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Abstract 

This NIST NIST AI report develops a taxonomy of concepts and defines terminology in the field of 
adversarial machine learning (AML). The taxonomy is built on survey of the AML literature and is 
arranged in a conceptual hierarchy that includes key types of ML methods and lifecycle stage of attack, 
attacker goals and objectives, and attacker capabilities and knowledge of the learning process. The 
report also provides corresponding methods for mitigating and managing the consequences of attacks 
and points out relevant open challenges to take into account in the lifecycle of AI systems. The 
terminology used in the report is consistent with the literature on AML and is complemented by a 
glossary that defines key terms associated with the security of AI systems and is intended to assist 
non-expert readers. Taken together, the taxonomy and terminology are meant to inform other 
standards and future practice guides for assessing and managing the security of AI systems, by 
establishing a common language and understanding of the rapidly developing AML landscape. 

Keywords 

artificial intelligence; machine learning; attack taxonomy; evasion; data poisoning; privacy breach; 
attack mitigation; data modality; trojan attack, backdoor attack; chatbot. 

NIST AI Reports (NIST AI) 

The National Institute of Standards and Technology (NIST) promotes U.S. innovation and industrial 
competitiveness by advancing measurement science, standards, and technology in ways that enhance 
economic security and improve our quality of life. Among its broad range of activities, NIST contributes 
to the research, standards, evaluations, and data required to advance the development, use, and 
assurance of trustworthy artificial intelligence (AI). 
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Audience 

The intended primary audience for this document includes individuals and groups who are 
responsible for designing, developing, deploying, evaluating, and governing AI systems. 
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This document is a result of an extensive literature review, conversations with experts from 
the area of adversarial machine learning, and research performed by the authors in adver-
sarial machine learning. 
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This NIST NIST AI report focuses on identifying, addressing, and managing risks associ-
ated with adversarial machine learning. While practical guidance1 published by NIST may 
serve as an informative reference, this guidance remains voluntary. 

The content of this document reflects recommended practices. This document is not in-
tended to serve as or supersede existing regulations, laws, or other mandatory guidance. 

1The term ’practice guide,’ ’guide,’ ’guidance’ or the like, in the context of this paper, is a consensus-created, 
informative reference intended for voluntary use; it should not be interpreted as equal to the use of the term 
’guidance’ in a legal or regulatory context. This document does not establish any legal standard or any other 
legal requirement or defense under any law, nor have the force or effect of law. 

iv 



NIST AI 100-2e2023 ipd (Initial Public Draft) 
March 2023 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

How to read this document 

This document uses terms such as AI technology, AI system, and AI applications inter-
changeably. Terms related to the machine learning pipeline, such as ML model or algo-
rithm, are also used interchangeably in this document. Depending on context, the term 
“system” may refer to the broader organizational and/or social ecosystem within which the 
technology was designed, developed, deployed, and used instead of the more traditional 
use related to computational hardware or software. 

Important reading notes: 

• The document includes a series of blue callout boxes that highlight interesting nu-
ances and important takeaways. 

• Terms that are used but not defined/explained in the text are listed and defined in 
the GLOSSARY. They are displayed in small caps in the text. Clicking on a word 
shown in small caps (e.g., ADVERSARIAL EXAMPLES) takes the reader directly to 
the definition of that term in the Glossary. From there, one may click on the page 
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Executive Summary 

This NIST AI report is intended to be a step toward developing a taxonomy and terminol-
ogy of adversarial machine learning (AML), which in turn may aid in securing applications 
of artificial intelligence (AI) against adversarial manipulations of AI systems. The compo-
nents of an AI system include – at a minimum – the data, model, and processes for training, 
testing, and deploying the machine learning (ML) models and the infrastructure required 
for using them. The data-driven approach of ML introduces additional security and privacy 
challenges in different phases of ML operations besides the classical security and privacy 
threats faced by most operational systems. These security and privacy challenges include 
the potential for adversarial manipulation of training data, adversarial exploitation of model 
vulnerabilities to adversely affect the performance of ML classification and regression, and 
even malicious manipulations, modifications or mere interaction with models to exfiltrate 
sensitive information about people represented in the data or about the model itself. Such 
attacks have been demonstrated under real-world conditions, and their sophistication and 
potential impact have been increasing steadily. AML is concerned with studying the capa-
bilities of attackers and their goals, as well as the design of attack methods that exploit the 
vulnerabilities of ML during the development, training, and deployment phase of the ML 
life cycle. AML is also concerned with the design of ML algorithms that can withstand 
these security and privacy challenges. When attacks are launched with malevolent intent, 
the robustness of ML refers to mitigations intended to manage the consequences of such 
attacks. 

This report adopts the notions of security, resilience, and robustness of ML systems from 
the NIST AI Risk Management Framework [170]. Security, resilience, and robustness are 
gauged by risk, which is a measure of the extent to which an entity (e.g., a system) is threat-
ened by a potential circumstance or event (e.g., an attack) and the severity of the outcome 
should such an event occur. However, this report does not make recommendations on risk 
tolerance (the level of risk that is acceptable to organizations or society) because it is highly 
contextual and application/use-case specific. This general notion of risk offers a useful ap-
proach for assessing and managing the security, resilience, and robustness of AI system 
components. Quantifying these likelihoods is beyond the scope of this document. Corre-
spondingly, the taxonomy of AML is defined with respect to the following four dimensions 
of AML risk assessment: (i) learning method and stage of the ML life cycle process when 
the attack is mounted, (ii) attacker goals and objectives, (iii) attacker capabilities, (iv) and 
attacker knowledge of the learning process and beyond. 

The spectrum of effective attacks against ML is wide, rapidly evolving, and covers all 
phases of the ML life cycle – from design and implementation to training, testing, and fi-
nally, to deployment in the real world. The nature and power of these attacks are different 
and can exploit not just vulnerabilities of the ML models but also weaknesses of the in-
frastructure in which the AI systems are deployed. Although AI system components may 
also be adversely affected by various unintentional factors, such as design and implemen-
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tation flaws and data or algorithm biases, these factors are not intentional attacks. Even 
though these factors might be exploited by an adversary, they are not within the scope of 
the literature on AML or this report. 

This document defines a taxonomy of attacks and introduces terminology in the field of 
AML. The taxonomy is built on a survey of the AML literature and is arranged in a con-
ceptual hierarchy that includes key types of ML methods and life cycle stages of attack, 
attacker goals and objectives, and attacker capabilities and knowledge of the learning pro-
cess. The report also provides corresponding methods for mitigating and managing the 
consequences of attacks and points out relevant open challenges to take into account in the 
life cycle of AI systems. The terminology used in the report is consistent with the liter-
ature on AML and is complemented by a glossary that defines key terms associated with 
the security of AI systems in order to assist non-expert readers. Taken together, the tax-
onomy and terminology are meant to inform other standards and future practice guides for 
assessing and managing the security of AI systems by establishing a common language and 
understanding for the rapidly developing AML landscape. Like the taxonomy, the termi-
nology and definitions are not intended to be exhaustive but rather to aid in understanding 
key concepts that have emerged in AML literature. 
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1. Introduction 

Artificial intelligence (AI) systems [165] are on a global multi-year accelerating expansion 
trajectory. These systems are being developed by and widely deployed into the economies 
of numerous countries, leading to the emergence of AI-based services for people to use 
in many spheres of their lives, both real and virtual [57]. Advances in the generative ca-
pabilities of AI in text and images are directly impacting society at unprecedented levels. 
As these systems permeate the digital economy and become inextricably essential parts of 
daily life, the need for their secure, robust, and resilient operation grows. These opera-
tional attributes are critical elements of Trustworthy AI in the NIST AI Risk Management 
Framework [170] and in the taxonomy of AI Trustworthiness [167]. 

However, despite the significant progress that AI and machine learning (ML) have made in 
a number of different application domains, these technologies are also vulnerable to attacks 
that can cause spectacular failures with dire consequences. For example, in computer vision 
applications to image classification, well-known cases of adversarial perturbations of input 
images have caused autonomous vehicles to swerve into the opposite direction lane and 
the misclassification of stop signs as speed limit signs, the disappearance of critical objects 
from images, and even the misidentification of people wearing glasses in high-security 
settings [76, 116, 194, 207]. Similarly, in the medical field where more and more ML 
models are being deployed to assist doctors, there is the potential for medical record leaks 
from ML models that can expose deeply personal information [8, 103]. Attackers can also 
manipulate the training data of ML algorithms, thus making the AI system trained on it 
vulnerable to attacks [191]. Scraping of training data from the Internet also opens up the 
possibility of hackers poisoning the data to create vulnerabilities that allow for security 
breaches down the pipeline. 

Large language models (LLMs) [27, 50, 62, 155, 206, 257] are also becoming an integral 
part of the Internet infrastructure. LLMs are being used to create more powerful online 
search, help software developers write code, and even power chatbots that help with cus-
tomer service. With the exception of BLOOM [155], most of the companies developing 
such models do not release detailed information about the data sets that have been used 
to build their language models, but these data sets inevitably include some sensitive per-
sonal information, such as addresses, phone numbers, and email addresses. This creates 
serious risks for user privacy online. The more often a piece of information appears in a 
data set, the more likely a model is to leak it in response to random or specifically designed 
queries or prompts. This could perpetuate wrong and harmful associations with damag-
ing consequences for the people involved and bring additional security and safety concerns 
[34, 148]. 

As ML models continue to grow in size, many organizations rely on pre-trained models 
that could either be used directly for prediction or be fine-tuned with new datasets to en-
able different predictive tasks. This creates opportunities for malicious modifications of 
pre-trained models by inserting TROJANS to enable attackers to compromise the model 
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availability, force incorrect processing, or leak the data when instructed [91]. 

This report offers guidance for the development of: 

• Standardized terminology in AML to be used by the ML and cybersecurity commu-
nities; 

• A taxonomy of the most widely studied and effective attacks in AML, including 
evasion, poisoning, and privacy attacks; and 

• A discussion of potential mitigations in AML that have withstood the test of time and 
limitations of some of the existing mitigations. 

As AML is a fast evolving field, we envision the need to update the report regularly as new 
developments emerge on both the attack and mitigation fronts. 

The goal of this report is not to provide an exhaustive survey of all literature on 
AML. In fact, this by itself is an almost impossible task as a search on arXiv for 
AML articles in 2021 and 2022 yielded more than 5000 references. Rather, this 
report provides a categorization of attacks and their mitigations, starting with the 
three main types of attacks: 1) evasion, 2) data and model poisoning, and 3) data 
and model privacy. 

Historically, modality-specific ML modeling technology has emerged for each input modal-
ity (e.g., text, images, speech, tabular data), each of which is susceptible to domain-specific 
attacks. For example, the attack approaches for image classification tasks do not directly 
translate to attacks against natural language processing (NLP) models. Recently, the trans-
former technology from NLP has entered the computer vision domain [68]. In addition, 
multimodal ML has made exciting progress in many tasks, and there have been attempts to 
use multimodal learning as a potential mitigation of single-modality attacks [245]. How-
ever, powerful simultaneous attacks against all modalities in a multimodal model have also 
emerged [44, 195, 243]. The report discusses attacks against all viable learning methods 
(e.g., supervised, unsupervised, semi-supervised, federated learning, reinforcement learn-
ing) across multiple data modalities. 

Fundamentally, the machine learning methodology used in modern AI systems is suscep-
tible to attacks through the public APIs that the model provides and against the platforms 
on which they are deployed. This report focuses on the former and considers the latter to 
be out of scope. Attackers can breach the confidentiality and privacy protections of the 
data and model by simply exercising the public interfaces of the model and supplying data 
inputs that are within the acceptable range. In this sense, the challenges facing AML are 
similar to those facing cryptography. Modern cryptography relies on algorithms that are 
secure in an information-theoretic sense. Thus, people need to focus only on implementing 
them robustly and securely, which is no small task by itself. Unlike cryptography, there are 
no information-theoretic security proofs for the widely used machine learning algorithms. 
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As a result, many of the advances in developing mitigations against different classes of 
attacks tend to be empirical in nature. 

This report is organized as follows. Section 2 introduces the taxonomy of attacks. The 
taxonomy is organized by first defining the broad categories of attacker objectives/goals. 
Based on that, we define the categories of capabilities the adversary must be able to leverage 
to achieve the corresponding objectives. Then, we introduce specific attack classes for 
each type of capability. Sections 3, 4, and 5 discuss the major classes of attacks: evasion, 
poisoning, and privacy, respectively. A corresponding set of mitigations for each class of 
attacks is provided in the attack class sections. Section 6 discusses the remaining challenges 
in the field. 
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2. Attack Classification 

Figure 1 introduces a taxonomy of attacks in adversarial machine learning. The attacker’s 
objectives are shown as disjointed circles with the attacker’s goal at the center of each 
circle: Availability breakdown, Integrity violations, and Privacy compromise. The capa-
bilities that an adversary must leverage to achieve their objectives are shown in the outer 
layer of the objective circles. Attack classes are shown as callouts connected to the capabil-
ities required to mount each attack. Multiple attack classes that requiring same capabilities 
for reaching the same objective are shown in a single callout. Related attack classes that 
require different capabilities for reaching the same objective are connected with dotted 
lines. 

Privacy

Model

Data

Reconstruction;
Memorization;
Membership Inference;
Property Inference;

Model Extraction

Availability

Model Poisoning

Data Poisoning

Clean-Label 
Poisoning

Integrity

Evasion

Black-Box 
Evasion

Model 
Poisoning

Clean-Label 
Poisoning

Clean-Label 
Backdoor

Targeted 
PoisoningBackdoor

Poisoning

Energy-Latency

Fig. 1. Taxonomy of attacks on AI systems. 
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These attacks are classified according to the following dimensions: 1) learning method and 
stage of the learning process when the attack is mounted, 2) attacker goals and objectives, 3) 
attacker capabilities, and 4) attacker knowledge of the learning process. Several adversarial 
attack classification frameworks have been introduced in prior works [23, 212], and the goal 
here is to create a standard terminology for adversarial attacks on ML that unifies existing 
work. 

2.1. Stages of Learning 

Machine learning involves a TRAINING STAGE, in which a model is learned, and a DEPLOY-
MENT STAGE, in which the model is deployed on new, unlabeled data samples to generate 
predictions. In the case of SUPERVISED LEARNING in the training stage labeled training 
data is given as input to a training algorithm and the ML model is optimized to minimize a 
specific loss function. Validation and testing of the ML model is usually performed before 
the model is deployed in the real world. Common supervised learning techniques include 
CLASSIFICATION, in which the predicted labels or classes are discrete, and LOGISTIC RE-
GRESSION, in which the predicted labels or response variables are continuous. 

ML models may be GENERATIVE (i.e., learn the distribution of training data and gener-
ate similar examples, such as generative adversarial metworks [GAN] and large language 
models [LLM]) or DISCRIMINATIVE (i.e., learn only a decision boundary, such as LO-
GISTIC REGRESSION, SUPPORT VECTOR MACHINES, and CONVOLUTIONAL NEURAL 

NETWORKS). 

Other learning paradigms in the ML literature are UNSUPERVISED LEARNING, which trains 
models using unlabeled data at training time; SEMI-SUPERVISED LEARNING, in which a 
small set of examples have labels, while the majority of samples are unlabeled; REIN-
FORCEMENT LEARNING, in which an agent interacts with an environment and learns an 
optimal policy to maximize its reward; FEDERATED LEARNING, in which a set of clients 
jointly train an ML model by communicating with a server, which performs an aggregation 
of model updates; ENSEMBLE LEARNING which is an approach in machine learning that 
seeks better predictive performance by combining the predictions from multiple models. 

Adversarial machine learning literature predominantly considers adversarial attacks against 
AI systems that could occur at either the training stage or the ML deployment stage. During 
the ML training stage, the attacker might control part of the training data, their labels, the 
model parameters, or the code of ML algorithms, resulting in different types of poisoning 
attacks. During the ML deployment stage, the ML model is already trained, and the adver-
sary could mount evasion attacks to create integrity violations and change the ML model’s 
predictions, as well as privacy attacks to infer sensitive information about the training data 
or the ML model. 

Training-time attacks. Attacks during the ML training stage are called POISONING AT-
TACKS [21]. In a DATA POISONING attack [21, 94], an adversary controls a subset of the 
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training data by either inserting or modifying training samples. In a MODEL POISONING at-
tack [138], the adversary controls the model and its parameters. Data poisoning attacks are 
applicable to all learning paradigms, while model poisoning attacks are most prevalent in 
federated learning [118], where clients send local model updates to the aggregating server, 
and in supply-chain attacks where malicious code may be added to the model by suppliers 
of model technology. 

Deployment-time attacks. Two different types of attacks can be mounted at testing/deployment 
time. First, evasion attacks modify testing samples to create ADVERSARIAL EXAMPLES [19, 
93, 216], which are similar to the original sample (according to certain distance metrics) 
but alter the model predictions to the attacker’s choices. Second, privacy attacks, such as 
membership inference [200] and data reconstruction [67], are typically mounted by attack-
ers with query access to an ML model. They could be further divided into data privacy 
attacks and model privacy attacks. 

2.2. Attacker Goals and Objectives 

The attacker’s objectives are classified along three dimensions according to the three main 
types of security violations considered when analyzing the security of a system (i.e., avail-
ability, integrity, confidentiality): availability breakdown, integrity violations, and privacy 
compromise. Figure 1 separates attacks into three disjointed circles according to their ob-
jective, and the attacker’s objective is shown at the center of each circle. 

Availability Breakdown. An AVAILABILITY ATTACK is an indiscriminate attack against 
ML in which the attacker attempts to break down the performance of the model at test-
ing/deployment time. Availability attacks can be mounted via data poisoning, when the 
attacker controls a fraction of the training set; via model poisoning, when the attacker con-
trols the model parameters; or as energy-latency attacks via query access. Data poisoning 
availability attacks have been proposed for SUPPORT VECTOR MACHINES [21], linear re-
gression [110], and even neural networks [141, 161], while model poisoning attacks have 
been designed for neural networks [138] and federated learning [6]. Recently, ENERGY-
LATENCY ATTACKS that require only black-box access to the model have been developed 
for neural networks across many different tasks in computer vision and NLP [203]. 

Integrity Violations. An INTEGRITY ATTACK targets the integrity of an ML model’s out-
put, resulting in incorrect predictions performed by an ML model. An attacker can cause an 
integrity violation by mounting an evasion attack at testing/deployment time or a poisoning 
attack at training time. Evasion attacks require the modification of testing samples to create 
adversarial examples that are mis-classified by the model to a different class, while remain-
ing stealthy and imperceptible to humans [19, 93, 216]. Integrity attacks via poisoning 
can be classified as TARGETED POISONING ATTACKS [89, 193], BACKDOOR POISONING 

ATTACKS [94], and MODEL POISONING [6, 17, 78]. Targeted poisoning tries to violate the 
integrity of a few targeted samples and assumes that the attacker has training data control 
to insert the poisoned samples. Backdoor poisoning attacks require the generation of a 
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BACKDOOR PATTERN, which is added to both the poisoned samples and the testing sam-
ples to cause misclassification. Backdoor attacks are the only attacks in the literature that 
require both training and testing data control. Model poisoning attacks could result in ei-
her targeted or backdoor attacks, and the attacker modifies model parameters to cause an 
ntegrity violation. They have been designed for centralized learning [138] and federated 
earning [6, 17]. 

Privacy Compromise. Attackers might be interested in learning information about the 
raining data (resulting in DATA PRIVACY attacks) or about the ML model (resulting in 

MODEL PRIVACY attacks). The attacker could have different objectives for compromis-
ng the privacy of training data, such as DATA RECONSTRUCTION [67] (inferring content 

or features of training data), MEMBERSHIP-INFERENCE ATTACKS [99, 201] (inferring the 
presence of data in the training set), data MEMORIZATION [33, 34] (ability to extract train-
ng data from generative models), and PROPERTY INFERENCE [86] (inferring properties 

about the training data distribution). MODEL EXTRACTION is a model privacy attack in 
which attackers aim to extract information about the model [108]. 

2.3. Attacker Capabilities 

An adversary might leverage six types of capabilities to achieve their objectives, as shown 
n the outer layer of the objective circles in Figure 1: 

• TRAINING DATA CONTROL: The attacker might take control of a subset of the train-
ing data by inserting or modifying training samples. This capability is used in data 
poisoning attacks (e.g., availability poisoning, targeted or backdoor poisoning). 

• MODEL CONTROL: The attacker might take control of the model parameters by either 
generating a Trojan trigger and inserting it in the model or by sending malicious local 
model updates in federated learning. 

• TESTING DATA CONTROL: The attacker may utilize this to add perturbations to test-
ing samples at model deployment time, as performed in evasion attacks to generate 
adversarial examples or in backdoor poisoning attacks. 

• LABEL LIMIT: This capability is relevant to restrict the adversarial control over the 
labels of training samples in supervised learning. Clean-label poisoning attacks as-
sume that the attacker does not control the label of the poisoned samples – a realistic 
poisoning scenario, while regular poisoning attacks assume label control over the 
poisoned samples. 

• SOURCE CODE CONTROL: The attacker might modify the source code of the ML 
algorithm, such as the random number generator or any third-party libraries, which 
are often open source. 

• QUERY ACCESS: When the ML model is managed by a cloud provider (using Ma-
chine Learning as a Service – MLaaS), the attacker might submit queries to the model 
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and receive predictions (either labels or model confidences). This capability is used 
by black-box evasion attacks, energy-latency attacks, and all privacy attacks. 

Note that even if an attacker does not have the ability to modify training/testing data, source 
code, or model parameters, access to these are still crucial for mounting white-box attacks. 
See Section 2.4 for more details on attacker knowledge. 

Figure 1 connects each attack class with the capabilities required to mount the attack. For 
instance, backdoor attacks that cause integrity violations require control of training data and 
testing data to insert the backdoor pattern. Backdoor attacks can also be mounted via source 
code control, particularly when training is outsourced to a more powerful entity. Clean-
label backdoor attacks do not allow label control on the poisoned samples, in addition to 
the capabilities needed for backdoor attacks. 

2.4. Attacker Knowledge 

Another dimension for attack classification is how much knowledge the attacker has about 
the ML system. There are three main types of attacks: white-box, black-box, and gray-box. 

White-box attacks. These assume that the attacker operates with full knowledge about the 
ML system, including the training data, model architecture, and model hyper-parameters. 
While these attacks operate under very strong assumptions, the main reason for analyzing 
them is to test the vulnerability of a system against worst-case adversaries and to evaluate 
potential mitigations. Note that this definition is more general and encompasses the notion 
of adaptive attacks where the knowledge of the mitigations applied to the model or the 
system is explicitly tracked. 

Black-box attacks. These attacks assume minimal knowledge about the ML system. An 
adversary might get query access to the model, but they have no other information about 
how the model is trained. These attacks are the most practical since they assume that the 
attacker has no knowledge of the AI system and utilize system interfaces readily available 
for normal use. 

Gray-box attacks. There are a range of gray-box attacks that capture adversarial knowl-
edge between black-box and white-box attacks. Suciu et al. [212] introduced a framework 
to classify gray-box attacks. An attacker might know the model architecture but not its pa-
rameters, or the attacker might know the model and its parameters but not the training data. 
Other common assumptions for gray-box attacks are that the attacker has access to data 
distributed identically to the training data and knows the feature representation. The latter 
assumption is important in applications where feature extraction is used before training an 
ML model, such as cybersecurity, finance, and healthcare. 
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2.5. Data Modality 

Adversarial attacks against ML have been discovered in a range of data modalities used in 
many application domains. Until recently, most attacks and defenses have operated under 
a single modality, but a new ML trend is to use multimodal data. The taxonomy of attacks 
defined in Figure 1 is independent of the modality of the data in specific applications. 

The most common data modalities in the adversarial ML literature include: 

1. Image: Adversarial examples of image data modality [93, 216] have the advantage 
of a continuous domain, and gradient-based methods can be applied directly for opti-
mization. Backdoor poisoning attacks were first invented for images [94], and many 
privacy attacks are run on image datasets (e.g., [200]). 

2. Text: Natural language processing (NLP) is a popular modality, and all classes of 
attacks have been proposed for NLP applications, including evasion [96], poison-
ing [48, 132], and privacy [252]. Audio systems and text generated from audio sig-
nals have also been attacked [37]. 

3. Cybersecurity
2
: The first poisoning attacks were discovered in cybersecurity for 

worm signature generation (2006) [177] and spam email classification (2008) [166]. 
Since then, poisoning attacks have been shown for malware classification, malicious 
PDF detection, and Android malicious app classification [192]. Evasion attacks 
against the same data modalities have been proposed as well: malware classifica-
tion [63, 211], PDF malware classification [209, 242], and Android malicious app 
detection [179]. Clements et al. [58] developed a mechanism for effective generation 
of evasion attacks on small, weak routers in network intrusion detection. Poison-
ing unsupervised learning models has been shown for clustering used in malware 
classification [22] and network traffic anomaly detection [185]. 

Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition 
(SCADA) systems are part of modern Critical Infrastructure (CI) such as power grids, 
power plants (nuclear, fossil fuel, renewable energy), water treatment plants, oil re-
fineries, etc. ICS are an attractive target for adversaries because of the potential for 
highly consequential disruptions of CI [38, 128]. The existence of targeted stealth 
attacks has led to the development of defense-in-depth mechanisms for their detec-
tion and mitigation. Anomaly detection based on data-centric approaches allows 
automated feature learning through ML algorithms. However, the application of ML 
to such problems comes with specific challenges related to the need for a very low 
false negative and low false positive rates, ability to catch zero-day attacks, account 
for plant operational drift, etc. This challenge is compounded by the fact that try-
ing to accommodate all these together makes ML models susceptible to adversarial 
attacks [123, 180, 264]. 

2Strictly speaking, cybersecurity data may not include a single modality, but rather multiple modalities such 
as network-level, host-level, or program-level data. 
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4. Tabular data: Numerous attacks against ML models working on tabular data in fi-
nance, business, and healthcare applications have been demonstrated. For example, 
poisoning availability attacks have been shown against healthcare and business ap-
plications [110]; privacy attacks have been shown against healthcare data [249]; and 
evasion attacks have been shown against financial applications [90]. 

Recently, the use of ML models trained on multimodal data has gained traction, particu-
larly the combination of image and text data modalities. Several papers have shown that 
multimodal models may provide some resilience against attacks [245], but other papers 
show that multimodal models themselves could be vulnerable to attacks mounted on all 
modalities at the same time [44, 195, 243]. See Section 6.2 for additional discussion. 

An interesting open challenge is to test and characterize the resilience of a variety
of multimodal ML against evasion, poisoning, and privacy attacks. 
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3. Evasion Attacks and Mitigations 

The discovery of evasion attacks against machine learning models has generated increased 
interest in adversarial machine learning, leading to significant growth in this research space 
over the last decade. In an evasion attack, the adversary’s goal is to generate adversar-
ial examples, which are defined as testing samples whose classification can be changed at 
deployment time to an arbitrary class of the attacker’s choice with only minimal pertur-
bation [216]. Early known instances of evasion attacks date back to 1988 with the work 
of Kearns and Li [120], and to 2004, when Dalvi et al. [61], and Lowd and Meek [140] 
demonstrated the existence of adversarial examples for linear classifiers used in spam fil-
ters. Adversarial examples became even more intriguing to the research community when 
Szedegy et al. [216] showed that deep neural networks used for image classification can 
be easily manipulated, and adversarial examples were visualized. In the context of image 
classification, the perturbation of the original sample must be small so that a human cannot 
observe the transformation of the input. Therefore, while the ML model can be tricked to 
classify the adversarial example in the target class selected by the attacker, humans still 
recognize it as part of the original class. 

In 2013, Szedegy et al. [216] and Biggio et al. [19] independently discovered an effective 
method for generating adversarial examples against linear models and neural networks by 
applying gradient optimization to an adversarial objective function. Both of these tech-
niques require white-box access to the model and were improved by subsequent methods 
that generated adversarial examples with even smaller perturbations [5, 36, 144]. Adversar-
ial examples are also applicable in more realistic black-box settings in which attackers only 
obtain query access capabilities to the trained model. Even in the more challenging black-
box setting in which attackers obtain the model’s predicted labels or confidence scores, 
deep neural networks are still vulnerable to adversarial examples. Methods for creating 
adversarial examples in black-box settings include zeroth-order optimization [47], discrete 
optimization [156], and Bayesian optimization [202], as well as transferability, which in-
volves the white-box generation of adversarial examples on a different model architecture 
before transferring them to the target model [173, 174, 223]. Cybersecurity and image 
classifications were the first application domains that showcased evasion attacks. However, 
with the increasing interest in adversarial machine learning, ML technology used in many 
other application domains went under scrutiny, including speech recognition [37], natural 
language processing [115], and video classification [134, 236]. 

Mitigating adversarial examples is a well-known challenge in the community and deserves 
additional research and investigation. The field has a history of publishing defenses evalu-
ated under relatively weak adversarial models that are subsequently broken by more power-
ful attacks, a process that appears to iterate in perpetuity. Mitigations need to be evaluated 
against strong adaptive attacks, and guidelines for the rigorous evaluation of newly pro-
posed mitigation techniques have been established [60, 221]. The most promising direc-
tions for mitigating the critical threat of evasion attacks are adversarial training [93, 144] 
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(iteratively generating and inserting adversarial examples with their correct labels at train-
ing time); certified techniques, such as randomized smoothing [59] (evaluating ML predic-
tion under noise); and formal verification techniques [88, 119] (applying formal method 
techniques to verify the model’s output). Nevertheless, these methods come with different 
limitations, such as decreased accuracy for adversarial training and randomized smoothing, 
and computational complexity for formal methods. There is an inherent trade-off between 
robustness and accuracy [220, 225, 255]. Similarly, there are trade-offs between a model’s 
robustness and fairness guarantees [41]. 

This section discusses white-box and black-box evasion attack techniques, attack transfer-
ability, and the potential mitigation of adversarial examples in more detail. 

3.1. White-Box Evasion Attacks 

There are several optimization-based methods for designing evasion attacks that generate 
adversarial examples at small distances from the original testing samples. There are also 
several choices for distance metrics, universal evasion attacks, and physically realizable 
attacks, as well as examples of evasion attacks developed for multiple data modalities, 
including NLP, audio, video, and cybersecurity domains. 

Optimization-based methods. Szedegy et al. [216] and Biggio et al. [19] independently 
proposed the use of optimization techniques to generate adversarial examples. In their 
threat models, the adversary is allowed to inspect the entirety of the ML model and com-
pute gradients relative to the model’s loss function. These attacks can be targeted, in which 
the adversarial example’s class is selected by the attacker, or untargeted, in which the ad-
versarial examples are misclassified to any other incorrect class. 

Szedegy et al. [216] coined the widely used term adversarial examples. They considered 
an objective that minimized the ` 2 norm of the perturbation, subject to the model predic-
tion changing to the target class. The optimization is solved using the Limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method. Biggio et al. [19] considered the 
setting of a binary classifier with malicious and benign classes with continuous and dif-
ferentiable discriminant function. The objective of the optimization is to minimize the 
discriminant function in order to generate adversarial examples of maximum confidence. 

While Biggio et al. [19] apply their method to linear classifiers, kernel SVM, and multi-
layer perceptrons, Szedegy et al. [216] show the existence of adversarial examples on deep 
learning models used for image classification. Goodfellow et al. [93] introduced an ef-
ficient method for generating adversarial examples for deep learning: the Fast Gradient 
Sign Method (FGSM), which performs a single iteration of gradient descent for solving the 
optimization. This method has been extended to an iterative FGSM attack by Kurakin et 
al. [125]. 

Subsequent work on generating adversarial examples have proposed new objectives and 
methods for optimizing the generation of adversarial examples with the goals of minimizing 
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the perturbations and supporting multiple distance metrics. Some notable attacks include: 

1. DeepFool is an untargeted evasion attack for ` 2 norms, which uses a linear approxi-
mation of the neural network to construct the adversarial examples [158]. 

2. The Carlini-Wagner attack uses multiple objectives that minimize the loss or logits 
on the target class and the distance between the adversarial example and original 
sample. The attack is optimized via the penalty method [36] and considers three 
distance metrics to measure the perturbations of adversarial examples: ` 0, ` 2, and `•. 
The attack has been effective against the defensive distillation defense [175]. 

3. The Projected Gradient Descent (PGD) attack [144] minimizes the loss function and 
projects the adversarial examples to the space of allowed perturbations at each iter-
ation of gradient descent. PGD can be applied to the ` 2 and `• distance metrics for 
measuring the perturbation of adversarial examples. 

Universal evasion attacks. Moosavi-Dezfooli et al. [157] showed how to construct small 
universal perturbations (with respect to some norm), which can be added to most images 
and induce a misclassification. Their technique relies on successive optimization of the uni-
versal perturbation using a set of points sampled from the data distribution. An interesting 
observation is that the universal perturbations generalize across deep network architectures, 
suggesting similarity in the decision boundaries trained by different models for the same 
task. 

Physically realizable attacks. These are attacks against machine learning systems that 
become feasible in the physical world. One of the first physically realizable attacks in the 
literature is the attack on facial recognition systems by Sharif et al. [194]. The attack can 
be realized by printing a pair of eyeglass frames, which misleads facial recognition systems 
to either evade detection or impersonate another individual. Eykholt et al. [77] proposed an 
attack to generate robust perturbations under different conditions, resulting in adversarial 
examples that can evade vision classifiers in various physical environments. The attack is 
applied to evade a road sign detection classifier by physically applying black and white 
stickers to the road signs. 

Other data modalities. In computer vision applications, adversarial examples must be 
imperceptible to humans. Therefore, the perturbations introduced by attackers need to be 
so small that a human correctly recognizes the images, while the ML classifier is tricked 
into changing its prediction. The concept of adversarial examples has been extended to 
other domains, such as audio, video, natural language processing (NLP), and cybersecurity. 
In some of these settings, there are additional constraints that need to be respected by 
adversarial examples, such as text semantics in NLP and the application constraints in 
cybersecurity. Several representative works are discussed below: 

• Audio: Carlini and Wagner [37] showed a targeted attack on models that generate 
text from speech. They can generate an audio waveform that is very similar to an 
existing one but that can be transcribed to any text of the attacker’s choice. 
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• Video: Adversarial evasion attacks against video classification models can be split 
into sparse attacks that perturb a small number of video frames [236] and dense 
attacks that perturb all of the frames in a video [134]. The goal of the attacker is to 
change the classification label of the video. 

• NLP: Jia and Liang [115] developed a methodology for generating adversarial NLP 
examples. This pioneering work was followed by many advances in developing ad-
versarial attacks on NLP models (see a comprehensive survey on the topic [259]). 
Recently, La Malfa and Kwiatkowska [126] proposed a method for formalizing per-
turbation definitions in NLP by introducing the concept of semantic robustness. The 
main challenges in NLP are that the domain is discrete rather than continuous (e.g., 
image, audio, and video classification), and adversarial examples need to respect text 
semantics. 

• Cybersecurity: In cybersecurity applications, adversarial examples must respect the 
constraints imposed by the application semantics and feature representation of cyber 
data, such as network traffic or program binaries. FENCE is a general framework for 
crafting white-box evasion attacks using gradient optimization in discrete domains 
and supports a range of linear and statistical feature dependencies [53]. FENCE 
has been applied to two network security applications: malicious domain detection 
and malicious network traffic classification. Sheatsley et al. [196] propose a method 
that learns the constraints in feature space using formal logic and crafts adversar-
ial examples by projecting them onto a constraint-compliant space. They apply the 
technique to network intrusion detection and phishing classifiers. Both papers ob-
serve that attacks from continuous domains cannot be readily applied in constrained 
environments, as they result in infeasible adversarial examples. Pierazzi et al. [179] 
discuss the difficulty of mounting feasible evasion attacks in cyber security due to 
constraints in feature space and the challenge of mapping attacks from feature space 
to problem space. They formalize evasion attacks in problem space and construct 
feasible adversarial examples for Android malware. 

3.2. Black-Box Evasion Attacks 

Black-box evasion attacks are designed under a realistic adversarial model, in which the 
attacker has no prior knowledge of the model architecture or training data. Instead, the 
adversary can interact with a trained ML model by querying it on various data samples and 
obtaining the model’s predictions. Similar APIs are provided by machine learning as a ser-
vice (MLaaS) offered by public cloud providers, in which users can obtain the model’s pre-
dictions on selected queries without information about how the model was trained. There 
are two main classes of black-box evasion attacks in the literature: 

• Score-based attacks: In this setting, attackers obtain the model’s confidence scores 
or logits and can use various optimization techniques to create the adversarial exam-
ples. A popular method is zeroth-order optimization, which estimates the model’s 
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gradients without explicitly computing derivatives [47, 105]. Other optimization 
techniques include discrete optimization [156], natural evolution strategies [104], 
and random walks [162]. 

• Decision-based attacks: In this more restrictive setting, attackers obtain only the 
final predicted labels of the model. The first method for generating evasion attacks 
was the Boundary Attack based on random walks along the decision boundary and 
rejection sampling [25], which was extended with an improved gradient estimation to 
reduce the number of queries in the HopSkipJumpAttack [46]. More recently, several 
optimization methods search for the direction of the nearest decision boundary (the 
OPT attack [51]), use sign SGD instead of binary searches (the Sign-OPT attack 
[52]), or use Bayesian optimization [202]. 

The main challenge in creating adversarial examples in black-box settings is re-
ducing the number of queries to the ML models. Recent techniques can success-
fully evade the ML classifiers with a relatively small number of queries, typically 
less than 1000 [202]. 

3.3. Transferability of Attacks 

Another method for generating adversarial attacks under restrictive threat models is via 
transferability of an attack crafted on a different ML model. Typically, an attacker trains 
a substitute ML model, generates white-box adversarial attacks on the substitute model, 
and transfers the attacks to the target model. Various methods differ in how the substitute 
models are trained. For example, Papernot et al. [173, 174] train the substitute model with 
score-based queries to the target model, while several papers train an ensemble of models 
without explicitly querying the target model [136, 223, 235]. 

Attack transferability is an intriguing phenomenon, and existing literature attempts to un-
derstand the fundamental reasons why adversarial examples transfer across models. Several 
papers have observed that different models learn intersecting decision boundaries in both 
benign and adversarial dimensions, which leads to better transferability [93, 157, 223]. 
Demontis et al. [64] identified two main factors that contribute to attack transferability for 
both evasion and poisoning: the intrinsic adversarial vulnerability of the target model and 
the complexity of the surrogate model used to optimize the attack. 

3.4. Mitigations 

Mitigating evasion attacks is challenging because adversarial examples are widespread in 
a variety of ML model architectures and application domains, as discussed above. Pos-
sible explanations for the existence of adversarial examples are that ML models rely on 
non-robust features that are not aligned with human perception in the computer vision do-
main [106]. In the last few years, many of the proposed mitigations against adversarial 
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examples have been ineffective against stronger attacks. Furthermore, several papers have 
performed extensive evaluations and defeated a large number of proposed mitigations: 

• Carlini and Wagner showed how to bypass 10 methods for detecting adversarial ex-
amples and described several guidelines for evaluating defenses [35]. Recent work 
shows that detecting adversarial examples is as difficult as building a defense [219]. 
Therefore, this direction for mitigating adversarial examples is similarly challenging 
when designing defenses. 

• The Obfuscated Gradients attack [5] was specifically designed to defeat several pro-
posed defenses that mask the gradients using the ` 0 and `• distance metrics. It relies 
on a new technique, Backward Pass Differentiable Approximation, which approxi-
mates the gradient during the backward pass of backpropagation. It bypasses seven 
proposed defenses. 

• Tramèr et al. [221] described a methodology for designing adaptive attacks against 
proposed defenses and circumvented 13 existing defenses. They advocate design-
ing adaptive attacks to test newly proposed defenses rather than merely testing the 
defenses against well-known attacks. 

From the wide range of proposed defenses against adversarial evasion attacks, three main 
classes have proved resilient and have the potential to provide mitigation against evasion 
attacks: 

1. Adversarial training: Introduced by Goodfellow et al. [93] and further developed by 
Madry et al. [144], adversarial training is a general method that augments the training 
data with adversarial examples generated iteratively during training using their cor-
rect labels. The stronger the adversarial attacks for generating adversarial examples 
are, the more resilient the trained model becomes. Interestingly, adversarial training 
results in models with more semantic meaning than standard models [225], but this 
benefit usually comes at the cost of decreased model accuracy on clean data. Addi-
tionally, adversarial training is expensive due to the iterative generation of adversarial 
examples during training. 

2. Randomized smoothing: Proposed by Lecuyer et al. [129] and further improved by 
Cohen et al. [59], randomized smoothing is a method that transforms any classifier 
into a certifiable robust smooth classifier by producing the most likely predictions 
under Gaussian noise perturbations. This method results in provable robustness for ̀  2 

evasion attacks, even for classifiers trained on large-scale datasets, such as ImageNet. 
Randomized smoothing typically provides certified prediction to a subset of testing 
samples (the exact number depends on the radius of the ` 2 ball and the characteristics 
of the training data and model). 

3. Formal verification: Another method for certifying the adversarial robustness of 
a neural network is based on techniques from FORMAL METHODS. Reluplex uses 
satisfiability modulo theories (SMT) solvers to verify the robustness of small feed-
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forward neural networks [119]. AI2 is the first verification method applicable to 
convolutional neural networks using abstract interpretation techniques [88]. These 
methods have been extended and scaled up to larger networks in follow-up verifica-
tion systems, such as DeepPoly [204], ReluVal [233], and Fast Geometric Projections 
(FGP) [85]. Formal verification techniques have significant potential for certifying 
neural network robustness, but their main limitations are their lack of scalability, 
computational cost, and restriction in the type of supported operations. 

All of these proposed mitigations exhibit inherent trade-offs between robustness and accu-
racy, and they come with additional computational costs during training. Therefore, design-
ing ML models that resist evasion while maintaining accuracy remains an open problem. 
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4. Poisoning Attacks and Mitigations 

Another relevant threat against machine learning systems is the risk of adversaries mount-
ing poisoning attacks, which are broadly defined as adversarial attacks during the training 
stage of the ML algorithm. Poisoning attacks have a long history in cybersecurity, as the 
first known poisoning attack was developed for worm signature generation in 2006 [177]. 
Since then, poisoning attacks have been studied extensively in several application domains: 
computer security (for spam detection [166]), network intrusion detection [227], vulnera-
bility prediction [187], malware classification [192, 240]), computer vision [89, 94, 193], 
natural language processing [48, 132, 229], and tabular data in healthcare and financial 
domains [110]. Recently, poisoning attacks have gained more attention in industrial appli-
cations as well. A Microsoft report revealed that they are considered to be the most critical 
vulnerability of machine learning systems deployed in production [124]. 

Poisoning attacks are very powerful and can cause either an availability violation or an 
integrity violation. In particular, availability poisoning attacks cause indiscriminate degra-
dation of the machine learning model on all samples, while targeted and backdoor poison-
ing attacks are stealthier and induce integrity violations on a small set of target samples. 
Poisoning attacks leverage a wide range of adversarial capabilities, such as data poisoning, 
model poisoning, label control, source code control, and test data control, resulting in sev-
eral subcategories of poisoning attacks. They have been developed in white-box adversarial 
scenarios [21, 110, 240], gray-box settings [110], and black-box models [20]. This section 
discusses the threat of availability poisoning, targeted poisoning, backdoor poisoning, and 
model poisoning attacks classified according to their adversarial objective. For each poi-
soning attack category, techniques for mounting the attacks as well as existing mitigations 
and their limitations are also discussed. Our classification of poisoning attacks is inspired 
by the framework developed by Cinà et al. [56], which includes additional references to 
poisoning attacks and mitigations. 

4.1. Availability Poisoning 

The first poisoning attacks discovered in cybersecurity applications were availability at-
tacks against worm signature generation and spam classifiers, which indiscriminately im-
pact the entire machine learning model and, in essence, cause a denial-of-service attack 
on users of the AI system. Perdisci et al. [177] generated suspicious flows with fake in-
variants that mislead the worm signature generation algorithm in Polygraph [168]. Nelson 
et al. [166] designed poisoning attacks against Bayes-based spam classifiers, which gen-
erate spam emails that contain long sequences of words appearing in legitimate emails to 
induce the misclassification of spam emails. Both of these attacks were conducted under 
the white-box setting in which adversaries are aware of the ML training algorithm, feature 
representations, training datasets, and ML models. ML-based methods have been proposed 
for the detection of cybersecurity attacks targeting ICS. Such detectors are often retrained 
using data collected during system operation to account for plant operational drift of the 
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monitored signals. This retraining procedure creates opportunities for an attacker to mimic 
the signals of corrupted sensors at training time and poison the learning process of the 
detector such that attacks remain undetected at deployment time [123]. 

A simple black-box poisoning attack strategy is LABEL FLIPPING, which generates train-
ing examples with a victim label selected by the adversary [20]. This method requires a 
large percentage of poisoning samples for mounting an availability attack, and it has been 
improved via optimization-based poisoning attacks introduced for the first time against 
SUPPORT VECTOR MACHINES (SVM) [21]. In this approach, the attacker solves a bilevel 
optimization problem to determine the optimal poisoning samples that will achieve the 
adversarial objective (i.e., maximize the hinge loss for SVM [21] or maximize the mean 
square error [MSE] for regression [110]). These optimization-based poisoning attacks have 
been subsequently designed against linear regression [110] and neural networks [161], and 
they require white-box access to the model and training data. In gray-box adversarial set-
tings, the most popular method for generating availability poisoning attacks is transferabil-
ity, in which poisoning samples are generated for a surrogate model and transferred to the 
target model [64, 212]. 

A realistic threat model for supervised learning is that of clean-label poisoning attacks in 
which adversaries can only control the training examples but not their labels. This case 
models scenarios in which the labeling process is external to the training algorithm, as 
in malware classification where binary files can be submitted by attackers to threat intel-
ligence platforms, and labeling is performed using anti-virus signatures or other external 
methods. Clean-label availability attacks have been introduced for neural network classi-
fiers by training a generative model and adding noise to training samples to maximize the 
adversarial objective [82]. A different approach for clean-label poisoning is to use gradient 
alignment and minimally modify the training data [83]. 

Availability poisoning attacks have also been designed for unsupervised learning against 
centroid-based anomaly detection [121] and behavioral clustering for malware [22]. In 
federated learning, an adversary can mount a model poisoning attack to induce availability 
violations in the globally trained model [78, 197, 198]. More details on model poisoning 
attacks are provided in Section 4.4. 

Mitigations. 

Availability poisoning attacks are usually detectable by monitoring the standard perfor-
mance metrics of ML models – such as precision, recall, accuracy, F1 scores, and area 
under the curve – as they cause a large degradation in the classifier metrics. Nevertheless, 
detecting these attacks during the testing or deployment stages of ML is less desirable, and 
existing mitigations aim to proactively prevent these attacks during the training stage to 
generate robust ML models. Among the existing mitigations, some generally promising 
techniques include: 

• Training data sanitization: These methods leverage the insight that poisoned sam-
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ples are typically different than regular training samples not controlled by adver-
saries. As such, data sanitization techniques are designed to clean the training set 
and remove the poisoned samples before the machine learning training is performed. 
Nelson et al. [166] propose the Region of Non-Interest (RONI) method, which ex-
amines each sample and excludes it from training if the accuracy of the model de-
creases when the sample is added. Subsequently proposed sanitization methods im-
proved upon this early approach by reducing its computational complexity. Paudice 
et al. [176] introduced a method for label cleaning that was specifically designed 
for label flipping attacks. Steinhardt et al. [210] propose the use of outlier detection 
methods for identifying poisoned samples. Clustering methods have also been used 
for detecting poisoned samples [127, 217]. In the context of network intrusion de-
tection, computing the variance of predictions made by an ensemble of multiple ML 
models has proven to be an effective data sanitization method [227]. Once sanitized, 
the datasets should be protected by cybersecurity mechanisms for dataset origin and 
integrity attestation [165]. 

• Robust training: An alternative approach to mitigating availability poisoning at-
tacks is to modify the ML training algorithm and perform robust training instead of 
regular training. The defender can train an ensemble of multiple models and generate 
predictions via model voting [18, 131, 234]. Several papers apply techniques from 
robust optimization, such as using a trimmed loss function [66, 110]. Rosenfeld et 
al. [184] proposed the use of randomized smoothing for adding noise during training 
and obtaining certification against label flipping attacks. 

4.2. Targeted Poisoning 

In contrast to availability attacks, targeted poisoning attacks induce a change in the ML 
model’s prediction on a small number of targeted samples. If the adversary can control the 
labeling function of the training data, then label flipping is an effective targeted poisoning 
attack. The adversary simply inserts several poisoned samples with the target label, and the 
model will learn the wrong label. Therefore, targeted poisoning attacks are mostly studied 
in the clean-label setting in which the attacker does not have access to the labeling function. 

Several techniques for mounting clean-label targeted attacks have been proposed. Koh and 
Liang [122] showed how influence functions – a statistical method that determines the most 
influential training samples for a prediction – can be leveraged for creating poisoned sam-
ples in the fine-tuning setting in which a pre-trained model is fine-tuned on new data. Suciu 
et al. [212] designed StingRay, a targeted poisoning attack that modifies samples in feature 
space and adds poisoned samples to each mini batch of training. An optimization proce-
dure based on feature collision was crafted by Shafahi et al. [193] to generate clean-label 
targeted poisoning for fine-tuning and end-to-end learning. ConvexPolytope [263] and 
BullseyePolytope [2] optimized the poisoning samples against ensemble models, which 
offers better advantages for attack transferability. MetaPoison [101] uses a meta-learning 
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algorithm to optimize the poisoned samples, while Witches’ Brew [89] performs optimiza-
tion by gradient alignment, resulting in a state-of-the-art targeted poisoning attack. 

All of the above attacks impact a small set of targeted samples that are selected by the 
attacker during training, and they have only been tested for continuous image datasets 
(with the exception of StingRay, which requires adversarial control of a large fraction of the 
training set). Subpopulation poisoning attacks [111] were designed to poison samples from 
an entire subpopulation, defined by matching on a subset of features or creating clusters 
in representation space. Poisoned samples are generated using label flipping (for NLP 
and tabular modalities) or a first-order optimization method (for continuous data, such as 
images). The attack generalizes to all samples in a subpopulation and requires minimal 
knowledge about the ML model and a small number of poisoned samples (proportional to 
the subpopulation size). 

Targeted poisoning attacks have also been introduced for semi-supervised learning algo-
rithms [29], such as MixMatch [15], FixMatch [205], and Unsupervised Data Augmenta-
tion (UDA) [241] in which the adversary poisons a small fraction of the unlabeled training 
dataset to change the prediction on targeted samples at deployment time. 

Mitigations. Targeted poisoning attacks are notoriously challenging to defend against. 
Jagielski et al. [111] showed an impossibility result for subpopulation poisoning attacks. 
To mitigate some of the risks associated with such attacks, cybersecurity mechanisms for 
dataset origin and integrity attestation [165] should be used judiciously. Ma et al. [142] 
proposed the use of differential privacy (DP) as a defense (which follows directly from the 
definition of differential privacy), but it is well known that differentially private ML models 
have lower accuracy than standard models. The trade-off between robustness and accuracy 
needs to be considered in each application. If the application has strong data privacy re-
quirements, and differentially private training is used for privacy, then an additional benefit 
is protection against targeted poisoning attacks. However, the robustness offered by DP 
starts to fade once the targeted attack requires multiple poisoning samples (as in subpop-
ulation poisoning attacks) because the group privacy bound will not provide meaningful 
guarantees for large poisoned sets. 

4.3. Backdoor Poisoning 

In 2017, Gu et al. [94] proposed BadNets, the first backdoor poisoning attack. They ob-
served that image classifiers can be poisoned by adding a small patch trigger in a subset of 
images at training time and changing their label to a target class. The classifier learns to 
associate the trigger with the target class, and any image – including the trigger or back-
door pattern – will be misclassified to the target class at testing time. Concurrently, Chen et 
al. [49] introduced backdoor attacks in which the trigger is blended into the training data. 
Follow-up work introduced the concept of clean-label backdoor attacks [226] in which 
the adversary is restricted in preserving the label of the poisoned examples. Clean-label 
attacks typically require more poisoning samples to be effective, but the attack model is 

23 



895

900

905

910

915

920

925

930

893 

894 

896 

897 

898 

899 

901 

902 

903 

904 

906 

907 

908 

909 

911 

912 

913 

914 

916 

917 

918 

919 

921 

922 

923 

924 

926 

927 

928 

929 

931 

NIST AI 100-2e2023 ipd (Initial Public Draft) 
March 2023 

more realistic. 

In the last few years, backdoor attacks have become more sophisticated and stealthy, mak-
ing them harder to detect and mitigate. Latent backdoor attacks were designed to survive 
even upon model fine-tuning of the last few layers using clean data [247]. Backdoor Gener-
ating Network (BaN) [189] is a dynamic backdoor attack in which the location of the trigger 
changes in the poisoned samples so that the model learns the trigger in a location-invariant 
manner. Functional triggers are embedded throughout the image or change according to 
the input. For instance, Li et al. [133] used steganography algorithms to hide the trigger in 
the training data. Liu et al. [139] introduced a clean-label attack that uses natural reflection 
on images as a backdoor trigger. Wenger et al. [237] poisoned facial recognition systems 
by using physical objects as triggers, such as sunglasses and earrings. 

Other data modalities. While the majority of backdoor poisoning attacks are designed 
for computer vision applications, this attack vector has been effective in other application 
domains with different data modalities, such as audio, NLP, and cybersecurity settings. 

• Audio: In audio domains, Shi et al. [199] showed how an adversary can inject an 
unnoticeable audio trigger into live speech, which is jointly optimized with the target 
model during training. 

• NLP: In natural language processing, the construction of meaningful poisoning sam-
ples is more challenging as the text data is discrete, and the semantic meaning of 
sentences would ideally be preserved for the attack to remain unnoticeable. Recent 
work has shown that backdoor attacks in NLP domains are becoming feasible. For 
instance, Chen et al. [48] introduced semantic-preserving backdoors at the charac-
ter, word, and sentence level for sentiment analysis and neural machine translation 
applications. Li et al. [132] generated hidden backdoors against transformer mod-
els using generative language models in three NLP tasks: toxic comment detection, 
neural machine translation, and question answering. 

• Cybersecurity: Early poisoning attacks in cybersecurity were designed against worm 
signature generation in 2006 [177] and spam detectors in 2008 [166], well before 
rising interest in adversarial machine learning. More recently, Severi et al. [192] 
showed how AI explainability techniques can be leveraged to generate clean-label 
poisoning attacks with small triggers against malware classifiers. They attacked mul-
tiple models (i.e., neural networks, gradient boosting, random forests, and SVMs), 
using three malware datasets: Ember for Windows PE file classification, Contagio 
for PDF file classification, and DREBIN for Android app classification. Jigsaw Puz-
zle [246] designed a backdoor poisoning attack for Android malware classifiers that 
uses realizable software triggers harvested from benign code. 

Mitigations. The literature on backdoor attack mitigation is vast compared to other poi-
soning attacks. Below we discuss several classes of defenses, including data sanitization, 
trigger reconstruction, model inspection and sanitization, and also their limitations. 
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• Training Data Sanitization: Similar to poisoning availability attacks, training data 
sanitization can be applied to detecting backdoor poisoning attacks. For instance, 
outlier detection in the latent feature space [98, 178, 224] has been effective for con-
volutional neural networks used for computer vision applications. Activation Clus-
tering [43] performs clustering of training data in representation space with the goal 
of isolating the backdoored samples in a separate cluster. Data sanitization achieves 
better results when the poisoning attack controls a relatively large fraction of training 
data, but is not that effective against stealthy poisoning attacks. Overall, this leads to 
a trade-off between attack success and detectability of malicious samples. 

• Trigger reconstruction: This class of mitigations aims to reconstruct the backdoor 
trigger, assuming that it is at a fixed location in the poisoned training samples. Neu-
ralCleanse by Wang et al. [230] developed the first trigger reconstruction approach 
and used optimization to determine the most likely backdoor pattern that reliably 
misclassifies the test samples. The initial technique has been improved to reduce 
performance time on several classes and simultaneously support multiple triggers in-
serted into the model [100, 239]. A representative system in this class is Artificial 
Brain Simulation (ABS) by Liu et al. [137], which stimulates multiple neurons and 
measures the activations to reconstruct the trigger patterns. 

• Model inspection and sanitization: Model inspection analyzes the trained ML 
model before its deployment to determine whether it was poisoned. An early work in 
this space is NeuronInspect [102], which is based on explainability methods to deter-
mine different features between clean and backdoored models that are subsequently 
used for outlier detection. DeepInspect [45] uses a conditional generative model to 
learn the probability distribution of trigger patterns and performs model patching 
to remove the trigger. Xu et al. [244] proposed the Meta Neural Trojan Detection 
(MNTD) framework, which trains a meta-classifier to predict whether a given ML 
model is backdoored (or Trojaned, in the authors’ terminology). This technique is 
general and can be applied to multiple data modalities, such as vision, speech, tabular 
data, and NLP. Once a backdoor is detected, model sanitization can be performed via 
pruning [238], retraining [253], or fine-tuning [135] to restore the model’s accuracy. 

Most of these mitigations have been designed against computer vision classifiers based 
on convolutional neural networks using backdoors with fixed trigger patterns. Severi et 
al. [192] showed that some of the data sanitization techniques (e.g., spectral signatures [224] 
and Activation Clustering [43]) are ineffective against clean-label backdoor poisoning on 
malware classifiers. Most recent semantic and functional backdoor triggers would also 
pose challenges to approaches based on trigger reconstruction or model inspection, which 
generally assume fixed backdoor patterns. The limitation of using meta classifiers for pre-
dicting a Trojaned model [244] is the high computational complexity of the training stage 
of the meta classifier, which requires training thousands of SHADOW MODELS. Additional 
research is required to design strong backdoor mitigation strategies that can protect ML 
models against this important attack vector without suffering from these limitations. 
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In cybersecurity, Rubinstein et al. [185] proposed a principal component analysis (PCA)-
based approach to mitigate poisoning attacks against PCA subspace anomaly detection 
method in backbone networks. It maximized Median Absolute Deviation (MAD) instead 
of variance to compute principal components, and used a threshold value based on Laplace 
distribution instead of Gaussian. Madani and Vlajic [143] built an autoencoder-based in-
trusion detection system, assuming malicious poisoning attack instances were under 2%. 

4.4. Model Poisoning 

Model poisoning attacks attempt to directly modify the trained ML model to inject mali-
cious functionality into the model. In centralized learning, TrojNN [138] reverse engineers 
the trigger from a trained neural network and then retrains the model by embedding the 
trigger in external data to poison it. Most model poisoning attacks have been designed in 
the federated learning setting in which clients send local model updates to a server that 
aggregates them into a global model. Compromised clients can send malicious updates to 
poison the global model. Model poisoning attacks can cause both availability and integrity 
violation in federated models: 

• Poisoning availability attacks that degrade the global model’s accuracy have been 
effective, but they usually require a large percentage of clients to be under the control 
of the adversary [78, 197]. 

• Targeted model poisoning attacks induce integrity violations on a small set of sam-
ples at testing time. They can be mounted by a model replacement or model boosting 
attack in which the compromised client replaces the local model update according to 
the targeted objective [7, 16, 214]. 

• Backdoor model poisoning attacks introduce a trigger via malicious client updates 
to induce the misclassification of all samples with the trigger at testing time [7, 16, 
214, 232]. Most of these backdoors are forgotten if the compromised clients do not 
regularly participate in training, but the backdoor becomes more durable if injected 
in the lowest utilized model parameters [260]. 

Model poisoning attacks are also possible in supply-chain scenarios where models or com-
ponents of the model provided by suppliers are poisoned with malicious code. 

Mitigations. To defend federated learning from model poisoning attacks, a variety of 
Byzantine-resilient aggregation rules have been designed and evaluated. Most of them at-
tempt to identify and exclude the malicious updates when performing the aggregation at the 
server [3, 24, 28, 95, 149–151, 213, 250]. However, motivated adversaries can bypass these 
defenses by adding constraints in the attack generation optimization problem [7, 78, 197]. 
Gradient clipping and differential privacy have the potential to mitigate model poisoning 
attacks to some extent [7, 169, 214], but they usually decrease accuracy and do not provide 
complete mitigation. 
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Designing federated learning models that are fully robust against model poisoning 
attacks remains an open research problem in the community. 
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5. Privacy Attacks 

Although privacy issues have long been a concern, privacy attacks against aggregate sta-
tistical information collected from user records started with the seminal work of Dinur and 
Nissim [67] on reconstruction attacks. The goal of reconstruction attacks is to reverse 
engineer private information about an individual user record or sensitive critical infrastruc-
ture data from access to aggregate statistical information. More recently, memorization 
attacks that reconstruct or regenerate the training data have been shown in the context of 
large generative language models, such as GPT-2 [34]. A less devastating privacy attack 
is that of membership inference in which an adversary can determine whether a particular 
record was included in the dataset used for computing statistical information or training a 
machine learning model. Membership inference attacks were first introduced by Homer 
et al. [99] for genomic data. Recent literature focuses on membership attacks against ML 
models in mostly black-box settings in which adversaries have query access to a trained ML 
model [30, 200, 249]. Another privacy violation for MLaaS is model extraction attacks, 
which are designed to extract information about an ML model such as its architecture or 
model parameters [32, 40, 108, 222]. Property inference attacks [4, 42, 86, 145, 215, 258] 
aim to extract global information about a training dataset, such as the fraction of training 
examples with a certain sensitive attribute. 

This section discusses privacy attacks related to data reconstruction, the memorization of 
training data, membership inference, model extraction, and property inference, as well as 
mitigations for some of these attacks and open problems in designing general mitigation 
strategies. 

5.1. Data Reconstruction 

Data reconstruction attacks are the most concerning privacy attacks as they have the ability 
to recover an individual’s data from released aggregate statistical information. Dinur and 
Nissim [67] were the first to introduce reconstruction attacks that recover user data from 
linear statistics. Their original attack requires an exponential number of queries for recon-
struction, but subsequent work has shown how to perform reconstruction with a polynomial 
number of queries [74]. A survey of privacy attacks, including reconstruction attacks, is 
given by Dwork et al. [72]. More recently, the U.S. Census Bureau performed a large-scale 
study on the risk of data reconstruction attacks on census data [87], which motivated the 
use of differential privacy in the decennial release of the U.S. Census in 2020. 

In the context of ML classifiers, Fredrickson et al. [84] introduced model inversion attacks 
that reconstruct class representatives from the training data of an ML model. While model 
inversion generates semantically similar images with those in the training set, it cannot 
directly reconstruct the training data of the model. Recently, Balle et al. [9] trained a re-
constructor network that can recover a data sample from a neural network model, assuming 
a powerful adversary with information about all other training samples. Haim et al. [97] 
showed how the training data of a neural network can be reconstructed from access to the 
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model parameters by leveraging theoretical insights about implicit bias in neural networks. 
Another relevant privacy attack is attribute inference, in which the attacker extracts a sen-
sitive attribute of the training set [114]. 

5.2. Memorization 

Memorization attacks are a powerful class of techniques that allow an adversary to extract 
training data from generative ML models, such as language models. Carlini et al. [33] were 
the first to practically demonstrate memorization attacks in language models. By inserting 
synthetic canaries in the training data, they developed a methodology for extracting the 
canaries and introduced a metric called exposure to measure memorization. Subsequent 
work demonstrated the risk of memorization in large language models, such as GPT-2 [34], 
and showed that models with a larger capacity tend to memorize more [31]. 

An orthogonal line of work is analyzing the connection between memorization and gener-
alization in ML models. Zhang et al. [254] discussed how neural networks can memorize 
randomly selected datasets. Feldman [80] showed that the memorization of training la-
bels is necessary to achieving almost optimal generalization error in ML. Brown et al. [26] 
constructed two learning tasks based on next-symbol prediction and cluster labeling in 
which memorization is required for high-accuracy learning. Feldman and Zhang empiri-
cally evaluated the benefit of memorization for generalization using an influence estimation 
method [81]. 

5.3. Membership Inference 

Membership inference attacks generally expose less private information about an individual 
than reconstruction or memorization attacks but are still of great concern when releasing 
aggregate statistical information or ML models trained on user data. In certain situations, 
determining that an individual is part of the training set already has privacy implications, 
such as in a medical study of patients with a rare disease. Moreover, membership inference 
can be used as a building block for mounting extraction attacks [33, 34]. 

In membership inference, the attacker’s goal is to determine whether a particular record 
or data sample was part of the training dataset used for the statistical or ML algorithm. 
These attacks were introduced by Homer et al. [99] for statistical computations on genomic 
data under the name tracing attacks. Robust tracing attacks have been analyzed when an 
adversary gains access to noisy statistical information about the dataset [73]. In the last five 
years, the literature has used the terminology membership inference for attacks against ML 
models. Most of the attacks in the literature are performed against deep neural networks 
used for classification [30, 54, 130, 200, 248, 249]. Similar to other attacks in adversarial 
machine learning, membership inference can be performed in white-box settings [130, 163, 
186] in which attackers have knowledge of the model’s architecture and parameters, but 
most of the attacks have been developed for black-box settings in which the adversary 
generates queries to the trained ML model [30, 54, 200, 248, 249]. 
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The attacker’s success in membership inference has been formally defined using a cryp-
tographically inspired privacy game in which the attacker interacts with a challenger and 
needs to determine whether a target sample was used in training the queried ML model [113, 
188, 249]. In terms of techniques for mounting membership inference attacks, the loss-
based attack by Yeom et al. [249] is one of the most efficient and widely used method. 
Using the knowledge that the ML model minimizes the loss on training samples, the attack 
determines that a target sample is part of training if its loss is lower than a fixed threshold 
(selected as the average loss of training examples). Sablayrolles et al. [186] refined the loss-
based attack by scaling the loss using a per-example threshold. Another popular technique 
introduced by Shokri et al. [200] is that of shadow models, which trains a meta-classifier 
on examples in and out of the training set obtained from training thousands of shadow ML 
models on the same task as the original model. This technique is generally expensive, and 
while it might improve upon the simple loss-based attack, its computational cost is high and 
requires access to many samples from the distribution to train the shadow models. These 
two techniques are at opposite ends of the spectrum in terms of their complexity, but they 
perform similarly in terms of precision at low false positive rates [30]. 

An intermediary method that is currently attaining state-of-the-art performance in terms of 
the AREA UNDER THE CURVE (AUC) metric is the LiRA attack by Carlini et al. [30], 
which trains a smaller number of shadow models to learn the distribution of model log-
its on examples in and out of the training set. Using the assumption that the model logit 
distributions are Gaussian, LiRA performs a hypothesis test for membership inference by 
estimating the mean and standard deviation of the Gaussian distributions. Ye et al. [248] de-
signed a similar attack that performs a one-sided hypothesis test, which does not make any 
assumptions on the loss distribution but achieves slightly lower performance than LiRA. 
Membership inference attacks have also been designed under the stricter label-only threat 
model in which the adversary only has access to the predicted labels of the queried sam-
ples [54]. 

There are several public privacy libraries that offer implementations of membership infer-
ence attacks: the TensorFlow Privacy library [208] and the ML Privacy Meter [160]. 

5.4. Model Extraction 

In MLaaS scenarios, cloud providers typically train large ML models using proprietary data 
and would like to keep the model architecture and parameters confidential. The goal of an 
attacker performing a model extraction attack is to extract information about the model 
architecture and parameters by submitting queries to the ML model trained by an MLaaS 
provider. The first model stealing attacks were shown by Tramer at al. [222] on several 
online ML services for different ML models, including logistic regression, decision trees, 
and neural networks. However, Jagielski et al. [108] have shown the exact extraction of 
ML models to be impossible. Instead, a functionally equivalent model can be reconstructed 
that is different than the original model but achieves similar performance at the prediction 
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task. Jagielski et al. [108] have shown that even the weaker task of extracting functionally 
equivalent models is NP-hard. 

Several techniques for mounting model extraction attacks have been introduced in the lit-
erature. The first method is that of direct extraction based on the mathematical formulation 
of the operations performed in deep neural networks, which allows the adversary to com-
pute model weights algebraically [32, 108, 222]. A second technique explored in a series 
of papers is to use learning methods for extraction. For instance, active learning [40] can 
guide the queries to the ML model for more efficient extraction of model weights, and rein-
forcement learning can train an adaptive strategy that reduces the number of queries [172]. 
A third technique is the use of SIDE CHANNEL information for model extraction. Batina 
et al. [12] used electromagnetic side channels to recover simple neural network models, 
while Rakin et al. [182] recently showed how ROWHAMMER ATTACKS can be used for 
model extraction of more complex convolutional neural network architectures. 

5.5. Property Inference 

In property inference attacks, the attacker tries to learn global information about the training 
data distribution by interacting with an ML model. For instance, an attacker can determine 
the fraction of the training set with a certain sensitive attribute, such as demographic infor-
mation, that might reveal potentially confidential information about the training set that is 
not intended to be released. 

Property inference attacks were introduced by Ateniese et al. [4] and formalized as a distin-
guishing game between the attacker and the challenger training two models with different 
fractions of the sensitive data [215]. Property inference attacks were designed in white-box 
settings in which the attacker has access to the full ML model [4, 86, 215] and black-box 
settings in which the attacker issues queries to the model and learns either the predicted 
labels [145] or the class probabilities [42, 258]. These attacks have been demonstrated for 
HIDDEN MARKOV MODELS, SUPPORT VECTOR MACHINES [4], FEED-FORWARD NEU-
RAL NETWORKS [86, 145, 258], CONVOLUTIONAL NEURAL NETWORKS [215], FEDER-
ATED LEARNING MODELS [147], GENERATIVE ADVERSARIAL NETWORKS [262], and 
GRAPH NEURAL NETWORKS [261]. Mahloujifar et al. [145] and Chaudhauri et al. [42] 
showed that poisoning the property of interest can help design a more effective distin-
guishing test for property inference. Moreover, Chaudhauri et al. [42] designed an efficient 
property size estimation attack that recovers the exact fraction of the population of interest. 

Several papers have reported negative results on various mitigation strategies against these 
attacks, including differential privacy which was designed to reveal aggregate statistics 
about a dataset [42, 145]. It seems inherent that a high accuracy ML model will reveal 
some aggregate information about its training dataset. While property inference might 
not be easy to mitigate, an open problem is understanding whether these attacks pose real 
privacy risk to users who contribute their data to ML training. 
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5.6. Mitigations 

The discovery of reconstruction attacks against aggregate statistical information motivated 
the rigorous definition of differential privacy (DP) [70, 71]. Differential privacy is an ex-
tremely strong definition of privacy that guarantees a bound on how much an attacker with 
access to the algorithm output can learn about each individual record in the dataset. The 
original pure definition of DP has a privacy parameter e (i.e., privacy budget), which bounds 
the probability that the attacker with access to the algorithm’s output can determine whether 
a particular record was included in the dataset. DP has been extended to the notions of ap-
proximate DP, which includes a second parameter d that is interpreted as the probability of 
information accidentally being leaked in addition to e and Rènyi DP [154]. 

DP has been widely adopted due to several useful properties: group privacy (i.e., the exten-
sion of the definition to two datasets differing in k records), post-processing (i.e., privacy 
is preserved even after processing the output), and composition (i.e., privacy is composed 
if multiple computations that are performed on the dataset). DP mechanisms for statisti-
cal computations include the Gaussian mechanism [71], the Laplace mechanism [71], and 
the Exponential mechanism [146]. The most widely used DP algorithm for training ML 
models is DP-SGD [1], with recent improvements such as DP-FTRL [117] and DP matrix 
factorization [65]. 

By definition, DP provides mitigation against reconstruction attacks, the memorization of 
training data, and membership inference attacks. In fact, the definition of DP immediately 
implies an upper bound on the success of a membership inference attack. Tight bounds 
on the success of membership inference have been derived by Thudi et al. [218]. How-
ever, DP does not provide guarantees against model extraction or property inference at-
tacks [42, 145]. One of the main challenges of using DP in practice is setting up the privacy 
parameters to achieve a trade-off between privacy and utility, which is typically measured 
in terms of accuracy for ML models. Analysis of privacy-preserving algorithms, such as 
DP-SGD, is often worst case, and selecting privacy parameters based purely on theoretical 
analysis results in utility loss. Therefore, large privacy parameters are often used in prac-
tice (e.g., the 2020 U.S. Census release used e = 19.61), and the exact privacy obtained 
in practice is difficult to estimate. Recently, a promising line of work is that of privacy 
auditing introduced by Jagielski et al. [112] with the goal of empirically measuring the ac-
tual privacy guarantees of an algorithm and determining privacy lower bounds by mounting 
privacy attacks. Auditing can be performed with membership inference attacks [113], but 
poisoning attacks are much more effective for empirical privacy auditing [112, 164]. 

Other mitigation techniques against model extraction, such as limiting user queries to the 
model, detecting suspicious queries to the model, or creating more robust architectures to 
prevent side channel attacks exist in the literature. However, these techniques can be cir-
cumvented by motivated and well-resourced attackers and should be used with caution. 
We refer the reader to available practice guides for securing machine learning deploy-
ments [39, 170]. 
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6. Discussion and Remaining Challenges 

The literature on AML shows a trend of designing new attacks with higher power and 
stealthier behavior. The attacks considered above and those discussed in Section 6.2 illus-
trate this well. Moreover, Goldwasser et al. [91] recently introduced a new class of attacks: 
information-theoretically undetectable Trojans that can be planted in ML models. Such 
attacks can only be prevented or detected and mitigated by procedures that restrict and 
control who in the organization has access to the model throughout the life cycle and by 
thoroughly vetting third-party components coming through the supply chain. The NIST AI 
Risk Management Framework [170] offers more information on this. 

One of the ongoing challenges facing the AML field is the ability to detect when the model 
is under attack. Knowing this would provide an opportunity to counter the attack before 
any information is lost or an adverse behaviour is triggered in the model. Tramèr [219] 
has shown that designing techniques to detect adversarial examples is equivalent to robust 
classification, which is inherently hard to construct, up to computational complexity and a 
factor of 2 in the robustness radius. 

Adversarial examples may be from the same data distribution on which the model is trained 
and to which it expects the inputs to belong or may be OUT-OF-DISTRIBUTION (OOD) in-
puts. Thus, the ability to detect OOD inputs is also an important challenge in AML. Fang et 
al. [79] established useful theoretical bounds on detectability, particularly an impossibility 
result when there is an overlap between the in-distribution and OOD data. 

Given the onslaught of powerful attacks, designing appropriate mitigations is a challenge 
that needs to be addressed before deploying AI systems in critical domains. This challenge 
is exacerbated by the lack of information-theoretically secure machine learning algorithms 
for many tasks in the field, as we discussed in Section 1. This implies that presently de-
signing mitigations is an inherently ad hoc and fallible process. We refer the readers to 
available practice guides for securing machine learning deployments [39, 170], as well as 
existing guidelines for mitigating AML attacks [75]. 

The data and model sanitization techniques discussed in Section 4 reduce the impact of a 
range of poisoning attacks and should be widely used. However, they should be combined 
with cryptographic techniques for origin and integrity attestation to provide assurances 
downstream, as recommended in the final report of the National Security Commission on 
AI [165]. 

The robust training techniques discussed in Section 4 offer different approaches to pro-
viding theoretically certified defenses against data poisoning attacks with the intention of 
providing much-needed information-theoretic guarantees for security. The results are en-
couraging, but more research is needed to extend this methodology to more general as-
sumptions about the data distributions, the ability to handle OOD inputs, more complex 
models, and multiple data modalities. Another challenge is applying these techniques to 
very large models like LLMs and generative models, which are quickly becoming targets 
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of attacks [55]. 

Another general problem of AML mitigations for both evasion and poisoning attacks is 
the lack of reliable benchmarks which causes results from AML papers to be routinely 
incomparable, as they do not rely on the same assumptions and methods. While there 
have been some promising developments into this direction [60, 191], more research and 
encouragement is needed to foster the creation of standardized benchmarks to allow gaining 
reliable insights into the actual performance of proposed mitigations. 

Formal methods verification has a long history in other fields where high assurance is re-
quired, such as avionics and cryptography. The lessons learned there teach us that although 
the results from applying this methodology are excellent in terms of security and safety 
assurances, they come at a very high cost, which has prevented formal methods from being 
widely adopted. Currently, formal methods in these fields are primarily used in applications 
mandated by regulations. Applying formal methods to neural networks has significant po-
tential to provide much-needed security guarantees, especially in high-risk applications. 
However, the viability of this technology will be determined by a combination of techni-
cal and business criteria – namely, the ability to handle today’s complex machine learning 
models of interest at acceptable costs. More research is needed to extend this technology 
to all algebraic operations used in machine learning algorithms, to scale it up to the large 
models used today, and to accommodate rapid changes in the code of AI systems while 
limiting the costs of applying formal verification. 

There is an imbalance between the large number of privacy attacks listed in Section 5 
(i.e., memorization, membership inference, model extraction, and property inference) and 
available reliable mitigation techniques. In some sense, this is a normal state of affairs: a 
rapidly evolving technology gaining widespread adoption – even “hype” – which attracts 
the attention of adversaries, who try to expose and exploit its weaknesses before the tech-
nology has matured enough for society to assess and manage it effectively. To be sure, not 
all adversaries have malevolent intent. Some simply want to warn the public of potential 
breakdowns that can cause harm and erode trust in the technology. Additionally, not all 
attacks are as practical as they need to be to pose real threats to AI system deployments 
of interest. Yet the race between developers and adversaries has begun, and both sides 
are making great progress. This poses many difficult questions for the AI community of 
stakeholders, such as: 

• What is the best way to mitigate the potential exploits of memorized data from Sec-
tion 5.2 as models grow and ingest larger amounts of data? 

• What is the best way to prevent attackers from inferring membership in the training 
set or other properties of the training data using the attacks listed in Sections 5.3 and 
5.5? 

• How can developers protect their ML models and associated intellectual property 
from the emerging threats of algebraic methods that utilize the public API of the ML 
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model to query and exploit its secret weights or the side-channel leakage attacks from 
Section 5.4? The known mechanisms of preventing large numbers of queries through 
the API are ineffective in configurations with anonymous or unauthenticated access 
to the model. 

As answers to these questions become available, it is important for the community of stake-
holders to develop specific guidelines to complement the NIST AI RMF [170] for use cases 
where privacy is of utmost importance. 

6.1. Trade-O↵s Between the Attributes of Trustworthy AI 

The trustworthiness of an AI system depends on all of the attributes that characterize 
it [170]. For example, an AI system that is accurate but easily susceptible to adversarial 
exploits is unlikely to be trusted. Similarly, an AI system that produces harmfully biased 
or unfair outcomes is unlikely to be trusted even if it is robust. There are also trade-offs 
between explainability and adversarial robustness [107, 153]. In cases where fairness is 
important and privacy is necessary to maintain, the trade-off between privacy and fairness 
needs to be considered [109]. Unfortunately, it is not possible to simultaneously maximize 
the performance of the AI system with respect to these attributes. For instance, AI sys-
tems optimized for accuracy alone tend to underperform in terms of adversarial robustness 
and fairness [41, 69, 181, 225, 255]. Conversely, an AI system optimized for adversarial 
robustness may exhibit lower accuracy and deteriorated fairness outcomes [14, 231, 255]. 

The full characterization of the trade-offs between the different attributes of trust-
worthy AI is still an open research problem that is gaining increasing importance 
with the adoption of AI technology in many areas of modern life. 

In most cases, organizations will need to accept trade-offs between these properties and 
decide which of them to prioritize depending on the AI system, the use case, and potentially 
many other considerations about the economic, environmental, social, cultural, political, 
and global implications of the AI technology [170]. 

6.2. Multimodal Models: Are They More Robust? 

MULTIMODAL MODELS have shown great potential for achieving high performance on 
many machine learning tasks [10, 13, 159, 183, 256]. It is natural to assume that because 
there is redundancy of information across the different modalities, the model should be 
more robust against adversarial perturbations of a single modality. However, emerging ev-
idence from practice shows that this is not necessarily the case. Combining modalities and 
training the model on clean data alone does not seem to improve adversarial robustness. 
In addition, one of the most effective defenses against evasion attacks based on adversarial 
training, which is widely used in single modality applications, is prohibitively expensive 
in practical applications of multimodal learning. Additional effort is required to benefit 

35 



NIST AI 100-2e2023 ipd (Initial Public Draft) 
March 2023 

1317 

1318 

1319 

1320 

1321 

1322 

1323 

1324 

1325 

1326 

1327 

1328 

1329 

1330 

1331 

1332 

1333 

1334 

1335 

1336 

1337 

1338 

1339 

1340 

1341 

1342 

1343 

1344 

1345 

1346 

1347 

from the redundant information in order to improve robustness against single modality 
attacks [245]. Without such an effort, single modality attacks can be effective and compro-
mise multimodal models across a wide range of multimodal tasks despite the information 
contained in the remaining unperturbed modalities [245, 251]. Moreover, researchers have 
devised efficient mechanisms for constructing simultaneous attacks on multiple modali-
ties, which suggests that multimodal models might not be more robust against adversarial 
attacks despite improved performance [44, 195, 243]. 

The existence of simultaneous attacks on multimodal models suggests that miti-
gation techniques that only rely on single modality perturbations are not likely to 
be robust. Attackers in real life do not constrain themselves to attacks within a 
given security model but employ any attack that is available to them. 

6.3. Beyond Models and Data 

As pointed out in the Introduction, chatbots [50, 62, 152, 171] enabled by recent advances 
in deep learning have emerged as a powerful technology with great potential for numerous 
business applications, from entertainment to more critical fields. AI-enabled chatbots use 
NLP to process and respond to human input, but these chatbots have more complicated 
architectures than just a language model. For example, a critical element of a conversational 
chatbot is the dialog component whose task is to determine the purpose of the user input 
and identify relevant intents (i.e., establish the context for the conversation). Only then is 
the chatbot able to determine an appropriate response and return it to the user. Traditional 
attacks on chatbots have focused on overwhelming the chatbot with toxic input in order 
to alter its behaviour [190]. Recently, specific attacks using ”PROMPT INJECTIONS” have 
emerged as effective ways to trigger bad behaviour in the bot [228]. 

However, the design of AI systems that can communicate with humans is not just a tech-
nical problem but a deeply socio-technical challenge. In addition, the potential for attacks 
that could compromise the function of the dialog component and maliciously change the 
subject of the conversation for the unsuspecting user can lead to the chatbot offering mis-
leading or even harmful advice. The potential harms in this case go beyond the traditional 
harms considered by AML and defined in Section 2. 

Despite progress in the ability of chatbots to perform well on certain tasks [171], 
this technology is still limited and should not be deployed in applications that 
require a high degree of trust in the information they generate. 

As the development of AI-enabled chatbots continues and their deployment becomes more 
prevalent online, these concerns will come to the forefront and be pursued by adversaries 
to discover and exploit vulnerabilities and by companies developing the technology to im-
prove their design and implementation to protect against such attacks. 
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Realistic risk management throughout the entire life cycle of the technology is critically 
important to identify risks and plan early corresponding mitigation approaches [170]. For 
example, incorporating human adversarial input in the process of training the system (i.e., 
red teaming) or employing reinforcement learning from human feedback appear to offer 
benefits in terms of making the chatbot more resilient against toxic input or prompt injec-
tions [62]. Barrett et al. [11] have developed detailed risk profiles for cutting-edge genera-
tive AI systems that map well to the NIST AI RMF [57] and should be used for assessing 
and mitigating potentially catastrophic risks to society that may arise from this technology. 
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chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 
2018, volume 80 of Proceedings of Machine Learning Research, pages 2142–2151. 
PMLR, 2018. 

[105] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-
box adversarial attacks with bandits and priors. In International Conference on 
Learning Representations, 2019. 

[106] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, 
and Aleksander Madry. Adversarial examples are not bugs, they are features. In 
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, 
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Jégou. White-box vs black-box: Bayes optimal strategies for membership inference. 
In ICML, volume 97 of Proceedings of Machine Learning Research, pages 5558– 
5567. PMLR, 2019. 

[187] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vulnerability disclosure in the 
age of social media: Exploiting Twitter for predicting real-world exploits. In 24th 
USENIX Security Symposium (USENIX Security 15), pages 1041–1056, Washing-
ton, D.C., August 2015. USENIX Association. 

[188] Ahmed Salem, Giovanni Cherubin, David Evans, Boris Köpf, Andrew Paverd, An-
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Note: one may click on the page number shown at the end of the definition of each glossary 
entry to go to the page where the term is used. 

A. Appendix: Glossary 

adversarial examples Modified testing samples which induce mis-classification of a ma-
chine learning model at deployment time. v, 8 

Area Under the Curve In ML the Area Under the Curve (AUC) is a measure of the abil-
ity of a classifier to distinguish between classes. The higher the AUC, the better the 
performance of the model at distinguishing between the two classes. AUC measures 
the entire two-dimensional area underneath the RECEIVER OPERATING CHARAC-
TERISTICS (ROC) curve. 30 

availability attack Adversarial attacks against machine learning which degrade the over-
all model performance. 8 

backdoor pattern A trigger pattern inserted into a data sample to induce mis-classification 
of a poisoned model. For example, in computer vision it may be constructed from a 
set of neighboring pixels, e.g., a white square, and added to a specific target label. To 
mount a backdoor attack, the adversary first poisons the data by adding the trigger to 
a subset of the clean data and changing their corresponding labels to the target label. 
9 

backdoor poisoning attacks Poisoning attacks against machine learning which change 
the prediction on samples including a backdoor pattern. 8 

classification Type of supervised learning in which data labels are discrete. 7 

convolutional neural networks A Convolutional Neural Network (CNN) is a class of ar-
tificial neural networks whose architecture connects neurons from one layer to the 
next layer and includes at least one layer performing convolution operations. CNNs 
are typically applied to image analysis and classification. See [92] for further details. 
7, 31 

data poisoning Poisoning attacks in which a part of the training data is under the control 
of the adversary. 7 

data privacy Attacks against machine learning models to extract sensitive information 
about training data. 9 

data reconstruction Data privacy attacks which reconstruct sensitive information about 
training data records. 9 

deployment stage Stage of ML pipeline in which the model is deployed on new data. 7 
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discriminative Type of machine learning methods which learn to discriminate between 
classes. 7 

energy-latency attacks Attacks that exploit the performance dependency on hardware and 
model optimizations to negate the effects of hardware optimizations, increase com-
putation latency, increase hardware temperature and massively increase the amount 
of energy consumed. 8 

ensemble learning Type of a meta machine learning approach that combines the predic-
tions of several models to improve the performance of the combination. 7 

federated learning Type of collaborative machine learning, in which multiple users train 
jointly a machine learning model. 7 

federated learning models Federated learning is a methodology to train a decentralized 
machine learning model (e.g., deep neural networks or a pre-trained large language 
model) across multiple end-devices without sharing the data residing on each device. 
Thus, the end-devices collaboratively train a global model by exchanging model up-
dates with a server that aggregates the updates. Compared to traditional centralized 
learning where the data are pooled, federated learning has advantages in terms of data 
privacy and security but these may come as tradeoffs to the capabilities of the mod-
els learned through federated data. Other potential problems one needs to contend 
with here concern the trustworthiness of the end-devices and the impact of malicious 
actors on the learned model. 31 

feed-forward neural networks A Feed Forward Neural Network is an artificial neural 
network in which the connections between nodes is from one layer to the next and 
do not form a cycle. See [92] for further details. 31 

formal methods Formal methods are mathematically rigorous techniques for the specifi-
cation, development, and verification of software systems. 18 

generative Type of machine learning methods which learn the data distribution and can 
generate new examples from distribution. 7 

generative adversarial networks A generative adversarial network (GAN) is a class of 
machine learning frameworks in which two neural networks contest with each other 
in the form of a zero-sum game, where one agent’s gain is another agent’s loss. 
GAN’s learn to generate new data with the same statistics as the training set. See [92] 
for further details. 31 

graph neural networks A Graph Neural Network (GNN) is an optimizable transforma-
tion on all attributes of the graph (nodes, edges, global-context) that preserves the 
graph symmetries (permutation invariances). GNNs utilize a “graph-in, graph-out” 
architecture that takes an input graph with information loaded into its nodes, edges 
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and global-context, and progressively transform these embeddings into an output 
graph with the same connectivity as that of the input graph. 31 

hidden Markov models A hidden Markov model (HMM) is a statistical Markov model in 
which the system being modeled is assumed to be a Markov process with unobserv-
able states. In addition, the model provides an observable process whose outcomes 
are ”influenced” by the outcomes of Markov model in a known way. HMM can be 
used to describe the evolution of observable events that depend on internal factors, 
which are not directly observable. In machine learning it is assumed that the internal 
state of a model is hidden but not the hyperparameters. 31 

integrity attack Adversarial attacks against machine learning which change the output 
prediction of the machine learning model. 8 

label flipping a type of data poisoning attack where the adversary is restricted to changing 
the training labels. 21 

label limit Capability in which the attacker in some scenarios does not control the labels 
of training samples in supervised learning. 9 

logistic regression Type of linear classifier that predicts the probability of an observation 
to be part of a class.. 7 

membership-inference attacks Data privacy attacks to determine if a data sample was 
part of the training set of a machine learning model. 9 

memorization The ability of a machine learning model to encode, remember, and poten-
tially emit the training data. 9 

model control Capability in which the attacker has control over machine learning model 
parameters. 9 

model extraction Type of privacy attack to extract model architecture and parameters. 9 

model poisoning Poisoning attacks in which the model parameters are under the control 
of the adversary. 8 

model privacy Attacks against machine learning models to extract sensitive information 
about the model. 9 

multimodal models Modality is associated with the sensory modalities which represent 
primary human channels of communication and sensation, such as vision or touch. 
Multimodal models process and relate information from multiple modalities. 35 
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out-of-distribution This term refers to data that was collected at a different time, and pos-
sibly under different conditions or in a different environment, than the data collected 
to train the model. 33 

poisoning attacks Adversarial attacks against machine learning at training time. 7 

prompt injections Malicious plain text instructions to a generative AI system that uses 
textual instructions (a “prompt”) to accomplish a task causing the AI system to gen-
erate text on a topic prohibited by the designers of the system. 36 

property inference Data privacy attacks which infer global property about the training 
data of a machine learning model. 9 

query access Capability in which the attacker can issue queries to a trained machine learn-
ing model and obtain predictions. 9 

Receiver Operating Characteristics (ROC) In ML the Receiver Operating Characteris-
tics (ROC) curve plots true positive rate versus false positive rate for a classifier. 
62 

reinforcement learning Type of machine learning in which an agent interacts with the 
environment and learns to take actions which optimize a reward function. 7 

rowhammer attacks Rowhammer is a software-based fault-injection attack that exploits 
DRAM disturbance errors via user-space applications and allows the attacker to infer 
information about certain victim secrets stored in memory cells. Mounting this attack 
requires attacker’s control of a user-space unprivileged process that runs on the same 
machine as the victim’s ML model. 31 

semi-supervised learning Type of machine learning in which a small number of training 
samples are labeled, while the majority are unlabeled. 7 

shadow models Shadow models imitate the behavior of the target model. The training 
datasets and thus the ground truth about membership in these datasets are known for 
these models. Typically, the attack model is trained on the labeled inputs and outputs 
of the shadow models. 25 

side channel side channels allow an attacker to infer information about a secret by observ-
ing nonfunctional characteristics of a program, such as execution time or memory or 
by measuring or exploiting indirect coincidental effects of the system or its hardware, 
like power consumption variation, electromagnetic emanations, while the program is 
executing. Most commonly, such attacks aim to exfiltrate sensitive information, in-
cluding cryptographic keys. 31 
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source code control Capability in which the attacker has control over the source code of 
the machine learning algorithm. 9 

supervised learning Type of machine learning methods based on labeled data. 7 

Support Vector Machines A Support Vector Machine implements a decision function in 
the form of a hyperplane that serves to separate (i.e., classify) observations belonging 
to one class from another based on patterns of information about those observations 
(i.e., features). . 7, 8, 21, 31 

targeted poisoning attacks Poisoning attacks against machine learning which change the 
prediction on a small number of targeted samples. 8 

testing data control Capability in which the attacker has control over the testing data input 
to the machine learning model. 9 

training data control Capability in which the attacker has control over a part of the train-
ing data of a machine learning model. 9 

training stage Stage of machine learning pipeline in which the model is trained using 
training data. 7 

trojans A malicious code/logic inserted into the code of a software or hardware system, 
typically without the knowledge and consent of the organization that owns/develops 
the system, that is difficult to detect and may appear harmless, but can alter the 
intended function of the system upon a signal from an attacker to cause a malicious 
behavior desired by the attacker. 3 

unsupervised learning Type of machine learning methods based on unlabeled data. 7 
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