𝑋|−1]

return 𝑋0,…,𝑋ℓ−1,𝑋ℓ

Padding rule. The function pad(𝑋,𝑟) appends the bit 1 to the bitstring 𝑋, followed by the
bitstring 0𝑗, where 𝑗 is equal to (−|𝑋|−1) mod 𝑟. The length of the output bitstring is a
multiple of 𝑟 (see Algorithm 2). For examples of padding when representing the data as
64-bit unsigned integers, see Appendix A.2.

Algorithm 2 pad(𝑋,𝑟)
Input: bitstring 𝑋, a positive integer 𝑟
Output: padded bitstring 𝑋′

𝑗 ← (−|𝑋|−1) mod 𝑟
𝑋′ ← 𝑋 ∥ 1 ∥ 0𝑗

return 𝑋′

7

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

3. Ascon Permutations

This section specifies the 𝑟𝑛𝑑-round 𝐴𝑠𝑐𝑜𝑛-𝑝[𝑟𝑛𝑑] permutations, where 𝑟𝑛𝑑 indicates
the number of rounds to be performed and 1 ≤ 𝑟𝑛𝑑 ≤ 16. The permutations follow the
Substitution-Permutation-Network (SPN) structure and consist of iterations of the round
function 𝑝 that is defined as the composition of three steps

𝑝 = 𝑝𝐿 ∘ 𝑝𝑆 ∘ 𝑝𝐶, (1)

where 𝑝𝐶 is the constant-addition layer (see Sec. 3.2), 𝑝𝑆 is the substitution layer (see Sec.
3.3), and 𝑝𝐿 is the linear diffusion layer (see Sec. 3.4). This composition can also be written
as a series of function invocations on an input 𝑥 as 𝑝𝐿(𝑝𝑆(𝑝𝐶(𝑥))).

Note that 𝐴𝑠𝑐𝑜𝑛-𝑝[8] and 𝐴𝑠𝑐𝑜𝑛-𝑝[12] are the main building blocks of the Ascon family,
and the permutation instantiated with other numbers of rounds may later be used to
standardize other functionalities.

3.1. Internal State

The permutations operate on the 320-bit state S , which is represented as five 64-bit words
denoted as 𝑆𝑖 for 0 ≤ 𝑖 ≤ 4:

S = 𝑆0 ∥ 𝑆1 ∥ 𝑆2 ∥ 𝑆3 ∥ 𝑆4. (2)

Let 𝑠(𝑖,𝑗) represent the 𝑗th bit of 𝑆𝑖, 0 ≤ 𝑗 < 64. In this specification of the Ascon permuta-

tion, each state word represents a 64-bit unsigned integer, where the least significant bit is
the rightmost bit. Details on other representations of the state can be found in Appendix A.

3.2. Constant-Addition Layer 𝑝𝐶

The constant 𝑐𝑖 of round 𝑖 of the Ascon permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[𝑟𝑛𝑑] (instantiated with 𝑟𝑛𝑑
rounds) for 𝑟𝑛𝑑 ≤ 16 and 0 ≤ 𝑖 ≤ 𝑟𝑛𝑑 −1 is defined as

𝑐𝑖 = const16−𝑟𝑛𝑑+𝑖, (3)

where const0,…,const15 are defined in Table 5. The constant-addition layer 𝑝𝐶 adds a
64-bit round constant 𝑐𝑖 to 𝑆2 in round 𝑖, for 𝑖 ≥ 0,

𝑆2 = 𝑆2 ⊕𝑐𝑖. (4)

8

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 5. The constants const to derive r𝑖 ound constants of the Ascon permutations

𝑖 const 𝑖 𝑖 const𝑖
 0 0x000000000000003c 8 0x00000000000000b4
 1 0x000000000000002d 9 0x00000000000000a5
 2 0x000000000000001e 10 0x0000000000000096
 3 0x000000000000000f 11 0x0000000000000087
 4 0x00000000000000f0 12 0x0000000000000078
 5 0x00000000000000e1 13 0x0000000000000069
 6 0x00000000000000d2 14 0x000000000000005a
 7 0x00000000000000c3 15 0x000000000000004b

Since the first 56 bits of the constants are zero, in practice, this is equivalent to applying
the constant to only the least significant eight bits of 𝑆2, as shown in Figure 1.

𝑆0𝑆1𝑆2𝑆3𝑆4

Figure 1. Application of constant-addition layer 𝑝𝐶 to Ascon state

3.3. Substitution Layer 𝑝𝑆

The substitution layer 𝑝𝑆 updates the state S with 64 parallel applications of the 5-bit
substitution box SBOX as

(𝑠(0,𝑗),𝑠(1,𝑗),…,𝑠(4,𝑗)) = SBOX(𝑠(0,𝑗),𝑠(1,𝑗),…,𝑠(4,𝑗)) (5)

for 0 ≤ 𝑗 < 64, as shown in Figure 2.

𝑆0𝑆1𝑆2𝑆3𝑆4

Figure 2. Application of substitution layer 𝑝𝑆 to Ascon state

The 5-bit SBOX is computed as

(𝑦0, ...,𝑦4) = SBOX(𝑥0, ...,𝑥4), (6)

where
𝑦0 = 𝑥4𝑥1 ⊕𝑥3 ⊕𝑥2𝑥1 ⊕𝑥2 ⊕𝑥1𝑥0 ⊕𝑥1 ⊕𝑥0,
𝑦1 = 𝑥4 ⊕𝑥3𝑥2 ⊕𝑥3𝑥1 ⊕𝑥3 ⊕𝑥2𝑥1 ⊕𝑥2 ⊕𝑥1 ⊕𝑥0,
𝑦2 = 𝑥4𝑥3 ⊕𝑥4 ⊕𝑥2 ⊕𝑥1 ⊕1,
𝑦3 = 𝑥4𝑥0 ⊕𝑥4 ⊕𝑥3𝑥0 ⊕𝑥3 ⊕𝑥2 ⊕𝑥1 ⊕𝑥0,
𝑦4 = 𝑥4𝑥1 ⊕𝑥4 ⊕𝑥3 ⊕𝑥1𝑥0 ⊕𝑥1.

(7)

9

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

SBOX may also be implemented as a lookup table, as shown in Table 6. The circuit represen-
tation of the SBOX is given in Figure 3.

Table 6. Lookup table representation of SBOX

𝑥 0 1 2 3 4 5 6 7 8 9 a b c d e f
 SBOX(𝑥) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c

𝑥 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
 SBOX(𝑥) 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17
Note that 5-bit inputs are represented in hexadecimal (e.g., 𝑥 =1 corresponds to (0,0,0,0,1)).

x0
x1
x2
x3
x4

1

1

1

1

1

1

y0
y1
y2
y3
y4

Figure 3. Circuit representation of the 5-bit S-box SBOX

3.4. Linear Diffusion Layer 𝑝𝐿

The linear diffusion layer 𝑝𝐿 provides diffusion within each 64-bit word 𝑆𝑖, as shown in
Figure 4.

𝑆0
𝑆1
𝑆2
𝑆3
𝑆4

Figure 4. Application of linear diffusion layer 𝑝𝐿 to Ascon state

This layer applies the linear functions Σ𝑖 to their corresponding state words as 𝑆𝑖 ← Σ𝑖(𝑆𝑖)
for 0 ≤ 𝑖 ≤ 4, where each Σ𝑖 is defined as:

Σ0(𝑆0) = 𝑆0 ⊕(𝑆0 ⋙ 19)⊕(𝑆0 ⋙ 28) (8)

Σ1(𝑆1) = 𝑆1 ⊕(𝑆1 ⋙ 61)⊕(𝑆1 ⋙ 39) (9)

Σ2(𝑆2) = 𝑆2 ⊕(𝑆2 ⋙ 1)⊕(𝑆2 ⋙ 6) (10)

Σ3(𝑆3) = 𝑆3 ⊕(𝑆3 ⋙ 10)⊕(𝑆3 ⋙ 17) (11)

Σ4(𝑆4) = 𝑆4 ⊕(𝑆4 ⋙ 7)⊕(𝑆4 ⋙ 41) (12)

10

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

4. Authenticated Encryption Scheme: Ascon-AEAD128

This section specifies the AEAD scheme Ascon-AEAD128, details implementation options
(e.g., truncation and nonce-masking), lists AEAD requirements, and provides security prop-
erties.

4.1. Specification of Ascon-AEAD128

Ascon-AEAD128 consists of the encryption algorithm Ascon-AEAD128.enc (specified in
Sec. 4.1.1) and the decryption algorithm Ascon-AEAD128.dec (specified in Sec. 4.1.2).

Ascon-AEAD128.enc takes a 128-bit secret key 𝐾, a 128-bit nonce 𝑁, variable-length
associated data 𝐴, and variable-length plaintext 𝑃 as inputs and outputs ciphertext 𝐶
(where |𝐶| = |𝑃 |) and 128-authentication tag 𝑇 (see Sec. 4.2.1 for the truncation option):

Ascon-AEAD128.enc(𝐾,𝑁,𝐴,𝑃) = (𝐶,𝑇) (13)

Ascon-AEAD128.dec takes key 𝐾, nonce 𝑁, associated data 𝐴, ciphertext 𝐶, and authen-
tication tag 𝑇 as inputs and outputs 𝑃 if the tag is valid:

Ascon-AEAD128.dec(𝐾,𝑁,𝐴,𝐶,𝑇) = {
𝑃 if the tag 𝑇is valid
fail otherwise

(14)

4.1.1. Encryption

This section outlines the encryption algorithm of Ascon-AEAD128, which comprises four
phases: initialization, associated data processing, plaintext processing, and finalization (see
Figure 5).

Note that the rate and capacity of Ascon-AEAD128 are 128 and 192 bits, respectively.

IV∥K∥N

As
co
n-
p[
12
]

Initialization

064∥K

⧸128

A0

As
co
n-
p[
8]

⧸
192

Am

As
co
n-
p[
8]

⧸
192

Associated Data

0191∥1

⧸128

P0 C0

⧸192 As
co
n-
p[
8]

Pn−1 Cn−1

⧸192 As
co
n -
p[
8]

Plaintext

⧸
128

P̃n C̃n

⧸
ℓ = |P̃n|

⧸
128-ℓ

1 ∥ 0127−ℓ

⧸192

K∥064

⧸128

As
co
n-
p[
12
]

Finalization

K

T

⧸128

⧸128

Figure 5. Ascon-AEAD128 encryption

The pseudocode of Ascon-AEAD128.enc is provided in Algorithm 3.

11

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Algorithm 3 Ascon-AEAD128.enc(𝐾,𝑁,𝐴,𝑃)
Input: 128-bit key 𝐾, 128-bit nonce 𝑁, associated data 𝐴, plaintext 𝑃
Output: ciphertext 𝐶, 128-bit tag 𝑇

𝐼𝑉 ← 0x00001000808c0001 ▷ Initialization

S ← 𝐼𝑉 ‖𝐾 ‖𝑁
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)
S ← S ⊕(0192 ‖𝐾)

if |𝐴| > 0 then ▷ Processing associated data
𝐴0,…,𝐴𝑚−1,𝐴𝑚 ← parse(𝐴,128)
𝐴𝑚 ←pad(𝐴𝑚,128)
for 𝑖 = 0 to 𝑚 do

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8]((S[0∶127] ⊕𝐴𝑖)‖S[128∶319])
end for

end if
S ← S ⊕(0319 ‖1)

𝑃0,…,𝑃𝑛−1,𝑃𝑛 ← parse(𝑃 ,128) ▷ Processing plaintext
ℓ ← |𝑃𝑛|
for 𝑖 = 0 to 𝑛−1 do

S[0∶127] ← S[0∶127] ⊕𝑃𝑖
𝐶𝑖 ← S[0∶127]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S)

end for
S[0∶127] ← S[0∶127]⊕pad(𝑃𝑛,128)
𝐶𝑛 ← S[0∶ℓ−1]

𝐶 ← 𝐶0 ‖…‖𝐶𝑛−1 ‖𝐶𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S ⊕(0128 ‖𝐾 ‖064)) ▷ Finalization

𝑇 ← S[192∶319] ⊕𝐾

return 𝐶,𝑇

12

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

1. Initialization of the state. Given a 128-bit 𝐾 and a 128-bit 𝑁, the 320-bit internal
state S is initialized as the concatenation of 𝐼𝑉, 𝐾, and 𝑁:

S ← 𝐼𝑉 ∥𝐾 ∥𝑁, (15)

where the initialization value 𝐼𝑉 is 0x00001000808c0001 (see Appendix B for de-
tails on determining the IV and Appendix A for implementation notes regarding
initialization). Next, S is updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (16)

and followed by XORing the secret key 𝐾 into the last 128 bits of internal state:

S ← S ⊕(0192 ∥𝐾). (17)

2. Processing associated data. This step has two parts, including absorbing the asso-
ciated data (when it is non-empty) and applying the domain separation bit to the
state.

• If the AD is non-empty (i.e., |𝐴| > 0): The associated data 𝐴 is parsed into
blocks as

𝐴0, 𝐴1, …, 𝐴𝑚−1, 𝐴𝑚 ← parse(𝐴,128), (18)

where 𝑚 = ⌊|𝐴|/128⌋ and |𝐴𝑖| = 128 bits for 0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ |𝐴𝑚| <
128, as explained in Algorithm 1. The last block 𝐴𝑚 can be empty. Next, 𝐴𝑚 is
padded as

𝐴𝑚 ← pad(𝐴𝑚,128) = 𝐴𝑚||1 ∥ 0127−|𝐴𝑚| (19)

so that |𝐴𝑚| = 128, as explained in Algorithm 2.

Each associated data block 𝐴𝑖 (0 ≤ 𝑖 ≤ 𝑚) is absorbed into the first 128 bits of
state as

S[0∶127] ← S[0∶127] ⊕𝐴𝑖, (20)

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to the state as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (21)

The final step of processing associated data is to update the state with a constant

S ← S ⊕(0319 ∥1) (22)

that provides domain separation.

13

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

• If the AD is empty (i.e., |𝐴| = 0): Only the final step described in (22) is applied.

3. Processing plaintext. Plaintext 𝑃 (including empty plaintext) is parsed into blocks as

𝑃0, 𝑃1, …, 𝑃𝑛−1,𝑃𝑛 ← parse(𝑃 ,128), (23)

where 𝑛 = ⌊|𝑃 |/128⌋, |𝑃𝑖| = 128 for 0 ≤ 𝑖 ≤ 𝑛−1, and |𝑃𝑛| = ℓ, 0 ≤ ℓ < 128 using
Algorithm 1. When |𝑃 | mod 128 = 0, the last block 𝑃𝑛 is empty.

For each 𝑃𝑖, 0 ≤ 𝑖 ≤ 𝑛−1, the state S is updated as

S[0∶127] ← S[0∶127] ⊕ 𝑃𝑖, (24)

followed by generating the corresponding ciphertext block 𝐶𝑖 as

𝐶𝑖 ← S[0∶127], (25)

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to update the state as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (26)

For the last block 𝑃𝑛, the state is updated as

S[0∶127] ← S[0∶127] ⊕pad(𝑃𝑛,128), (27)

and the last ciphertext block 𝐶𝑛 is obtained as

𝐶𝑛 ← S[0∶ℓ−1]. (28)

The ciphertext 𝐶 is constructed by concatenating the ciphertext blocks as

𝐶 ← 𝐶0 ∥…∥𝐶𝑛−1 ∥𝐶𝑛. (29)

4. Finalization and tag generation. During finalization, the key is first loaded to the
state S as

S ← S ⊕(0128 ∥𝐾 ∥064), (30)

and the state S is then updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (31)

Finally, the tag 𝑇 is generated by XORing the key with the last 128 bits of the state:

𝑇 ← 𝑆[192∶319] ⊕𝐾. (32)

The encryption algorithm returns the ciphertext 𝐶 and the tag 𝑇.

14

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

4.1.2. Decryption

IV∥K∥N

As
co
n-
p[
12
]

Initialization

064∥K

⧸128

A0

As
co
n-
p[
8]

⧸
192

Am

As
co
n-
p[
8]

⧸
192

Associated Data

0191∥1

⧸128

P0 C0

⧸192 As
co
n-
p[
8]

Pn−1 Cn−1

⧸192 As
co
n-
p[
8]

Ciphertext

⧸
128

P̃n C̃n

⧸
ℓ = |C̃n|

⧸
128-ℓ

1 ∥ 0127−ℓ

⧸192

K∥064

⧸128

As
co
n-
p[
12
]

Finalization

K

T′

⧸128

⧸128

Figure 6. Ascon-AEAD128 decryption

This section describes each of the phases for decryption with Ascon-AEAD128.dec. Decryp-
tion in Ascon-AEAD128 consists of four phases: initialization, associated data processing,
ciphertext processing, and finalization. Decryption in Ascon-AEAD128 is similar to encryp-
tion; only the last two phases differ from the encryption mode.

The pseudocode of Ascon-AEAD128.dec is provided in Algorithm 4.

1. Initialization of the state. Given a 128-bit 𝐾 and 128-bit 𝑁, the 320-bit internal state
S is initialized as the concatenation of 𝐼𝑉, 𝐾, and 𝑁:

S ← 𝐼𝑉 ∥𝐾 ∥𝑁, (33)

where the initial value 𝐼𝑉 is 0x00001000808c0001 (see Appendix B for details on
determining the IV and Appendix A for implementation notes regarding initialization).
Next, S is updated using the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[12] as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (34)

and followed by XORing the secret key into the last 128 bits of the state as

S ← S ⊕(0192 ∥𝐾). (35)

This step is exactly the same as Step 1 of the encryption function in Sec. 4.1.1.

2. Processing associated data. This step has two parts, including absorbing the asso-
ciated data (when it is non-empty) and applying the domain separation bit to the
state.

• If the AD is non-empty (i.e., |𝐴| > 0): The associated data 𝐴 is parsed into
blocks as

𝐴0, 𝐴1, …, 𝐴𝑚−1, 𝐴𝑚 ← parse(𝐴,128), (36)

15

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Algorithm 4 Ascon-AEAD128.dec(𝐾,𝑁,𝐴,𝐶,𝑇)
Input: 128-bit key 𝐾, 128-bit nonce 𝑁, associated data 𝐴, ciphertext 𝐶, 128-bit tag 𝑇
Output: plaintext 𝑃 or fail

𝐼𝑉 ← 0x00001000808c0001 ▷ Initialization

S ← 𝐼𝑉 ‖𝐾 ‖𝑁
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)
S ← S ⊕(0192 ‖𝐾)

if |𝐴| > 0 then ▷ Processing associated data
𝐴0,…,𝐴𝑚−1,𝐴𝑚 ← parse(𝐴,128)
𝐴𝑚 ←pad(𝐴𝑚,128)
for 𝑖 = 0 to 𝑚 do

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8]((S[0∶127] ⊕𝐴𝑖)‖S[128∶319])
end for

end if
S ← S ⊕(0319 ‖1)

𝐶0,…,𝐶𝑛−1,𝐶𝑛 ← parse(𝐶,128) ▷ Processing ciphertext
for 𝑖 = 0 to 𝑛−1 do

𝑃𝑖 ← S[0∶127] ⊕𝐶𝑖
S[0∶127] ← 𝐶𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S)

end for
ℓ = |𝐶𝑛|
𝑃𝑛 ← S[0∶ℓ−1] ⊕𝐶𝑛
S[ℓ∶127] ← S[ℓ∶127] ⊕(1||0127−ℓ)
S[0∶ℓ−1] ← 𝐶𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S ⊕(0128 ‖𝐾 ‖064)) ▷ Finalization

𝑇 ′ ← S[192∶319] ⊕𝐾

if 𝑇 ′ == 𝑇 then
𝑃 ← 𝑃0 ‖…‖𝑃𝑛−1 ‖𝑃𝑛
return 𝑃

else

return fail
end if

16

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

where 𝑚 = ⌊|𝐴|/128⌋ and |𝐴𝑖| = 128 bits for 0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ |𝐴𝑚| <
128, as explained in Algorithm 1. The last block 𝐴𝑚 can be empty.

𝐴𝑚 is further processed by padding to a full 𝑟 = 128-bit block using Algorithm
2 as

𝐴𝑚 ← pad(𝐴𝑚,128) = 𝐴𝑚||1 ∥ 0127−|𝐴𝑚|. (37)

The associated data blocks 𝐴𝑖’s (0 ≤ 𝑖 ≤ 𝑚) are absorbed into the state S as
follows:

S[0∶127] ← (S[0∶127] ⊕𝐴𝑖), (38)

and the permutation 𝐴𝑠𝑐𝑜𝑛-𝑝[8] is applied to the state as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (39)

The final step of processing associated data is to update the state to

S ← S ⊕(0319 ∥1) (40)

for domain separation.

• If the AD is empty (i.e., |𝐴| = 0): Only the final step described in Equation (40)
is applied.

This step is exactly the same as Step 2 of the encryption function in Sec. 4.1.1.

3. Processing the ciphertext. Ciphertext 𝐶 is parsed into blocks as

𝐶0, 𝐶1, …,𝐶𝑛−1, 𝐶𝑛 ← parse(𝐶,128), (41)

where 𝑛 = ⌊|𝐶|/128⌋, |𝐶𝑖| = 128 for 0 ≤ 𝑖 ≤ 𝑛−1, |𝐶𝑛| = ℓ and 0 ≤ ℓ < 128 using
Algorithm 1. Ciphertext 𝐶 or the last block of ciphertext 𝐶𝑛 can be empty.

For each 𝐶𝑖, 0 ≤ 𝑖 ≤ 𝑛−1, the following steps are applied:

𝑃𝑖 ← S[0∶127] ⊕ 𝐶𝑖 (42)

S[0∶127] ← 𝐶𝑖 (43)

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[8](S). (44)

For the last block of the ciphertext 𝐶𝑛 (with length ℓ), the following steps are applied:

𝑃𝑛 ← S[0,ℓ−1] ⊕ 𝐶𝑛 (45)

S[0,ℓ−1] ← 𝐶𝑛 (46)

S[ℓ,127] ← S[ℓ,127] ⊕(1||0127−ℓ). (47)

17

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Note that when 𝐶𝑛 is an empty block, 𝑃𝑛 is an empty block as well.

The plaintext 𝑃 is constructed by concatenating the plaintext blocks as

𝑃 ← 𝑃0 ∥…∥𝑃𝑛−1 ∥𝑃𝑛. (48)

4. Finalization. During finalization, the key is loaded into the state S as

S ← S ⊕(0128 ∥𝐾 ∥064), (49)

and the state S is then updated using the permutation Ascon-p[12]as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (50)

Finally, the tag is generated by XORing the key with the last 128 bits of the state:

𝑇 ′ ← (𝑆[192∶319])⊕𝐾. (51)

As the last step, the computed 𝑇 ′ is compared with the input 𝑇. If the two match,
the plaintext 𝑃 is returned. Otherwise, an error message fail is returned.

4.2. Implementation Options

4.2.1. Truncation

Some applications may truncate the tag 𝑇 to a specific length 𝜆 (≤ |𝑇 |). The truncation
function outputs the leftmost 𝜆 bits of the tag (i.e., 𝑇[0∶𝜆−1]).

The requirements on the tag lengths are provided in Sec. 4.3.

4.2.2. Nonce Masking

In this option, an additional 128-bit key is used to mask the input nonce. Let 𝐾 = (𝐾1 ‖𝐾2)
be a 256-bit key, where |𝐾1| = |𝐾2| = 128. Ascon-AEAD128 with nonce masking is pro-
cessed as follows:

E(𝐾1 ∥𝐾2,𝑁,𝐴,𝑃) = Ascon-AEAD128.enc(𝐾1,𝑁 ⊕𝐾2,𝐴,𝑃), (52)

D(𝐾1 ∥𝐾2,𝑁,𝐴,𝐶,𝑇) = Ascon-AEAD128.dec(𝐾1,𝑁 ⊕𝐾2,𝐴,𝐶,𝑇) (53)

18

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Ascon-AEAD128 with nonce masking should only be used when context-commitment secu-
rity 2 [

2In AEAD schemes, context commitment is a security property that ensures a ciphertext cannot be decrypted
successfully under two different, adversarially-chosen contexts – where context includes a secret key, nonce,
and associated data.

12] and related-key security [13] are not concerns. This is because the encryption of
Ascon-AEAD128 with nonce masking always outputs the same (𝐶, 𝑇) pair for two different
input ′ ″ ′ ′ ′ ″tuples (𝐾 ‖𝐾 ,𝑁,𝐴,𝑃) and (𝐾 ‖𝐾 ,𝑁 ,𝐴,𝑃), where 𝑁 ⊕𝐾 = 𝑁 ⊕𝐾 .

When the output tag is not truncated, this option maintains its 128-bit security strength in
both single-key and multi-key settings [14] (see Section 4.4.2).

4.3. AEAD Requirements

This section specifies requirements for Ascon-AEAD128.

 R1. Key generation. The secret key and the nonce-masking key (if available) shall be
generated following the recommendations for cryptographic key generation specified
in SP 800-133 [15] and using an approved random bit generator that supports at least
a 128-bit security strength. The keys shall not be used for other purposes.

 R2. Secrecy of key. The Ascon-AEAD128 key shall be kept secret. When the nonce
masking option is implemented, the masked nonce (i.e., 𝑁 ⊕ 𝐾2 in Equation (52))
shall also be kept secret.

 R3. Use of unique nonce. Nonces shall be distinct for each encryption algorithm for a
given key to ensure that identical plaintexts encrypted multiple times produce different
ciphertexts.

 R4. Minimum length of truncated tag. When an application uses truncated tags, the
bit length of the truncated tags shall be at least 32 bits and shall only select a tag
length less than 64 bits after a careful risk analysis is performed. The tag length shall
be the same across the lifespan of the key.

 R5. Limit on the maximum number of decryption failures. When the tag bit length
𝜆 satisfies 64 ≤ 𝜆 ≤ 128, the probability of a forgery is low enough that decryption
failures up to 2𝜆−32 can be tolerated without compromising security. Therefore, the
maximum number of decryption failures under a fixed key shall not exceed 2𝜆−32. For
shorter tags, with 32 ≤ 𝜆 < 64, the forgery probability is higher, in these cases, the
number of allowable decryption failures should be limited to 1. However, if a careful
risk analysis shows that the system’s overall security goal remains satisfied, this limit

may be relaxed – up to the same bound of 2𝜆−32.

 R6. Data limit. The total amount of data processed during encryption and decryption,
including the nonce, shall not exceed 254 bytes for a given key.

19

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

 R7. Key update. The key shall be updated to a new key once the total amount of input
data reaches the limit of 254 bytes, and should be updated when the number of
decryption failures reaches its limit.

4.4. Security Properties

This section provides the security properties of Ascon-AEAD128 in various scenarios, in-
cluding single-key and multi-key settings, nonce-respecting and nonce-misuse settings, and
with or without the truncation option.

In the single-key setting, the security of the scheme is analyzed under the assumption that
the scheme uses a single key; in contrast, in the multi-key setting, multiple independent
keys are used, and the adversary may interact with many instances of the scheme, each with
a different key. The security of the Ascon-AEAD128 mode in both single-key and multi-key
settings was evaluated in [14, 16–19]. The committing security of the Ascon-AEAD128
mode was also evaluated in [20, 21].

4.4.1. Single-Key Setting

Ascon-AEAD128 with no tag truncation provides a 128-bit security strength in the single-key
and nonce-respecting setting for the confidentiality of the plaintext (except for its length)
and the integrity of the tuple (nonce, associated data, ciphertext, tag), where the total
number of input bytes is limited to 254 (i.e., 250 blocks).

Impact of truncation. For a tag of length 𝜆, a forgery attempt succeeds with a probability of
2−𝜆. Once a forgery is successful, the confidentiality of the plaintext may be compromised,
as the decryption algorithm could reveal some information about the plaintext. Therefore,
in the single-key setting, Ascon-AEAD128 with tag length 𝜆 provides 𝜆-bit security for both
confidentiality and integrity in the nonce-respecting setting.Note that even if a forgery
attempt is successful, the probability of another successful forgery is 2−𝜆, provided that
the secret key remains uncompromised. This also holds for the nonce masking option.

4.4.2. Multi-Key Setting

When 𝑢 keys are independently selected for an application, Ascon-AEAD128 with no tag
truncation provides a (128− log2 𝑢)-bit security strength in the nonce-respecting setting

for the confidentiality of the plaintext and the integrity of the tuple (nonce, associated data,
ciphertext, tag). Note that, in the nonce-respecting setting, an attacker may select the same

nonce for use with different keys, but is not permitted to reuse a nonce with the same key.

When the same nonce is used with 𝑢 keys, an attacker may discover one of the 𝑢 keys with
a time complexity of 2128−log2 𝑢, thereby compromising both confidentiality and integrity
[14, 17–19].

20

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

To improve security in a multi-key setting, the nonce-masking implementation option with
no truncation (see Sec. 4.2.2) can be used. This option provides 128-bit security (rather
than 128− log2 𝑢) for confidentiality and integrity.

Impact of truncation. In the multi-key setting, Ascon-AEAD128 with tag length 𝜆 pro-
vides min{128− log2 𝑢,𝜆}-bit security for both confidentiality and integrity in the nonce-
respecting setting. Additionally, when using the nonce-masking option with tag length 𝜆,
it provides 𝜆-bit security for both confidentiality and integrity in the same setting. Note
that, similar to the single-key case, even if a forgery attempt is successful, the probability of
another successful forgery is 2−𝜆, provided that the secret key is uncompromised.

4.4.3. Nonce-Misuse Setting

The confidentiality of plaintext both in Ascon-AEAD128 and Ascon-AEAD128 with nonce
masking can be compromised if a nonce or, more specifically, (nonce, associated data) pair,
is reused with the same secret key. However, these algorithms are designed to provide
some resilience against unintentional nonce reuse.

When (𝑁, 𝐴) pairs are distinct for encryption per key: In the 𝑢-key setting, where 𝑢 = 1
corresponds to a single key and 𝑢 > 1 to multiple independent keys, the confidentiality and
integrity guarantees of Ascon-AEAD128 and the nonce-masking option with a 𝜆-bit tag are
as follows:

• Ascon-AEAD128 provides min{128− log2 𝑢,𝜆} bits of security for both confidential-
ity and integrity.

• Nonce-masking option provides 𝜆-bit security for both confidentiality and integrity.

These guarantees assume that each (𝑁, 𝐴) pair is used at most once per key, and that any
given nonce is reused for encryption with the same key no more than 28 times. Additionally,
even after a successful forgery, the probability of another successful forgery attempt remains

at most 2−𝜆, provided that none of the multiple keys is compromised. The resulting security
levels under these conditions are summarized in Table 7.

Table 7. Security strength of Ascon-AEAD128 with 𝜆-bit tag in the 𝑢-key setting, where (𝑁,
𝐴) pairs are distinct for encryption per key

Security

 Security
 strength
 in bits

 Total number

 of repetitions of
 a nonce

Confidentiality of plaintext min{128− log2 𝑢,𝜆} ≤ 28

 Integrity of (𝑁,𝐴,𝐶,𝑇) min{128− log2 𝑢,𝜆} ≤ 28

When each (𝑁, 𝐴) pair are reused up to 28 times for encryption per key: In the 𝑢-key
setting, where 𝑢 denotes the number of independent keys, the integrity security guarantees
of Ascon-AEAD128 and the nonce-masking option with a 𝜆-bit tag are as follows:

21

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

• Ascon-AEAD128 provides min{128− log2 𝑢,𝜆} bits of integrity security.

• Nonce-masking option provides 𝜆-bit integrity security.

These guarantees hold under the condition that each (𝑁, 𝐴) pair is reused at most 28 times
for encryption with the same key. The corresponding integrity security levels are summa-

rized in Table 8. Furthermore, for both Ascon-AEAD128 and the nonce-masking option,
even after a successful forgery, the probability that a subsequent forgery attempt succeeds
remains at most 2−𝜆, provided that none of the multiple keys has been compromised.

Table 8. Integrity security strength of Ascon-AEAD128 with 𝑢 keys in the nonce-misuse
setting

Security
 Security strength

in bits

 Total number of repetitions
 of any (𝑁, 𝐴) pair

 Integrity of (𝑁,𝐴,𝐶,𝑇) min{128− log2 𝑢,𝜆} ≤ 28

22

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

5. Hash and eXtendable-Output Functions (XOFs)

Hash and XOF algorithms are built on the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation in a sponge-based
mode. This section specifies three functions:

1. Hash function Ascon-Hash256, which produces a 256-bit digest

2. Ascon-XOF128 function that produces arbitrary length outputs

3. Customized XOF Ascon-CXOF128, which also produces arbitrary length outputs

The designs of these functions differ from the design of Ascon-AEAD128 in three important
ways. First, they employ traditional sponge-based modes that only extract output from
the state after all input data has been absorbed. Second, the rate of these functions is
reduced to 64 bits — half the rate used in Ascon-AEAD128. Finally, the hash and XOF
algorithms rely only on the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation, whereas Ascon-AEAD128 employs
both 𝐴𝑠𝑐𝑜𝑛-𝑝[12] and 𝐴𝑠𝑐𝑜𝑛-𝑝[8].

In Ascon-XOF128, when different output lengths are specified for the same input message,
the shorter output is a prefix of the longer one. If this prefix property is undesirable in a
given application, domain separation offers a more robust solution. For instance, Ascon-
CXOF128 enables domain separation by allowing output lengths to be encoded into the
user-defined customization string.

5.1. Specification of Ascon-Hash256

The mode of operation used by Ascon-Hash256 and Ascon-XOF128 is shown in Figure 7.
This mode comprises three main steps: initialization, absorbing the message, and squeezing
the output. The length of the output 𝐿 is 256 for Ascon-Hash256 and 𝐿 > 0 for Ascon-
XOF128.

Note that the rate and capacity of Ascon-Hash256 are 64 and 256 bits, respectively.

Figure 7. Structure of Ascon-Hash256 and Ascon-XOF128

IV∥0256

As
co
n-
p[
12
]

Initialization

⧸64

M0

As
co
n -
p[
12
]

⧸
256

Mn−1

As
co
n -
p[
12
]

⧸
256

Absorb Message

Mn

256
⧸ As

co
n-
p[
12
]

⧸

H0

As
co
n-
p[
12
]

256
⧸
256

H⌈L/64⌉−1

⧸64

Squeeze Output

23

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Ascon-Hash256 takes a variable length message 𝑀 as input and produces a 256-bit digest.
The full specification of Ascon-Hash256 can be found in Algorithm 5 and operates as
follows:

1. Initialization. The 320-bit internal state of Ascon-Hash256 is initialized with the
concatenation of the 64-bit 𝐼𝑉 = 0x0000080100cc0002 and 256 zeroes, followed
by the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation as

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256). (54)

2. Absorbing the message. The absorbing phase behaves similarly to the associated
data processing of Ascon-AEAD128. The message is parsed into blocks, as

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64), (55)

where |𝑀𝑖| = 64 bits for 0 ≤ 𝑖 ≤ 𝑛 − 1 and 0 ≤ |𝑀𝑛| ≤ 63. The last block 𝑀𝑛 can
be empty. Next, 𝑀𝑛 is padded to create a full block 𝑀𝑛:

𝑀𝑛 ← pad(𝑀𝑛,64). (56)

Each message block 𝑀𝑖 is XORed with the state as

S[0∶63] ← S[0∶63] ⊕𝑀𝑖. (57)

For all message blocks except the final block 𝑀𝑛,the XOR operation is immediately
followed by applying 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state.

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) (58)

3. Squeezing the hash. The squeezing phase begins after 𝑀𝑛 is absorbed with an
application of 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state:

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (59)

The value of S[0∶63] is then taken as the 64-bit hash block 𝐻𝑖, and the state is again
updated by 𝐴𝑠𝑐𝑜𝑛-𝑝[12]:

𝐻𝑖 ← S[0∶63] (60)

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (61)

24

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

 Steps (60) and (61) are repeated alternately until hash blocks 𝐻 ,𝐻 , and 𝐻 have0 1 2
been extracted. The final hash block is then extracted but is not followed by the
Ascon-p[12] permutation:

𝐻3 ← S[0∶63]. (62)

The resulting 256-bit digest is the concatenation of hash blocks as

𝐻 ← 𝐻0 ∥𝐻1 ∥𝐻2 ∥𝐻3. (63)

Algorithm 5 Ascon-Hash256(𝑀)

Input: Bitstring 𝑀 ∈ {0,1}∗

Output: Digest 𝐻 ∈ {0,1}256

𝐼𝑉 ←0x0000080100cc0002 ▷ Initialization

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256)

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing

𝑀𝑛 ← pad(𝑀𝑛,64)
for 𝑖 = 0 to 𝑛−1 do

S[0∶63] ← S[0∶63] ⊕𝑀𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
S[0∶63] ← S[0∶63] ⊕𝑀𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing

for 𝑖 = 0 to 2 do
𝐻𝑖 ← S[0∶63]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
𝐻3 ← S[0∶63]

𝐻 ← 𝐻0 ‖𝐻1 ‖𝐻2 ‖𝐻3
return 𝐻

5.2. Specification of Ascon-XOF128

Ascon-XOF128 is similar to Ascon-Hash256 but differs in three aspects:

1. Ascon-XOF128 accepts an additional input 𝐿 > 0, which specifies the desired output
length in bits.

2. The number of blocks that are squeezed is ⌈𝐿/64⌉.

25

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

3. The initial values used in Ascon-XOF128 and Ascon-Hash256 are different.

The 128 in the name Ascon-XOF128 refers to the target security strength, not the output
size. Note that the rate and capacity of Ascon-XOF128 are 64 and 256 bits, respectively.

Ascon-XOF128 is specified by Algorithm 6 and is described as follows:

1. Initialization. The 320-bit internal state of Ascon-XOF128 is initialized with the
concatenation of the 64-bit 𝐼𝑉 = 0x0000080000cc0003 and 256 zeroes, followed
by the 𝐴𝑠𝑐𝑜𝑛-𝑝[12] permutation:

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256). (64)

2. Absorbing the message. The absorbing phase behaves the same as that of Ascon-
Hash256. The message is parsed into blocks as

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64). (65)

where |𝑀𝑖| = 64 bits for 0 ≤ 𝑖 ≤ 𝑛−1 and 0 ≤ |𝑀𝑛| ≤ 63. Partial block 𝑀𝑛 is then
padded to a full block 𝑀𝑛 as

𝑀𝑛 ← pad(𝑀𝑛,64). (66)

Each message block 𝑀𝑖 is absorbed by XORing the block into the state as

S[0∶63] ← S[0∶63] ⊕𝑀𝑖. (67)

For all message blocks except the final block, the XOR operation is immediately

followed by an application of 𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state:

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (68)

3. Squeezing the outputs. To obtain the requested 𝐿 output bits, ℎ = ⌈𝐿/64⌉ blocks
must be extracted from the state. The squeezing phase begins with an application of
𝐴𝑠𝑐𝑜𝑛-𝑝[12] to the state:

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (69)

The value of S[0∶63] is then taken as output block 𝐻𝑖, and the state is again updated
by 𝐴𝑠𝑐𝑜𝑛-𝑝[12]:

𝐻𝑖 ← S[0∶63] (70)

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S). (71)

26

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Steps (70) and (71) are repeated alternately until output blocks 𝐻0,…,𝐻ℎ−1 have
been squeezed. The final block is then squeezed without an additional permutation

call:

𝐻ℎ ← S[0∶63]. (72)

Finally, the output blocks are concatenated, and the first 𝐿 bits are returned as output
𝐻:

𝐻′ ← 𝐻0 ∥…∥𝐻ℎ (73)

𝐻 ← 𝐻′
[0∶𝐿−1]. (74)

Algorithm 6 Ascon-XOF128(𝑀, 𝐿)
Input: Bitstring 𝑀 ∈ {0,1}∗, output length 𝐿 > 0
Output: Digest 𝐻 ∈ {0,1}𝐿

𝐼𝑉 ← 0x0000080000cc0003 ▷ Initialization

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256)

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing

𝑀𝑛 ← pad(𝑀𝑛,64)
for 𝑖 = 0 to 𝑛−1 do

S[0∶63] ← S[0∶63] ⊕𝑀𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
S[0∶63] ← S[0∶63] ⊕𝑀𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing

ℎ ← ⌈𝐿/64⌉−1
for 𝑖 = 0 to ℎ−1 do

𝐻𝑖 ← S[0∶63]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
𝐻ℎ ← S[0∶63]

𝐻′ ← 𝐻0 ‖…‖𝐻ℎ
𝐻 ← 𝐻′

[0∶𝐿−1]
return 𝐻

27

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

5.3. Specification of Ascon-CXOF128

This section defines Ascon-CXOF128, which is a customized variant of Ascon-XOF128 that
extends its functionality by incorporating a user-defined customization string. This feature
enables domain separation, ensuring that two instances of Ascon-CXOF128 with the same
input message but different customization strings produce distinct outputs.

In addition to the message 𝑀 and output length 𝐿, Ascon-CXOF128 takes the customization
string 𝑍 as input. After initialization, the length of 𝑍, in bits, is assigned to the 64-bit block
𝑍0 as

𝑍0 = int64(|𝑍|). (75)

Then, 𝑍 is parsed into blocks as

𝑍1,…,𝑍𝑚−1,𝑍𝑚 ← parse(𝑍,64), (76)

where |𝑍𝑖| = 64 bits for 0 ≤ 𝑖 ≤ 𝑚 − 1 and 0 ≤ |𝑍𝑚| ≤ 63. The partial block 𝑍𝑚 is then
padded to a full block 𝑍𝑚 as

𝑍𝑚 ← pad(𝑍𝑚,64). (77)

The customization string 𝑍 is prepended to the message blocks as

𝑍0 ∥𝑍1 ∥…∥𝑍𝑚 ∥𝑀0 ∥…∥𝑀𝑛−1 ∥𝑀𝑛, (78)

where the message blocks are generated similarly as in Ascon-XOF128.

Although similar to Ascon-XOF128, Ascon-CXOF128 uses a different IV. Hence, the concate-
nation of the customization string and the message produces different outputs for Ascon-
XOF128 and Ascon-CXOF128. The IV for Ascon-CXOF128 is 0x0000080000cc0004.

The general structure for Ascon-CXOF128 is shown in Figure 8 and the full specification is
provided in Algorithm 7.

The length of the customization string shall be at most 2048 bits (i.e., 256 bytes).

28

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Algorithm 7 Ascon-CXOF128(𝑀, 𝐿, 𝑍)
Input: Bitstring 𝑀 ∈ {0,1}∗, output length 𝐿 > 0, customization string 𝑍 ∈ {0,1}∗, where

|𝑍| ≤ 2048
Output: Digest 𝐻 ∈ {0,1}𝐿

𝐼𝑉 ← 0x0000080000cc0004 ▷ Initialization

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ‖0256)

𝑍0 ← int64(|𝑍|) ▷ Customization

𝑍1 …,𝑍𝑚−1,𝑍𝑚 ← parse(𝑍,64)
𝑍𝑚 ← pad(𝑍𝑚,64)
for 𝑖 = 0 to 𝑚 do

S[0∶63] ← S[0∶63] ⊕𝑍𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for

𝑀0,…,𝑀𝑛−1,𝑀𝑛 ← parse(𝑀,64) ▷ Absorbing

𝑀𝑛 ← pad(𝑀𝑛,64)
for 𝑖 = 0 to 𝑛−1 do

S[0∶63] ← S[0∶63] ⊕𝑀𝑖
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
S[0∶63] ← S[0∶63] ⊕𝑀𝑛

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S) ▷ Squeezing

ℎ ← ⌈𝐿/64⌉−1
for 𝑖 = 0 to ℎ−1 do

𝐻𝑖 ← S[0∶63]
S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](S)

end for
𝐻ℎ ← S[0∶63]

𝐻′ ← 𝐻0 ‖…‖𝐻ℎ
𝐻 ← 𝐻′

[0∶𝐿−1]
return 𝐻

29

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

IV∥0256

As
co
n-
p[
12
]

Initialization

⧸64

Z0

As
co
n-
p[
12
]

⧸
256

Zm−1

As
co
n-
p[
12
]

⧸
256

Customization

Zm

256
⧸ As

co
n-
p[
12
]

M0

As
co
n-
p[
12
]

⧸
256

Mn−1

As
co
n -
p[
12
]

⧸
256

Absorb Message

Mn

256
⧸ As

co
n-
p[
12
]

⧸

H0

As
co
n-
p[
12
]

256
⧸
256

H⌈L/64⌉−1

⧸64

Squeeze Output

Figure 8. Structure of Ascon-CXOF128

5.4. Streaming API for XOF

Ascon-XOF128 and Ascon-CXOF128 support incremental processing of input data, without
the prior knowledge of complete input or output lengths. This makes them suitable for
applications where data is received or processed in blocks. In particular, when using Ascon-
XOF128 and Ascon-CXOF128, it is not necessary to know the output length 𝐿 at the time
that the final block is squeezed.

The following three functions can be used to create incremental implementations for
Ascon-XOF128.

• 𝑐𝑡𝑥 ← Ascon-XOF128.Init()
Initializes and returns Ascon-XOF128 context 𝑐𝑡𝑥.
Restriction: Must be called exactly once before any call to Absorb or Squeeze.

• 𝑐𝑡𝑥 ← Ascon-XOF128.Absorb(𝑐𝑡𝑥, str)
Absorbs an arbitrary-length input str into the state and updates the context 𝑐𝑡𝑥.
Restriction: May be called multiple times after Init, but cannot be called after any
call to Squeeze.

• (𝑐𝑡𝑥, 𝑜𝑢𝑡) ← Ascon-XOF128.Squeeze(𝑐𝑡𝑥, 𝐿)
Extracts 𝐿 output bits produced during the squeezing phase of Ascon-XOF128 and
updates context 𝑐𝑡𝑥.
Restriction: May be called multiple times after the absorb phase is complete, but
must not be called before Init. The first call of Squeeze handles the padding of
the final message block. Once Squeeze is called, no further calls to Absorb are
permitted.

These functions perform buffering of partial blocks, allowing both input and output to be
processed in arbitrary-length segments. Therefore, these functions can then be used to
begin execution without knowing the complete message 𝑀 at the start of the absorption
phase or the value 𝐿 at the time that the final block is squeezed. This API is similar to
those proposed for SHAKE-128 and SHAKE-256 in [22]. Similar interfaces can be defined for
incremental implementations of Ascon-AEAD128 and Ascon-Hash256.

30

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

5.5. Security Strengths

The security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128 are sum-

marized in Table 9.

Table 9. Security strengths of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128
algorithms

Function
 Output size

 in bits
 Security strength in bits

 Collision Preimage 2nd Preimage

 Ascon-Hash256 256 128 128 128
 Ascon-XOF128 𝐿 min(𝐿/2,128) min(𝐿,128) min(𝐿,128)
 Ascon-CXOF128 𝐿 min(𝐿/2,128) min(𝐿,128) min(,128)𝐿

If the message is known to belong to a set M, the preimage resistance is also limited by
the size of M. For more information about security strengths against preimage attacks in
different scenarios, refer to [19, 23].

6. Conformance

The implementations of Ascon-AEAD128, Ascon-Hash256, Ascon-XOF128, and Ascon-
CXOF128 may be tested for conformance to this standard under the Cryptographic Valida-
tion Program [24]. Example test vectors are available from the Cryptographic Algorithm
Validation Program (CAVP) [25].

Ascon-Hash256 is an approved cryptographic hash function; however, its use within the
Keyed-Hash Message Authentication Code (HMAC) is not approved in this standard. Simi-

larly, the use of Ascon-XOF128and Ascon-CXOF128 within HMAC is not approved.

Ascon-XOF128 and Ascon-CXOF128 are approved XOFs, and their approved uses will be
specified in other NIST publications. While some of these uses may overlap with those of
approved hash functions, XOFs are not approved as hash functions.

The Ascon permutations, including variants with different numbers of rounds, may be
approved for additional applications if corresponding modes of operation are developed
and approved within a FIPS or a NIST Special Publication.

31

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

References

[1] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2014) Ascon v1, Submission to
Round 1 of the CAESAR competition. Available at https://competitions.cr.yp.to/roun

d1/asconv1.pdf.

[2] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2015) Ascon v1.1, Submission to
Round 2 of the CAESAR competition. Available at https://competitions.cr.yp.to/roun

d2/asconv11.pdf.

[3] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2016) Ascon v1.2, Submission to
Round 3 of the CAESAR competition. Available at https://competitions.cr.yp.to/roun

d3/asconv12.pdf.

[4] National Institute of Standards and Technology (Published 2001; Updated 2023) Ad-
vanced Encryption Standard (AES), FIPS 197. https://doi.org/10.6028/NIST.FIPS.197-u
pd1.

[5] Dworkin MJ (2007) Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC (National Institute of Standards and Technology),
Report. DOI:10.6028/NIST.SP.800-38D

[6] National Institute of Standards and Technology (2015) Secure Hash Standard (SHS)
(U.S. Department of Commerce), Report. DOI:10.6028/NIST.FIPS.180-4

[7] National Institute of Standards and Technology (2015) SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions (U.S. Department of Commerce), Report.
DOI:10.6028/NIST.FIPS.202

[8] Dobraunig C, Eichlseder M, Mendel F, Schläffer M (2021) Ascon v1.2, Submission

to Final Round of the NIST Lightweight Cryptography project. Available at https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-r

ound/updated-spec-doc/ascon-spec-final.pdf.

[9] Sönmez Turan M, McKay KA, Çalık Ç, Chang D, Bassham I Lawrence E (2019) Status Re-
port on the First Round of the NIST Lightweight Cryptography Standardization Process
(National Institute of Standards and Technology), Report. DOI:10.6028/NIST.IR.8268

[10] Sönmez Turan M, McKay KA, Chang D, Çalık Ç, Bassham I Lawrence E, Kang J, Kelsey
J (2021) Status Report on the Second Round of the NIST Lightweight Cryptography
Standardization Process (National Institute of Standards and Technology), Report.
DOI:10.6028/NIST.IR.8369

[11] Sönmez Turan M, McKay KA, Chang D, Bassham L, Kang J, Waller N, Kelsey J, Hong
D (2023) Status Report on the Final Round of the NIST Lightweight Cryptography
Standardization Process (National Institute of Standards and Technology), Report.
DOI:10.6028/NIST.IR.8454

[12] Bellare M, Hoang VT (2022) Efficient Schemes for Committing Authenticated Encryp-
tion. Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May

30 - June 3, 2022, Proceedings, Part II, eds Dunkelman O, Dziembowski S (Springer),

32

https://competitions.cr.yp.to/round1/asconv1.pdf
https://competitions.cr.yp.to/round1/asconv1.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round2/asconv11.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://doi.org/10.6028/NIST.IR.8268
https://doi.org/10.6028/NIST.IR.8369
https://doi.org/10.6028/NIST.IR.8454

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Lecture Notes in Computer Science, Vol. 13276, pp 845–875. DOI:10.1007/978-3-031-
07085-3_29

[13] Bellare M, Kohno T (2003) A Theoretical Treatment of Related-Key Attacks: RKA-PRPs,
RKA-PRFs, and Applications. Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,

Poland, May 4-8, 2003, Proceedings, ed Biham E (Springer), Lecture Notes in Computer

Science, Vol. 2656, pp 491–506. DOI:10.1007/3-540-39200-9_31. Available at https:
//doi.org/10.1007/3-540-39200-9_31

[14] Dobraunig C, Mennink B (2024) Generalized Initialization of the Duplex Construction.
Applied Cryptography and Network Security - 22nd International Conference, ACNS
2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part II, eds
Pöpper C, Batina L (Springer), Lecture Notes in Computer Science, Vol. 14584, pp
460–484. DOI:10.1007/978-3-031-54773-7_18

[15] Barker E, Roginsky A, Davis R (2020) Recommendation for Cryptographic Key Genera-
tion, (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-133 Rev. 2. DOI:10.6028/NIST.SP.800-133r2.

[16] Chakraborty B, Dhar C, Nandi M (2023) Exact Security Analysis of ASCON. Advances
in Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and
Application of Cryptology and Information Security, Guangzhou, China, December 4-8,
2023, Proceedings, Part III, eds Guo J, Steinfeld R (Springer), Lecture Notes in Computer

Science, Vol. 14440, pp 346–369. DOI:10.1007/978-981-99-8727-6_12
[17] Lefevre C, Mennink B (2025) Generic Security of the Ascon Mode: On the Power of

Key Blinding. Selected Areas in Cryptography – SAC 2024, eds Eichlseder M, Gambs S
(Springer Nature Switzerland, Cham), pp 3–32.

[18] Chakraborty B, Dhar C, Nandi M (2024) Tight Multi-user Security of Ascon and Its Large
Key Extension. Information Security and Privacy - 29th Australasian Conference, ACISP
2024, Sydney, NSW, Australia, July 15-17, 2024, Proceedings, Part I, eds Zhu T, Li Y
(Springer), Lecture Notes in Computer Science, Vol. 14895, pp 57–76. DOI:10.1007/978-
981-97-5025-2_4

[19] Lefevre C, Mennink B (2025) SoK: Security of the Ascon Modes. IACR Trans Symmetric

Cryptol 2025(1):138–210. DOI:10.46586/TOSC.V2025.I1.138-210. Available at https:
//doi.org/10.46586/tosc.v2025.i1.138-210

[20] Naito Y, Sasaki Y, Sugawara T (2023) Committing Security of Ascon: Cryptanalysis
on Primitive and Proof on Mode. IACR Trans Symmetric Cryptol 2023(4):420–451.
DOI:10.46586/TOSC.V2023.I4.420-451. Available at https://doi.org/10.46586/tosc.v2
023.i4.420-451

[21] Krämer J, Struck P, Weishäupl M (2024) Committing AE from Sponges Security
Analysis of the NIST LWC Finalists. IACR Trans Symmetric Cryptol 2024(4):191–248.
DOI:10.46586/TOSC.V2024.I4.191-248. Available at https://doi.org/10.46586/tosc.v2
024.i4.191-248

[22] National Institute of Standards and Technology (2024) Module-Lattice-Based Key-
Encapsulation Mechanism Standard (U.S. Department of Commerce, Washing-

33

https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-031-54773-7_18
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.1007/978-981-99-8727-6_12
https://doi.org/10.1007/978-981-97-5025-2_4
https://doi.org/10.1007/978-981-97-5025-2_4
https://doi.org/10.46586/TOSC.V2025.I1.138-210
https://doi.org/10.46586/tosc.v2025.i1.138-210
https://doi.org/10.46586/tosc.v2025.i1.138-210
https://doi.org/10.46586/TOSC.V2023.I4.420-451
https://doi.org/10.46586/tosc.v2023.i4.420-451
https://doi.org/10.46586/tosc.v2023.i4.420-451
https://doi.org/10.46586/TOSC.V2024.I4.191-248
https://doi.org/10.46586/tosc.v2024.i4.191-248
https://doi.org/10.46586/tosc.v2024.i4.191-248

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

ton, D.C.), Federal Information Processing Standards Publications (FIPS) 203.
DOI:10.6028/NIST.FIPS.203

[23] Lefevre C, Mennink B (2022) Tight Preimage Resistance of the Sponge Construc-
tion. Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptol-
ogy Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Pro-
ceedings, Part IV, eds Dodis Y, Shrimpton T (Springer), Lecture Notes in Computer

Science, Vol. 13510, pp 185–204. DOI:10.1007/978-3-031-15985-5_7. Available at
https://doi.org/10.1007/978-3-031-15985-5_7

[24] National Institute of Standards and Technology (2024) Cryptographic Module Valida-
tion Program (CMVP). Available at https://csrc.nist.gov/projects/cryptographic-mod

ule-validation-program.

[25] National Institute of Standards and Technology (2023) GitHub repository usnist-
gov/ACVP-Server: Automated Cryptographic Validation Test System — Gen/Vals). Avail-
able at https://github.com/usnistgov/ACVP-Server/tree/master/gen-val/json-files.

34

https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.1007/978-3-031-15985-5_7
https://doi.org/10.1007/978-3-031-15985-5_7
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://github.com/usnistgov/ACVP-Server/tree/master/gen-val/json-files

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Appendix A. Implementation Notes

This specification follows the little-endian ordering convention. That is, on little-endian ma-

chines, byte strings or words of any size can be loaded from memory directly into the Ascon
state without the need to perform any conversion. Neither bytes nor bits need to be re-
versed. The hexadecimal forms of the padding for Ascon functions are described in Sec. A.2.

However, the convention for printing the Ascon state using 64-bit integer words in hex-
adecimal notation (most significant byte and bit first) is different from printing the Ascon
state using byte sequences or bitstrings (least significant byte and bit first). The conversion
functions between printing byte sequences and printing integers are specified in Sec. A.1.

The least significant bit of 𝑆0 is 𝑠(0,0) (i.e., S[0∶0]), and the most significant bit of 𝑆4 is 𝑠(4,63)
(i.e., S[319∶319]). Similarly, the least significant byte of 𝑆0 is the first byte of state (S[0∶7]),
and the most significant byte of 𝑆4 is the last byte of the state (S[312∶319]). This relationship
between state words, bytes, and state bits is shown in Fig. 9, where 𝑆𝑖[𝑗] denotes the 𝑗𝑡ℎ

byte of state word 𝑆𝑖 for 0 ≤ 𝑖 ≤ 4 and 0 ≤ 𝑗 ≤ 7.

Figure 9. Mapping between state words, bytes, and bits

𝑆0 … 𝑆4

𝑆0[0]

S [0
∶7

]

𝑆0[1]

S [8
∶1

5]

𝑆0[2]

S [1
6∶

23
]

𝑆0[3]

S [2
4∶

31
]

𝑆0[4]

S [3
2∶

39
]

𝑆0[5]

S [4
0∶

47
]

𝑆0[6]

S [4
8∶

55
]

𝑆0[7]

S [5
6∶

63
]

𝑆4[0]

S [2
56

∶2
63

]

𝑆4[1]

S [2
64

∶2
71

]

𝑆4[2]

S [2
72

∶2
79

]

𝑆4[3]

S [2
80

∶2
87

]
𝑆4[4]

S [2
88

∶2
95

]

𝑆4[5]

S [2
96

∶3
03

]

𝑆4[6]

S [3
04

∶3
11

]

𝑆4[7]

S [3
12

∶3
19

]

A.1. Conversion Functions

When printing values as integers using hexadecimal notation, the most significant byte and
most significant bit are shown first.

Integers and byte sequences. Printing the integer representation of a byte sequence
requires the byte order to be reversed. That is, the first element in the sequence of bytes is
the least significant byte of the integer, while the last element in the sequence of bytes is
the most significant byte of the integer.

Integers and bitstrings. Printing a bitstring as an integer requires the byte order and the bits
within a byte to be reversed. That is, the first element of a bitstring is the least significant
bit of the integer (or byte), while the last element of the bitstring is the least significant bit
of the integer (or byte).

35

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Loading 64-bit integer words from a byte sequence. When loading the state from a
sequence of bytes stored in memory, the first eight bytes are mapped to the first 64-bit
unsigned integer word 𝑆0 in little-endian notation (i.e., without byte reversal on little-endian
machines). The next eight bytes are loaded to 𝑆1. Bytes continue to be loaded in the same
way until the final eight bytes of the stored state are loaded into 𝑆4.

An example of the mapping between memory addresses to state word bytes is presented in
Table 10 for both little-endian and big-endian machines. An example of mappings between
64-bit unsigned integers, byte sequences, and bitstrings is shown in Fig. 10. Note that
64-bit integers and bitstrings only appear to be reversed in the visual representation.

Table 10. Address for each byte of Ascon state word 𝑆𝑖 in memory on little-endian and
big-endian machines, where the word 𝑆𝑖 begins at memory address 𝑎

 Word

 byte
 Little-endian

 address
 Big-endian
 address

𝑆𝑖[0] 𝑎+0 𝑎+7
𝑆𝑖[1] 𝑎+1 𝑎+6
𝑆𝑖[2] 𝑎+2 𝑎+5
𝑆𝑖[3] 𝑎+3 𝑎+4
𝑆𝑖[4] 𝑎+4 𝑎+3
𝑆𝑖[5] 𝑎+5 𝑎+2
𝑆𝑖[6] 𝑎+6 𝑎+1
𝑆𝑖[7] 𝑎+7 𝑎+0

Writing 64-bit integer words to a byte sequence. The process for writing the 64-bit unsigned
integer Ascon state words to a byte sequence in memory is simply the reverse of loading
a state word from a byte sequence. The byte order does not need to be reversed on
little-endian machines.

A.2. Implementing with Integers

This section provides additional information for software implementations that employ

64-bit unsigned integers.

Padding. The padding rule described in Algorithm 2 appends a one followed by one or
more zeroes to data. For an integer 𝑥 that can be represented with 𝑛 < 8 bytes, an integer
𝑦 that represents a padded version of 𝑥 is computed as

𝑦 ← 𝑥⊕(0x0000000000000001 ≪ 8𝑛).

36

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

37

Figure 10. Representation of the Ascon state as 64-bit unsigned integers, byte sequences,
and bitstrings, where 64-bit unsigned integers are used to define the permutation, data
stored in memory is represented as byte sequences, and bitstrings are used to specify the
modes of operation. Note that 64-bit integers and bitstrings only appear to be reversed in
the visual representation.

 State State Word value (64-bit unsigned integers)
 bits word
S[0∶63] 𝑆0 0x0706050403020100
S[64∶127] 𝑆1 0x0F0E0D0C0B0A0908
S[128∶191] 𝑆2 0x1716151413121110
S[192∶255] 𝑆3 0x1F1E1D1C1B1A1918
S[256∶319] 𝑆4 0x2726252423222120

↕
 State State Word value (byte sequence)
 bits word
S[0∶63] 𝑆0 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
S[64∶127] 𝑆1 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
S[128∶191] 𝑆2 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
S[192∶255] 𝑆3 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
S[256∶319] 𝑆4 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

↕
 State State Word value (bitstring)
 bits word
S[0∶63] 𝑆0 0000 0000 1000 0000 0100 0000 1100 0000

 0010 0000 1010 0000 0110 0000 1110 0000
S[64∶127] 𝑆1 0001 0000 1001 0000 0101 0000 1101 0000

 0011 0000 1011 0000 0111 0000 1111 0000
S[128∶191] 𝑆2 0000 1000 1000 1000 0100 1000 1100 1000

 0010 1000 1010 1000 0110 1000 1110 1000
S[192∶255] 𝑆3 0001 1000 1001 1000 0101 1000 1101 1000

 0011 1000 1011 1000 0111 1000 1111 1000
S[256∶319] 𝑆4 0000 0100 1000 0100 0100 0100 1100 0100

 0010 0100 1010 0100 0110 0100 1110 0100

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 11. Examples of padding an unsigned integer 𝑥 to a 64-bit block, where 𝑥 encodes a
sequence of bytes that each have value 0xFF in little-endian byte order

 Length of 𝑥
 (in bytes)

 # Padding
 Bytes

 Unsigned integer 𝑥 Padded 64-bit block

0 8 0x0000000000000000 0x0000000000000001
1 7 0x00000000000000FF 0x00000000000001FF
2 6 0x000000000000FFFF 0x000000000001FFFF
3 5 0x0000000000FFFFFF 0x0000000001FFFFFF
4 4 0x00000000FFFFFFFF 0x00000001FFFFFFFF
5 3 0x000000FFFFFFFFFF 0x000001FFFFFFFFFF
6 2 0x0000FFFFFFFFFFFF 0x0001FFFFFFFFFFFF
7 1 0x00FFFFFFFFFFFFFF 0x01FFFFFFFFFFFFFF

Domain separation bit. The hexadecimal integer form of the domain separation bit is
0x8000000000000000. Therefore, the addition of this bit into the state may be imple-

mented as

𝑆4 ← 𝑆4 ⊕0x8000000000000000.

64-bit block absorption. In Ascon-Hash256, Ascon-XOF128, or Ascon-CXOF128, the
absorption of a 64-bit message block expressed as the byte sequence 0x00, 0x01, 0x02,
0x03, 0x04, 0x05, 0x06, 0x07 can be implemented as

𝑆0 ← 𝑆0 ⊕0x0706050403020100.

128-bit block absorption. Absorbing a 128-bit associated data or plaintext block represented
by byte sequence 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,
0x0B, 0x0C, 0x0D, 0x0E, 0x0F can similarly be implemented as

𝑆0 ← 𝑆0 ⊕0x0706050403020100
𝑆1 ← 𝑆1 ⊕0x0F0E0D0C0B0A0908.

Key addition. Ascon-AEAD128 has keyed initialization and finalization, where the key is
added to the state in various locations. For a key represented as a sequence of bytes with
value 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C,
0x0D, 0x0E, 0x0F, the key addition at the beginning of the initialization phase may be
written as

𝑆1 ← 𝑆1 ⊕0x0706050403020100
𝑆2 ← 𝑆2 ⊕0x0F0E0D0C0B0A0908.

38

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

The key addition at the end of the initialization phase may be written as

𝑆3 ← 𝑆3 ⊕0x0706050403020100
𝑆4 ← 𝑆4 ⊕0x0F0E0D0C0B0A0908.

The key addition at the beginning of the finalization phase can be expressed as:

𝑆2 ← 𝑆2 ⊕0x0706050403020100
𝑆3 ← 𝑆3 ⊕0x0F0E0D0C0B0A0908.

The key addition at the end of finalization can be implemented as

𝑆3 ← 𝑆3 ⊕0x0706050403020100
𝑆4 ← 𝑆4 ⊕0x0F0E0D0C0B0A0908.

A.3. Precomputation

The initialization phases of Ascon-Hash256, Ascon-XOF128, and Ascon-CXOF128 are in-
dependent of the input data (e.g., message, output length, customization string), allowing
the resulting internal state to be precomputed to reduce runtime computations. See Table
12 for the resulting state at the end of the initialization phase for each function.

For example, an implementation of Ascon-Hash256 using the precomputed values would
replace the first two steps of Alg. 5

𝐼𝑉 ← 0x0000080100cc0002

S ← 𝐴𝑠𝑐𝑜𝑛-𝑝[12](𝐼𝑉 ∥0256)

with steps that assign each of the precomputed words into the corresponding state words,
namely:

𝑆0 ← 0x9b1e5494e934d681
𝑆1 ← 0x4bc3a01e333751d2
𝑆2 ← 0xae65396c6b34b81a
𝑆3 ← 0x3c7fd4a4d56a4db3
𝑆4 ← 0x1a5c464906c5976d.

The same is true for Ascon-XOF128 and Ascon-CXOF128 using the corresponding values
given in Table 12.

It may also be beneficial to precompute the intermediate state between the customiza-

tion and absorbing phases when Ascon-CXOF128 repeatedly uses the same customization
string.

39

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 12. Precomputed initialization phase values for Ascon-Hash256, Ascon-XOF128,
and Ascon-CXOF128 provided in hexadecimal integer form

 State
 word

Ascon-Hash256 Ascon-XOF128 Ascon-CXOF128

𝑆0 0x9b1e5494e934d681 0xda82ce768d9447eb 0x675527c2a0e8de03
𝑆1 0x4bc3a01e333751d2 0xcc7ce6c75f1ef969 0x43d12d7dc0377bbc
𝑆2 0xae65396c6b34b81a 0xe7508fd780085631 0xe9901dec426e81b5
𝑆3 0x3c7fd4a4d56a4db3 0x0ee0ea53416b58cc 0x2ab14907720780b6
𝑆4 0x1a5c464906c5976d 0xe0547524db6f0bde 0x8f3f1d02d432bc46

Appendix B. Determination of the Initial Values

Each variant of the Ascon family has a 64-bit initial value constructed as

𝐼𝑉 = 𝑣∥08 ∥𝑎∥𝑏 ∥𝑡 ∥𝑟/8∥016, (79)

where

• 𝑣 is a unique identifier for the algorithm (represented in 8 bits)

• 𝑎 is the number of rounds during initialization and finalization (represented in 4 bits)

• 𝑏 is the number of rounds during the processing of AD, plaintext, and ciphertext for
Ascon-AEAD128 and the message for Ascon-Hash256, Ascon-XOF128, and Ascon-
CXOF128 (represented in 4 bits)

• 𝑡 is 128 for Ascon-AEAD128, 256 for Ascon-Hash256, and 0 for Ascon-XOF128 and
Ascon-CXOF128 (represented in 16 bits)

• 𝑟/8 is the number of input bytes processed per invocation of the underlying permu-

tation (represented in 8 bits)

The values of these parameters for each variant are given in Table 13, and the initial values
for each Ascon variant are specified in Table 14.

Table 13. Parameters for initial value construction

Ascon variants
𝑣

 (8 bits)
𝑎

 (4 bits)
𝑏

 (4 bits)
𝑡

 (16 bits)
𝑟/8

 (8 bits)

 Ascon-AEAD128 1 12 8 128 16
 Ascon-Hash256 2 12 12 256 8
 Ascon-XOF128 3 12 12 0 8
 Ascon-CXOF128 4 12 12 0 8

40

 NIST SP 800-232
August 2025

 Ascon-Based Lightweight Cryptography
 Standards for Constrained Devices

Table 14. Initial values as hexadecimal integers

 Ascon variants Initial value

 Ascon-AEAD128 0x00001000808c0001
 Ascon-Hash256 0x0000080100cc0002
 Ascon-XOF128 0x0000080000cc0003
 Ascon-CXOF128 0x0000080000cc0004

41

	Frontmatter
	NIST SP 800-232 (Cover)
	NIST SP 800-232 (Title Page)
	Publication context
	Disclaimer
	Authority
	NIST Technical Series Policies
	Publication History
	How to cite

	Contacts page
	Author ORCID iDs
	Contact Information

	Abstract page
	Abstract
	Keywords
	Reports on Computer Systems Technology

	Patent Disclosure Notice
	Contents
	Table of Contents
	List of Tables
	List of Figures

	Acknowledgments

	1. Introduction
	2. Preliminaries
	2.1. Auxiliary Functions

	3. Ascon Permutations
	3.1. Internal State
	3.2. Constant-Addition Layer pC
	3.3. Substitution Layer pS
	3.4. Linear Diffusion Layer pL

	4. Authenticated Encryption Scheme: Ascon-AEAD128
	4.1. Specification of Ascon-AEAD128
	4.1.1. Encryption
	4.1.2. Decryption

	4.2. Implementation Options
	4.2.1. Truncation
	4.2.2. Nonce Masking

	4.3. AEAD Requirements
	4.4. Security Properties
	4.4.1. Single-Key Setting
	4.4.2. Multi-Key Setting
	4.4.3. Nonce-Misuse Setting

	5. Hash and eXtendable-Output Functions (XOFs)
	5.1. Specification of Ascon-Hash256
	5.2. Specification of Ascon-XOF128
	5.3. Specification of Ascon-CXOF128
	5.4. Streaming API for XOF
	5.5. Security Strengths

	6. Conformance
	Appendix A. Implementation Notes
	A.1. Conversion Functions
	A.2. Implementing with Integers
	A.3. Precomputation

	Appendix B. Determination of the Initial Values

