

NIST Special Publication 800
NIST SP 800-233 ipd

Service Mesh Proxy Models for
Cloud-Native Applications

Initial Public Draft

Ramaswamy Chandramouli
Zack Butcher

James Callaghan

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-233.ipd

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-233.ipd

NIST Special Publication 800
NIST SP 800-233 ipd

Service Mesh Proxy Models for
Cloud-Native Applications

Initial Public Draft

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

Zack Butcher
Tetrate, Inc.

James Callaghan

 control-plane.io, Inc.

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-233.ipd

July 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

mailto:james@control-plane.io

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are identified
in this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Authority
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is
responsible for developing information security standards and guidelines, including minimum requirements for
federal information systems, but such standards and guidelines shall not apply to national security systems
without the express approval of appropriate federal officials exercising policy authority over such systems. This
guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines
be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the
OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary
basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added to final publication.]

How to Cite this NIST Technical Series Publication:
Chandramouli R, Butcher Z, Callaghan J (2024) Service Mesh Proxy Models for Cloud-Native Applications. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-233 ipd.
https://doi.org/10.6028/NIST.SP.800-233.ipd

Author ORCID iDs
Ramaswamy Chandramouli: 0000-0002-7387-5858

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

Public Comment Period
July 19, 2024 – September 3, 2024

Submit Comments
sp800-233-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/233/ipd, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

mailto:sp800-233-comments@nist.gov
https://csrc.nist.gov/pubs/sp/800/233/ipd

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

i

1

2
3
4
5
6
7
8
9

10

11

12

13

14
15
16
17
18
19
20
21
22
23

Abstract

The service mesh has become the de-facto application services infrastructure for cloud-native
applications. It enables the various runtime functions (network connectivity, access control etc.)
of an application through proxies which thus form the data plane of the service mesh.
Depending upon the distribution of the network layer functions (L4 & L7) and the granularity of
association of the proxies to individual services/computing nodes, different proxy models or
data plane architectures have emerged. The purpose of this document is to develop a threat
profile for each of the data plane architectures through a detailed threat analysis in order to
make recommendations for their applicability (usage) for cloud-native applications with
different security risk profiles.

Keywords

proxy model; data plane architecture; service mesh; threat profile; cloud-native application.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems. The Special Publication 800-series reports on ITL’s
research, guidelines, and outreach efforts in information system security, and its collaborative
activities with industry, government, and academic organizations.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

ii

24

25
26
27
28
29
30
31

32
33

34
35

36
37
38

39
40

41
42

43
44
45
46
47

48
49

50

51

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use
would be required for compliance with the guidance or requirements in this Information
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be
directly stated in this ITL Publication or by reference to another publication. This call also
includes disclosure, where known, of the existence of pending U.S. or foreign patent
applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign
patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf,
in written or electronic form, either:

a) assurance in the form of a general disclaimer to the effect that such party does not hold
and does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to
applicants desiring to utilize the license for the purpose of complying with the guidance
or requirements in this ITL draft publication either:

i. under reasonable terms and conditions that are demonstrably free of any unfair
discrimination; or

ii. without compensation and under reasonable terms and conditions that are
demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make
assurances on its behalf) will include in any documents transferring ownership of patents
subject to the assurance, provisions sufficient to ensure that the commitments in the assurance
are binding on the transferee, and that the transferee will similarly include appropriate
provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest
regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: sp800-233-comments@nist.gov

mailto:sp800-233-comments@nist.gov

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

iii

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Table of Contents

Executive Summary ..1

1. Introduction ...2

2. Typical Service Mesh Data Plane Capabilities and Associated Proxy Functions5

3. Proxy Models (Data plane Architectures) in Service Mesh Implementations7

4. Data Plane Architectures Threat Scenarios and Analysis Methodology ... 12

5. Detailed Threat Analysis for Data Plane Architectures ... 14

5.1.1. Compromised L4 Proxy (TR-1) ... 14

5.1.2. Compromised Application Container (TR-2) ... 15

5.1.3. Compromise of Business Data (TR-3) .. 15

5.1.4. Compromised L7 Proxy (TR-4) ... 16

5.1.5. Compromise of Shared L7 Proxy (TR-5) .. 16

5.1.6. Outdated Client Libraries in Applications (TR-6) ... 17

5.1.7. Denial of Service (TR-7) ... 17

5.1.8. Resource Consumption (TR-8) .. 17

5.1.9. Privileged L4 Proxy (TR-9) ... 18

5.1.10. Data Plane (Service Mesh) Bypassed (TR-10) ... 18

5.2.1. Compromised L4 Proxy (TR-1) ... 19

5.2.2. Compromised Application Container (TR-2) ... 19

5.2.3. Compromise of Business Data (TR-3) .. 19

5.2.4. Compromised L7 Proxy (TR-4) ... 19

5.2.5. Compromise of Shared L7 Proxy (TR-5) .. 20

5.2.6. Outdated Client Libraries in Applications (TR-6) ... 20

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

iv

86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119

5.2.7. Denial of Service (TR-7) ... 20

5.2.8. Resource Consumption (TR-8) .. 21

5.2.9. Privileged L4 Proxy (TR-9) ... 21

5.2.10. Data Plane (Service Mesh) Bypassed (TR-10) ... 22

5.3.1. Compromised L4 Proxy (TR-1) ... 22

5.3.2. Compromised Application Container (TR-2) ... 22

5.3.3. Compromise of Business Data (TR-3) .. 23

5.3.4. Compromised L7 Proxy (TR-4) ... 23

5.3.5. Compromise of Shared L7 Proxy (TR-5) .. 23

5.3.6. Outdated Client Libraries in Applications (TR-6) ... 24

5.3.7. Denial of Service (TR-7) ... 24

5.3.8. Resource Consumption (TR-8) .. 24

5.3.9. Privileged L4 Proxy (TR-9) ... 25

5.3.10. Data Plane (Service Mesh) Bypassed (TR-10) ... 25

5.4.1. Compromised L4 Proxy (TR-1) ... 25

5.4.2. Compromised Application Container (TR-2) ... 26

5.4.3. Compromise of Business Data (TR-3) .. 26

5.4.4. Compromised L7 Proxy (TR-4) ... 26

5.4.5. Compromise of Shared L7 Proxy (TR-5) .. 27

5.4.6. Outdated Client Libraries in Applications (TR-6) ... 27

5.4.7. Denial of Service (TR-7) ... 27

5.4.8. Resource Consumption (TR-8) .. 28

5.4.9 Privileged L4 Proxy (TR-9) ... 28

5.4.10 Data Plane (Service Mesh) Bypassed (TR-10) ... 28

6. Recommendations Based on Application Security Risk Profile ... 29

7. Summary and Conclusions .. 32

References ... 33

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

v

120

121
122

Acknowledgments

The authors would like to express their thanks to Francesco Beltramini of control-plane.io for
participating in our discussions and providing his valuable perspectives.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

1

123

124
125
126
127
128
129

130
131
132
133
134
135
136

137
138
139
140
141
142
143

144
145
146
147
148
149

150
151
152
153

154
155
156
157
158

159

Executive Summary

Run-time services for Cloud-native applications, consisting of multiple loosely coupled
components called microservices, are sometimes provided through a centralized infrastructure
called a service mesh. These services include secure communication, service discovery,
resiliency, and authorization of application communication. These services are mainly provided
through Proxies that form the data plane of the service mesh, the layer that handles application
traffic at runtime and enforces policy.

The functions that the proxies provide can be broadly categorized into two groups, based on
the OSI model’s network layer to which those functions pertain to. These groups are: Layer 4
(“L4”) and Layer 7 (“L7”). In majority of deployments of service mesh in production
environments today, all proxy functions (providing services in both L4 and L7 layers) are packed
into a single proxy that is assigned to a single microservice. This service mesh proxy model is
called a sidecar proxy model since the proxy is not only associated with a single service but is
implemented to execute in the same network space as the service.

However, performance and resource considerations have led to the exploration of alternate
proxy models which involve not only splitting up of L4 and L7 functions into different proxies
(instead of a single proxy) but also the association or assignments of these proxies to either a
single service or a group of services, thus enabling the proxies to be implemented at different
locations - at the granularity of a node rather than at the level of services. Though different
models are theoretically possible, we consider only those service mesh proxy models in the
data plane implementation of commonly used service mesh offerings, at different stages.

We then consider a set of potential/likely threats to various proxy functions. Each of the threats
may result in different types of exploits in different proxy models. This variation is due to
several factors such as: attack surface (communication patterns to which a particular proxy is
exposed), number of clients (services) served and OSI layer functions they provide (e.g., L7
functions are more complicated and likely to have more vulnerabilities than L4 functions). The
two main contributions of this document are as follows:

1. The nature of exploits possible for each threat in each of the proxy models are
characterized by assigning scores to the impact and likelihood of each of these threats in
each of the proxy models or architectural patterns resulting in a threat profile
associated with each architectural pattern or proxy model of service mesh.

2. Each threat profile inherently has a built-in set of security tradeoffs at an architectural
level. The implications of these tradeoffs in meeting the requirements associated with
security risk profile of different cloud-native applications are analyzed to make a broad
set of recommendations towards specific architectural patterns that are appropriate for
applications with different security risk profiles.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

2

160

161
162
163
164
165
166
167
168

169
170
171
172
173
174
175

176

177

178
179
180
181

182
183
184
185
186

187
188
189

190
191
192
193
194
195

1. Introduction

The service mesh, an application service infrastructure is now an integral part of the overall
application infrastructure of cloud-native applications, typically consisting of multiple loosely
coupled services or microservices. The infrastructure services or functions provided by a service
mesh during application runtime are provided by entities called proxies which constitute the
data plane of the service mesh. In addition, the service mesh consists of another architectural
component called the control plane which supports the functions of the data plane through
interfaces to define configurations, inject software programs and provide security artifacts such
as certificates.

Based on performance and security assurance data gained over the deployment of service
mesh for the last several years, various configurations for proxies are being developed and
tested. These configurations are based on the OSI layer functions they provide (see section 1.1
L4 and L7 functions of a proxy) and the granularity of association between a proxy and services
and go by the name of proxy (implementation) models. Since proxies are the predominant
entities of the data plane of a service mesh, these various proxy models are also called data
plane architectures.

1.1. L4 and L7 Functions of Proxies

To understand proxy models, there are two aspects we should look at. They are:

Proxy Functions: The functions that a service mesh’s proxies provide can be broadly categorized
into two groups, based on the OSI model’s layer [1] to which those functions pertain to. These
groups are: Layer 4 (“L4”) and Layer 7 (“L7”). The associated proxies are called L4 proxies and L7
proxies respectively.

Granularity of Association: A proxy can be associated with a single microservice instance, an
entire service or it can be deployed to provide functions for a group of services. Depending
upon the nature of this association, a proxy may execute within the same network space as the
service, or it can execute at the same node where the group of services to which caters to run
or in an independent node (dedicated to just proxies where no application services run).

The study of proxy functions (the first topic above) in turn requires us to go into fundamentals a
little bit and look at what OSI’s L4 and L7 layers are, from the network stack point of view and
the specific network services provided by those layers.

The OSI model [1] is a useful abstraction for thinking about the functions required to serve an
application over the network. It describes seven “layers”, from the physical wires connecting
two machines (Layer 1 – L1 – the physical layer) all the way up to the application itself (Layer 7
– L7 – the application layer). When facilitating the communication of cloud-native applications
(e.g., two microservices making HTTP/REST calls to each other), we care primarily about layers
3, 4, and 7; A brief overview of the functionality of these layers are:

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

3

196
197
198

199
200
201
202

203
204

205

206
207

208
209
210
211

212
213

214
215
216

217

218
219
220
221
222
223

224
225
226
227

228
229
230
231

• Layer 3 (“L3”), the network layer, facilitates baseline connectivity between two
workloads or service instances. In nearly all cases, the Internet Protocol (IP) is used as
the layer 3 implementation.

• Layer 4 (“L4”), the transport layer, facilitates the reliable transmission of data between
workloads on the network. It also includes capabilities like encryption. TCP and UDP are
commonly used L4 implementations, where TLS (transport layer security – named after
the OSI model) provides encryption.

• Layer 7 (“L7”), the application layer, which is where protocols like HTTP live – in user
applications themselves (e.g., HTTP web servers, SSH servers).

With respect to the layers above, in cloud native environments, a service mesh’s proxies are:

• Are agnostic to L3, so long as microservice instances can communicate at L3 and the
proxy can communicate with the mesh’s control plane.

• At Layer 4 (L4): connection establishment, management, and resiliency (e.g.,
connection-level retries); TLS (encryption in transit); application identity, authentication,
and authorization; access policy based on network 5-tuple (source IP address and port,
destination IP address and port, and transport protocol).

• At Layer 7 (L7): service discovery, request-level resiliency (e.g., retries, circuit breakers,
outlier detection); and application observability.

What we have seen so far is one aspect of proxy model or data plane architecture – i.e., proxy
functions. The other aspect as we alluded to earlier is the proxies’ granularity of association to
services.

1.2. Objective & Target Audience

This document will give a brief overview of the 4 data plane architectures (proxy models) being
pursued by a range of service mesh implementations today. It will then develop threat profiles
for different proxy models through a detailed threat analysis involving ten types of common
threats. These threat profiles will be used to make a set of recommendations regarding their
applicability (usage) for cloud-native applications with different security risk profiles. The target
audience for these recommendations is:

• Infrastructure owners and platform/infrastructure engineers (and their team heads)
building to build and deploy a secure run-time environment for applications by choosing
the right architecture for their environment given the risk factors of the applications
they’ll be running (and the resulting security risk profile).

• Personnel in charge of infrastructure operations to familiarize them with the details of
the various building blocks of the proxy models or data plane architectures (and their
associated functions and interactions) to troubleshoot in the event of performance
(availability) and security issues.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

4

232

233
234
235
236
237
238
239

240

241

242
243
244

245
246

247
248
249

250
251
252

253
254
255

256

257

1.3. Relationship to Other NIST Documents

This document can be used as an adjunct to NIST Special Publication (SP) 800-204 series of
publications [2,3,4,5], which offer guidance on providing security assurance for cloud-native
applications integrated with a service mesh from the following perspectives: strategy,
configuration, and development/deployment paradigm. However, this document focuses on
the various configurations of the application service infrastructure elements (i.e., proxies) and
the resulting architectures (i.e., data plane architecture of the service mesh) that have different
security implications for the application that is hosted under each of these configurations.

1.4. Document Structure

This document is organized as follows:

• Section 2 provides a list of typical capabilities of the data plane of the service mesh
under three headings (security, observability and traffic management) and the
corresponding L4 and L7 proxy functions implemented under those capabilities.

• Section 3 provides a brief overview of the four architectural patterns called the proxy
models or data plane architectures.

• Section 4 discusses proxy model threat scenarios and gives a roadmap of the threat
analysis methodology adopted in this document for evaluating the threat profile score
for the four data plane architectures.

• Section 5 provides a detailed threat analysis for the four data plane architectures by
assigning scores to impact and likelihood factors associated with each threat and using
them to arrive at the overall threat score.

• Section 6 provides the recommendations for the applicability (usage) of each of the 4
data plane architectures for cloud-native applications of different security risk profiles
based on their security requirements.

• Section 7 provides the summary and conclusions.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

5

258

259
260
261
262
263
264

265

266

267

268

2. Typical Service Mesh Data Plane Capabilities and Associated Proxy Functions

Since examining the security tradeoffs of the proxy models (data plane architectures) is part of
our methodology in this document, we have to look at implementations of the various
capabilities (under the umbrella of Security, Observability and Network Traffic Management)
that result as L4 and L7 functions in proxies. To arrive at the totality of proxy functions, we need
to analyze for each capability, which category (L4 vs L7) it falls in to, and the granularity of the
function that it provides at L4 and L7 levels.

Table 1 - Security Capabilities

Capability L4 Function(s) L7 Function(s)
Service-to-service authentication SPIFFE, via mTLS certs. Control

plane issues a short-lived X.509
encoding the pod’s service account
identity.

N/A—service identity in a service
mesh is usually based on TLS only.

Service-to-service authorization Network-based authorization, plus
identity-based policy, e.g.:
A can accept inbound calls from
only "10.2.0.0/16";
A can call B.

Full policy, e.g.:
A can GET /foo on B only with valid
end-user credentials containing the
READ scope.

End-user authentication N/A—we can’t apply per-user
settings.

Local authentication of JWTs,
support for remote authentication
via OAuth and OIDC flows.

End-user authorization N/A—see above. Service-to-service policies can be
extended to require end user
credentials with specific scopes,
issuers, principal, audiences, etc—
but it cannot be used for full user-
to-resource access control. Full
user-to-resource access should be
implemented using external
authorization.

Mesh proxy’s External
Authorization API (ext_authz)

Cannot perform any per-request
policy; ext_authz API is only
configurable for L7 traffic.

Enforce per-request policy with
decisions from an external service,
e.g., OPA.

Table 2 - Observability Capabilities

Capability L4 Function(s) L7 Function(s)
Logging Basic network information:

network 5-tuple, bytes
sent/received, etc.

Full request metadata logging, in
addition to basic network
information.

Tracing Not today; possible eventually,
with HBONE.

Mesh proxy participates in
distributed tracing.

Metrics TCP only (bytes sent/received,
number of packets, etc).

L7 RED metrics: rate of requests,
rate of errors, request duration
(latency).

https://spiffe.io/
https://istio.io/latest/docs/reference/config/security/conditions/
https://istio.io/latest/docs/reference/config/security/conditions/
https://istio.io/latest/docs/reference/config/security/conditions/
https://www.envoyproxy.io/docs/envoy/latest/configuration/observability/access_log/usage#command-operators

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

6

269

270
271
272
273
274
275
276
277
278
279
280
281

282

Table 3 – Traffic Management Capabilities

Capability L4 Function(s) L7 Function(s)
Load balancing Connection level only. See TCP

traffic shifting task.
Per request, enabling e.g. canary
deployments, gRPC traffic, etc. See
HTTP traffic shifting task.

Circuit breaking TCP only. HTTP settings in addition to TCP.
Outlier detection On connection

establishment/failure.
On request success/failure.

Rate limiting Rate limit on L4 connection data
only, on connection establishment,
with global and local rate limiting
options.

Rate limit on L7 request metadata,
per request.

Timeouts Connection establishment only
(connection keep-alive is
configured via circuit breaking
settings).

Per request.

Retries Retry connection establishment Retry per request failure.
Fault Injection N/A—fault injection cannot be

configured on TCP connections.
Full application and connection
level faults (timeouts, delays,
specific response codes).

Traffic Mirroring N/A—HTTP only Percentage-based mirroring of
requests to multiple backends.

It’s important to note that L7 functions carried out by proxies are much more complex than L4
functions as the latter are carried out in lower layers of OSI stack involving protocols such as IP
and TCP. For example, parsing a TCP stream for L4 functionality requires simply decoding a
fixed set of bytes as integers (the packet header), while handling HTTP requests for L7
functionality requires decoding HTTP headers including complex string parsing and compression
with variable amounts of data. Further, that data dealt with in an L7 function is user-supplied
(i.e., can be controlled by an attacker), while the TCP data at L4 is typically system-supplied as
part of routing a request to your infrastructure – there’s less room to embed malicious data
without breaking the system itself. As one case study, the proxy Envoy is used as the data plane
by several service mesh implementations: historically, majority of Envoy vulnerabilities have
been in L7-function-related code compared to L4-function-related code.

https://istio.io/latest/docs/tasks/traffic-management/tcp-traffic-shifting/
https://istio.io/latest/docs/tasks/traffic-management/tcp-traffic-shifting/
https://istio.io/latest/docs/tasks/traffic-management/traffic-shifting/
https://istio.io/latest/docs/tasks/traffic-management/traffic-shifting/
https://istio.io/latest/docs/reference/config/networking/destination-rule/#ConnectionPoolSettings-TCPSettings
https://istio.io/latest/docs/reference/config/networking/destination-rule/#ConnectionPoolSettings-HTTPSettings
https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/network_filters/rate_limit_filter#config-network-filters-rate-limit
https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/network_filters/rate_limit_filter#config-network-filters-rate-limit
https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/rate_limit_filter#config-http-filters-rate-limit
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/fault-injection/
https://istio.io/latest/docs/tasks/traffic-management/mirroring/
https://istio.io/latest/docs/tasks/traffic-management/mirroring/

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

7

283

284
285

286

287

288
289
290
291
292
293
294
295
296
297

298
299

300

301
302
303

304
305

306
307
308

309
310
311

312

3. Proxy Models (Data plane Architectures) in Service Mesh Implementations

As we had briefly seen before, different data plane architectures or proxy models in service
mesh are a consequence of the following parameters.

• Delineation of L4 and L7 functions

• Nature of association of a proxy to service instances (1:1 or 1:N)

In this section, an overview of the building blocks of different data plane architectures is
undertaken to facilitate the threat analysis that follows in section 5. Before we list the different
data plane architectures (also called different iterations of service mesh implementations) that
have been commonly implemented, it is in order to look at as to why these different
architectures were necessitated in the first place. These iterations were driven by the adoption
of mesh across a variety of use cases, necessitating different tradeoffs in terms of performance,
reliability, and security across a variety of organizations with different application risk profiles.
It must be mentioned, however, that in spite of these different operating scenarios, the first
model listed here, i.e., the sidecar model, has been the primary predominant method of
delivering the capabilities of service mesh for several years.

The various alternate data plane architectures, including the one with widespread deployment
at present, are:

• “L4 and L7 per Service Instance” - Side-car Model (DPA-1)

• “Shared L4 – L7 per Service” (DPA-2) - A shared L4 proxy per node, i.e., shared among all
applications that execute on the same physical host, with L7 proxies dedicated per
service account or namespace.

• “Shared L4 and L7” (DPA-3) - A shared L4 and L7 proxy per node, i.e., shared among all
applications on the same physical host.

• “L4 and L7 within Application (gRPC proxy-less model)” (DPA-4) – Both L4 and L7
functions instead of being implemented in stand-alone proxies are part of the
application server itself, e.g., frameworks such as gRPC, Java Spring etc.

It must be mentioned that though the last architectural pattern does not have distinct entities
such as proxies, all the service mesh capabilities delivered by proxies are enabled by the
frameworks mentioned above.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

8

313

314
315
316
317
318
319
320
321
322
323
324

325

326
327

328

3.1. L4 and L7 Proxy per Service Instance – Sidecar Model (DPA-1)

The first and most common service mesh data plane architecture today dedicates a proxy that
has the capability to implements both L4 and L7 functions for each application (service)
instance. This is also called a “sidecar model” since the proxy sits beside every instance of every
service. The security model here is simple: the proxy holds one identity (for the service it’s
deployed beside) and resides in the same trust domain as the application (in Kubernetes, it
exists in the same pod; on a VM, it’s deployed in the same VM as the service itself). The service
and the proxy communicate with each other through the “local host interface” instead of
through a network socket. However, the proxy itself presents a larger attack surface than the
service because it implements the complex L7 functions. An example of a data plane
architecture is the one that is implemented in the Istio service mesh with an envoy proxy
deployed per pod that performs both L4 and L7 functions.

A schematic diagram of this architecture is shown in Figure 1.

Figure 1 – L4 and L7 Proxy per Service Instance (Side Car Model) (DPA-1)

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

9

329

330
331
332
333
334
335
336
337

338
339

340

3.2. Shared L4 – L7 per Service Model (DPA-2)

In this architecture, there is a shared L4 proxy per node, i.e., shared among all service instances
that execute on the same physical host, with L7 proxies dedicated per service account. This is
also called “ambient mode”. A variation in this architecture is to dedicate a L7 proxy for an
entire namespace. This is not desirable from a security viewpoint based on the same reasons
we recommend against shared service account for entire namespace [2] and hence not
considered for threat analysis in this document. An example of implementation of this data
plane architecture is the Istio Ambient where the per node L4 proxy is called Ztunnel proxy and
per service account L7 proxy is called Waypoint proxy [6,7,10,11,13].

Figure 2 – Shared L4 - L7 per Service Model (DPA-2)

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

10

341

342
343
344
345
346
347
348

349
350

351

3.3. Shared L4 and L7 Model (DPA-3)

In this architecture, the L4 and L7 functions are implemented on a per node basis. There is a
shared L7 proxy per node, i.e., shared among all service instances that execute on the same
physical host and provides L7 functions for all services in that node. However, the L4 functions
such as traffic routing can be performed not by proxies but by in-kernel programs (e.g., eBPF
programs) or the mesh proxy. An example of this data plane architecture is the Cilium service
mesh which deploys the Envoy proxy as L7 proxy based on its CiliumEnvoyConfig specification
[8,9,12].

Figure 3 – Shared L4 - L7 Model (DPA-3)

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

11

352

353
354
355
356
357
358
359
360

361
362

363
364

365

3.4. L4 and L7 Part of the Application Model (DPA-4)

This is a data plane architecture that does not have any proxies. The service mesh control plane
dynamically configures proxies using a set of discovery APIs collectively known as xDS APIs. The
gRPC client library for applications provides extensive support for the xDS APIs. Leveraging this
feature, the service mesh control plane can program L4 and L7 functions into this library in the
service container. These gRPC libraries can then provide the L4 and L7 functionality (in general
all policy enforcements) to the workloads or service instances to which they are integrated
with, thus replicating the exact services which the L4 and L7 proxies provide to those workloads
[14].

The architecture diagram of the gRPC proxyless data plane architecture for a service mesh is
given below:

Figure 4 – L4 and L7 Part of the Application Model (gRPC proxyless Model) (DPA-4)

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

12

366

367
368
369
370
371

372
373

374

375

376

377

378

379
380

381

382

383
384
385
386

387
388

389
390

391
392

393
394
395

396
397

398

399

400

4. Data Plane Architectures Threat Scenarios and Analysis Methodology

We are studying service mesh deployed in a Kubernetes cluster. Assumption that no human can
directly access the cluster, achieved via k8s RBAC; only interaction with the cluster is via CI/CD
system controlled declarative configuration in a version-controlled repository with a multi-step
approval process to change that configuration (including the approval of each change by at
minimum one other human).

We start by identifying a variety of access by external threat actors, internal threat actors, and
malicious co-tenants.

External threat actors include:

• Compromised workload (application) container, e.g., via a supply chain attack

• Compromised node L4 proxy or CNI

• Compromised node L7 proxy

• Compromised node with limited privileged access, e.g., a container breakout

• Root compromise of node, e.g., a container breakout chained with exploitation of a
privilege escalation vulnerability.

• Network access to the Kubernetes API server

Internal threat actors include:

• Cluster admins, who have wide-ranging rights to view the cluster and approve changes
to the version-controlled repository; they may even have direct access to the
Kubernetes cluster, e.g., via a break-glass debugging account – such super-accounts
should generate detailed audit records of their usage.

• Application developers, who can build images and approve configuration that goes into
the cluster.

• Infrastructure engineers, who have permission to deploy and configure the mesh –
again, gated by the version-controlled repository’s approval process.

• Compromised network infrastructure between nodes, e.g., un-encrypted cross-data
center communication

Finally, malicious co-tenants – in general k8s is not a hard multi-tenant system and we
recommend isolating tenants from each other with stronger boundaries. In this context, a
malicious co-tenant would fall into one of the internal threat actor personas above.

In the context of these threat actors, we introduce the following threats as a minimum set to
consider in your environment as they relate to the service mesh:

1. Compromised L4 proxy

2. Compromise of the Application Container

3. Compromise of Business Data

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

13

401

402

403

404

405

406

407

408
409
410

411

412
413
414
415
416
417
418
419
420

421
422
423
424
425
426
427

428
429
430
431

4. Compromised L7 proxy

5. Compromise of shared L7 Proxy

6. Outdated Client Libraries in Applications

7. Denial of Service

8. Resource Consumption

9. Privileged L4 Proxy

10. Bypassing Traffic Interception

In the next section three we will evaluate the impact of these threats on the components of the
data plane architecture for each of the four that we have taken up for consideration in this
document.

4.1. Threat analysis Methodology

We first identify 10 potential threats to the components that make up the four architectural
patterns for the proxy model or data plane architecture. For each threat, we describe how the
functionality of each component of the architecture is adversely affected by the threat and
then rate the impact and likelihood of their occurrence, justifying each rating. We have chosen
three values for ratings - low, medium, high. The values assigned to these ratings are relative to
other data plane architectures and are not absolute values based on a metric. For example, the
assignment of the rating value “High” for the likelihood parameter for a threat does not imply
that the threat is highly likely in all situations; it means that this threat is likeliest to be
executable against that architecture relative to the other architectures under discussion.

For each threat and architecture, we evaluate the impact (I) of the exploitation of that threat
along with the likelihood (L) of that threat being exploited. As we already stated, for both
parameters we give a rating of low, medium, and high which we translate to numeric scores 1,
2, and 3 respectively. By multiplying these together, I * L, we can get a indication of how
important that threat is and therefore the necessity to mitigate that threat relative to other
architectures under discussion. Summing up the values of this indicator for all 10 potential
threats, we obtain an indication of the threat profile for that architectural pattern.

For those threats whose impact and likelihood are same irrespective of the architecture – in
other words, the threats are agnostic to the architecture, we assign a score of 1 for impact and
1 for likelihood due the fact that we stated earlier - these scores are relative scores and not
absolute scores.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

14

432

433
434
435
436

437
438

439

440

441

442

443

444

445

446

447

448

449

450

451
452

453
454

455
456

457
458

459

460
461

462
463
464

5. Detailed Threat Analysis for Data Plane Architectures

In this section, we analyze the various potential proxy-functions targeted threats (both for L4 &
L7 proxies or the libraries implementing the associated functions), the relevant proxy function
that is impacted, the degree of impact, the likelihood of the threat occurring for each of the
data plane architectures discussed in sections 3.1 to 3.4.

Recapping from Section 4, the 10 threats with their identifiers added that are considered for
analysis in this section are:

Compromised L4 proxy (TR-1)

Compromise of the Application Container (TR-2)

Compromise of Business Data (TR-3)

Compromised L7 proxy (TR-4)

Compromise of shared L7 Proxy (TR-5)

Outdated Client Libraries in Applications (TR-6)

Denial of Service (TR-7)

Resource Consumption (TR-8)

Privileged L4 Proxy (TR-9)

Data plane (Service Mesh) Bypassed (TR-10)

The organization of this section is as follows:

Section 5.1 will analyze each threat for the “L4 and L7 Proxy per Service Instance – Sidecar
Model (DPA-1)” and come up with the overall threat score.

Section 5.2 will analyze each threat for the “Shared L4 - L7 per Service Model (DPA-2)” and
come up with the overall threat score.

Section 5.3 will analyze each threat for the “Shared L4 - L7 Model (DPA-3)” and come up with
the overall threat score.

Section 5.4 will analyze each threat for the “L4 and L7 Part of the Application Model (gRPC
proxyless Model) (DPA-4)” and come up with the overall threat score.

5.1. Threat Analysis for L4 and L7 Proxy per Service Instance – Sidecar Model (DPA-1)

Each of the threats to the data plane of the service mesh is denoted using the mnemonic TR-x
where TR stands for threat and x for the threat sequence number.

5.1.1. Compromised L4 Proxy (TR-1)

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

15

465
466
467

468
469
470
471

472
473

474
475
476

477

478
479

480
481
482
483

484
485
486
487
488
489

490

491

492
493

494
495
496
497
498

Threat Description: Compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (service) running
on the node.

Proxy Function Impacted: Sidecar proxies negotiate mTLS connections (for communicating with
any other service) on behalf of only the single workload it is associated with. In order to
compromise key material and identity documents (threat targets) for multiple workloads,
multiple proxy (sidecar) instances would need to be compromised.

Impact Score=1: Because of the nature of impact discussed above (i.e., Single workload / single
identity being affected), this threat is assigned the impact score of 1.

Likelihood Score=2: Code relating to L7 functions is present to be exploited, if it can be
triggered. In a pure L4 proxying case it should not be triggerable, but this relies on correct
configuration from users and the service mesh implementation.

5.1.2. Compromised Application Container (TR-2)

Threat Description: Compromised application container (e.g., via a supply chain attack – during
development phase) leads to takeover of identity associated with that application.

Proxy Function Impacted: Proxies run in the same network space (same pod in Kubernetes
environment) as the application container, meaning that a compromise of the application
container (hosting the service instance) can easily lead to a compromise of any key material
(full access to key material pertaining to the identity of the service) possessed by the proxy.

Impact Score=2: Because of the nature of impact discussed above (i.e., Single workload / single
identity being affected), this threat is assigned the impact score of 2. Even though only a single
identity is compromised, like TR-1, this has a higher impact score as the application itself must
be updated. A compromised proxy can be remediated without requiring the application itself to
be updated, so there’s a higher chance a central team can successfully remediate a compromise
without involving application teams.

Likelihood Score=1: Same regardless of Architecture.

5.1.3. Compromise of Business Data (TR-3)

Threat Description: Compromised identity is used to pivot through the infrastructure, in order
to compromise the confidentiality, integrity or availability of business data.

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- this is the fundamental risk of identity-based policy and is why we need to
practice the principle of least privilege (PoLP). The telemetry provided by the service mesh
(regardless of architecture) is invaluable for understanding communicating in your system and
creating accurate access policies (thereby implementing PoLP)

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

16

499

500
501
502

503
504
505
506

507
508
509
510
511
512

513
514
515
516

517

518
519
520

521
522
523
524
525

526
527
528
529
530
531

532
533
534
535

5.1.4. Compromised L7 Proxy (TR-4)

Threat Description: Vulnerability in L7 processing stack of the service mesh proxy. As L7
processing is inherently more complex, there is a higher probability for vulnerabilities to arise in
this part of the stack, as supported by historical CVE data.

Proxy Function Impacted: No separation between L4 and L7 processing. It can be argued that
any exploitable vulnerability in a sidecar proxy can lead to the compromise of all identities in
the mesh, however as this would involve more individual proxy instances being compromised, it
may be more difficult for an attacker to accomplish this feat undetected.

Impact Score=1: A single workload is impacted (either leaking credentials, or becoming
unavailable due to DoS, depending on the type of L7 attack). The same exploit could be used
against all sidecars in the mesh with applications opting in to L7 behavior, resulting in
compromise of all identities (Impact 3); in practice this requires many more events than any
other architecture, increasing our likelihood of detecting and responding to the event in a
timely manner.

Likelihood Score=1: Full L7 capability is available in the proxy, meaning a relatively large attack
surface is exposed; in practice for the service mesh use case, however, it tends to be the HTTP
processing that is targeted. If the application is using L7 mesh capabilities, they would be
vulnerable to exploit.

5.1.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: Co-tenant exploits L7 traffic processing vulnerability in shared proxy, to
affect the confidentiality, integrity or availability of traffic to/from another workload running on
the same node.

Proxy Function Impacted: Because the proxy is dedicated per application, impact on availability
is limited to the resource constraints imposed by the scheduling system (e.g. Kubernetes).
Confidentiality is impacted the same as if another application itself is compromised -- i.e.
containers provide some guarantee, micro-VMs provide a stronger degree of isolation, full
blown VMs the strongest.

Impact Score=1: For noisy neighbors – other L7 proxies on the same host that are compromised
– Impact limited by underlying scheduling and resource constraint system (e.g. k8s, VM sizing,
etc). Identical across all architectures: for a shared ingress gateway, all services exposed on that
gateway would be impacted (Impact 2); for a shared egress gateway, all services utilizing the
egress gateway are impacted (Impact 3; typically only a single deployment of egress gateways is
used).

Likelihood Score=1: The sidecar itself is not a shared proxy – by its nature it is dedicated to an
individual application. In this case TR-5 refers to both noisy neighbors, other proxies on the
same node causing a denial of service, as well as shared ingress or egress gateways. Noisy
neighbors are mitigated based on the degree of isolation of the host (container vs micro-VM vs

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

17

536
537

538

539
540

541

542
543
544
545
546
547

548

549

550

551
552
553
554
555

556

557
558
559
560

561

562
563

564
565

566
567

VM). Likelihood of exploiting a shared L7 ingress or egress gateway is the same across all
architectures.

5.1.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: The proxy’s Infrastructure code is decoupled from application code.

Impact Score=1: The mesh infrastructure is separate from the application itself, therefore it’s
not impacted by application vulnerabilities directly. Instead, a compromised app would use the
(functioning) mesh to hijack the application’s identity (see threat on compromised app
container, compromised identity). Some application vulnerabilities can be mitigated via policies
enforced by the mesh, for example: mesh enforced WAF policy can help mitigate an app
vulnerability like Log4j while the organization is patching applications.

Likelihood Score=1: Same regardless of architecture.

5.1.7. Denial of Service (TR-7)

Threat Description: Conventional Denial of Service threat.

Proxy Function Impacted: Because the proxy is per app instance, a DoS needs to be executed
per app. Because the proxy shares resources with the app, a DoS on the mesh data plane
directly competes for resources with the app instance itself. The overall blast radius of the DoS
is as strong as the underlying isolation mechanism protecting workloads (pods) from each other
(VMs, micro-VMs, containers, etc.).

Impact Score=1: Single instance of a single app

Likelihood Score=1: L4 and L7 code is able to be exploited; however the attack must be
executed across each instance of the target (there's not a central resource to target to achieve
a DoS, other than a shared ingress gateway which is identical across all architectures under
discussion).

5.1.8. Resource Consumption (TR-8)

Threat Description: Overall resource consumption by the data plane of the service mesh
infrastructure.

Proxy Function Impacted: Because sidecars are a separate process and are dedicated per app,
they have the worst overall resource consumption:

configuration that's identical across all apps must be held by the data plane per app, and can't
be shared.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

18

568
569
570

571
572

573
574
575

576
577
578
579
580

581

582
583
584

585
586
587
588
589
590
591

592

593
594

595
596

597

598
599
600

601

static overhead of the sidecar data plane implementation itself (e.g. constant RAM usage,
constant CPU overhead, and so on) is duplicated per app instance, and can't be amortized over
all apps on the node

In part this isolation is what allows sidecars to have lower impact and likelihood across many of
the other threats identified here.

Impact Score=3: Highest resource usage of all options, though good configuration can help
mitigate the impact (even then, in well-configured environments sidecars will consume the
most resource out of all available options).

Likelihood Score=3: It is challenging to configure sidecars correctly to minimize configuration
and reduce overhead. Some specific implementations do better jobs than others due to
engineer tradeoffs (e.g. lazily loading configuration the first time an app needs it, vs eagerly
pushing all configuration ahead of use) but overall it's easiest to land in a situation with the
most resource utilization with a sidecar architecture.

5.1.9. Privileged L4 Proxy (TR-9)

Threat Description: Service mesh implementation requires L4 component (e.g., deployed as a
DaemonSet on a Kubernetes cluster) to run with an overprivileged security context (e.g.,
Privileged Pod)

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- in the per-node case this is usually encapsulated as a container network
interface (CNI) provider which runs in a privileged context by default. In the sidecar case,
privilege is only needed at startup to establish traffic interception rules; depending on the
implementation (e.g., Kubernetes init containers) this can ensure that the privileged user is not
run alongside the application but only during initialization. In all cases, typically
CAP_NET_ADMIN is the only privilege required for mesh data plane functionality.

5.1.10. Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: Easiest to bypass of all the available models, from app choosing not
to use sidecar to container-local bypasses/configurations.

Impact Score=2: An app is exposed without mesh security controls.

Likelihood Score=2: Because the proxy runs in user space in the same cgroups as the
application, there are a variety of attacks available that are not relevant/applicable to other
implementations.

Cumulative Threat Score: (computed based on the methodology of Section 4.1) = 23

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

19

602

603

604
605
606

607
608

609

610
611

612

613
614

615
616
617

618

619

620

621
622

623
624
625
626
627

628

629
630
631

632

5.2. Threat Analysis for Shared L4 – L7 per Service Model (DPA-2)

5.2.1. Compromised L4 Proxy (TR-1)

Threat Description: Compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (service) running
on the node.

Proxy Function Impacted: The L4 proxy has access to all the keys associated with the workloads
running on the node.

Impact Score=3: Identities of all workloads (services) on the node are compromised

Likelihood Score=1: only code delivering L4 functions is present. This minimal code footprint
and functionality presents the lowest attack surface of all options.

5.2.2. Compromised Application Container (TR-2)

Threat Description: Compromised application container (e.g., via a supply chain attack – during
development phase) leads to takeover of identity associated with that application.

Proxy Function Impacted: Data plane components are not located in the same pod as workload
containers, so a compromised workload does not necessarily lead to the access of keys /
secrets.

Impact Score=1: Single workload / single identity. No direct access to underlying key material.

Likelihood Score=2: Same regardless of architecture

5.2.3. Compromise of Business Data (TR-3)

Threat Description: Threat Description: identity is used to pivot through the infrastructure, in
order to compromise the confidentiality, integrity or availability of business data.

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- this is the fundamental risk of identity-based policy and is why we need to
practice the principle of least privilege (PoLP). The telemetry provided by the service mesh
(regardless of architecture) is invaluable for understanding communicating in your system and
creating accurate access policies (thereby implementing PoLP)

5.2.4. Compromised L7 Proxy (TR-4)

Threat Description: Vulnerability in L7 processing stack of the service mesh proxy. As L7
processing is inherently more complex, there is a higher probability for vulnerabilities to arise in
this part of the stack, as supported by historical CVE data.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

20

633
634
635

636
637
638
639
640

641
642

643

644
645
646

647
648

649
650
651

652

653

654
655

656

657

658

659

660

661
662

663
664

Proxy Function Impacted: This topology allows 'less complex' L4 capabilities, e.g. mTLS, to be
adopted, with L7 processing only occurring if there is a strict requirement for it. Each service
account has its own dedicated L7 proxy.

Impact Score=2: A single set of workloads is impacted (DoS) / single identity leaked. In the
event of a DoS, it's much easier to make all workloads unavailable compared to the sidecar
model because the mesh's L7 processing is centralized into L7 "middle proxies". We need to
DoS this smaller number of middle proxies, vs needing to DoS every instance of the app in the
sidecar/library cases.

Likelihood Score=1: same as sidecar / same argument around potentially impacting all
workloads using L7 capabilities – see Section 5.1.4.

5.2.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: Co-tenant exploits L7 traffic processing vulnerability in shared proxy, to
affect the confidentiality, integrity or availability of traffic to/from another workload running on
the same node.

Proxy Function Impacted: By limiting the per-node functionality to L4 processing, the attack
surface is significantly reduced.

Impact Score=1: The application workload itself is unaffected, only the proxy – which is a
separate deployment. As long as the L7 proxy is not shared with the compromised application,
there is no impact.

Likelihood Score=1: As likely as the previous entry.

5.2.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: Infrastructure code decoupled from application code.

Impact Score=1: Same as the sidecar model, DPA-1 – see 5.1.6.

Likelihood Score=1: Same regardless of architecture.

5.2.7. Denial of Service (TR-7)

Threat Description: Conventional Denial of Service threat.

Proxy Function Impacted: A DoS executed at L4 has the same impact as the centralized per-
node model because the L4 process is centralized per node: all apps on the node are impacted.

A DoS executed at L7 impacts all app instances of the target app, since a (set of) dedicated L7
proxy(-ies) is deployed per app. The number of proxies implementing L7 functionality is

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

21

665
666

667
668

669
670
671

672
673

674

675
676

677
678
679
680

681
682
683
684
685
686

687
688

689

690

691
692
693

694
695
696
697
698
699
700

typically (far) less than the number of application instances making them an easier target for
DoS than "every instance of the target app".

Impact Score=2: Every instance of the target app. An L4 DoS would impact all application
instances on the target host.

Likelihood Score=2: The L4 proxy is deployed once per node, so it presents a better target for
DoS than DPA-1 or DPA-4; this is mitigated somewhat by the simplified functionality of an L4
proxy compared to a combined L4+L7 proxy.

The L7 proxy is shared by multiple instances of the same application, it presents an easier DoS
target than the application itself. Therefore it is more likely than the sidecar model, DPA-1.

5.2.8. Resource Consumption (TR-8)

Threat Description: Overall resource consumption by the data plane of the service mesh
infrastructure.

Proxy Function Impacted: The shared L4 proxy typically has a much lower memory (RAM)
footprint, as well as lower CPU usage overall due to a lower rate of change of config, less config
overall, and less responsibility than a combined L4+L7 sidecar proxy, DPA-1. For the service
mesh’s data plane, L7 processing is typically the dominating CPU cost, followed by encryption.

L7 proxies are shared by all instances of the same application, deployed as a few traditional
"reverse proxies" per app. This results in much lower resource consumption for L7 processing
than the sidecar model (DPA-1). Overall DPA-2 uses more resources than the shared per node
model (DPA-3), but substantially less than the sidecar (DPA-1). This is due primarily to reduced
overhead -- e.g., an app with 50 instances requires 50 sidecars, but might be served with 5
shared L7 proxies (or less).

Impact Score=2: DPA-3 achieves a good middle ground: lower consumption than sidecar and
easier to achieve than sidecar (DPA-1); but not as low as all shared (DPA-3) or all in app (DPA-4).

Likelihood Score=1: Easy to achieve low resource usage.

5.2.9. Privileged L4 Proxy (TR-9)

Threat Description: Service mesh implementation requires L4 component (e.g. deployed as a
DaemonSet on a Kubernetes cluster) to run with an overprivileged security context (e.g.
Privileged Pod).

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- in the per-node case this is usually encapsulated as a container network
interface (CNI) provider which runs in a privileged context by default. In the sidecar case,
privilege is only needed at startup to establish traffic interception rules; depending on the
implementation (e.g., Kubernetes init containers) this can ensure that the privileged user is not
run alongside the application but only during initialization. In all cases, typically
CAP_NET_ADMIN is the only privilege required for mesh data plane functionality.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

22

701

702
703

704
705
706
707
708

709
710
711
712
713
714

715

716
717

718

719

720

721
722
723

724
725

726

727
728

729

730
731

732
733
734

5.2.10. Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: Part of the goal of moving enforcement out of the app context and
into a shared context is to use stronger primitives to ensure the non-bypass-ability of the mesh
data plane. In general, with a per-node L4 setup, sending traffic to an individual app instance on
the node should not be achievable (e.g. similar to [but not necessarily implemented as] a host-
level VPN requiring workloads to be part of the VPN overlay to connect).

L7 proxies are deployed independently from the applications they represent, which requires
special configuration in the mesh to ensure they’re routed through, making bypassability easier
than other models. Impact of missing L7 policy can be significant. (In other models we rely on 0
or 1 things to ensure traffic is directed to the correct policy enforcement point; in this model
we rely on 2 things [traffic interception, mesh configuration to route via middle proxies] to
ensure traffic is subject to the correct PEPs)

Impact Score=2: An app is exposed without mesh security controls.

Likelihood Score=2: L4 controls are by-design built to mitigate this; L7 controls are easier to
bypass compared to sidecar model.

Cumulative Threat Score: (computed based on the methodology of Section 4.1) = 22

5.3. Threat Analysis for Shared L4 and L7 Model (DPA-3)

5.3.1. Compromised L4 Proxy (TR-1)

Threat Description: Compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (service) running
on the node.

Proxy Function Impacted: The L4 proxy has access to all the keys associated with the workloads
running on the node.

Impact Score=3: All identities on node

Likelihood Score=3: L7 code may be enabled for another server (not yours) which can be
exploited to affect all apps on the host

5.3.2. Compromised Application Container (TR-2)

Threat Description: Compromised application container (e.g., via a supply chain attack – during
development phase) leads to takeover of identity associated with that application.

Proxy Function Impacted: Data plane components are not located in the same pod as workload
containers, so a compromised workload does not necessarily lead to the access of keys /
secrets.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

23

735

736

737

738
739

740
741
742
743
744

745

746
747
748

749
750
751
752

753
754
755
756

757
758
759

760

761
762
763

764
765
766
767
768

769

Impact Score=1: Single workload / single identity. No direct access to underlying key material.

Likelihood Score=2: Same regardless of architecture.

5.3.3. Compromise of Business Data (TR-3)

Threat Description: Threat Description: identity is used to pivot through the infrastructure, in
order to compromise the confidentiality, integrity or availability of business data.

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- this is the fundamental risk of identity-based policy and is why we need to
practice the principle of least privilege (PoLP). The telemetry provided by the service mesh
(regardless of architecture) is invaluable for understanding communicating in your system and
creating accurate access policies (thereby implementing PoLP)

5.3.4. Compromised L7 Proxy (TR-4)

Threat Description: Vulnerability in L7 processing stack of the service mesh proxy. As L7
processing is inherently more complex, there is a higher probability for vulnerabilities to arise in
this part of the stack, as supported by historical CVE data.

 Proxy Function Impacted: This topology allows 'less complex' L4 capabilities, e.g., mTLS, to be
adopted, with L7 processing only occurring if there is a strict requirement for it. Blast radius of a
proxy compromise affects all workloads on the node. That means that its failure represents a
shared fate outage, and as a shared resource it’s susceptible to denial of service attacks.

Impact Score=3: L7 capability is shared across all applications on the node, so if even a single
application's configuration causes the proxy to become susceptible to failure then all
applications on the node can be attacked (either a credential leak or denial of service,
depending on the attack).

Likelihood Score=2: For a given app using L7 capabilities, as likely as the sidecar model.
However, because workloads that are only doing L4 are susceptible to attack if they share the
same node (which under the sidecar model, DPA-1, would have been safe), likelihood is higher.

5.3.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: Co-tenant exploits L7 traffic processing vulnerability in shared proxy, to
affect the confidentiality, integrity, or availability of traffic to/from another workload running
on the same node.

Proxy Function Impacted: A single proxy instance does not provide an inherently multi-tenant
setup. Hence security concerns arise when combining complex processing rules for L7 traffic
from multiple unconstrained tenants in a shared instance. In this configuration, L7 processing of
multiple co-tenants' traffic is performed within one process, with no memory protection or
isolation benefits that could be gained by containerizing L7 functionality per workload

Impact Score=3: All workloads on the node are impacted.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

24

770
771
772

773

774
775

776

777

778

779

780

781
782
783
784

785

786
787

788

789
790

791
792
793
794
795
796
797
798
799
800
801

802

Likelihood Score=2: See section 5.3.4 above – a compromise is as likely as the sidecar model
(DPA-1), but applications that would not be susceptible to attack under DPA-1 are susceptible
under this model, DPA-3.

5.3.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: Infrastructure code decoupled from application code.

Impact Score=1: Same as the sidecar model, DPA-1 – see 5.1.6.

Likelihood Score=1: Same regardless of architecture.

5.3.7. Denial of Service (TR-7)

Threat Description: Conventional Denial of Service threat.

Proxy Function Impacted: Because processing for all app instances on the node is shared, and a
single proxy instance is not inherently multi-tenant (provides no controls wrt resource
utilization across independent backends and clients), the blast radius of DoS on the mesh data
plane is every app on the node.

Impact Score=3: All workloads on the node.

Likelihood Score=2: If any app configuration triggers exploitable paths in the shared proxy, all
apps on the node suffer.

5.3.8. Resource Consumption (TR-8)

Threat Description: Overall resource consumption by the data plane of the service mesh
infrastructure.

Proxy Function Impacted: Because all functionality is shared at the node level, DPA-3 has the
most opportunity for deduplication -- therefore reduction in resource usage. Configuration like
service discovery need only be sent a single time to each node, rather than to each and every
app instance. Overall this means the lowest rate of change and least data transferred, as well as
a lower runtime footprint (RAM, CPU).

Note some implementations don't fully de-dupe configuration (for a variety of reasons, both
due to implementation and as a security measure to provide some degree of isolation), so
consume RAM more similarly to a sidecar case than might otherwise appear.

Impact Score=1: lowest overall resource utilization of all available architectures

Likelihood Score=1: easiest to achieve low resource utilization

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

25

803

804
805
806

807
808
809
810
811
812
813

814

815
816

817
818
819
820
821

822

823

824

825
826

827

828
829
830

831
832
833
834

835

5.3.9. Privileged L4 Proxy (TR-9)

Threat Description: Service mesh implementation requires L4 component (e.g. deployed as a
Daemon Set on a Kubernetes cluster) to run with an overprivileged security context (e.g.
Privileged Pod).

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- in the per-node case this is usually encapsulated as a container network
interface (CNI) provider which runs in a privileged context by default. In the sidecar case,
privilege is only needed at startup to establish traffic interception rules; depending on the
implementation (e.g., Kubernetes init containers) this can ensure that the privileged user is not
run alongside the application but only during initialization. In all cases, typically
CAP_NET_ADMIN is the only privilege required for mesh data plane functionality.

5.3.10. Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: Part of the goal of moving enforcement out of the app context and
into a shared context is to use stronger primitives to ensure the non-bypass-ability of the mesh
data plane. In general, with a per-node setup, sending traffic to an individual app instance on
the node should not be achievable (e.g., similar to [but not necessarily implemented as] a host-
level VPN requiring workloads to be part of the VPN overlay to connect).

Impact Score=3: All applications on the node are exposed without mesh security controls.

Likelihood Score=1: By design built to mitigate this kind of bypass

Cumulative Threat Score: (computed based on the methodology of Section 4.1) = 37

5.4. Threat Analysis for L4 and L7 within Application Model (gRPC proxyless Model (DPA-
4))

5.4.1. Compromised L4 Proxy (TR-1)

Threat Description: Compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (service) running
on the node.

Proxy Function Impacted: mTLS connections are negotiated by the client library inside of the
application, with a single identity (the application's). In order to compromise key material and
identity documents for multiple workloads, multiple application instances would need to be
compromised.

Impact Score=1: Single workload / single identity.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

26

836
837

838

839
840

841
842
843

844
845

846

847

848
849

850
851
852
853
854

855

856
857
858

859
860
861

862
863

864
865

Likelihood Score=2: Large surface area if something goes wrong, since we're inside the
application's context. Therefore, this is as likely or slightly more likely than DPA-1.

5.4.2. Compromised Application Container (TR-2)

Threat Description: Compromised application container (e.g., via a supply chain attack – during
development phase) leads to takeover of identity associated with that application.

Proxy Function Impacted: Compromising the application is compromising the mesh in this case;
full access to any key material used by the application -- including the mesh identity -- is
achievable.

Impact Score=2: Single workload / single identity. Full access to key material used by that
application.

Likelihood Score=2: Same regardless of architecture.

5.4.3. Compromise of Business Data (TR-3)

Threat Description: Threat Description: identity is used to pivot through the infrastructure, in
order to compromise the confidentiality, integrity or availability of business data.

Proxy Function Impacted & Impact Score (=1) & Likelihood Score (=1): Same regardless of
architecture -- this is the fundamental risk of identity-based policy and is why we need to
practice the principle of least privilege (PoLP). The telemetry provided by the service mesh
(regardless of architecture) is invaluable for understanding communicating in your system and
creating accurate access policies (thereby implementing PoLP)

5.4.4. Compromised L7 Proxy (TR-4)

Threat Description: Vulnerability in L7 processing stack of the service mesh proxy. As L7
processing is inherently more complex, there is a higher probability for vulnerabilities to arise in
this part of the stack, as supported by historical CVE data.

Proxy Function Impacted: Compromising the L7 processing stack results in compromising the
entire application, resulting in more risk of compromise beyond runtime identity and DoS for
other users.

Impact Score=3: The application itself is compromised, including non-mesh credentials (e.g.
`truncate table users;`) that are not available if only the proxy is compromised.

Likelihood Score=3: L7 processing code is the application, and as a result the surface area is
much larger.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

27

866

867
868
869

870
871
872

873

874

875

876
877

878
879

880
881
882
883

884
885
886
887
888
889

890

891

892
893

894
895

896
897

5.4.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: Co-tenant exploits L7 traffic processing vulnerability in shared proxy, to
affect the confidentiality, integrity or availability of traffic to/from another workload running on
the same node.

Proxy Function Impacted: L7 processing is entirely isolated by whatever mechanisms isolate
applications themselves (containers, micro-VMs, VMs, etc). Impact is limited by the strength of
that boundary.

Impact Score=1: See section 5.1.5.

Likelihood Score=1: As likely as any other application compromise.

5.4.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: Infrastructure concerns are embedded within application code.
Challenges can arise when enforcing consistency in versions between microservices etc.

Impact Score=3: The mesh functionality itself is part of the application, therefore bad
application updates mean bad mesh updates. This means vulnerabilities stick around for longer.
By the same token, since the mesh is part of the app, a vulnerability in the app is a vulnerability
in the mesh data plane.

Likelihood Score=2: Depends on frequency of update -- if applications can be updated quickly
(i.e., on the order of minutes to hours), likelihood is low. If applications take on the order of
weeks to months to update, likelihood is high. In the realm of days-to-update we have a middle
ground of risk that's likely acceptable to most organizations. However cross-cutting concerns
like mesh data plane, which are critical to the org's overall security posture, should be patched
as soon as possible.

5.4.7. Denial of Service (TR-7)

Threat Description: Conventional Denial of Service threat.

Proxy Function Impacted: A DoS of the mesh data plane (L4 or L7) is a DoS of the application
itself. In all other respects, it's very similar to the sidecar.

Impact Score=1: Single instance of single app. See 5.1.7 – an attack could be repeated across all
applications.

Likelihood Score=2: Not just mesh data plane functionality is susceptible to DoS, but application
code/functionality itself.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

28

898

899
900

901
902
903
904
905

906
907
908

909

910

911
912
913

914
915
916
917

918

919
920

921

922

923
924

925

926

5.4.8. Resource Consumption (TR-8)

Threat Description: Overall resource consumption by the data plane of the service mesh
infrastructure.

Proxy Function Impacted: Because it's built into the app, resources devoted to mesh data plane
functionality are very low. The only reason resource utilization overall winds up being higher
than the shared L4/L7 model (DPA-3) is because some duplication of configuration and
processing needs to happen since configuration needs to be pushed to every application
instance.

Impact Score=2: Potentially lower resource usage on a per-app basis than any other model, but
likely higher in aggregate because we can't share any resources or configuration across data
plane instances.

Likelihood Score=1: Easy to achieve low resource usage.

5.4.9 Privileged L4 Proxy (TR-9)

Threat Description: Service mesh implementation requires L4 component (e.g., deployed as a
Daemon Set on a Kubernetes cluster) to run with an overprivileged security context (e.g.,
Privileged Pod).

Proxy Function Impacted & Impact Score (=0) & Likelihood Score (=0): Mesh data plane
functionality runs in the application context without any special privileges -- it's the same as the
app itself. No special capabilities or permissions are required to intercept traffic or implement
policy enforcement.

5.4.10 Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: App is the enforcement point, there is no bypassing.

Impact Score=1: The app is exposed in a degraded state or without some controls.

Likelihood Score=1: By nature of RPC frameworks and in-process enforcement, mesh data plane
policy should not be bypassable.

Cumulative Threat Score: (computed based on the methodology of Section 4.1) = 28

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

29

927

928
929
930
931

932
933
934
935
936
937

938

939

940
941
942
943

944

945

946

947
948
949

950
951
952

953
954

955
956
957

958

959
960

961
962

6. Recommendations Based on Application Security Risk Profile

While the ratings or scores for the impact and likelihood parameters for different threats in
different data plane architectures are dictated by the number of service instances affected, the
risk profiles associated with applications are determined by the criticality of the entire
application with respect to the business process it supports.

 In arriving at the threat profile for each of the architectural patterns considered in section 5,
please recall that we observed that for some threats, the impact and likelihood parameters are
the same irrespective of the proxy model or data plane architecture. The ratings assigned to
these parameters are as we already stated, are relative ratings, and hence both parameters are
assigned the rating 1, resulting in the overall threat rating of 1 for those threats. The threats
that come under this category are:

• Compromise of Business Data (TR-3)

• Privileged L4 Proxy (TR-9)

 Hence, we have to ignore the threat ratings of the above listed threats and dwell into the
consideration of threat ratings for the other remaining threats. While considering the remaining
threats, we must ignore those threats that have no direct security implications but may have
performance implications. The only threat that comes under this category is:

• Resource Consumption (TR-8)

6.1. Cloud-Native Applications with Low Risk Profile

The service mesh capability requirements for this class of application are as follows:

• LOW-REQ1: Service-to-Service authorization (Service A can call Service B) is based on
network location/parameter (e.g., subnet) and authorization at the granularity of the
called service method, calling user and per call request are not required.

• LOW-REQ2: Logging and Metrics need to be captured only at the level of network
parameters (e.g., Source/Destination TCP address) and not at the level of per call
request.

• LOW-REQ3: All traffic management capabilities such as load balancing, rate limiting etc.
need to be enforced at the network connection level and not at the per call request.

Examination of the above capabilities reveals that these essentially involve network
transport/network level data, that can be all provided by proxy’s L4 functions and hence by L4
proxies. Hence the following are recommendations for this class of application.

Recommendations:

1. Since all requirements can be met by L4 proxies or L4 functions built into the libraries,
all four data plane architectures can be theoretically used.

2. Since neither method-level nor per call request handling is required, thus eliminating all
L7 functions, data plane architectures that deploy a L7 proxy per service instance (side-

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

30

963
964
965
966

967

968

969
970
971

972
973
974

975
976
977

978
979
980
981
982
983

984

985
986

987
988
989
990
991
992
993
994
995
996

997

998

car model (DPA-1) expose an unnecessary attack surface. Therefore, either of the two
models with a shared L4 proxy (DPA-2 and DPA-3) is recommended. gRPC proxy-less
model (DPA-4) is also usable for this class of applications, though it does expose a larger
attack surface than DPA-2 or DPA-3.

6.2. Cloud-Native Applications with Medium Risk Profile

The service mesh capability requirements for this class of application are as follows:

• MEDIUM-REQ1: In addition to Service-to-Service authorization at the level of service, a
full authorization policy at the method level (Service A can execute GET on B’s Billing
method with valid end user credentials containing the READ scope) is required.

• MEDIUM-REQ2: Logging and Metrics data need to be captured not only at the level of
network parameters (e.g., Source/Destination TCP address) but also some metadata
such as the called service and method.

• MEDIUM-REQ3: All traffic management capabilities such as load balancing, rate limiting
etc. can be enforced at the network connection level (as in low risk profile case) and not
at the per call request or per method level.

Examination of the above capabilities reveals that these essentially involve not only network
transport/network level data (all L4 functions), but also some L7 functions (not all) such as
authenticating user identities not only locally from tokens (e.g., Jason Web Tokens (JWT)) but
also remotely using standardized protocols such as OAuth and OIDC. Hence use of L7 proxies
with some limited functionality is mandatory. Hence the following are recommendations for
this class of application.

Recommendations:

1. Just like for applications with low risk profile, all four data plane architectures can be
theoretically used.

2. Since L7 functions are limited, it is not essential to dedicate a L7 proxy for each service.
Hence, data plane architectures that deploy a L7 proxy for each service (side-car model
(DPA-1)) may end up consuming more resources than other models for limited
additional assurance. On the other hand, as previously discussed, L7 code is where most
exploitable vulnerabilities lie. Hence shared L4-L7 model (DPA-3) is not desirable since
the shared L7 component introduces risk for all services that share the same physical
host. Therefore, the shared L4 -- L7 per service model (DPA-2) is likely the best mix of
resource utilization and risk. gRPC proxy-less model (DPA-4) with inclusion of libraries
for L4 functions and limited L7 functions is also recommended, with similar risk but even
less resource utilization than DPA-2 in most cases.

6.3. Cloud-Native Applications with High Risk Profile

The service mesh capability requirements for this class of application are as follows:

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

31

999
1000
1001
1002
1003

1004
1005

1006
1007
1008

1009

1010

1011
1012

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

1024

• HIGH-REQ1: In addition to: (a) Service-to-Service authorization at the level of service
and, (b) a full authorization policy at the method level (Service A can execute GET on B’s
Billing method with valid end user credentials containing the READ scope), a full user to
resource level access control is required. The last requirement necessitates the proxy
making an external authorization call for each request.

• HIGH-REQ2: Logging and Metrics meta data relating to a request must be captured –
rate of requests, rate of positive outcomes, processing time for each request etc.

• HIGH-REQ3: All traffic management capabilities are required at the request level and
should involve application layer parameters in addition to those at the network
connection level.

Examination of the above capabilities reveals that a complete suite of L7 functions is required.

Recommendations:

1. Just like for applications with low risk and medium risk profiles, all four data plane
architectures can be theoretically used.

2. However, based on the requirements, this class of applications belong to Highly critical
applications, which require a great degree of isolation, where any compromise, if it
occurs should be limited to only one service instances and not multiple service
instances. Hence, data plane architectures that deploy a L7 proxy for each service (side-
car model (DPA-1)) is most applicable. A shared L7 proxy per Service (like DPA-2) can be
an acceptable tradeoff for some organizations, provided they have other mechanisms
for mitigating shared-fate failures of all instances of the service that the shared service
mesh L7 proxy brings (e.g., mitigating a denial-of-service attack via L3 controls outside
the mesh). However, tightly integrating both L4 & L7 functions with the service instance
provides a greater degree of isolation and hence the former data plane architecture
(DPA-1) is highly recommended.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

32

1025

1026
1027
1028
1029

1030
1031
1032
1033
1034
1035

1036
1037
1038
1039

1040
1041
1042
1043

7. Summary and Conclusions

Microservices-based applications implemented using containers & VMs and sometimes
spanning on-premises and multiple clouds go by the name of cloud-native applications. In
instances where a centralized service infrastructure is beneficial to the overall security of this
class of applications, this need is met by a service mesh.

Service mesh implementations are characterized by the type of configurations of entities called
proxies which are the engines that enable various capabilities during application runtimes -
such as policy enforcement (including access control), network connectivity (including
establishment of secure sessions), performance monitoring (through collection of data for
computing various metrics) etc. The proxies thus form the data plane of the service mesh, and a
particular configuration of proxies is called a proxy model or a data plane architecture.

The first and still the widely prevalent deployment of the proxy model is the side car model
where a single proxy that provides functions both at the L4 and L7 level is associated with a
service instance. Performance, resource consumption and specific security needs for different
cloud-native applications have led to exploration of alternate proxy models.

In this document, we performed a detailed threat analysis of these alternate proxy models
(including the ones that provide the needed security functions without proxies) by identifying
ten common threats and provided recommendations for their use in cloud-native applications
with different security risk profiles.

NIST SP 800-233 ipd (Initial Public Draft) Service Mesh Proxy Models for
July 2024 Cloud-Native Applications

33

104

104
104
104
104
104
105
105
105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
106
106
106
107
107
107
107
107
107
107
107
107
107
108
108
108
108

References 4

[1] Wikipedia (2024) OSI Model. Available at https://en.wikipedia.org/wiki/OSI_model 5
[2] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications Using 6

Service-Mesh Architecture. (National Institute of Standards and Technology, Gaithersburg, 7
MD), NIST Special Publication (SP) NIST SP 800-204A. 8
https://doi.org/10.6028/NIST.SP.800-204A 9

[3] Chandramouli R, Butcher Z, Aradhna C (2021) Attribute-based Access Control for 0
Microservices-based Applications using a Service Mesh. (National Institute of Standards 1
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204B. 2
https://doi.org/10.6028/NIST.SP.800-204B 3

[4] Chandramouli R (2022) Implementation of DevSecOps for a Microservices-based 4
Application with Service Mesh. (National Institute of Standards and Technology, 5
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204C. 6
https://doi.org/10.6028/NIST.SP.800-204C 7

[5] Chandramouli R, Butcher Z (2023) A Zero Trust Architecture Model for Access Control in 8
Cloud-Native Applications in Multi-Cloud Environments. (National Institute of Standards 9
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-207A. 0
https://doi.org/10.6028/NIST.SP.800-207A 1

[6] Jackson E, Kohavi Y, Pettit J, Posta C (2022) Ambient Mesh Security Deep Dive. (Istio) 2
Available at https://istio.io/latest/blog/2022/ambient-security/ 3

[7] Howard J, Jackson EJ, Kohavi Y, Levine I, Pettit J, Sun L (2022) Introducing Ambient Mesh. 4
(Istio) Available at https://istio.io/latest/blog/2022/introducing-ambient-mesh/#what-5
about-security 6

[8] Turner M (2022) eBPF and Sidecars - Getting the Most Performance and Resiliency out of 7
the Service Mesh. (Tetrate) Available at https://tetrate.io/blog/ebpf-and-sidecars-getting-8
the-most-performance-and-resiliency-out-of-the-service-mesh/ 9

[9] Graf T (2021) How eBPF will solve Service Mesh - Goodbye Sidecars. (Isovalent) Available 0
at https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/ 1

[10] Song J (2022) Transparent Traffic Intercepting and Routing in the L4 Network of Istio 2
Ambient Mesh. (Tetrate) Available at https://tetrate.io/blog/transparent-traffic-3
intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/ 4

[11] Song J (2022) L7 Traffic Path in Ambient Mesh. (Tetrate) Available at 5
https://tetrate.io/blog/l7-traffic-path-in-ambient-mesh/ 6

[12] Cilium (2024) Threat Model — Cilium 1.15.6 documentation. (Cilium) Available at 7
https://docs.cilium.io/en/stable/security/threat-model/ 8

[13] Istio (2024) Ambient mode overview: ztunnel. Available at 9
https://istio.io/latest/docs/ambient/overview/#ztunnel 0

[14] Landow S (2021) gRPC Proxyless Service Mesh. (Istio) Available at 1
https://istio.io/v1.15/blog/2021/proxyless-grpc/ 2

 3

https://en.wikipedia.org/wiki/OSI_model
https://doi.org/10.6028/NIST.SP.800-204A
https://doi.org/10.6028/NIST.SP.800-204B
https://doi.org/10.6028/NIST.SP.800-204C
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://doi.org/10.6028/NIST.SP.800-207A
https://istio.io/latest/blog/2022/ambient-security/
https://istio.io/latest/blog/2022/introducing-ambient-mesh/#what-about-security
https://istio.io/latest/blog/2022/introducing-ambient-mesh/#what-about-security
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/l7-traffic-path-in-ambient-mesh/
https://docs.cilium.io/en/stable/security/threat-model/
https://docs.cilium.io/en/stable/security/threat-model/
https://istio.io/latest/docs/ops/ambient/usage/ztunnel/
https://istio.io/latest/docs/ambient/overview/#ztunnel
https://istio.io/latest/docs/ambient/overview/#ztunnel
https://istio.io/v1.15/blog/2021/proxyless-grpc/
https://istio.io/v1.15/blog/2021/proxyless-grpc/

	Executive Summary
	1. Introduction
	1.1. L4 and L7 Functions of Proxies
	1.2. Objective & Target Audience
	1.3. Relationship to Other NIST Documents
	1.4. Document Structure

	2. Typical Service Mesh Data Plane Capabilities and Associated Proxy Functions
	3. Proxy Models (Data plane Architectures) in Service Mesh Implementations
	3.1. L4 and L7 Proxy per Service Instance – Sidecar Model (DPA-1)
	3.2. Shared L4 – L7 per Service Model (DPA-2)
	3.3. Shared L4 and L7 Model (DPA-3)
	3.4. L4 and L7 Part of the Application Model (DPA-4)

	4. Data Plane Architectures Threat Scenarios and Analysis Methodology
	4.1. Threat analysis Methodology

	5. Detailed Threat Analysis for Data Plane Architectures
	5.1. Threat Analysis for L4 and L7 Proxy per Service Instance – Sidecar Model (DPA-1)
	5.1.1. Compromised L4 Proxy (TR-1)
	5.1.2. Compromised Application Container (TR-2)
	5.1.3. Compromise of Business Data (TR-3)
	5.1.4. Compromised L7 Proxy (TR-4)
	5.1.5. Compromise of Shared L7 Proxy (TR-5)
	5.1.6. Outdated Client Libraries in Applications (TR-6)
	5.1.7. Denial of Service (TR-7)
	5.1.8. Resource Consumption (TR-8)
	5.1.9. Privileged L4 Proxy (TR-9)
	5.1.10. Data Plane (Service Mesh) Bypassed (TR-10)

	5.2. Threat Analysis for Shared L4 – L7 per Service Model (DPA-2)
	5.2.1. Compromised L4 Proxy (TR-1)
	5.2.2. Compromised Application Container (TR-2)
	5.2.3. Compromise of Business Data (TR-3)
	5.2.4. Compromised L7 Proxy (TR-4)
	5.2.5. Compromise of Shared L7 Proxy (TR-5)
	5.2.6. Outdated Client Libraries in Applications (TR-6)
	5.2.7. Denial of Service (TR-7)
	5.2.8. Resource Consumption (TR-8)
	5.2.9. Privileged L4 Proxy (TR-9)
	5.2.10. Data Plane (Service Mesh) Bypassed (TR-10)

	5.3. Threat Analysis for Shared L4 and L7 Model (DPA-3)
	5.3.1. Compromised L4 Proxy (TR-1)
	5.3.2. Compromised Application Container (TR-2)
	5.3.3. Compromise of Business Data (TR-3)
	5.3.4. Compromised L7 Proxy (TR-4)
	5.3.5. Compromise of Shared L7 Proxy (TR-5)
	5.3.6. Outdated Client Libraries in Applications (TR-6)
	5.3.7. Denial of Service (TR-7)
	5.3.8. Resource Consumption (TR-8)
	5.3.9. Privileged L4 Proxy (TR-9)
	5.3.10. Data Plane (Service Mesh) Bypassed (TR-10)

	5.4. Threat Analysis for L4 and L7 within Application Model (gRPC proxyless Model (DPA-4))
	5.4.1. Compromised L4 Proxy (TR-1)
	5.4.2. Compromised Application Container (TR-2)
	5.4.3. Compromise of Business Data (TR-3)
	5.4.4. Compromised L7 Proxy (TR-4)
	5.4.5. Compromise of Shared L7 Proxy (TR-5)
	5.4.6. Outdated Client Libraries in Applications (TR-6)
	5.4.7. Denial of Service (TR-7)
	5.4.8. Resource Consumption (TR-8)
	5.4.9 Privileged L4 Proxy (TR-9)
	5.4.10 Data Plane (Service Mesh) Bypassed (TR-10)

	6. Recommendations Based on Application Security Risk Profile
	6.1. Cloud-Native Applications with Low Risk Profile
	6.2. Cloud-Native Applications with Medium Risk Profile
	6.3. Cloud-Native Applications with High Risk Profile

	7. Summary and Conclusions
	References

