

NIST Special Publication 800

NIST SP 800-233

Service Mesh Proxy Models for
Cloud-Native Applications

Ramaswamy Chandramouli

Zack Butcher
James Callaghan

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-233

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.SP.800-233

NIST Special Publication 800
NIST SP 800-233

Service Mesh Proxy Models for
Cloud-Native Applications

Ramaswamy Chandramouli

Computer Security Division
Information Technology Laboratory

Zack Butcher

Tetrate, Inc.

James Callaghan
 control-plane.io, Inc.

This publication is available free of charge from:
https://doi.org/10.6028/NIST.SP.800-233

October 2024

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

mailto:james@control-plane.io

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

Certain commercial equipment, instruments, software, or materials, commercial or non-commercial, are identified
in this paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

There may be references in this publication to other publications currently under development by NIST in
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and
methodologies, may be used by federal agencies even before the completion of such companion publications.
Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist,
remain operative. For planning and transition purposes, federal agencies may wish to closely follow the
development of these new publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Authority
This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal
Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is
responsible for developing information security standards and guidelines, including minimum requirements for
federal information systems, but such standards and guidelines shall not apply to national security systems
without the express approval of appropriate federal officials exercising policy authority over such systems. This
guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines
be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the
OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary
basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on 2024-10-11

How to Cite this NIST Technical Series Publication:
Chandramouli R, Butcher Z, Callaghan J (2024) Service Mesh Proxy Models for Cloud-Native Applications. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-233.
https://doi.org/10.6028/NIST.SP.800-233

Author ORCID iDs
Ramaswamy Chandramouli: 0000-0002-7387-5858

https://csrc.nist.gov/publications
https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

Contact Information
sp800-233-comments@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/pubs/sp/800/233/final, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

mailto:sp800-233-comments@nist.gov
https://csrc.nist.gov/pubs/sp/800/233/final

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

i

Abstract

The service mesh has become the de facto application services infrastructure for cloud-native
applications. It enables the various runtime functions of an application through proxies that
form the data plane of the service mesh. Depending on the distribution of the network layer
functions and the granularity of association of the proxies to individual services and computing
nodes, different proxy models or data plane architectures have emerged. This document
describes a threat profile for each of the data plane architectures with a detailed threat analysis
to make recommendations on their applicability for cloud-native applications with different
security risk profiles.

Keywords

cloud-native application; data plane architecture; proxy model; service mesh; threat profile.

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance
the development and productive use of information technology. ITL’s responsibilities include
the development of management, administrative, technical, and physical standards and
guidelines for the cost-effective security and privacy of other than national security-related
information in federal information systems. The Special Publication 800-series reports on ITL’s
research, guidelines, and outreach efforts in information system security, and its collaborative
activities with industry, government, and academic organizations.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

ii

Patent Disclosure Notice

NOTICE: ITL has requested that holders of patent claims whose use may be required for
compliance with the guidance or requirements of this publication disclose such patent claims to
ITL. However, holders of patents are not obligated to respond to ITL calls for patents and ITL has
not undertaken a patent search in order to identify which, if any, patents may apply to this
publication.

As of the date of publication and following call(s) for the identification of patent claims whose
use may be required for compliance with the guidance or requirements of this publication, no
such patent claims have been identified to ITL.

No representation is made or implied by ITL that licenses are not required to avoid patent
infringement in the use of this publication.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

iii

Table of Contents

Executive Summary ..1

1. Introduction ...2

2. Typical Service Mesh Data Plane Capabilities and Associated Proxy Functions5

3. Proxy Models (Data Plane Architectures) in Service Mesh Implementations7

4. Data Plane Architecture Threat Scenarios and Analysis Methodology .. 12

5. Detailed Threat Analysis for Data Plane Architectures ... 14

5.1.1. Compromised L4 Proxy (TR-1) ... 14

5.1.2. Compromised Application Container (TR-2) ... 14

5.1.3. Compromise of Business Data (TR-3) .. 15

5.1.4. Compromised L7 Proxy (TR-4) ... 15

5.1.5. Compromise of Shared L7 Proxy (TR-5) .. 15

5.1.6. Outdated Client Libraries in Applications (TR-6) ... 16

5.1.7. Denial of Service (TR-7) ... 16

5.1.8. Resource Consumption (TR-8) .. 17

5.1.9. Privileged L4 Proxy (TR-9) ... 17

5.1.10. Data Plane (Service Mesh) Bypassed (TR-10) ... 17

5.1.11 Overall Threat Score .. 18

5.2.1. Compromised L4 Proxy (TR-1) ... 18

5.2.2. Compromised Application Container (TR-2) ... 18

5.2.3. Compromise of Business Data (TR-3) .. 18

5.2.4. Compromised L7 Proxy (TR-4) ... 19

5.2.5. Compromise of Shared L7 Proxy (TR-5) .. 19

5.2.6. Outdated Client Libraries in Applications (TR-6) ... 19

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

iv

5.2.7. Denial of Service (TR-7) ... 19

5.2.8. Resource Consumption (TR-8) .. 20

5.2.9 Privileged L4 Proxy (TR-9) .. 20

5.2.10 Data Plane (Service Mesh) Bypassed (TR-10) .. 21

5.2.11 Overall Threat Score .. 21

5.3.1. Compromised L4 Proxy (TR-1) ... 21

5.3.2. Compromised Application Container (TR-2) ... 22

5.3.3. Compromise of Business Data (TR-3) .. 22

5.3.4. Compromised L7 Proxy (TR-4) ... 22

5.3.5. Compromise of Shared L7 Proxy (TR-5) .. 23

5.3.6. Outdated Client Libraries in Applications (TR-6) ... 23

5.3.7. Denial of Service (TR-7) ... 23

5.3.8. Resource Consumption (TR-8) .. 23

5.3.9. Privileged L4 Proxy (TR-9) ... 24

5.3.10. Data Plane (Service Mesh) Bypassed (TR-10) ... 24

5.3.11 Overall Threat Score .. 24

5.4.1. Compromised L4 Proxy (TR-1) ... 25

5.4.2. Compromised Application Container (TR-2) ... 25

5.4.3. Compromise of Business Data (TR-3) .. 25

5.4.4. Compromised L7 Proxy (TR-4) ... 25

5.4.5. Compromise of Shared L7 Proxy (TR-5) .. 26

5.4.6. Outdated Client Libraries in Applications (TR-6) ... 26

5.4.7. Denial of Service (TR-7) ... 26

5.4.8. Resource Consumption (TR-8) .. 27

5.4.9 Privileged L4 Proxy (TR-9) ... 27

5.4.10 Data Plane (Service Mesh) Bypassed (TR-10) ... 27

5.4.11 Overall Threat Score .. 28

6. Recommendations Based on the Application Security Risk Profile ... 29

7. Summary and Conclusions .. 32

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

v

References ... 33

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

vi

Acknowledgments

The authors would like to express their thanks to Francesco Beltramini of control-plane.io for
participating in discussions and providing his valuable perspective. The authors would also like
to express their thanks to Isabel Van Wyk of NIST for her detailed editorial review, both for the
public comment version as well as for the final publication

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

1

Executive Summary

A centralized infrastructure called a service mesh can provide run-time services for cloud-native
applications that consist of multiple loosely coupled components called microservices. These
services include secure communication, service discovery, resiliency, and authorization of
application communication. These services are mainly provided through proxies that form the
data plane of the service mesh, which is the layer that handles application traffic at runtime
and enforces policy.

The functions that the proxies provide can be broadly categorized into two groups based on the
Open Systems Interconnection (OSI) model’s network layer to which those functions pertain:
Layer 4 (“L4”) and Layer 7 (“L7”). In most service mesh deployments in production
environments today, all proxy functions that provide services in both L4 and L7 layers are
packed into a single proxy that is assigned to a single microservice. This service mesh proxy
model is called a sidecar proxy model since the proxy is not only associated with a single service
but is implemented to execute in the same network space as the service.

However, performance and resource considerations have led to the exploration of alternate
proxy models that involve splitting L4 and L7 functions into different proxies and the
association or assignments of these proxies to either a single service or a group of services. This
enables the proxies to be implemented at different locations at the granularity of a node rather
than at the level of services. Though different models are theoretically possible, this document
only considers service mesh proxy models in the data plane implementation of commonly used
service mesh offerings at different stages.

Various potential or likely threats to proxy functions may result in different types of exploits in
different proxy models. This variation is due to several factors, such as the attack surface (i.e.,
communication patterns to which a particular proxy is exposed), the number of clients
(services) served, and the OSI layer functions that they provide (e.g., L7 functions are more
complicated and likely to have more vulnerabilities than L4 functions). The two main
contributions of this document are the following:

1. The nature of the exploits that are possible for each threat in each of the proxy models
is characterized by assigning scores to the impact and likelihood of each of the threats in
each of the proxy models or architectural patterns, resulting in a threat profile that is
associated with each architectural pattern or proxy model of service mesh.

2. Each threat profile has an inherent set of security trade-offs at an architectural level.
The implications of these trade-offs in meeting the requirements associated with the
security risk profiles of different cloud-native applications are analyzed to make a broad
set of recommendations toward specific architectural patterns that are appropriate for
applications with different security risk profiles.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

2

1. Introduction

“Cloud-native” refers to an architectural philosophy for building scalable, resilient systems that
are designed to leverage the advantages of cloud computing environments. Cloud-native
applications can run both on-premises and in public cloud platforms and are normally built
using agile development methodologies, such as continuous integration/continuous delivery
(CI/CD). Typically, technologies such as containerization and virtual machines (VMs) are used,
and resilience and fail-safe features will be built in.

Microservices-based applications use an architectural approach in which the entire application
is broken into loosely coupled components that can be independently updated and scaled. The
implementation of microservices is enabled using containers that in turn require orchestration
tools and often employ a centralized services infrastructure (e.g., service mesh) to provide all
runtime application services, including network connectivity, security, resiliency, and
monitoring capabilities. Microservices-based applications can be implemented and deployed as
cloud-native, though they represent an independent architectural approach.

The infrastructure services or functions provided by a service mesh during application runtime
are provided by entities called proxies, which constitute the data plane of the service mesh. In
addition, the service mesh consists of another architectural component called the control
plane, which supports the functions of the data plane through interfaces to define
configurations, inject software programs, and provide security artifacts (e.g., certificates).

Various configurations for proxies are being developed and tested based on the performance
and security assurance data obtained during the deployment of service mesh over the last
several years. These configurations are proxy (implementation) models that are based on the
OSI layer functions that they provide (described in the following paragraphs) and the
granularity of association between a proxy and services. Since proxies are the predominant
entities of the data plane of a service mesh, these various proxy models are also called data
plane architectures.

The OSI model [1] is a useful abstraction for thinking about the functions required to serve an
application over the network. It describes seven “layers,” from the physical wires that connect
two machines (i.e., Layer 1 – L1, the physical layer) to the application itself (i.e., Layer 7 – L7,
the application layer).

Layers 3, 4, and 7 are key to facilitating communication between cloud-native applications (e.g.,
two microservices making Hypertext Transfer Protocol (HTTP)/REST calls to each other):

• Layer 3 (“L3”), the network layer, facilitates baseline connectivity between two
workloads or service instances. In nearly all cases, the Internet Protocol (IP) is used as
the L3 implementation.

• Layer 4 (“L4”), the transport layer, facilitates the reliable transmission of data between
workloads on the network. It also includes capabilities like encryption. Transport Control
Protocol (TCP) and User Datagram Protocol (UDP) are commonly used L4
implementations, where transport layer security (TLS) provides encryption.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

3

• Layer 7 (“L7”), the application layer, is where protocols like HTTP operate — in user
applications themselves (e.g., HTTP web servers, Secure Shell (SSH) servers).

With respect to the layers above, a service mesh’s proxies in cloud-native environments are:

• Agnostic to L3 if the microservice instances can communicate at L3 and the proxy can
communicate with the mesh’s control plane.

• At Layer 4 (L4): Connection establishment, management, and resiliency (e.g.,
connection-level retries); TLS (encryption in transit); application identity, authentication,
and authorization; access policy based on network 5-tuple (e.g., source IP address and
port, destination IP address and port, and transport protocol).

• At Layer 7 (L7): Service discovery, request-level resiliency (e.g., retries, circuit breakers,
outlier detection); and application observability.

1.1. L4 and L7 Functions of Proxies

There are two key aspects of proxy models:

1. Proxy functions: The functions that a service mesh’s proxies provide can be broadly
categorized into two groups based on the OSI model’s layer [1] to which those functions
pertain: Layer 4 (“L4”) and Layer 7 (“L7”). The associated proxies are called L4 proxies
and L7 proxies, respectively. The study of proxy functions requires an understanding of
the OSI’s L4 and L7 layers from the network stack point of view and the specific network
services provided by those layers.

2. Granularity of association: A proxy can be associated with a single microservice instance,
an entire service, or deployed to provide functions for a group of services. Depending on
the nature of this association, a proxy may execute within the same network space as
the service, at the same node where the group of services to which it caters run, or in an
independent node dedicated to proxies where no application services run.

1.2. Objective and Target Audience

This document will give a brief overview of the four data plane architectures (proxy models)
being pursued by a range of service mesh implementations today. It will also provide threat
profiles for different proxy models with a detailed threat analysis that involves 10 types of
common threats. These threat profiles will inform recommendations regarding their
applicability (usage) for cloud-native applications with different security risk profiles.

The target audience for these recommendations includes:

• Infrastructure owners, platform/infrastructure engineers, and their team leaders who
build and deploy secure runtime environments for applications by choosing the right
architecture for their environment given the risk factors of the applications that they
will be running and the resulting security risk profile.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

4

• Personnel in charge of infrastructure operations who need to be familiar with the
various building blocks of the proxy models or data plane architectures (and their
associated functions and interactions) to troubleshoot in the event of performance (i.e.,
availability) and security issues

1.3. Relationship to Other NIST Documents

This document can be used as an adjunct to the NIST Special Publication (SP) 800-204 series of
publications [2][3][4][5], which offer guidance on providing security assurance for cloud-native
applications integrated with a service mesh from the following perspectives: strategy,
configuration, and development/deployment paradigm. However, this document focuses on
the various configurations of the application service infrastructure elements (i.e., proxies) and
the resulting architectures (i.e., data plane architecture of the service mesh) that have different
security implications for the application that is hosted under each of these configurations.

1.4. Document Structure

This document is organized as follows:

• Section 2 lists the typical capabilities of the data plane of the service mesh under three
headings (i.e., security, observability, and traffic management) and the corresponding L4
and L7 proxy functions implemented under those capabilities.

• Section 3 provides a brief overview of the four proxy models or data plane architectures.

• Section 4 discusses proxy model threat scenarios and the threat analysis methodology
adopted in this document for evaluating the threat profile score for the four data plane
architectures.

• Section 5 provides a detailed threat analysis for the four data plane architectures by
assigning scores to the impact and likelihood factors associated with each threat and
using them to arrive at an overall threat score.

• Section 0 provides recommendations on the applicability (usage) of each of the four
data plane architectures for cloud-native applications of different security risk profiles
based on their security requirements.

• Section 0 provides the summary and conclusions.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

5

2. Typical Service Mesh Data Plane Capabilities and Associated Proxy Functions

This document’s methodology examines the security trade-offs of the proxy models (i.e., data
plane architectures) and the implementations of the various capabilities that result as L4 and L7
functions in proxies. Determining the totality of proxy functions requires an analysis of each
capability, the category it falls under, and the granularity of the function that it provides at L4
and L7 levels.

Table 1 - Security Capabilities [15]

Capability L4 Function(s) L7 Function(s)
Service-to-service authentication SPIFFE, via mTLS certs. Control

plane issues a short-lived X.509
encoding the pod’s service account
identity.

N/A—service identity in a service
mesh is usually based on TLS only.

Service-to-service authorization Network-based authorization, plus
identity-based policy, e.g.:
A can accept inbound calls from
only "10.2.0.0/16";
A can call B.

Full policy, e.g.:
A can GET /foo on B only with valid
end-user credentials containing the
READ scope.

End-user authentication N/A—we can’t apply per-user
settings.

Local authentication of JWTs,
support for remote authentication
via OAuth and OIDC flows.

End-user authorization N/A—see above. Service-to-service policies can be
extended to require end user
credentials with specific scopes,
issuers, principal, audiences, etc.
but it cannot be used for full user-
to-resource access control. Full
user-to-resource access should be
implemented using external
authorization.

Mesh proxy’s External
Authorization Application
Programming Interface (API)
(ext_authz)

Cannot perform any per-request
policy; ext_authz API is only
configurable for L7 traffic.

Enforce per-request policy with
decisions from an external service,
e.g., Open Policy Agent (OPA).

Table 2 - Observability Capabilities [15]

Capability L4 Function(s) L7 Function(s)
Logging Basic network information:

network 5-tuple, bytes
sent/received, etc.

Full request metadata logging, in
addition to basic network
information.

Tracing Not today; potentially possible in
the future with emerging
technology like HBONE.

Mesh data plane participates in
distributed tracing.

Metrics TCP only (bytes sent/received,
number of packets, etc.).

L7 Rate Errors Duration (RED)
metrics: rate of requests, rate of
errors, request duration (latency).

https://spiffe.io/

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

6

Table 3 – Traffic Management Capabilities [15]

Capability L4 Function(s) L7 Function(s)
Load balancing Connection level only. Per request, enabling, e.g., canary

deployments, gRemote Procedure
Call (gRPC) traffic.

Circuit breaking TCP only. HTTP settings in addition to TCP.
Outlier detection On connection

establishment/failure.
On request success/failure.

Rate limiting Rate limit on L4 connection data
only, on connection establishment,
with global and local rate limiting
options.

Rate limit on L7 request metadata,
per request.

Timeouts Connection establishment only
(connection keep-alive is
configured via circuit breaking
settings).

Timeouts per request, and per
retry.

Retries Retry connection establishment Retry per request failure.
Fault Injection N/A—fault injection cannot be

configured on TCP connections.
Full application- and connection-
level faults (timeouts, delays,
specific response codes).

Traffic Mirroring N/A—HTTP only Percentage-based mirroring of
requests to multiple backends.

L7 functions that are carried out by proxies are much more complex than L4 functions as the
latter are carried out in lower layers of the OSI stack and involve protocols such as IP and TCP.
For example, parsing a TCP stream for L4 functionality simply requires decoding a fixed set of
bytes as integers (i.e., the packet header), while handling HTTP requests for L7 functionality
requires decoding HTTP headers, including complex string parsing and compression with
variable amounts of data. Additionally, the data dealt with in an L7 function are user-supplied
(i.e., can be controlled by an attacker), while the TCP data at L4 are typically system-supplied as
part of routing a request to the infrastructure. This means that there is less room to embed
malicious data without breaking the system itself. In one case study, the proxy Envoy is used as
the data plane by several service mesh implementations. Historically, majority of Envoy
vulnerabilities have been in L7 function-related code compared to L4 function-related code.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

7

3. Proxy Models (Data Plane Architectures) in Service Mesh Implementations

Different data plane architectures or proxy models in the service mesh are consequences of the
following parameters:

• Delineation of L4 and L7 functions

• Nature of association of a proxy to service instances (1:1 or 1:N)

This section provides an overview of the building blocks of different data plane architectures to
facilitate the threat analysis in Sec. 5. Iterations of the different architectures were driven by
the adoption of mesh across a variety of use cases, necessitating trade-offs in terms of
performance, reliability, and security for organizations with different application risk profiles. In
spite of these different operating scenarios, the sidecar model has been the primary method for
delivering service mesh capabilities.

The various alternate data plane architectures, including the one with widespread deployment
at present, are:

• L4 and L7 per Service Instance (DPA-1) — Sidecar model

• Shared L4 – L7 per Service (DPA-2) — A shared L4 proxy per node (i.e., shared among all
applications that execute on the same physical host) with L7 proxies dedicated per
service account or namespace.

• Shared L4 and L7 Model (DPA-3) — A shared L4 and L7 proxy per node (i.e., shared
among all applications on the same physical host)

• L4 and L7 as Part of the Application (gRPC proxy-less model [14]) (DPA-4) — Both L4 and
L7 functions are part of the application server itself (e.g., gRPC, Java Spring [16]) rather
than implemented in stand-alone proxies.

Though the last architectural pattern does not have distinct entities (e.g., proxies), all of the
service mesh capabilities delivered by proxies are enabled by these frameworks.

3.1. L4 and L7 Proxy per Service Instance (DPA-1) — Sidecar Model

The most common service mesh data plane architecture is called the “sidecar model” because
the proxy sits beside every instance of every service. The model dedicates a proxy that has the
capability to implement both L4 and L7 functions for each application (service) instance. In its
security model, the proxy holds one identity for the service it is deployed beside and resides in
the same trust domain as the application (e.g., in Kubernetes, it exists in the same pod; on a
virtual machine (VM), it is deployed in the same VM as the service itself). The service and the
proxy communicate with each other through the “local host interface” rather than through a
network socket. However, the proxy presents a larger attack surface than the service because it
implements complex L7 functions. An example of a data plane architecture is one that is
implemented in the Istio service mesh with an envoy proxy deployed per pod that performs
both L4 and L7 functions.

A schematic diagram of this architecture is shown in Fig. 1.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

8

Fig. 1. Sidecar model —L4 and L7 Proxy per Service Instance (DPA-1)

(The combined L4 and L7 proxy is deployed for each application instance and there is no sharing of any proxy).

3.2. Shared L4 – L7 per Service Model (DPA-2)

In Shared L4 – L7 per Service architecture, there is a shared L4 proxy per node (i.e., shared
among all service instances that execute on the same physical host) with L7 proxies dedicated
per service account. A variation in this architecture is to dedicate an L7 proxy for an entire
namespace. This is not desirable from a security viewpoint for the same reasons that shared
service accounts for an entire namespace are not recommended [2]. Hence, it is not considered
for threat analysis in this document. An example of the implementation of this data plane
architecture is Istio’s “ambient mode”, where the per node L4 proxy is called a Ztunnel proxy,
and the per service account L7 proxy is called a Waypoint proxy [6][7][10][11][13]. It is to be
noted that not every service needs a L7 proxy but when a L7 proxy is installed, it is dedicated to
a single service.

A schematic diagram of this architecture is shown in Fig. 2.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

9

Fig. 2. Shared L4 – L7 per Service Model (DPA-2)

(An L4 proxy is deployed on each node and shared by all applications on that node. A single L7 proxy instance is
deployed on behalf of "Application 3").

3.3. Shared L4 and L7 Model (DPA-3)

In Shared L4 and L7 architecture, the L4 and L7 functions are implemented on a per node basis.
There is a shared L7 proxy per node, i.e., shared among all service instances that execute on the
same physical host and provides L7 functions for all services in that node. L4 functions can be
implemented by the L7 data plane, like the sidecar model (DPA-1) but shared across all
applications on the node rather than dedicated one-per-app-instance. However, in some
instances, L4 functions (e.g., traffic routing) can be performed by in-kernel programs (e.g.,
Extended Berkeley Packet Filter (eBPF) programs [8]) instead of by a mesh proxy. An example of
this data plane architecture is the Cilium service mesh, which deploys the Envoy proxy as an L7
proxy based on its CiliumEnvoyConfig specification [8][9][12].

A schematic diagram of this architecture is shown in Fig. 3.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

10

Fig. 3. Shared L4 – L7 Model (DPA-3)

3.4. L4 and L7 as Part of the Application Model (DPA-4)

L4 and L7 Part of the Application Model is a data plane architecture that does not have any pre-
installed proxies. Instead, the service mesh control plane dynamically configures access to
proxy functions using a set of discovery APIs collectively known as xDS APIs. The gRPC client and
server libraries for applications provides extensive support for the xDS APIs. Leveraging this
feature, the service mesh control plane can program L4 and L7 functions into this library in the
service container. These gRPC libraries can then provide L4 and L7 functionality (in general, all
policy enforcements) to the workloads or service instances with which they are integrated, thus
replicating the exact services that the L4 and L7 proxies provide to those workloads [14].

A schematic diagram of this architecture is shown in Fig. 4.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

11

Fig. 4. L4 and L7 as Part of the Application Model (gRPC proxyless Model) (DPA-4)

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

12

4. Data Plane Architecture Threat Scenarios and Analysis Methodology

The threat scenario considers a service mesh deployed in a Kubernetes cluster with the
assumption that no human can directly access the cluster, achieved via k8s role-based access
control (RBAC). The only interaction with the cluster is via a continuous integration/continuous
delivery (CI/CD) system-controlled declarative configuration in a version-controlled repository
with a multi-step approval process to change that configuration, including the approval of each
change by one other human at minimum.

This scenario starts by identifying access by external threat actors, internal threat actors, and
malicious co-tenants.

External threat actors include:

• Compromised workload (application) container (e.g., via a supply chain attack)

• Compromised node L4 proxy or container network interface (CNI)

• Compromised node L7 proxy

• Compromised node with limited privileged access (e.g., a container breakout)

• Root compromise of node (e.g., a container breakout chained with the exploitation of a
privilege escalation vulnerability)

• Network access to the Kubernetes API server

Internal threat actors include:

• Cluster administrators who have wide-ranging rights to view the cluster and approve
changes to the version-controlled repository and may even have direct access to the
Kubernetes cluster (e.g., via a break-glass debugging account; such super-accounts
should generate detailed audit records of their usage)

• Application developers who can build images and approve configurations that go into
the cluster.

• Infrastructure engineers who have permission to deploy and configure the mesh gated
by the version-controlled repository’s approval process.

• Compromised network infrastructure between nodes (e.g., unencrypted cross-data
center communication)

Finally, malicious co-tenants - In general, k8s is not a hard multi-tenant system (i.e., one where
tenants do not trust each other), and isolating tenants from each other with stronger
boundaries is recommended. In this context, a malicious co-tenant would fall into one of the
internal threat actor categories above. In this context, consider the following threats in an
environment as they relate to the service mesh:

1. Compromised L4 proxy

2. Compromise of the application container

3. Compromise of business data

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

13

4. Compromised L7 proxy

5. Compromised shared L7 Proxy

6. Outdated client libraries in applications

7. Denial of service (DoS)

8. Resource consumption

9. Privileged L4 Proxy

10. Bypassing traffic interception

4.1. Threat Analysis Methodology

The threat analysis methodology begins by identifying 10 potential threats to the components
that make up the four architectural patterns for the proxy model or data plane architecture.
The methodology then describes how the functionality of each component of the architecture
is adversely affected by each threat and rates the impact and likelihood of their occurrence,
justifying each rating. There are three values for the ratings: low, medium, and high. The values
assigned to these ratings are relative to other data plane architectures and are not absolute
values based on a metric. For example, assigning a rating value of “high” to the likelihood
parameter for a threat does not imply that the threat is highly likely in all situations. Rather, it
means that the threat is most likely to be executed against that architecture relative to the
other architectures under discussion.

The impact (I) of the exploitation of each threat is then evaluated along with the likelihood (L)
of that threat being exploited. For both parameters, there is a rating of low, medium, or high,
which are translated to numeric scores of 1, 2, and 3, respectively. Multiplying I * L yields an
indication of how important that threat is and the necessity to mitigate that threat relative to
other architectures under discussion. Summing up the values of this indicator for all 10
potential threats provides an indication of the threat profile for that architectural pattern.

Threats whose impact and likelihood are the same irrespective of the architecture (i.e., the
threats are agnostic to the architecture) are assigned a relative score of 1 for impact and 1 for
likelihood.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

14

5. Detailed Threat Analysis for Data Plane Architectures

This section considers potential targeted threats to L4 and L7 proxy functions or the libraries
that implement the associated functions, the relevant proxy function that is impacted, the
degree of impact, and the likelihood of the threat occurring for each of the data plane
architectures (see Sec. 3.1 to 3.4).

5.1. Threat Analysis for L4 and L7 Proxy per Service Instance (DPA-1) — Sidecar Model

The threats to the data plane of the service mesh are denoted using the mnemonic TR-x, where
TR stands for threat, and x stands for the threat sequence number.

5.1.1. Compromised L4 Proxy (TR-1)

Threat Description: A compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (service) running
on the node.

Proxy Function Impacted: Sidecar proxies negotiate mTLS connections (for communicating with
any other service) on behalf of the single workload with which it is associated. In order to
compromise key material and identity documents (i.e., threat targets) for multiple workloads,
multiple proxy (sidecar) instances would need to be compromised.

Impact Score = 1: Because of the nature of impact discussed above (i.e., single workload/single
identity affected), this threat is assigned an impact score of 1.

Likelihood Score = 2: Code relating to L7 functions is present to be exploited if it can be
triggered. In a pure L4 proxying case, it should not be triggerable, but this relies on correct
configuration from users and the service mesh implementation.

5.1.2. Compromised Application Container (TR-2)

Threat Description: A compromised application container (e.g., via a supply chain attack during
the development phase) leads to a takeover of the identity associated with that application.

Proxy Function Impacted: Proxies run in the same network space (i.e., same pod in Kubernetes
environment) as the application container, meaning that a compromise of the application
container that hosts the service instance can easily lead to a compromise of any key material
(e.g., full access to key material pertaining to the identity of the service) possessed by the
proxy.

Impact Score = 2: Because of the nature of impact discussed above (i.e., single workload/single
identity affected), this threat is assigned an impact score of 2. Even though only a single identity
is compromised, like TR-1, this has a higher impact score as the application itself must be
updated. A compromised proxy can be remediated without requiring the application itself to be
updated, so there is a higher chance that a central team can successfully remediate a
compromise without involving application teams.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

15

Likelihood Score = 1: The likelihood score is the same, regardless of architecture.

5.1.3. Compromise of Business Data (TR-3)

Threat Description: A compromised identity is used to pivot through the infrastructure in order
to compromise the confidentiality, integrity, or availability of business data.

Proxy Function Impacted and Impact Score (= 1) and Likelihood Score (= 1): The scores are the
same, regardless of architecture. This is the fundamental risk of identity-based policy and why
the principle of least privilege (PoLP) should be practiced. The telemetry provided by the service
mesh (regardless of architecture) is invaluable for understanding communications in a system
and creating accurate access policies.

5.1.4. Compromised L7 Proxy (TR-4)

Threat Description: There is a vulnerability in the L7 processing stack of the service mesh proxy.
Since L7 processing is inherently more complex, there is a higher probability for vulnerabilities
to arise in this part of the stack, as supported by historical Common Vulnerabilities and
Exposures (CVE) data.

Proxy Function Impacted: There is no separation between L4 and L7 processing. Although any
exploitable vulnerability in a sidecar proxy can lead to the compromise of all identities in the
mesh, this would involve more individual proxy instances being compromised, and it may be
more difficult for an attacker to accomplish this feat undetected.

Impact Score = 1: A single workload is impacted (e.g., leaking credentials, becoming unavailable
due to a denial-of-service attack). The same exploit could be used against all sidecars in the
mesh with applications opting in to the L7 behavior, resulting in a compromise of all identities
(Impact 3). In practice, this requires many more events than any other architecture and
increases the likelihood of detecting and responding to the event in a timely manner.

Likelihood Score = 1: A full L7 capability is available in the proxy, meaning that a relatively large
attack surface is exposed. In practice for the service mesh use case, however, the HTTP
processing is most likely targeted. If the application is using L7 mesh capabilities, they would be
vulnerable to exploit.

5.1.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: A co-tenant exploits an L7 traffic processing vulnerability in a shared proxy,
which affects the confidentiality, integrity, or availability of traffic to and from another
workload running on the same node.

Proxy Function Impacted: Because the proxy is dedicated per application, the impact on
availability is limited to the resource constraints imposed by the scheduling system (e.g.,
Kubernetes). Confidentiality is impacted the same as if another application itself is
compromised (i.e., containers provide some guarantee; micro-VMs provide a stronger degree
of isolation; full-blown VMs are the strongest).

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

16

Impact Score = 1: For noisy neighbors (i.e., other L7 proxies on the same host that are
compromised), the impact is limited by the underlying scheduling and resource constraint
system (e.g., k8s, VM sizing). The following are identical across all architectures: for a shared
ingress gateway, all services exposed on that gateway would be impacted (Impact 2); for a
shared egress gateway, all services that utilize the egress gateway would be impacted (Impact
3). Typically, only a single deployment of egress gateways is used.

Likelihood Score = 1: The sidecar itself is not a shared proxy. By its nature, it is dedicated to an
individual application. In this case, TR-5 refers to noisy neighbors, other proxies on the same
node that cause a denial of service (DoS), and shared ingress or egress gateways. Noisy
neighbors are mitigated based on the degree of isolation of the host (i.e., container versus
micro-VM versus VM). The likelihood of exploiting a shared L7 ingress or egress gateway is the
same across all architectures.

5.1.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: The proxy’s infrastructure code is decoupled from its application
code.

Impact Score = 1: The mesh infrastructure is separate from the application itself and, therefore,
not directly impacted by application vulnerabilities. Instead, a compromised application would
use the functioning mesh to hijack the application’s identity. Some application vulnerabilities
can be mitigated via policies enforced by the mesh (e.g., mesh-enforced web application
firewall (WAF) policy can help mitigate an application vulnerability like Log4j while the
organization is patching applications).

Likelihood Score = 1: The likelihood is the same, regardless of architecture.

5.1.7. Denial of Service (TR-7)

Threat Description: There is a conventional DoS threat.

Proxy Function Impacted: Because the proxy is a per app instance, a DoS needs to be executed
per app. Because the proxy shares resources with the application, a DoS on the mesh data
plane directly competes for resources with the app instance itself. The overall blast radius of
the DoS is as strong as the underlying isolation mechanism that protects workloads (i.e., pods)
from each other (e.g., VMs, micro-VMs, containers).

Impact Score = 1: There is a single instance of a single application.

Likelihood Score = 1: L4 and L7 code may be exploited. However, the attack must be executed
across each instance of the target. There is not a central resource to target to achieve a DoS
other than a shared ingress gateway that is identical across all architectures under discussion.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

17

5.1.8. Resource Consumption (TR-8)

Threat Description: There is overall resource consumption by the data plane of the service
mesh infrastructure.

Proxy Function Impacted: Because sidecars are a separate process and dedicated per
application, they have the worst overall resource consumption. Configuration that is identical
across all applications must be held by the data plane per application and cannot be shared.
The static overhead of the sidecar data plane implementation itself (e.g., constant Random
Access Memory (RAM) usage, constant Central Processing Unit (CPU) overhead) is duplicated
per application instance and cannot be amortized over all applications on the node. In part, this
isolation is what allows sidecars to have lower impact and likelihood across many of the other
threats identified here.

Impact Score = 3: Sidecars will consume the most resources out of all available options, even in
well-configured environments.

Likelihood Score = 3: It is challenging to configure sidecars correctly to minimize configuration
and reduce overhead. While some specific implementations do better than others due to
engineer trade-offs (e.g., lazily loading configuration the first time that an application needs it
versus eagerly pushing all configuration ahead of use), it is a more common situation where
the most resource utilization occurs with a sidecar architecture.

5.1.9. Privileged L4 Proxy (TR-9)

Threat Description: A service mesh implementation requires an L4 component (e.g., deployed
as a DaemonSet on a Kubernetes cluster) to run with an overprivileged security context (e.g.,
Privileged Pod).

Proxy Function Impacted & Impact Score (= 1) and Likelihood Score (= 1): The impact and
likelihood are the same, regardless of architecture. In a per-node case, this is usually
encapsulated as a CNI provider that runs in a privileged context by default. In a sidecar case,
privilege is only needed at startup to establish traffic interception rules. Depending on the
implementation (e.g., Kubernetes init containers), this can ensure that the privileged user is not
run alongside the application but only during initialization. In all cases, Kubernetes-defined
CAP_NET_ADMIN is typically the only privilege required for mesh data plane functionality.

5.1.10. Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: It is the easiest to bypass of all of the available models, from the
application choosing not to use a sidecar to the container-local bypasses/configurations.

Impact Score = 2: An application is exposed without mesh security controls.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

18

Likelihood Score = 2: Because the proxy runs in user space in the same control groups as the
application, there are a variety of attacks available that are not relevant or applicable to other
implementations.

5.1.11 Overall Threat Score

Cumulative Threat Score = 23: This is computed based on the methodology in Sec. 4.1.

5.2. Threat Analysis for Shared L4 – L7 per Service Model (DPA-2)

5.2.1. Compromised L4 Proxy (TR-1)

Threat Description: A compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (i.e., service)
running on the node.

Proxy Function Impacted: The L4 proxy has access to all of the keys associated with the
workloads running on the node.

Impact Score = 3: The identities of all of the workloads (i.e., services) on the node are
compromised.

Likelihood Score = 1: Only code that delivers L4 functions is present. This minimal code
footprint and functionality present the lowest attack surface of all options.

5.2.2. Compromised Application Container (TR-2)

Threat Description: A compromised application container (e.g., via a supply chain attack during
the development phase) leads to a takeover of the identity associated with that application.

Proxy Function Impacted: Data plane components are not located in the same pod as workload
containers, so a compromised workload does not necessarily lead to the access of keys or
secrets.

Impact Score = 1: A single workload/single identity is impacted, and there is no direct access to
underlying key material.

Likelihood Score = 2: The likelihood is the same, regardless of architecture.

5.2.3. Compromise of Business Data (TR-3)

Threat Description: An identity is used to pivot through the infrastructure in order to
compromise the confidentiality, integrity, or availability of business data.

Proxy Function Impacted and Impact Score (= 1) and Likelihood Score (= 1): The impact and
likelihood are the same, regardless of architecture. This is the fundamental risk of identity-
based policy and why the PoLP should be practiced. The telemetry provided by the service

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

19

mesh (regardless of architecture) is invaluable for understanding communication patterns in a
given system and creating accurate access policies.

5.2.4. Compromised L7 Proxy (TR-4)

Threat Description: There is a vulnerability in the L7 processing stack of the service mesh proxy.
As L7 processing is inherently more complex, there is a higher probability for vulnerabilities to
arise in this part of the stack, as supported by historical CVE data.

Proxy Function Impacted: This topology allows for “less complex” L4 capabilities (e.g., mTLS to
be adopted with L7 processing only occurring if there is a strict requirement for it). Each service
account has its own dedicated L7 proxy.

Impact Score = 2: A single set of workloads is impacted (e.g., DoS) or a single identity leaked. In
the event of a DoS, it is much easier to make all workloads unavailable compared to the sidecar
model because the mesh’s L7 processing is centralized into L7 “middle proxies.”

Likelihood Score = 1: The likelihood is the same as sidecar (i.e., potential impact on all
workloads using L7 capabilities) (see Sec. 5.1.4).

5.2.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: A co-tenant exploits an L7 traffic processing vulnerability in a shared proxy
and affects the confidentiality, integrity, or availability of traffic to and from another workload
that runs on the same node.

Proxy Function Impacted: By limiting the per-node functionality to L4 processing, the attack
surface is significantly reduced.

Impact Score = 1: The application workload itself is unaffected. The proxy is a separate
deployment. As long as the L7 proxy is not shared with the compromised application, there is
no impact.

Likelihood Score = 1: The likelihood is as likely as in TR-4 (see Sec. 5.2.4).

5.2.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: The infrastructure code is decoupled from the application code.

Impact Score = 1: The impact is the same as in DPA-1 (see Sec. 5.1.6).

Likelihood Score = 1: The likelihood is the same, regardless of architecture.

5.2.7. Denial of Service (TR-7)

Threat Description: There is a conventional DoS threat.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

20

Proxy Function Impacted: A DoS executed at L4 has the same impact as the centralized per-
node model because the L4 process is centralized per node. All applications on the node are
impacted. A DoS executed at L7 impacts all application instances of the target application since
a set of dedicated L7 proxies is deployed per app. The number of proxies that implement L7
functionality is typically less than the number of application instances, making them an easier
target for DoS than every instance of the target application.

Impact Score = 2: An L4 DoS would impact all application instances on the target host.

Likelihood Score = 2: The L4 proxy is deployed once per node, so it presents a better target for
DoS than DPA-1 or DPA-4. This is mitigated somewhat by the simplified functionality of an L4
proxy compared to a combined L4 and L7 proxy. The L7 proxy is shared by multiple instances of
the same application and presents an easier DoS target than the application itself. Therefore, it
is more likely than the sidecar model (DPA-1).

5.2.8. Resource Consumption (TR-8)

Threat Description: There is overall resource consumption by the data plane of the service
mesh infrastructure.

Proxy Function Impacted: The shared L4 proxy typically has a much lower memory (RAM)
footprint and CPU usage due to a lower rate of change of configuration, less configuration
overall, and less responsibility than a combined L4 and L7 sidecar proxy (DPA-1). For the service
mesh’s data plane, L7 processing is typically the dominating CPU cost, followed by encryption.
L7 proxies are shared by all instances of the same application and deployed as a few traditional
“reverse proxies” per application. This results in much lower resource consumption for L7
processing than the sidecar model (DPA-1). Overall, DPA-2 uses more resources than the shared
per node model (DPA-3) but substantially less than the sidecar model (DPA-1) due to reduced
overhead (e.g., an application with 50 instances requires 50 sidecars but might be served with
five shared L7 proxies or fewer).

Impact Score = 2: DPA-3 has lower consumption than sidecar and is easier to achieve but is not
as low as all shared (DPA-3) or all in app (DPA-4).

Likelihood Score = 1: This model was intentionally designed to mitigate the resource overhead
of running an entire sidecar proxy instance per service instance. Instead, the single node-level
proxy receives full configurations for all services on the node, and dedicated L7 proxies receive
configuration for only their service. As a result, total resource consumption is low by default.

5.2.9 Privileged L4 Proxy (TR-9)

Threat Description: A service mesh implementation requires an L4 component (e.g., deployed
as a DaemonSet on a Kubernetes cluster) to run with an overprivileged security context (e.g.,
Privileged Pod).

Proxy Function Impacted and Impact Score (= 1) and Likelihood Score (= 1): The impact and
likelihood are the same, regardless of architecture. In the per-node case, this is usually

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

21

encapsulated as a CNI provider that runs in a privileged context by default. In a sidecar case,
privilege is only needed at startup to establish traffic interception rules. Depending on the
implementation (e.g., Kubernetes init containers), this can ensure that the privileged user is not
run alongside the application but only during initialization. In all cases, Kubernetes-defined
CAP_NET_ADMIN is typically the only privilege required for mesh data plane functionality.

5.2.10 Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: Part of the goal of moving enforcement out of the application
context and into a shared context is to use stronger primitives to ensure the non-bypassability
of the mesh data plane. In general, with a per-node L4 setup, sending traffic to an individual
application instance on the node should not be achievable (e.g., similar to but not necessarily
implemented as a host-level Virtual Private Network (VPN) that requires workloads to be part
of the VPN overlay to connect). L7 proxies are deployed independently from the applications
that they represent, which requires special configuration in the mesh to ensure that they are
routed through and making the ability to bypass easier than other models. The impact of a
missing L7 policy can be significant. Other models rely on one thing at most to ensure that
traffic is directed to the correct policy enforcement point. This model relies on two things to
ensure that traffic is subject to the correct policy enforcement points (PEPs): traffic interception
and mesh configuration to route via middle proxies.

Impact Score = 2: An app is exposed without mesh security controls.

Likelihood Score = 2: L4 controls are designed and built to mitigate this. L7 controls are easier
to bypass compared to the sidecar model.

5.2.11 Overall Threat Score

Cumulative Threat Score = 22: This is computed based on the methodology in Sec. 4.1.

5.3. Threat Analysis for Shared L4 and L7 Model (DPA-3)

5.3.1. Compromised L4 Proxy (TR-1)

Threat Description: A compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities for every workload (i.e., service)
running on the node.

Proxy Function Impacted: The L4 proxy has access to all of the keys associated with the
workloads running on the node.

Impact Score = 3: All identities on the node are impacted.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

22

Likelihood Score = 3: L7 code may be enabled for another server that can be exploited to affect
all applications on the host.

5.3.2. Compromised Application Container (TR-2)

Threat Description: A compromised application container (e.g., via a supply chain attack during
the development phase) leads to a takeover of the identity associated with that application.

Proxy Function Impacted: Data plane components are not located in the same pod as workload
containers, so a compromised workload does not necessarily lead to the access of keys or
secrets.

Impact Score = 1: A single workload/single identity is impacted, and there is no direct access to
underlying key material.

Likelihood Score = 2: The likelihood is the same, regardless of architecture.

5.3.3. Compromise of Business Data (TR-3)

Threat Description: An identity is used to pivot through the infrastructure in order to
compromise the confidentiality, integrity, or availability of business data.

Proxy Function Impacted and Impact Score (= 1) and Likelihood Score (= 1): The impact and
likelihood are the same, regardless of architecture. This is the fundamental risk of identity-
based policy and is why the PoLP should be practiced. The telemetry provided by the service
mesh (regardless of architecture) is invaluable for understanding communication patterns in a
given system and creating accurate access policies.

5.3.4. Compromised L7 Proxy (TR-4)

Threat Description: There is a vulnerability in the L7 processing stack of the service mesh proxy.
As L7 processing is inherently more complex, there is a higher probability for vulnerabilities to
arise in this part of the stack, as supported by historical CVE data.

 Proxy Function Impacted: This topology allows for “less complex” L4 capabilities (e.g., mTLS to
be adopted with L7 processing only occurring if there is a strict requirement for it). The blast
radius of a proxy compromise affects all workloads on the node. This means that its failure
represents a shared fate outage and is susceptible to DoS attacks.

Impact Score = 3: An L7 capability is shared across all applications on the node, so a single
application’s configuration may cause the proxy to become susceptible to failure and result in
attacks on all applications on the node (e.g., a credential leak or denial of service, depending on
the attack).

Likelihood Score = 2: For a given application using L7 capabilities, the likelihood is the same as
for the sidecar model. However, because workloads that are only doing L4 are susceptible to
attack, the likelihood is higher if they share the same node that would have been safe under the
sidecar model (DPA-1).

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

23

5.3.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: A co-tenant exploits an L7 traffic processing vulnerability in a shared proxy
and affects the confidentiality, integrity, or availability of traffic to or from another workload
that runs on the same node.

Proxy Function Impacted: A single proxy instance does not provide an inherently multi-tenant
setup. Hence, security concerns arise when combining complex processing rules for L7 traffic
from multiple unconstrained tenants in a shared instance. In this configuration, L7 processing of
the traffic of multiple co-tenants is performed within one process with no memory protection
or isolation benefits that could be gained by containerizing L7 functionality per workload.

Impact Score = 3: All workloads on the node are impacted.

Likelihood Score = 2: A compromise is as likely as in the sidecar model (DPA-1), but applications
that would not be susceptible to attack under DPA-1 are susceptible under this model (DPA-3)
(see Sec. 5.3.4).

5.3.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: The infrastructure code is decoupled from the application code.

Impact Score = 1: The impact is the same as the sidecar model (DPA-1) (see Sec. 5.1.6).

Likelihood Score = 1: The likelihood is the same, regardless of architecture.

5.3.7. Denial of Service (TR-7)

Threat Description: There is a conventional DoS threat.

Proxy Function Impacted: Because processing for all application instances on the node is
shared and a single proxy instance is not inherently multi-tenant (i.e., provides no controls with
regard to resource utilization across independent backends and clients), the blast radius of a
DoS threat on the mesh data plane affects every application on the node.

Impact Score = 3: The impact applies to all workloads on the node.

Likelihood Score = 2: If any application configuration triggers exploitable paths in the shared
proxy, all applications on the node suffer.

5.3.8. Resource Consumption (TR-8)

Threat Description: There is overall resource consumption by the data plane of the service
mesh infrastructure.

Proxy Function Impacted: Because all functionality is shared at the node level, DPA-3 has the
most opportunity for deduplication and a subsequent reduction in resource usage. A

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

24

configuration (e.g., service discovery) needs to be sent only once to each node rather than to
each and every application instance. Overall, this results in the lowest rate of change, the least
data transferred, and a lower runtime footprint (e.g., RAM, CPU).1

Impact Score = 1: This has the lowest overall resource utilization of all available architectures.

Likelihood Score = 1: Because there is only a single proxy instance per node, rather than a data
plane instance per service or per service instance, resource consumption should be the lowest
of all out-of-process (i.e., non-gRPC) models.

5.3.9. Privileged L4 Proxy (TR-9)

Threat Description: A service mesh implementation requires an L4 component (e.g., deployed
as a Daemon Set on a Kubernetes cluster) to run with an overprivileged security context (e.g.,
Privileged Pod).

Proxy Function Impacted and Impact Score (= 1) and Likelihood Score (= 1): The impact and
likelihood are the same, regardless of architecture. In the per-node case, this is usually
encapsulated as a CNI provider that runs in a privileged context by default. In the sidecar case,
privilege is only needed at startup to establish traffic interception rules. Depending on the
implementation (e.g., Kubernetes init containers), this can ensure that the privileged user is not
run alongside the application but only during initialization. In all cases, Kubernetes-defined
CAP_NET_ADMIN is typically the only privilege required for mesh data plane functionality.

5.3.10. Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: Part of the goal of moving enforcement out of the application
context and into a shared context is to use stronger primitives to ensure the non-bypassability
of the mesh data plane. In general, with a per-node setup, sending traffic to an individual
application instance on the node should not be achievable (e.g., similar to but not necessarily
implemented as a host-level VPN that requires workloads to be part of the VPN overlay to
connect).

Impact Score = 3: All applications on the node are exposed without mesh security controls.

Likelihood Score = 1: By design, this architecture is built to mitigate this kind of bypass.

5.3.11 Overall Threat Score

Cumulative Threat Score = 37: This is computed based on the methodology in Sec. 4.1.

1 Some implementations do not fully de-dupe configurations (e.g., due to implementation, as a security measure to provide some degree of
isolation) and consume RAM more similarly to a sidecar case than might otherwise appear.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

25

5.4. Threat Analysis for L4 and L7 as Part of the Application Model (gRPC proxyless Model
(DPA-4))

5.4.1. Compromised L4 Proxy (TR-1)

Threat Description: A compromised L4 proxy (or L4 functions in the case of sidecar proxy with
combined L4 and L7 functions) leads to leaked identities (cannot it not lead to MITM attacks by
compromising proxy logic ?) for every workload (i.e., service) that runs on the node.

Proxy Function Impacted: mTLS connections are negotiated by the client library inside of the
application with a single identity (i.e., that of the application). In order to compromise key
material and identity documents for multiple workloads, multiple application instances would
need to be compromised.

Impact Score = 1: A single workload/single identity is impacted.

Likelihood Score = 2: There is a large surface area if something goes wrong since this is inside of
the application's context. Therefore, this is as likely or slightly more likely than DPA-1.

5.4.2. Compromised Application Container (TR-2)

Threat Description: A compromised application container (e.g., via a supply chain attack during
the development phase) leads to the takeover of an identity associated with that application.

Proxy Function Impacted: Compromising the application does compromise the mesh. Full
access to any key material used by the application, including the mesh identity, is achievable.

Impact Score = 2: A single workload/single identity is impacted, and there is full access to the
key material used by that application.

Likelihood Score = 2: The likelihood is the same, regardless of architecture.

5.4.3. Compromise of Business Data (TR-3)

Threat Description: An identity is used to pivot through the infrastructure in order to
compromise the confidentiality, integrity, or availability of business data.

Proxy Function Impacted and Impact Score (= 1) and Likelihood Score (= 1): The impact and
likelihood are the same, regardless of architecture. This is the fundamental risk of identity-
based policy and is why the PoLP should be practiced. The telemetry provided by the service
mesh (regardless of architecture) is invaluable for understanding communication patterns in a
given system and creating accurate access policies.

5.4.4. Compromised L7 Proxy (TR-4)

Threat Description: There is a vulnerability in the L7 processing stack of the service mesh proxy.
As L7 processing is inherently more complex than typical L4 proxy processing, there is a higher

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

26

probability for vulnerabilities to arise in this part of the stack, as supported by historical CVE
data.

Proxy Function Impacted: Compromising the L7 processing stack results in compromising the
entire application and in more risk of compromise beyond runtime identity and DoS for other
users.

Impact Score = 3: The application itself is compromised, including non-mesh credentials (e.g.,
truncate table users) that are not available if only the proxy is compromised.

Likelihood Score = 3: Since L7 processing code is the application, the surface area is much
larger.

5.4.5. Compromise of Shared L7 Proxy (TR-5)

Threat Description: A co-tenant exploits an L7 traffic processing vulnerability in a shared proxy
and affects the confidentiality, integrity, or availability of traffic to or from another workload
that runs on the same node.

Proxy Function Impacted: L7 processing is entirely isolated by whatever mechanisms isolate the
applications themselves (e.g., containers, micro-VMs, VMs). The impact is limited by the
strength of that boundary.

Impact Score = 1: See Sec. 5.1.5.

Likelihood Score = 1: The likelihood is the same as any other application compromise.

5.4.6. Outdated Client Libraries in Applications (TR-6)

Threat Description: Client libraries are not updated frequently or consistently across the estate
of microservices, leading to potential vulnerabilities and weaknesses that can be exploited.

Proxy Function Impacted: Infrastructure concerns are embedded within the application code.
Challenges can arise when enforcing consistency in versions between microservices.

Impact Score = 3: The mesh functionality itself is part of the application. Therefore, bad
application updates result in bad mesh updates. This means that vulnerabilities remain for
longer, and since the mesh is part of the application, a vulnerability in the application is a
vulnerability in the mesh data plane.

Likelihood Score = 2: The likelihood depends on the frequency of updates. If applications can be
updated quickly (i.e., on the order of minutes to hours), the likelihood is low. If applications
take weeks or months to be updated, the likelihood is high. Cross-cutting concerns (e.g., the
mesh data plane, which is critical to the organization’s overall security posture) should be
patched as soon as possible.

5.4.7. Denial of Service (TR-7)

Threat Description: There is a conventional denial-of-service threat.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

27

Proxy Function Impacted: A DoS threat to the mesh data plane (L4 or L7) is a threat to the
application itself. In all other respects, it is very similar to the sidecar model.

Impact Score = 1: There is a single instance of a single application, so an attack could be
repeated across all applications (see Sec. 5.1.7).

Likelihood Score = 2: The functionality of both the mesh data plane and the application code
itself are susceptible to DoS.

5.4.8. Resource Consumption (TR-8)

Threat Description: There is overall resource consumption by the data plane of the service
mesh infrastructure.

Proxy Function Impacted: Because it is built into the application, resources devoted to mesh
data plane functionality are very low. The only reason that overall resource utilization may be
higher than the shared L4 and L7 model (DPA-3) is because some duplication of configuration
and processing needs to occur to push the configuration to every application instance.

Impact Score = 2: This has a potentially lower resource usage on a per-app basis than any other
model but is likely higher in aggregate because resources and configuration cannot be shared
across data plane instances.

Likelihood Score = 1: gRPC achieves the lowest overhead of all possible options because there is
no separate data plane, strictly the application itself. If an application is already using gRPC, it
will see little-to-no additional overhead for using a mesh data plane to configure gRPC
functionality.

5.4.9 Privileged L4 Proxy (TR-9)

Threat Description: A service mesh implementation requires an L4 component (e.g., deployed
as a Daemon Set on a Kubernetes cluster) to run with an overprivileged security context (e.g.,
Privileged Pod).

Proxy Function Impacted and Impact Score (= 0) and Likelihood Score (= 0): The mesh data
plane functionality runs in the application context without any special privileges and is the
same as the application itself. No special capabilities or permissions are required to intercept
traffic or implement policy enforcement.

5.4.10 Data Plane (Service Mesh) Bypassed (TR-10)

Threat Description: Traffic is sent directly to a workload, bypassing mesh functionality and
authorization policies.

Proxy Function Impacted: The application is the enforcement point, so there is no bypassing.

Impact Score = 1: The application is exposed in a degraded state or without some controls.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

28

Likelihood Score = 1: Due to the nature of RPC frameworks and in-process enforcement, mesh
data plane policy should not be able to be bypassed.

5.4.11 Overall Threat Score

Cumulative Threat Score = 28: This is computed based on the methodology in Sec 4.1.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

29

6. Recommendations Based on the Application Security Risk Profile

While the ratings or scores for the impact and likelihood parameters for different threats in
different data plane architectures are dictated by the number of service instances affected, the
risk profiles associated with the applications are determined by the criticality of the entire
application with respect to the business process that it supports.

When developing threat profiles for architectural patterns (see Sec. 5), consider that the impact
and likelihood parameters for some threats are the same irrespective of the proxy model or
data plane architecture. Since the ratings assigned to these parameters are relative, both
parameters are assigned a rating of 1, which results in an overall threat rating of 1 for those
threats. The threats that fall under this category and should be ignored are:

• Compromise of business data (TR-3)

• Privileged L4 proxy (TR-9)

Additionally, threats that have no direct security implications but may have performance
implications should also be ignored, namely Resource consumption (TR-8).

6.1 Cloud-Native Applications With Low Risk Profiles

The service mesh capability requirements for this class of application are:

• LOW-REQ1: Service-to-service authorization (i.e., Service A can call Service B) is based
on network location/parameter (e.g., subnet) and authorization at the granularity of the
called service method. Calling the user and a per-call request are not required.

• LOW-REQ2: Logging and metrics need to be captured only at the level of network
parameters (e.g., source/destination IP address) and not at the level of per-call request.

• LOW-REQ3: All traffic management capabilities (e.g., load balancing, rate limiting) need
to be enforced at the network connection level and not at the per-call request.

These capabilities essentially involve network-transport/network-level data that can be
provided by the proxy’s L4 functions. Hence, the following are recommendations for this class
of application:

• Since all requirements can be met by L4 proxies or L4 functions built into the libraries,
all four data plane architectures can be theoretically used.

• Since neither method-level nor per-call request handling is required, thus eliminating all
L7 functions, data plane architectures that deploy an L7 proxy per service instance (i.e.,
side-car model [DPA-1]) expose an unnecessary attack surface. Therefore, either of the
two models with a shared L4 proxy (i.e., DPA-2 or DPA-3) is recommended. A gRPC
proxy-less model (i.e., DPA-4) is also usable for this class of applications, though it does
expose a larger attack surface than DPA-2 or DPA-3.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

30

6.2 Cloud-Native Applications with Medium Risk Profiles

The service mesh capability requirements for this class of application are:

• MEDIUM-REQ1: In addition to service-to-service authorization at the level of service, a
full authorization policy at the method level (i.e., Service A can execute GET on B’s
billing method with valid end user credentials that contain the READ scope) is required.

• MEDIUM-REQ2: Logging and metrics data need to be captured at the level of network
parameters (e.g., source/destination IP address) along with some metadata (e.g., the
called service and method).

• MEDIUM-REQ3: All traffic management capabilities (e.g., load balancing, rate limiting)
can be enforced at the network-connection level (as in low risk profile case) and not at
the per-call request or per-method level.

These capabilities essentially involve both the network-transport/network-level data (all L4
functions) and some L7 functions (not all), such as authenticating user identities not only locally
from tokens (e.g., JSON Web Tokens [JWT]) and remotely using standardized protocols (e.g.,
OAuth and OIDC). Since the use of L7 proxies with some limited functionality is mandatory, the
following are recommendations for this class of application:

• Just like for applications with a low risk profile, all four data plane architectures can be
theoretically used.

• Since L7 functions are limited, it is not essential to dedicate an L7 proxy for each service.
Hence, data plane architectures that deploy an L7 proxy for each service (e.g., sidecar
model [DPA-1]) may consume more resources than other models for limited additional
assurance. In contrast, most exploitable vulnerabilities lie in L7 code. A shared L4 and L7
model (i.e., DPA-3) is not desirable since the shared L7 component introduces risks for
all services that share the same physical host. Therefore, the shared L4 and L7 per
service model (i.e., DPA-2) is likely the best combination of resource utilization and risk.
A gRPC proxy-less model (i.e., DPA-4) that includes libraries for L4 functions and limited
L7 functions is also recommended with similar risks but even less resource utilization
than DPA-2 in most cases.

6.3 Cloud-Native Applications With High Risk Profiles

The service mesh capability requirements for this class of application are:

• HIGH-REQ1: A full user-to-resource-level access control is required in addition to (a)
service-to-service authorization at the level of service and (b) a full authorization policy
at the method level (i.e., Service A can execute GET on B’s billing method with valid end
user credentials that contain the READ scope). This necessitates the proxy making an
external authorization call for each request.

• HIGH-REQ2: Logging and metrics meta data relating to a request must be captured (e.g.,
rate of requests, rate of positive outcomes, processing time for each request).

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

31

• HIGH-REQ3: All traffic management capabilities are required at the request level and
should involve application layer parameters in addition to those at the network
connection level.

These capabilities reveal that a complete suite of L7 functions is required:

• Just like for applications with low risk and medium risk profiles, all four data plane
architectures can be theoretically used.

• Based on the requirements, this class of applications belongs to highly critical
applications that require a great degree of isolation and in which any compromise
should be limited to only one service instance rather than multiple service instances.
Data plane architectures that deploy an L7 proxy for each service (e.g., sidecar model
[DPA-1]) are most applicable. A shared L7 proxy per service (e.g., DPA-2) can be an
acceptable trade-off for some organizations if they have other mechanisms for
mitigating shared-fate failures of all instances of the service that the shared service
mesh L7 proxy brings (e.g., mitigating a DoS attack via L3 controls outside of the mesh).
However, tightly integrating both L4 and L7 functions with the service instance provides
a greater degree of isolation, so DPA-1 is highly recommended.

All relevant network traffic data pertaining to their level in the stack they operate will be
collected by L4 and L7 proxies. This guidance does not make any distinction between these
proxy types as far as a network data collection ability is concerned. Additionally, all proxies will
be configured to send the collected data to the appropriate monitoring tools in the enterprise
infrastructure. The tools for aggregating and filtering traffic is beyond the scope of the data
plane architecture components considered in this document. The same applies to the
monitoring tools that provide the dashboard, analyze the traffic, generate the required metrics,
and send alerts regarding the threats detected. Hence, nothing in this recommendation
compromises the observability requirements of applications in the enterprise.

Moreover, this guidance does not recommend a particular data plane architecture for the
entire enterprise. Applications have different levels of security requirements within an
enterprise, such as functions that do not require L7 proxy functions. Therefore, an enterprise
can choose to deploy DPA-1 (i.e., sidecar proxies) for some selected applications while using
different architectures (e.g., DPA-2, DPA-3, or DPA-4) for others to leverage their increased
performance and still meet the enterprise’s security needs.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

32

7. Summary and Conclusions

Cloud-native applications are microservices-based applications implemented using containers
and VMs and that sometimes span on-premises and multiple clouds. When a centralized service
infrastructure is beneficial to the overall security of this class of applications, a service mesh
may be useful.

Service mesh implementations are characterized by proxies — a type of configuration of
entities that enable various capabilities during application runtimes, such as policy enforcement
(including access control), network connectivity (including the establishment of secure
sessions), and performance monitoring through the collection of data for computing various
metrics. The proxies form the data plane of the service mesh, and a particular configuration of
proxies is called a proxy model or a data plane architecture.

The first and most widely used deployment of the proxy model is the sidecar model, in which a
single proxy provides functions at both L4 and L7 and is associated with a service instance.
Performance, resource consumption, and specific security needs for different cloud-native
applications have led to the exploration of alternate proxy models. This document provided a
detailed threat analysis of these alternate proxy models as well as recommendations for their
use in cloud-native applications with different security risk profiles.

NIST SP 800-233 Service Mesh Proxy Models for
October 2024 Cloud-Native Applications

33

References

[1] Wikipedia (2024) OSI Model. Available at https://en.wikipedia.org/wiki/OSI_model
[2] Chandramouli R, Butcher Z (2020) Building Secure Microservices-based Applications Using

Service-Mesh Architecture. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) NIST SP 800-204A.
https://doi.org/10.6028/NIST.SP.800-204A

[3] Chandramouli R, Butcher Z, Aradhna C (2021) Attribute-based Access Control for
Microservices-based Applications using a Service Mesh. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204B.
https://doi.org/10.6028/NIST.SP.800-204B

[4] Chandramouli R (2022) Implementation of DevSecOps for a Microservices-based
Application with Service Mesh. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-204C.
https://doi.org/10.6028/NIST.SP.800-204C

[5] Chandramouli R, Butcher Z (2023) A Zero Trust Architecture Model for Access Control in
Cloud-Native Applications in Multi-Cloud Environments. (National Institute of Standards
and Technology, Gaithersburg, MD), NIST Special Publication (SP) NIST SP 800-207A.
https://doi.org/10.6028/NIST.SP.800-207A

[6] Jackson E, Kohavi Y, Pettit J, Posta C (2022) Ambient Mesh Security Deep Dive. (Istio)
Available at https://istio.io/latest/blog/2022/ambient-security/

[7] Howard J, Jackson EJ, Kohavi Y, Levine I, Pettit J, Sun L (2022) Introducing Ambient Mesh.
(Istio) Available at https://istio.io/latest/blog/2022/introducing-ambient-mesh/#what-
about-security

[8] Turner M (2022) eBPF and Sidecars - Getting the Most Performance and Resiliency out of
the Service Mesh. (Tetrate) Available at https://tetrate.io/blog/ebpf-and-sidecars-getting-
the-most-performance-and-resiliency-out-of-the-service-mesh/

[9] Graf T (2021) How eBPF will solve Service Mesh - Goodbye Sidecars. (Isovalent) Available
at https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/

[10] Song J (2022) Transparent Traffic Intercepting and Routing in the L4 Network of Istio
Ambient Mesh. (Tetrate) Available at https://tetrate.io/blog/transparent-traffic-
intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/

[11] Song J (2022) L7 Traffic Path in Ambient Mesh. (Tetrate) Available at
https://tetrate.io/blog/l7-traffic-path-in-ambient-mesh/

[12] Cilium (2024) Threat Model — Cilium 1.15.6 documentation. (Cilium) Available at
https://docs.cilium.io/en/stable/security/threat-model/

[13] Istio (2024) Ambient mode overview: ztunnel. Available at
https://istio.io/latest/docs/ambient/overview/#ztunnel

[14] Landow S (2021) gRPC Proxyless Service Mesh. (Istio) Available at
https://istio.io/v1.15/blog/2021/proxyless-grpc/

[15] Butcher Z (2024) Ambient Mesh: What you need to know about this experimental new
deployment model for Istio Available at https://tetrate.io/blog/ambient-mesh-what-you-
need-to-know-about-this-experimental-new-deployment-model-for-istio/

[16] Spring (2024) Spring Framework Available at https://spring.io/projects/spring-framework

https://en.wikipedia.org/wiki/OSI_model
https://doi.org/10.6028/NIST.SP.800-204A
https://doi.org/10.6028/NIST.SP.800-204B
https://doi.org/10.6028/NIST.SP.800-204C
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://csrc.nist.gov/pubs/sp/800/207/a/final
https://doi.org/10.6028/NIST.SP.800-207A
https://istio.io/latest/blog/2022/ambient-security/
https://istio.io/latest/blog/2022/introducing-ambient-mesh/#what-about-security
https://istio.io/latest/blog/2022/introducing-ambient-mesh/#what-about-security
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://tetrate.io/blog/ebpf-and-sidecars-getting-the-most-performance-and-resiliency-out-of-the-service-mesh/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/transparent-traffic-intercepting-and-routing-in-the-l4-network-of-istio-ambient-mesh/
https://tetrate.io/blog/l7-traffic-path-in-ambient-mesh/
https://docs.cilium.io/en/stable/security/threat-model/
https://docs.cilium.io/en/stable/security/threat-model/
https://istio.io/latest/docs/ops/ambient/usage/ztunnel/
https://istio.io/latest/docs/ambient/overview/#ztunnel
https://istio.io/latest/docs/ambient/overview/#ztunnel
https://istio.io/v1.15/blog/2021/proxyless-grpc/
https://istio.io/v1.15/blog/2021/proxyless-grpc/
https://tetrate.io/blog/ambient-mesh-what-you-need-to-know-about-this-experimental-new-deployment-model-for-istio/
https://tetrate.io/blog/ambient-mesh-what-you-need-to-know-about-this-experimental-new-deployment-model-for-istio/
https://spring.io/projects/spring-framework

	Executive Summary
	1. Introduction
	1.1. L4 and L7 Functions of Proxies
	1.2. Objective and Target Audience
	1.3. Relationship to Other NIST Documents
	1.4. Document Structure

	2. Typical Service Mesh Data Plane Capabilities and Associated Proxy Functions
	3. Proxy Models (Data Plane Architectures) in Service Mesh Implementations
	3.1. L4 and L7 Proxy per Service Instance (DPA-1) — Sidecar Model
	3.2. Shared L4 – L7 per Service Model (DPA-2)
	3.3. Shared L4 and L7 Model (DPA-3)
	3.4. L4 and L7 as Part of the Application Model (DPA-4)

	4. Data Plane Architecture Threat Scenarios and Analysis Methodology
	4.1. Threat Analysis Methodology

	5. Detailed Threat Analysis for Data Plane Architectures
	5.1. Threat Analysis for L4 and L7 Proxy per Service Instance (DPA-1) — Sidecar Model
	5.1.1. Compromised L4 Proxy (TR-1)
	5.1.2. Compromised Application Container (TR-2)
	5.1.3. Compromise of Business Data (TR-3)
	5.1.4. Compromised L7 Proxy (TR-4)
	5.1.5. Compromise of Shared L7 Proxy (TR-5)
	5.1.6. Outdated Client Libraries in Applications (TR-6)
	5.1.7. Denial of Service (TR-7)
	5.1.8. Resource Consumption (TR-8)
	5.1.9. Privileged L4 Proxy (TR-9)
	5.1.10. Data Plane (Service Mesh) Bypassed (TR-10)
	5.1.11 Overall Threat Score

	5.2. Threat Analysis for Shared L4 – L7 per Service Model (DPA-2)
	5.2.1. Compromised L4 Proxy (TR-1)
	5.2.2. Compromised Application Container (TR-2)
	5.2.3. Compromise of Business Data (TR-3)
	5.2.4. Compromised L7 Proxy (TR-4)
	5.2.5. Compromise of Shared L7 Proxy (TR-5)
	5.2.6. Outdated Client Libraries in Applications (TR-6)
	5.2.7. Denial of Service (TR-7)
	5.2.8. Resource Consumption (TR-8)
	5.2.9 Privileged L4 Proxy (TR-9)
	5.2.10 Data Plane (Service Mesh) Bypassed (TR-10)
	5.2.11 Overall Threat Score

	5.3. Threat Analysis for Shared L4 and L7 Model (DPA-3)
	5.3.1. Compromised L4 Proxy (TR-1)
	5.3.2. Compromised Application Container (TR-2)
	5.3.3. Compromise of Business Data (TR-3)
	5.3.4. Compromised L7 Proxy (TR-4)
	5.3.5. Compromise of Shared L7 Proxy (TR-5)
	5.3.6. Outdated Client Libraries in Applications (TR-6)
	5.3.7. Denial of Service (TR-7)
	5.3.8. Resource Consumption (TR-8)
	5.3.9. Privileged L4 Proxy (TR-9)
	5.3.10. Data Plane (Service Mesh) Bypassed (TR-10)
	5.3.11 Overall Threat Score

	5.4. Threat Analysis for L4 and L7 as Part of the Application Model (gRPC proxyless Model (DPA-4))
	5.4.1. Compromised L4 Proxy (TR-1)
	5.4.2. Compromised Application Container (TR-2)
	5.4.3. Compromise of Business Data (TR-3)
	5.4.4. Compromised L7 Proxy (TR-4)
	5.4.5. Compromise of Shared L7 Proxy (TR-5)
	5.4.6. Outdated Client Libraries in Applications (TR-6)
	5.4.7. Denial of Service (TR-7)
	5.4.8. Resource Consumption (TR-8)
	5.4.9 Privileged L4 Proxy (TR-9)
	5.4.10 Data Plane (Service Mesh) Bypassed (TR-10)
	5.4.11 Overall Threat Score

	6. Recommendations Based on the Application Security Risk Profile
	6.1 Cloud-Native Applications With Low Risk Profiles
	6.2 Cloud-Native Applications with Medium Risk Profiles
	6.3 Cloud-Native Applications With High Risk Profiles

	7. Summary and Conclusions
	References

