
NISTIR 8040

Measuring the Usability and
Security of Permuted Passwords on

Mobile Platforms

Kristen K. Greene
John Kelsey

Joshua M. Franklin

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.8040

http://dx.doi.org/10.6028/NIST.IR.8040

 NISTIR 8040

Measuring the Usability and
Security of Permuted Passwords on

Mobile Platforms

Kristen K. Greene
Information Access Division

Information Technology Laboratory

John Kelsey
Computer Security Division

Information Technology Laboratory

Joshua M. Franklin
Applied Cybersecurity Division

Information Technology Laboratory

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.8040

April 2016

U.S. Department of Commerce
Penny Pritzker, Secretary

 National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

National Institute of Standards and Technology Internal Report 8040
65 pages (April 2016)

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8040

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Information Access Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8940) Gaithersburg, MD 20899-8940
Email: nistir8040@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

http://csrc.nist.gov/publications
mailto:nistirwxyz@nist.gov

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

ii

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analyses to advance the development and productive use of
information technology. ITL’s responsibilities include the development of management, administrative,
technical, and physical standards and guidelines for the cost-effective security and privacy of other than
national security-related information in Federal information systems.

Abstract

Password entry on mobile devices significantly impacts both usability and security, but there is a lack of
usable security research in this area, specifically for complex password entry. To address this research
gap, we set out to assign strength metrics to passwords for which we already had usability data, in an
effort to have a more meaningful comparison between usability and security. This document reports a
method of optimizing the input of randomly generated passwords on mobile devices via password
permutation to allow for a comparison of password usability data. We found that the number of
keystrokes saved—the efficiency gained—via permutation depends on the number of onscreen keyboard
changes required in the original password rather than on password length. Additionally, we created and
are releasing Python scripts (publicly available from https://github.com/usnistgov/PasswordMetrics) for
the experiments on entropy loss we conducted across passwords ranging in length from 5 to 20 characters.

Keywords

authentication; mobile devices; onscreen keyboards; password entry; password generation; password
permutation; security-usability balance; text entry; usable security

Acknowledgments

The authors wish to thank their colleagues who reviewed drafts of this report and contributed to its
technical content, including Sharon Laskowski, Kerry McKay, Ray Perlner, Andrew Regenscheid, Mary
Theofanos, and Meltem Sönmez Turan of NIST. Thank you to Kenneth Thompson and others for
assistance with obtaining screenshots of mobile platforms. A very special thanks to Jim Filliben and
Andrew Rukhin for their mathematical consultation, and especially to Andrew for his formulas presented
in Appendix D.

Audience

This document is intended for those researchers in the usable security field, regardless of whether their
background is primarily usability or primarily security.

Trademark Information

All product names are registered trademarks or trademarks of their respective companies.

https://github.com/usnistgov/PasswordMetrics

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

iii

Table of Contents

1 INTRODUCTION .. 1
1.1 PURPOSE AND SCOPE ... 1
1.2 DOCUMENT STRUCTURE ... 1
1.3 DOCUMENT CONVENTIONS ... 2

2 EXPLORING MOBILE PLATFORMS.. 3
2.1 LITERATURE REVIEW .. 3
2.2 BACKGROUND ... 3

3 PASSWORD USABILITY BACKGROUND .. 7
3.1 EFFECTIVENESS .. 8
3.2 EFFICIENCY ... 9
3.3 SATISFACTION ... 10
3.4 ACROSS EFFECTIVENESS, EFFICIENCY, AND SATISFACTION MEASURES ... 11
3.5 THE SCIENCE OF MEASURING USABILITY .. 12

4 PASSWORD SECURITY BACKGROUND ... 13
4.1 PASSWORD GENERATION .. 13
4.2 PASSWORD USAGE .. 14
4.3 CLASSES OF ATTACKS ON PASSWORDS ... 15
4.4 PASSWORD STRENGTH METRICS .. 16

5 TOWARDS A NEW APPROACH .. 22
5.1 GENERAL METHODOLOGY ... 22
5.2 PASSWORD PERMUTATION AND ITS EFFECTS ON USABILITY .. 22
5.3 PASSWORD PERMUTATION AND ITS EFFECTS ON SECURITY ... 24

5.3.1 Experiment 1, Fan-Out .. 27
5.3.2 Experiment 2, Entropy Loss by Password Length .. 28
5.3.3 Experiment 3, Additional Length Required for All-Lowercase Passwords 30

5.4 CONSIDERATIONS OF PASSWORD PERMUTATION .. 31

6 DISCUSSION AND CONCLUSIONS .. 32
6.1 ETHICAL CONSIDERATIONS .. 33
6.2 FUTURE WORK .. 33

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

iv

List of Appendices

APPENDIX A: ACRONYMS AND ABBREVIATIONS ... 36

APPENDIX B: REFERENCES .. 37

APPENDIX C: KEYSTROKE COUNTS .. 40

APPENDIX D: PROBABILITY FORMULAS ... 53

 List of Figures

Figure 1 - Demonstrating the differences between mobile keyboards of the same OS 5

Figure 2 - Keyboard screen depths on modern mobile operating systems 5

Figure 3 - Press-and-hold functionality on mobile keyboards ... 6

List of Tables

Table 1 - Examples of Shannon Entropy .. 17

Table 2 - Original and permuted passwords and iOS keystroke counts. 23

Table 3 - Examples of Password Collision .. 25

Table 4 - Fan-out by Password Length ... 28

Table 5 - Entropy Loss by Password Length .. 29

Table 6 - Required Additional Length for All-Lowercase Passwords .. 30

Table 7 - Keystroke counts & key sequences for 5c2'Qe and Qce52' .. 40

Table 8 - Keystroke counts & key sequences for 3.bH1o and Hbo31. 41

Table 9 - Keystroke counts & key sequences for a7t?C2# and Cat72?# 42

Table 10 - Keystroke counts & key sequences for m3)61fHw and Hmfw361) 43

Table 11 - Keystroke counts & key sequences for p4d46*3TxY and TYpdx4463* 44

Table 12 - Keystroke counts & key sequences for q80<U/C2mv and UCqmv802</ 45

Table 13 - Keystroke counts & key sequences for d51)u4;X3wrf and Xduwrf5143); 46

Table 14 - Keystroke counts & key sequences for 6n04%Ei'Hm3V and EHVnim6043%' 47

Table 15 - Keystroke counts & key sequences for m#o)fp^2aRf207 and Rmofpaf2207#)^ 49

Table 16 - Keystroke counts & key sequences for 4i_55fQ$2Mnh30 and QMifnh455230_$ 51

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

1

1 Introduction

Passwords are rarely lauded as an effective authentication mechanism, yet their use is widespread. Since
their inception, passwords have been a bane to the individuals using them. Users constantly forget and
reset passwords. Organizations attempt to ensure that users’ passwords meet minimum complexity
requirements and are periodically changed as often as deemed necessary. Building upon these problems,
scores of password databases have been exfiltrated from various websites since electronic commerce
became commonplace. These leaked password datasets, combined with specialized hardware, provide an
optimum environment to make modern password cracking software effective and efficient.

The introduction of mobile computing platforms further complicates these issues, since the traditional
problems of authenticating via passwords are transferred to mobile devices. Given the ubiquity of mobile
devices and the need to use passwords on these systems, it is critical that we understand their security,
usability, and any potential tradeoffs associated with this smaller form factor. While in an ideal world,
there would be no tradeoffs between security and usability, in the real world, there often are (with security
requirements historically trumping usability considerations, although recognition of the importance of
usability is growing).

1.1 Purpose and Scope

This document proposes a measurement method for quantifying the effects on security resulting from
optimizing the usability of password entry specifically for constrained input environments, i.e., the mobile
touchscreen. Password entry on mobile devices significantly impacts input errors and time to completion,
in large part due to device constraints such as smaller keys and lack of tactile feedback (as opposed to a
desktop keyboard where it is possible to feel individual keys and thus type purely by touch). While such
mobile device constraints impact general text entry tasks as well, there are certain issues unique to the
entry of complex, randomly generated passwords due to their inclusion of numbers and symbols, which
are located on different onscreen keyboards.

Our larger purpose is twofold: 1) explore the current state of both usability and security metrics applicable
to passwords, and 2) discuss our experiences in attempting to use these metrics in a real world situation.
Our specific initial goal was to assign strength metrics to passwords for which we already had usability
metrics, in an effort to have a more meaningful comparison between the two. Too often, "usable security"
research is primarily performed from a single dominant perspective (i.e., focused on security or focused
on usability, but rarely both) depending on the background of the researchers. This research attempts to
provide more equitable treatment of the usability and security aspects of the problem at hand in an effort
to have a true usable security project.

1.2 Document Structure

In order to assess both the usability and security of system-generated passwords pre- and post-
permutation, it is necessary to first define the metrics and measurement methodology for usability and
security. This document begins with a discussion of the keyboard of multiple mobile platforms, exploring
what makes them distinct from their desktop counterparts. This is followed by a discussion of usability
and security measures and terminology, followed by an explanation of why password permutation would
increase usability while decreasing security. We include our methodology to explore the question "how
much security is lost as a result of permuting system-generated passwords for mobile devices?" The
methodology section includes a practical means of answering the question via Monte Carlo simulations.

The mathematical formulas by which one could derive the true mathematical probability answer are
included in Appendix D. In the results section, we present metrics for both the original (non-permuted)

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

2

passwords and the permuted passwords. We also present metrics from an entirely new set of randomly
generated passwords created with a program developed in-house (all code available at
https://github.com/usnistgov/PasswordMetrics). Finally, we conclude with discussion of the larger issues
and misconceptions we uncovered during the course of this project.

1.3 Document Conventions

The following conventions are used throughout the Interagency Report:

• All references to NIST Special Publication (SP) 800-63 are references to NIST SP 800-63-2 [9].

• Note that NIST SP 800-63 refers to user selected and randomly selected passwords. However, as
this could imply that users are selecting passwords from a list of provided passwords, we instead
use the terms user generated and randomly generated in this document. Within the context of this
document, we use the terms randomly generated and system generated interchangeably to
describe passwords that were created algorithmically or by other password generation software.

• Unless otherwise noted, all text and figures that refer to iOS keyboards refer to iOS 8. Android
keyboards were taken from Android 5.0 (Lollipop). Windows Phone keyboards were taken from
Windows Phone 8.1.

• Passwords included in-line with the text are italicized and are not offset with double quotation
marks (“ ”). The authors believed that using quotation marks would have caused confusion since it
is possible for quotation marks to be included as part of a password.

https://github.com/usnistgov/PasswordMetrics

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

3

2 Exploring Mobile Platforms

2.1 Literature Review

In our experience, there is a misconception that both sides of the usable security field can easily acquire
data, assign metrics, and analyze the data. This work should assist individuals of the usable security
community in understanding the challenges both sides face. For instance, some may believe that assigning
security metrics to passwords is a solved problem, when in reality there is a menagerie of open research
questions.

Although we set out simply to measure the loss in security versus the gain in usability for passwords that
were permuted to be more "mobile device friendly," we believe we achieved much more than our initial
measurement goal. By having usability and security experts working so closely together on this project,
we uncovered several important—and likely widespread—misunderstandings experts from one field
initially held about the other field; we identified core concepts and vocabulary that are fundamental to
each field's measurement methodology, yet were initially foreign or only vaguely understood by the other
field. We hope this report can serve as a type of primer or refresher for each field to learn more about the
other, in an effort to foster more informed dialogue and facilitate better collaboration between experts
with differing backgrounds.

We permuted passwords from prior mobile usability research [1] and calculated the theoretical entropy
lost as a result of grouping character classes (i.e., uppercase, lowercase, numbers, symbols) together
within a password. By rearranging/grouping the password contents in this way, it reduces the number of
keystrokes required to enter the password (see Table 2), since the user does not have to continually switch
back and forth between three different onscreen keyboards (see Figure 2). We know unequivocally that
for at least one facet of usability (efficiency), the permuted passwords are better. On the other hand, this
restructuring of password contents obviously decreases security by adding predictable structure: in the
permuted passwords, uppercase letters are always first, followed by lowercase letters, numbers, and
finally symbols.

We argue that only by empirically quantifying the security-usability tradeoff can we hope to measure and
understand effects of changing passwords along either or both dimensions. Although alternative—and
arguably better—mobile authentication mechanisms exist [2], the unfortunate reality is that passwords are
too deeply ingrained in our current digital world to be fully replaced in the near term. In the longer term,
research efforts such as the National Strategy for Trusted Identities in Cyberspace (NSTIC) aim to
ultimately replace passwords as a primary authentication mechanism [3]. In the interim, however, our
work is focused on evaluating ways to improve password usability for mobile devices without an
unacceptably large sacrifice to security.

2.2 Background

The stimuli we used for this effort were taken from a set of passwords reported in a recent behavioral
study on mobile password entry for complex, system-generated passwords [1], which was a replication of
a desktop password entry study [4]. In both studies, participants had to learn and enter 10 complex,
system-generated passwords 10 times each, then complete a surprise recall test; their entry times, error
frequencies, and recall failures were recorded. The 10 passwords used in those studies ranged in length
from 6 to 14 characters, and were generated using the Advanced Password Generator from BinaryMark1
with the following password policy rules: must consist of at least one upper-case character, one lower

1 http://www.binarymark.com/Products/PasswordGenerator/default.aspx

http://www.binarymark.com/Products/PasswordGenerator/default.aspx

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

4

case character, one number, and one special character, cannot begin with an upper-case character, nor end
with an exclamation mark. In addition to the 10 passwords (see Table 2) from previous studies, we also
used new randomly generated passwords via a program developed in-house (see Section 5.1 for details).

Prior work [1] suggested that the combination of complex password requirements and mobile keyboard
constraints seems to result in emergent cognitive costs associated with the interruptive nature of
transitioning back and forth between multiple onscreen keyboards. This implies that rearranging complex
passwords to minimize the number of onscreen keyboard changes required should increase their usability
on mobile devices, but at what cost to security?

The work presented in [1] was focused on iOS devices only (using an iPhone 4S and iPad II both running
iOS 6), and did not compare alternate mobile platforms such as Android or Windows, nor did it include a
direct (i.e., within-subjects) comparison with desktop computers. Such comparisons may ultimately be
necessary to better understand the interaction of password policy and device-specific constraints, and to
understand the ramifications of using the same policy in vastly different computing environments (mobile
vs. traditional desktop).

In sharp contrast to the standard desktop QWERTY keyboard layout [18], there is no de facto onscreen
keyboard for mobile touchscreen devices.2 While a standard onscreen keyboard layout may not be
necessary, the variability in onscreen keyboard sizes, layouts, and functionality complicates mobile
password research, at least where randomly generated passwords are concerned. Onscreen keyboards vary
widely between manufacturers and operating systems, but may also vary between devices with the same
operating system. For instance, there are symbols, such as , . ? ! available on the primary iPad alphabetic
keyboard that are unavailable on the corresponding iPhone alphabetic keyboard in Figure 1.3

2 Onscreen keyboards can differ by phone model, manufacturer, and operating system.
3 Note: We do not discuss third-party keyboards or built-in sliding keyboards.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

5

Figure 1 - Demonstrating the differences between mobile keyboards of the same OS

Regardless of specific device, there are some very high-level commonalities between onscreen keyboards
as shown in Figure 2. While exact layouts differ, there is some basic similarity in the sense that they
follow a core pattern of three keyboards—roughly containing letters, numbers, and symbols—that users
must navigate between, as only one keyboard is displayed at a time.

Figure 2 - Keyboard screen depths on modern mobile operating systems

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

6

Another high-level similarity is the inclusion of press-and-hold functionality, shown in Figure 3, where a
sustained keypress brings up additional character options. Although this press-and-hold key option may
not be obvious to users, the issue of hidden functionality is not unique to onscreen keyboards, or even
mobile devices—hidden functionality is an issue in desktop computing as well. Note that on the Android
keyboard, the press-and-hold functionality for the top row of letters (q, w, e, r, t, y, u, i, o, p) allows one to
access numbers (1, 2, 3, 4, 5, 6, 7, 8, 9, 0). There is even a visible indication of those keys' functionality—
note the small numbers in the upper right corner of the aforementioned Android letter keys.

Figure 3 - Press-and-hold functionality on mobile keyboards

Although they are not actual letter keys, there are two keys on the iPad letter keyboard that do have
visible indicators of their alternate functionality. These are the previously mentioned comma/exclamation
mark key, and the period/question mark key, but note that the secondary characters are not accessed via
press-and-hold, but rather by a single tap on the shift key (see Figure 1).

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

7

3 Password Usability Background

Note to readers: Although this section may be a review of core concepts already well understood by
usability practitioners, many of the concepts described below are new for those usable security
researchers coming from the field of computer security.

In this section we first provide an overview of the standard definition of usability and its components.
This is followed by more detailed discussion of each of the facets of usability, as well as examples of
usability measurement specifically as it pertains to passwords.

While there is an international standard for the definition of product usability [5], there is no
corresponding standard definition of password usability; we are by no means suggesting that there should
be one, for the standard definition of usability suffices as-is. Although the traditional definition of
usability was developed in the context of product evaluation and testing, its wider applicability and
adaptability should be clear from the following section(s).

Usability is defined as "the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use. [5]" Effectiveness,
efficiency, and satisfaction are measurable attributes that combine to form the larger construct of
usability. The former measures (effectiveness and efficiency) are the objective usability metrics, while the
latter (satisfaction) is more subjective; this objective/subjective distinction is often referred to as
"preference versus performance," where preference refers to satisfaction, and performance refers to
effectiveness and efficiency. All three—effectiveness, efficiency, and satisfaction—have well-defined
general methods of measurement, which can be tailored specifically for measuring usability in a particular
task domain, such as for password entry tasks.

Finally, it should be noted that objective and subjective usability are not always correlated with one
another; there can be disagreement between performance versus preference [6].

As defined in ISO 9241 [5]:

Usability: The extent to which a product can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use.

Effectiveness: Accuracy and completeness with which users achieve specified goals.

Efficiency: Resources expended in relation to the accuracy and completeness with which users
achieve goals.

Satisfaction: Freedom from discomfort, and positive attitudes towards the use of the product.

Context of use: Users, tasks, equipment (hardware, software and materials), and the physical and
social environments in which a product is used.

User: Person who interacts with the product.

Goal: Intended outcome.

Task: Activities required to achieve a goal. Note that activities can be physical or cognitive.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

8

Product: Part of the equipment (hardware, software and materials) for which usability is to be
specified or evaluated.

Mapping measures of effectiveness, efficiency, and satisfaction to password entry tasks is straightforward
with a solid understanding of general usability. Effectiveness can be measured as the number (and class)
of errors a user made during password entry, while efficiency can be measured as the time taken by a user
to enter a password. Satisfaction can be measured via post-task questionnaires.

As with many dependent variables, usability can be measured at different levels of granularity, some of
which can only be captured in the laboratory setting. Offering the capability for such granular
measurement is an important advantage and contribution of conducting laboratory experiments; some of
the measures described in subsequent sections would be impossible to capture outside of the laboratory.
The following focuses heavily on measures of effectiveness since errors are arguably most important in
terms of password entry; while it is common for users to be locked out of their accounts due to too many
erroneous login attempts, it is relatively rare for a user to be locked out for typing too slowly.

In 1999, Adams and Sasse [7] identified usability characteristics that users desire of passwords: easy to
remember, able to be used across multiple systems, and rarely change. However, these are usability
characteristics at a higher level, and not usability metrics at the level of granularity appropriate for
measuring usability of passwords in the context of individual password entry tasks (i.e., password typing
tasks) per se, which is the focus of the current work. The following subsections describe how usability
can be measured at different levels of granularity specifically in the context of password entry tasks.

3.1 Effectiveness

Effectiveness: Accuracy and completeness with which users achieve specified goals. [5]

In general usability research, effectiveness is typically measured via error rates, which can be captured at
a high level (e.g., overall rates of task completion/success versus failure), intermediate level (e.g., per
subtask errors), and/or very detailed low-level (e.g., per keystroke or per mouseclick errors). Beyond
simply counting the number of errors made relative to the number of opportunities for error, it is also
critical to identify the specific nature of the error, and if possible, its root cause.

For password entry specifically, effectiveness can be measured in multiple ways, at the password level
and at the character level. At the password level, effectiveness can be measured via per-password login
failure rates. At the more granular character level, effectiveness can be measured via per-keystroke errors.

Measuring only overall login failure rates is most analogous to the real world (when as long as a password
contains at least one error, login fails), yet this level of measurement ignores rich and important
information regarding the cause behind a login failure. Measuring effectiveness at the password level as
only a binary success/failure would ignore both the number and nature of errors committed during
password entry; it would also not capture any corrective actions taken by a user.

As both the frequency and nature of errors can differ greatly by device, it is much more informative to
also measure effectiveness at the individual character level by capturing per-keystroke errors.
Categorizing the nature of the error at an individual character level has been done in text entry research
for decades. Although password entry does differ from traditional transcription typing tasks (e.g., where
the use of numbers and symbols is rare) commonly used in text entry research, it still makes sense to use
the error classification from that field. Not only do passwords—specifically user generated ones—often
contain mostly letters, but the traditional text entry error categories (e.g., transposition, omission) largely
apply regardless of whether the characters are letters, numbers, or symbols.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

9

Ref. [1] categorized errors at this level based on the common classes of errors used in text entry research
as well as the frequency of certain errors found in that particular experiment. If duplicate or additional
characters were entered into a password field, they were categorized as Extra Character errors. If
characters were omitted from entry, they were categorized as Missing Character errors. There were four
classes of substitution errors: substitution of the correct character with an Incorrectly Shifted character,
with a Wrong Character, or with an Adjacent Key character (i.e., a character adjacent to it on the
keyboard), and finally, substitution of the letter "o" for the number zero and vice versa (although this
particular error could also be categorized as a Wrong Character error, its high frequency of occurrence
warranted its own category).

Why is it important to capture such granular error data? Why bother to categorize individual character
errors in this manner? Only by understanding the nature of the errors can we determine exactly how they
relate to device constraints versus password characteristics. For example, the frequency of adjacent key
errors was significantly higher for the smartphone than the tablet in the Greene et al. (2014) study [1],
obviously due to device constraints given that the onscreen keys are much smaller targets for an iPhone
(especially in portrait orientation) than for an iPad. On the other hand, the propensity for users to
substitute the letter "o" for the number zero and vice versa is related to characteristics of the password
rather than constraints of the device per se, as this error was common both in mobile and desktop
password typing studies ([1] and [4], respectively).

3.2 Efficiency

Efficiency: Resources expended in relation to the accuracy and completeness with which users
achieve goals. [5]

Efficiency is generally measured via time on task. As with measures of effectiveness, efficiency measures
can also be captured at different levels of granularity, from overall task completion times, to subtask
times, and all the way down to individual keystroke times. Similarly, efficiency for password entry tasks
can be measured at the password level (time to type the entire password) and at the character level (time
to type an individual character).

In laboratory experiments where participants are assigned passwords and must memorize and practice
them, it is possible to distinguish efficiency during the initial learning phase (i.e., time to initially
memorize a password and practice typing it a specified number of times to meet a certain performance
criterion) from efficiency during subsequent entry tasks (i.e., time to type a well-practiced password). By
measuring differences in password learning efficiency compared with differences in password entry
efficiency, one could investigate questions such as whether there are passwords that are initially more
time-consuming to learn, but faster to enter in the long run, and vice versa.

Efficiency does not exist in a vacuum however, as it is greatly influenced by effectiveness. If users are
making numerous errors that require correction, they will obviously be slower during password entry than
if they were error-free. That is why when discussing efficiency and effectiveness, researchers often talk
about a speed-accuracy tradeoff function. In terms of mobile password entry, some users may have a
more aggressive speed-accuracy tradeoff function, preferring to type more quickly at the cost of higher
probability of errors. Conversely, other users may have a more conservative speed-accuracy tradeoff
function, preferring to type more slowly and cautiously in order to reduce their probability of committing
errors. Given the higher cost of errors in password entry tasks (e.g., having to retype the entire password
and/or deal with account lockouts) relative to regular text entry tasks, it is quite possible that some users
even change their normal text entry strategies to be more conservative during password entry on mobile
devices. This may be especially likely for users that normally rely heavily upon features like autocorrect
and autocomplete during regular text entry.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

10

3.3 Satisfaction

Satisfaction: Freedom from discomfort, and positive attitudes towards the use of the product. [5]

Although user satisfaction itself is a subjective construct, there are nonetheless standardized
questionnaires (also called instruments) and objective ways to measure it—indeed, there are entire
subfields of research devoted to questionnaire design and measurement theory. In addition to standardized
instruments for measuring user satisfaction, it is possible for researchers to create their own customized
questionnaires; the following section discusses each in turn.

There are numerous standardized usability questionnaires with which to assess user satisfaction in a
rigorous, repeatable manner. They utilize predefined questions in a specific order and format, with
specific scoring rules based on a user’s responses to the questions. Furthermore, standardized
questionnaires have undergone psychometric testing to evaluate their reliability, validity, and sensitivity.
Psychometrics is a field of study surrounding psychological measurement; it involves the objective
measurement of various human capabilities and characteristics (e.g., knowledge, abilities, personalities,
attitudes), as well as statistical research on measurement theory. In addition to variability in their
psychometric properties, these standardized instruments vary in length and cost (e.g., some are free and
others must be purchased for use).

As with effectiveness and efficiency, satisfaction can also be measured at different levels of granularity.
There are both post-task questionnaires4 and post-study questionnaires.5 There are general usability
questionnaires appropriate for almost any product, as well as more targeted questionnaires,6 such as those
designed specifically for website evaluation.7 Whereas the aforementioned questionnaires are (largely
speaking) appropriate for usability testing with a wide variety of products and scenarios, their direct
applicability to passwords is less clear.

As in other areas of usability research, it is common for password usability researchers to create their own
customized experiment-specific post-task and/or post-study questionnaires. However, knowing the exact
psychometric properties of such customized questionnaires is difficult since they have not been used and
validated by the larger usability research community. Given the numerous—and sometimes subtle—
considerations for a well-constructed questionnaire, a detailed discussion of questionnaire design
principles and psychometric theory is out of scope for the current paper. However, a brief description and
example of one of the more common satisfaction questionnaire items (Likert8 item) is appropriate.

Likert scales and Likert items are commonly used in questionnaire research; although often used
interchangeably, there are technically distinctions between a true Likert scale, an individual Likert item,
and the rating scale presentation format. A scale comes from grouped responses to a set of individual
items. An individual Likert item is often a statement where a respondent indicates their level of
disagreement/agreement on a symmetric disagree/agree scale.

4 Examples of post-task questionnaires include the ASQ (After-Scenario Questionnaire), SEQ (Single Ease Question), SMEQ

(Subjective Mental Effort Questionnaire), ER (Expectation Ratings), and UME (Usability Magnitude Estimation).
5 Examples of post-study questionnaires include the QUIS (Questionnaire for User Interface Satisfaction), SUMI (Software

Usability Measurement Inventory), PSSUQ (Post-Study System Usability Questionnaire), SUS (System Usability Scale), and
UMUX and UMUX-LITE (Usability Metric for User Experience).

6 Examples of more targeted questionnaires include the CSUQ (Computer System Usability Questionnaire) and HQ (Hedonic
Quality).

7 Examples include the WAMMI (Website Analysis and Measurement Inventory) and SUPR-Q (Standardized Universal Percentile
Rank Questionnaire).

8 Named after psychologist Rensis Likert, developer of the scale. Likert is pronounced "lick-ert".

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

11

For example, the statement might be "Password entry on mobile devices is too onerous with current
password requirements." For a five-level Likert item the response options might then be: strongly
disagree, disagree, neither agree nor disagree, agree, strongly agree. The rating scale presentation format
would then typically consist of a horizontal line with five equidistant markers (each labeled with its
corresponding response option), and the respondent would then circle or draw an X next to their desired
response. Note that this is but a single example question; if designing a questionnaire, one would want to
balance negatively phrased and positively phrased items to help reduce bias. Another example might be
"Rate the difficulty of memorizing this password" or "Rate the difficulty of typing this password," with
five response options then ranging from very easy to very hard for each question.

It is possible to use different levels of response options (e.g., five versus seven), and it is also possible to
use an even-point scale where the neutral middle option is removed. It is common for scales to have an
equal number of positively keyed and negatively keyed statements in order to reduce bias. Regardless of
whether a traditional Likert item or scale is used, careful phrasing of questions and response options is
absolutely critical in all cases to reduce bias.

3.4 Across Effectiveness, Efficiency, and Satisfaction Measures

Usability: The extent to which a product can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use. [5]

User: Person who interacts with the product. [5]

Goal: Intended outcome. [5]

Context of use: Users, tasks, equipment (hardware, software and materials), and the physical and
social environments in which a product is used. [5]

There is much more to the ISO 9241 definition of usability beyond simply the words "effectiveness,
efficiency, and satisfaction." The surrounding words "specified users," "specified goals," and "specified
context of use" are all extremely important, both to the field of usability in general and usable security in
particular. Here we briefly consider each of those three phrases in turn as they relate to various aspects of
usable security research.

Specified users: while password research traditionally focuses on end users (as does our current work),
one could—and we argue, should—conduct research with other specified user populations, such as
system administrators and IT support staff.

Specified goals: goals will change depending on both the user and the context of use; these concepts can
influence one another. Is the goal of password creation/assignment to maximize security or memorability,
for a single password or across a password portfolio? [8]

Specified context of use: authentication usability may change significantly depending on the current
context of use. Imagine a means of mobile authentication (e.g., simple pin entry) that is relatively easy for
users in an office setting; that same means of authentication would not only be unusable, but actually
impossible, for gloved firefighters in an emergency response situation, for gloved soldiers in combat
situations, etc.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

12

3.5 The Science of Measuring Usability

Usability can be measured in a rigorous, reliable, and repeatable manner via metrics and measurement
methodologies that have been well-established and used in research across a variety of topic areas. It
should be emphasized that there are rigorous methods for both qualitative research and quantitative
research, for formative and summative usability testing, etc. Regardless of whether it is a smaller
qualitative study (e.g., n=5) or a much larger quantitative study (e.g., n=5000), there are fundamental
concepts and research methods from the behavioral sciences that are already appropriate for—or easily
adapted to—conducting usable security research. Many usability studies are, in fact, cognitive psychology
experiments that make use of inferential statistics and experimental design principles common to other
research fields; they utilize control variables, manipulate experimental variables, use randomization and
counterbalancing to control for order effects, measure power and sensitivity, examine main effects and
interactions between variables, etc.

This is not to suggest that all usability research is conducted in this manner (nor should it be, as different
study designs and sample sizes are more appropriate to answer different research questions), nor is this to
suggest that all usability researchers have the background and training to conduct such studies (just as
there are many security specializations, so too are there many specializations in usability and human
factors), but merely to give an example of experimental methodology with which other fields may already
be more familiar. The final point is this: no matter the sample size, it is both possible and necessary to
conduct human subjects research with rigor. We urge both usability and security practitioners to examine
each other’s work through the lens of experimental design and be critical consumers of others' research;
many of the same principles apply regardless of whether one is measuring human behavior, system
behavior, or combined human-system performance.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

13

4 Password Security Background

Note to readers: Although this section may be a review of core concepts already well understood by
individuals from the field of computer security, many of the concepts described below are new for those
usable security researchers coming from the usability field.

Broadly speaking, passwords are used as a means of confirming an identity in order to access protected
data or information systems, but are also used to derive cryptographic keys used for encrypting individual
files or whole drives. Passwords play a part in the authentication process, often divided into the
identification, authentication, and authorization of individuals.9 Identification is the process of making an
identity claim, such as “I am Alice.” Authentication is the process of establishing confidence in an
identity by providing evidence via a token10 (e.g., password, PIN, smartcard, biometric). Finally,
authorization is the act of granting privileges to the person or entity associated with the proven identity,
once they have already been authenticated. Therefore, it could be stated that the focus of this work is
authentication via a specific type of token, the password, being used in a mobile environment.

The authentication process uses identities, credentials, and tokens to provide assurance in a person or
entity’s identity claims. Simple authentication schemes involve two parties: an entity asserting an identity
claim (the claimant) and an entity verifying that the claim is accurate (the verifier). Modern authentication
schemes typically use cryptographic protocols to achieve this end. The tokens used to provide assurance
in an entity's identity are categorized as follows:

• Something you know: Passwords and PINs are common examples,

• Something you have: Such as a driver's license or a cryptographic key, and

• Something you are: An iris, fingerprint, or other biometric data.

Passwords are Something you know and are further classified by NIST's guidance on electronic
authentication in NIST SP 800-63 as memorized secret tokens [9]. Memorized secret tokens are defined as
"A secret shared between the user and the party issuing credentials. Memorized Secret Tokens are
typically character strings (e.g., passwords and passphrases) or numerical strings (e.g., PINs)."
Memorized secret tokens are passwords, passphrases, passcodes, and PINs, although industry standard
definitions do not exist for each of these tokens. In general, passphrases are groups of words concatenated
together to create short sentences or sayings. PINs are composed of numbers and are typically shorter,
only 4-6 characters, than passwords. Finally, passcodes may be longer than PINs, and although they
typically contain only numbers, complex passcodes may also be alphanumeric.

4.1 Password Generation

When discussing passwords, one overarching distinction exists: passwords generated by a user, and
passwords generated by a computer program. Password generation has a significant impact on the
usability and security of passwords and may be performed by a user or by a computer program. User

9 It is possible to authenticate non-person entities such as resource, process, and information.
10 NIST SP 800-63 defines token: Something that the Claimant possesses and controls (typically a cryptographic module or
password) that is used to authenticate the Claimant’s identity.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

14

generated passwords are often requested from a user when they create an account. Randomly generated
passwords are often created in conjunction with a pseudo-random number generator, although this is not
the only method. For example, published schemes exist for generating random passwords using lists of
words and dice [10]. The following describes the characteristics of user and randomly generated
passwords.

Randomly generated passwords are more complex than user generated passwords and are generally
considered to offer a higher level of security. Randomly generated passwords are generally more difficult
for users to remember and input than user generated passwords while user generated password are often
easier to remember and input, but the security of the password is more difficult to measure. While there
are many ways to measure the security of user generated passwords [9] [11], the field of computer
security lacks a universally agreed upon measurement standard with sufficient evidence to prove the merit
of the standard.

When users create passwords, it is common for the password to be compared against a word list to ensure
it does not contain common words, which are likely to be guessed by an attacker. These wordlists are
referred to as dictionaries. If the user generated password contains a word within the dictionary, the
password may be rejected and the user asked to generate a different password. In addition to lists of
words, user generated passwords can be compared against lists of known passwords. These password
lists, also known as password sets or password dictionaries, contain passwords previously obtained from
users. It is common for these password lists to be illegally obtained by malicious entities via attacking
websites and online databases. Although ethical considerations exist when using password lists, these
password lists have been used throughout academic literature for research purposes.

4.2 Password Usage

Authentication protocols use passwords to provide assurance to a verifying party. Strong authentication
protocols are cryptographic11 in nature and exchange messages between the verifier and claimant in an
effort to assist the verifier in arriving at an authentication decision. A myriad of authentication protocols
exist, each using passwords in different ways and offering varying levels of assurance in an individual's
identity.12 These protocols may provide services beyond authentication, such as cryptographic key
generation and key exchange.

Two common ways of using passwords are to access a web application or operating system. The
authentication protocols used to access these systems are quite different from each other. These are not
the sole methods of using passwords, but instead encompass a large majority of use cases.

When authenticating to a web application, registration is generally required to obtain a password. Once a
password is either chosen by, or assigned to, a user, it must be stored. The user's plaintext password is
concatenated with random data referred to as a salt. The password and salt are then cryptographically
hashed using a cryptographic hashing algorithm (e.g., SHA-1, SHA-256) on the server. For instance, the
password dragonfootball hashes to the value 33fe8ce02a88f2168bfdec233dcbda366e61aba2. When the
password and salt are hashed together there is a different result: SHA-1(dragonfootball +
&D6HTpU`r2Y5yai+xLkp;1Y!M=!u~3#0Fde^Q|q) = 7dbc12b064306bf61e5fe1af8fb00671d7ffd88c.
Only the final hash and salt are stored within the server's database—the plaintext password should never

11 Cryptography: The discipline that embodies principles, means and methods for providing information security, including

confidentiality, data integrity, non- repudiation, and authenticity.
12 Examples of authentication protocols include Kerberos, PEAP (Protected Extensible Authentication Protocol), and TACACS+

(Terminal Access Controller Access-Control System Plus).

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

15

be stored in the database. When a user needs to authenticate, they type and submit their password, which
is transmitted to the verifier, often in an encrypted format. The verifier decrypts the password and queries
the database for the salt and hash. The password and salt the system receives from the user are
concatenated, hashed, and the output is compared with the stored hash. If they match, the user is
authenticated to the system.

This authentication method implies that web-based systems must store authentication-related information
(e.g., usernames, salts, salted hashes of passwords) that allows the system to check whether the user’s
password is correct. An attacker who compromises a web application is in a much better position to
obtain a specific user’s password, but systems that store authentication information in cleartext are
vulnerable to having all of their users’ authentication information (e.g., usernames, passwords) exposed.
This type of security breach is considered quite serious for a user or group of users, since the attackers can
now try various username/password couplets on the compromised web application and other systems on
the internet.

Passwords used in an operating system context use drastically different backend authentication systems.
While web based authentication requires a network, authenticating to an operating system does not
necessarily require a network connection depending on how the system and the enterprise are configured.
When locally authenticating to general purpose operating systems (e.g., Windows, OS X), the method(s)
by which passwords are used and stored are different based on the operating system, and are often version
specific (e.g., Windows and *nix variants). In Unix and Linux variants, hashed passwords are often stored
in a file called a password file, which often has corresponding operating system level logical access
control mechanisms (e.g., file permissions) in place to prevent the reading and writing of this file. The
passwords of many users are often stored in the same password file alongside their associated username.

4.3 Classes of Attacks on Passwords

There are a variety of ways of attacking passwords and we will discuss the following classes of attacks:

• Password guessing:
o Brute force,
o Intelligent guessing;

• Eavesdropping;
• Social Engineering; and
• Physical attacks.

One of the largest classes of attacks is password guessing, in which unauthorized individuals attempt to
guess the password. One type of password guessing attack is a brute force attack, which is an attempt to
exhaustively guess all possible passwords to gain access to a resource. This attack begins with simple
passwords and attempts more complex passwords over time. Dictionary attacks are another type of
password guessing attack, which draw passwords from a list of words (i.e., a dictionary) and try to
authenticate via these words. This attack is effective since users often use simple dictionary words as their
password. Dictionary attacks can be made more intelligent by concatenating additional dictionary words
or by using character substitution. By concatenating the dictionary words dragon and football together the
password dragonfootball is generated. Character substitution can build upon this tactic by replacing the
characters of a password with common alternatives, such is the case when the word dragonfootball is
restyled as Dr@g0nFo07Ba1l.

It's useful to note that the environment in which password guessing attacks are conducted plays a large
role in defending these systems. If an attacker is actively trying to guess a password against a live

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

16

authentication system in real-time, this is referred to as an online attack. A common defense mechanism
for online attacks is restricting the number or speed of password guesses, which renders these types of
attacks impractical. One can also “lock out" an account after some predetermined number of incorrect
guesses, and an administrator is commonly required to reset the account. A related defense mechanism is
referred to as “exponential backoff,” where every incorrect authentication attempt exponentially increases
the duration of time required before the account can be used again.

When systems used for performing authentication are compromised, it is commonplace for an attacker to
retrieve password files or databases. If the attacker has a database or file of password hashes, they
typically have the opportunity to guess as many passwords as they would like (i.e., an offline attack) for
as long as they would like. They are only limited by the speed of their guesses and the amount of time and
other resources they wish to invest in password guessing activities.

A useful model for thinking about password security is to consider a password’s resistance to offline
attacks. For online systems, this includes assuming that a system’s password file may be compromised at
some point in the future, which helps to give a useful "worst case" estimate of password security.
However, an online system in which the password file isn't compromised will provide users with an
enormously better level of security. Security against offline attacks is based on the technical measures of
how the password file or password-based key derivation is done, and on the quality of the password used.

Eavesdropping attacks occur when a user is monitoring the traffic on a network and is able to obtain the
password via intercepting network traffic. This is mitigated by establishing a protected connection, such
as using Secure Sockets Layer (SSL) or Transport Layer Security (TLS) between two communicating
parties.

Social engineering is defined as "the act of deceiving an individual into revealing sensitive information by
associating with the individual to gain confidence and trust." Social engineering attacks, such as phishing,
completely bypass well implemented authentication systems.

Physical attacks, such as installing a hardware key logger on an information system, are all ways of
circumventing even well-implemented password-based authentication schemes and protocols. Shoulder
surfing occurs when an attacker is physically present can view a user's keyboard while a password is
being typed without their knowledge. This can occur on desktops and may be easier or more common on
a mobile device with keyboards engineered for easy viewing. Automated shoulder surfing can also occur
by using video recording devices to watch password entry, and use computer vision algorithms to identify
the password after the fact [12].

4.4 Password Strength Metrics

Methods of measuring password strength have been devised and applied to passwords for some time. In
general, a strength estimate can be applied to either user generated passwords or randomly generated
passwords. In this section we will explore a number of password strength metrics.

Password entropy is one of the most common ways of measuring password strength. NIST SP 800-63
notes that the term password entropy is "at most only loosely related to the use of the term in
thermodynamics" [9]. Password entropy was originally suggested by Claude Shannon in 1948 [13]. These
types of entropy estimates can only be performed for randomly generated passwords, and user generated
passwords cannot be measured in this manner. Calculating strength for user generated passwords is
somewhat different and considered a much more difficult task. NIST SP 800-63 provides two methods for

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

17

estimating the strength of user selected (a.k.a., user generated) passwords: guessing entropy and min-
entropy.

It's important to note that password entropy is only useful in password guessing attacks. Entropy is not an
effective metric for determining resistance against keylogging and phishing attacks. Higher entropy
passwords may be slightly more secure against shoulder surfing attacks as longer and more complex
passwords are often more difficult to capture by the human eye from a distance. However, as technology
advances, even these longer passwords may not be secure against automated shoulder surfing tools and
new computer vision algorithms [12].

Shannon Entropy
Applies to: Randomly Generated Passwords

In NIST SP 800-63, Shannon entropy is expressed as H = log2(bL), where H is entropy, b is the number of
characters available to be used for the password (e.g., numbers, letters, special characters), and L is the
number of characters in the password [9]. For instance, to measure the strength of the initial 10 passwords
used within our study, we used Shannon entropy where we assumed a 94-character keyboard (b) and (L)
was the number of characters in the password. Our original 10 entropy measurements are shown in Table
1.

Table 1 - Examples of Shannon Entropy

Password Password Length Entropy Estimate
5c2'Qe 6 39.32753311
3.bH1o 6 39.32753311
a7t?C2# 7 45.88212196
m3)61fHw 8 52.43671081
p4d46*3TxY 10 65.54588852
q80<U/C2mv 10 65.54588852
d51)u4;X3wrf 12 78.65506622
6n04%Ei'Hm3V 12 78.65506622
m#o)fp^2aRf207 14 91.76424392
4i_55fQ$2Mnh30 14 91.76424392

Although useful in some scenarios, Shannon entropy is inappropriate for our purposes because it
measures the average storage and transmission requirements of the password, not the difficulty in
guessing the password.

Using Password Guessing Attacks as a Strength Indicator

Suppose we start out knowing the probability distribution from which a user's password is drawn. For
example, we know that:

• The password GU3$Sme has probability 0.1,

• The password $ecretC0de has probability 0.08,

• The password 123456 has probability 0.07, and so on.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

18

Given that knowledge, one could create a list of the probabilities of each password, in descending order:
d[1], d[2], d[3], ... so that d[1] ≥ d[2] ≥ ... ≥ d[n].

Now, imagine an attacker also knows the distribution from which the passwords are drawn, and wants to
guess the password. Each guess of the password takes some resources, such as time on a computer, and
the attacker would like to minimize the resources spent. One obvious strategy is to try the passwords in
descending order of probability: first attempt GU3$Sme, then $ecretC0de, then 123456, and so on, until at
the end they begin guessing unlikely passwords like ckJahgU33#ffz12-^:.

To understand how secure a user's password is against this kind of attack, one needs to know how likely it
is to have guessed a user's password after each number of guesses. This is the cumulative distribution of
all passwords, which can be notated with uppercase D like this:

D[1] = d[1]

D[2] = d[1] + d[2]

D[3] = d[1] + d[2] + d[3]

...

D[k] = d[1] + d[2] + ... + d[k] = D[k-1] + d[k].

If we graph the cumulative distribution of password guessing probabilities, we have what John Pliam
called the "work function": the relationship between the number of guesses the attacker makes and his
probability of success [14]. How can we use our knowledge of these probability distributions (e.g., d, D)
to analyze the user's password security? There are three answers worth thinking about: Guessing entropy,
min-entropy, and D[w] where w = the maximum number of guesses we believe the attacker is capable of.

Guessing Entropy
Applies to: User Generated Passwords

Guessing entropy attempts to estimate the amount of work an attacker is expected to do in order to guess
the password. This is written as H[guessing]. Guessing entropy is the base-2 logarithm of the expected
number of guesses needed to learn a user's password, defined as:

H[guessing] = log2(1∙p[1] + 2∙p[2] + 3∙[p3] + ... + N∙p[N]).

Imagine an attacker who has a set of encrypted files from different users, and needs to crack most or all of
them. The cost of his attack is given by H[guessing]. Specifically, to crack N passwords, he expects to
spend N x 2H[guessing] work.

Min-Entropy
Applies to: User Generated Passwords

One problem with guessing entropy as a measure of password security is that it only talks about average
behavior. Perhaps most users of some system have pretty good passwords, but a few users have extremely
weak passwords that are easily guessed. In the example above, that last password appears difficult to
guess, and although it may be that most of the passwords in the distribution are like that, the attacker's
first guess still gives them a 10 % chance of getting into the system.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

19

This leads to another natural question to ask: "how likely is the attacker to guess the password on his first
try?" The answer to that is given by the min-entropy, written as H[min]. Min-entropy is defined as

H[min] = log2(p[1])

where p[1] is the probability of the most-likely password.

Imagine an attacker who is simply trying to get a login to some system, and thus who is occasionally
connecting to the system, and trying some account ID with a guessed password. If we want to know how
many login attempts we can expect him to need in order to get into any account, we can learn that from
H[min]. Specifically, the expected number of tries is 2H[min].

H[min] ≤ H[guessing], so it's easier to focus on H[min] if a single metric of password security is needed.

Security After W Guesses

Finally, we might be interested in the following question: "Assuming the attacker gets only W guesses at a
single password, what are his chances of getting in." For example, perhaps a user's smartcard has been
stolen, but the smartcard will lock itself up after W incorrect password attempts. We want to know how
likely the attacker is to get into the smartcard.

The answer to that question is given by the cumulative distribution of the password, P. Specifically,
P[W] gives the probability that the attacker will successfully guess the password given W tries.

For randomly-generated passwords, it's usually possible to come up with p[1,2,3,...] and P[1,2,3,...], so all
these metrics are fairly easy to calculate. (They still are often ignored in real-world password systems,
unfortunately.) In fact, most schemes for generating passwords randomly have p[1] = p[2] = p[3] = ... =
p[N], which makes the analysis quite easy. For example, a password generator that simply produces
4-digit random PINs has:

H[min] = -log2(1/10000)

and

H[guessing] = log2(5000)

and

P[10] = 1/1000

For user generated passwords, there is not a known distribution from which the passwords are drawn.
Different user populations, on different systems, with different guidance likely draw their passwords from
different distributions. This has led to the use of a number of password heuristics which attempt to make
some kind of estimate on the likely guessing- or min-entropy of user generated password, based on the
length and other characteristics of the password.

An influential set of these heuristics are found in NIST SP 800-63. These attempt to approximate
guessing entropy based on the length of the user generated password, and whether it makes use of both
upper- and lowercase letters as well as non-alphabetic characters. The rest of the research described in
this report is based on randomly generated passwords, and so these heuristics aren't necessarily relevant.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

20

NIST SP 800-63 Guessing Entropy
Applies to: User Generated Passwords

It is of note that in NIST SP 800-63 the definition of guessing entropy is not strictly the academic
definition of guessing entropy, and a collision of terms exists.

NIST SP 800-63 notes that guessing entropy is "arguably the most critical measure of the strength of a
password system, since it largely determines the resistance to targeted, online password guessing attacks"
[9]. Additionally, the document defines guessing entropy as "A measure of the difficulty that an attacker
has to guess the average password used in a system. When a password has n-bits of guessing entropy then
an attacker has as much difficulty guessing the average password as in guessing an n-bit random quantity.
The attacker is assumed to know the actual password frequency distribution" [9]. Guessing entropy is
used to measure user generated passwords and calculated via the following ruleset provided by NIST SP
800-63 [9]:

• The entropy of the first character is taken to be 4 bits;
• The entropy of the next 7 characters are 2 bits per character; this is roughly consistent with

Shannon’s estimate that “when statistical effects extending over not more than 8 letters are

considered the entropy is roughly 2.3 bits per character;”

• For the 9th through the 20th character the entropy is taken to be 1.5 bits per character;
• For characters 21 and above the entropy is taken to be 1 bit per character;
• A “bonus” of 6 bits of entropy is assigned for a composition rule that requires both upper case and

non-alphabetic characters. This forces the use of these characters, but in many cases these
characters will occur only at the beginning or the end of the password, and it reduces the total
search space somewhat, so the benefit is probably modest and nearly independent of the length of
the password;

• A bonus of up to 6 bits of entropy is added for an extensive dictionary check. If the Attacker knows
the dictionary, he can avoid testing those passwords, and will in any event, be able to guess much
of the dictionary, which will, however, be the most likely selected passwords in the absence of a
dictionary rule. The assumption is that most of the guessing entropy benefits for a dictionary test
accrue to relatively short passwords, because any long password that can be remembered must
necessarily be a “pass-phrase” composed of dictionary words, so the bonus declines to zero at 20

characters.

Weir et al. [15] showed that NIST's guessing entropy measurement has no relation to the guessing entropy
of the password. In other words, how vulnerable a password actually is to a password guessing attack.
Komanduri et al. [16] also found that the guessing entropy metric devised by NIST may be a poor
predictor of password strength. Shay et al. took issue with the assumptions made by the NIST guessing
entropy metric, identifying assumptions that were inconsistent with their findings, stating "...This means
that the space of passwords actually used is much smaller than the space of theoretically available
passwords, dramatically increasing the likelihood of an attacker being able to discover a given password,
through a brute-force attack or even guessing" [17].

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

21

NIST SP 800-63 Min-Entropy
Applies to: User Generated Passwords

It is of note that in NIST SP 800-63 the definition of min-entropy is not strictly the academic definition of
min-entropy, and a collision of terms exists.

Besides guessing entropy, min-entropy is another method of estimating the strength of a user generated
password. NIST defines min-entropy as "A measure of the difficulty that an Attacker has to guess the
most commonly chosen password used in a system. When a password has n-bits of min-entropy then an
Attacker requires as many trials to find a user with that password as is needed to guess an n-bit random
quantity. The Attacker is assumed to know the most commonly used password(s)" [9]. A dictionary test is
used to ensure at least 10 bits of min-entropy. NIST SP 800-63 defines the following ruleset for the min-
entropy test [9]:

• Upper case letters in passwords are converted to entirely lower case and compared to a dictionary
of at least 50 000 commonly selected otherwise legal passwords and rejected if they match any
dictionary entry, and

• Passwords that are detectable permutations of the username are not allowed.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

22

5 Towards a New Approach

5.1 General Methodology

We defined a password permutation in an effort to make randomly generated passwords easier to enter on
mobile devices. This was performed by grouping like character categories together in order to minimize
the number of times a user must switch back and forth between onscreen keyboards. In our current
scheme, the permutation categorizes the characters of a password into four sets: uppercase (U), lowercase
(L), numbers (N), and symbols (S). The rearranged password is then created by concatenating each set in
the order U + L + N + S. We created a python script to perform the permutation13 which ensures all
characters retain the order in which they were parsed by our tool. For instance, the password 5c2'Qe
becomes Qce52' and not Qec25' (notice the order of the lowercase letters). For a number of randomly-
generated passwords, we processed the passwords with our permutation, and then measured the impact of
the permutation on both usability and security.

5.2 Password Permutation and Its Effects on Usability

Our password permutation re-orders (permutes) the characters in a given password, so that characters
likely to be on the same on-screen keyboard will appear together in the password. This makes the
password easier to enter since the user needs fewer screen touches to enter the re-ordered password.
However, the permutation also makes the password more predictable. In our current password
permutation scheme, characters are grouped together by classes—uppercase letters, lowercase letters,
digits, and symbols. Thus the password 3.bH1o is converted to Hbo31. An attacker trying to guess the
permuted password has an easier job, because he knows that the permuted password will always have like
characters grouped together.

The loss in security comes from the fact that there are fewer possible permuted passwords than original
passwords. All of the input passwords shown below (and many more we haven't shown) will yield the
same permuted password, see Table 3 for an illustration. An attacker trying to guess the user's password
simply has fewer possibilities to try after the password permutation. Below, we will discuss how to
measure the impact of permuting the password characters on password security.

In a randomly-generated password, members of the different character classes are intermingled. These
passwords are hard for the users of mobile devices to enter, because different character classes (like digits
and uppercase letters) usually require different on-screen keyboards. Putting like character classes
together makes a password much easier for the user to enter—the permuted passwords require fewer
screen touches and fewer changes of the onscreen keyboard.

It is possible to quantitatively measure how much easier this permutation makes password entry. By
reducing the number of keystrokes required to type a password, efficiency is improved—this usability
improvement is undeniable. To measure efficiency gained, simply measure the number of keystrokes
saved via permutation. While human data can be gathered to measure the exact password entry time
improvement, we can make this efficiency improvement claim regardless, as we know that fewer
keystrokes requires less entry time. We predict that ease of learning and memorability will also improve
(thereby improving effectiveness and potentially satisfaction as well). Indeed, recent research found that
across platforms (smartphone, tablet, and desktop computer), people rated longer (length 14) permuted
passwords as easier to type than shorter (length 10) non-permuted passwords [19].

13 Publicly available from https://github.com/usnistgov/PasswordMetrics.

https://github.com/usnistgov/PasswordMetrics

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

23

The 10 passwords used in the Greene et al. [1] study are provided below in Table 2, along with their
permutations and iOS keystroke counts. For per-password keystroke sequences in their entirety, see
Appendix A. Note that we only include iOS keystroke counts here since that was the operating system
used in the study upon which the current work is based.

Table 2 - Original and permuted passwords and iOS keystroke counts.

Original Password Permuted Password Length
Keystrokes:

Original,
Permuted

Screen
Depth

Changes:
Original,
Permuted

Keystrokes
Saved via

Permutation

5c2'Qe Qce52' 6 11, 8 4, 1 3

3.bH1o Hbo31. 6 11, 8 4, 1 3

a7t?C2# Cat72?# 7 14, 10 6, 2 4

m3)61fHw Hmfw361) 8 11, 10 2, 1 1

p4d46*3TxY TYpdx4463* 10 18, 14 6, 2 4

q80<U/C2mv UCqmv802</ 10 19, 15 7, 3 4

d51)u4;X3wrf Xduwrf5143); 12 19, 14 6, 1 5

6n04%Ei'Hm3V EHVnim6043%' 12 24, 17 9, 2 7

m#o)fp^2aRf207 Rmofpaf2207#)^ 14 24, 19 10, 4 6

4i_55fQ$2Mnh30 QMifnh455230_$ 14 25, 19 9, 3 6

It should be obvious from Table 2 that the number of keystrokes saved—the efficiency gained—via
permutation depends on the number of onscreen keyboard changes in the original password rather than on
the length of the original password per se. The number of screen depth changes in turn depends on the
frequency and placement of symbols and numbers, as those are the two character categories that require
switching back and forth between onscreen keyboards. In other words, the more symbols there are and the
more intermixed they are with other character classes in the original password, the more screen depth
changes that will be saved via permutation. Note the variability in the Keystrokes Saved column of Table
2. Keystrokes saved range from one to seven, even in this small sample of only ten passwords.

For example, the password m#o)fp^2aRf207 is 14 characters long, but on an iOS device, actually requires
24 keystrokes (i.e., taps on the onscreen keyboard), including 10 screen depth changes (i.e., switches
between the first, second, and third iOS keyboards). Permuting it yields Rmofpaf2207#)^ which reduces it
to 19 keystrokes and four screen depth changes. Note that this type of generic permutation (upper, lower,
number, symbol) could be further optimized for each mobile device operating system's specific onscreen
keyboard layout. For example, were we to relax the permutation rule of preserving within-class character
order, we could better rearrange the symbols in password Rmofpaf2207#)^ from #)^ to)#^. This would
save an additional two keystrokes (two screen depth changes) on an iOS device, since the) symbol is on
the second keyboard, while the # and ^ symbols are on the third keyboard. Similarly, we could further
optimize password UCqmv802</ specifically for iOS keyboards by reversing the order of the last two

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

24

symbols (changing </ to />), thereby saving one keystroke (one screen depth change). An analogous
reversal of the last two symbols in password QMifnh455230_$ would also save an additional
keystroke/screen depth change on iOS devices.

5.3 Password Permutation and its Effects on Security

Once our password permutation is applied to the 10 passwords the Shannon entropy measurement can no
longer be used due to the order imposed on the string. As previously stated, with the permutation,
character groups must appear in a pre-specified order. Our permutation tool14 creates a new permuted
string by parsing each character in the original password, assigning it a character class, and then
concatenating each set in the order U + L + N + S.

We determined it is possible to identify the entropy loss by determining the probability of a given mix of
various character classes in randomly generated passwords of various lengths. We then compute how
many ways we could generate the permuted passwords by putting those different kinds of characters in
different orders. For our purposes, we defined the entropy loss due to the password permutation as equal
to:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿 = �
𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿𝐸𝐸ℎ
𝑈𝑈𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸

� ∙ �
𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿𝐸𝐸ℎ − 𝑈𝑈𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸

𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸
� ∙ �

𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿𝐸𝐸ℎ − 𝑈𝑈𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸 − 𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿𝐸𝐸
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐸𝐸

�

It is not necessary to include the S character category in the above equation, for once the U, L, and N
character categories have been accounted for, the remaining S category is fixed, always appended to the
end of the permuted string. It is of note that for a fully-optimized approach, instead of these four character
categories (U, L, N, S) we would instead use the probabilities of the appearance of characters on each
keyboard provided by a mobile operating system. The method to calculate entropy loss would then need
to be revised to account for the different character classes. Below we walk through more detailed logic
and examples behind the above entropy loss estimation, as well as report the results of three experiments.

We want to know the min-entropy (as defined in Section 3.4) of our newly permuted passwords, so that
we can compare it with the min-entropy of the original, non-permuted passwords. We can then take the
difference of the two entropy measures to determine the entropy lost as a result of our password
permutation. Let us write the permutation function as q = F(p), where p is the original password and q is
the new one. Further, let P be the set of all passwords p, and let Q be the set of all derived (i.e., permuted)
passwords q.

The min-entropy is the base two log of the probability of the most likely password, so we are really trying
to work out the maximum probability password. Beginning with some password p generated from a
uniform distribution, ensuring that there are 240 equally likely passwords that can come out of whatever
process generates p. That means the maximum probability is 2-40 and thus that it has 40 bits of min-
entropy.15

Each password in P maps to one password in Q. This is another way of saying that the transformation is
deterministic—the same input always goes to the same output. However, some passwords in Q can be
mapped to multiple passwords in P.

14 Publicly available from https://github.com/usnistgov/PasswordMetrics.
15 This is also referred to as “password collision” and “mapping down”.

https://github.com/usnistgov/PasswordMetrics

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

25

Table 3 demonstrates multiple passwords being mapped to the same password.

Table 3 - Examples of Password Collision

Original Password Permuted Password

abCde3f#g Cabdefg3#

aC3bdefg# Cabdefg3#

Ceda3g#bf Cabdefg3#

S^2z5J1sw SJzsw251^

^2zJ51wsS SJzsw251^

2Sz51sw^J SJzsw251^

As evidenced in Table 3, it is possible for collisions such as these to occur during the password
permutation. By identifying the number of collisions, we can measure what we term the “fan-out” effect.
Specifically, we are asking how many different random passwords would we expect to map down to the
same user-friendly password?

In order to figure out the probability of a given password in Q, we need to figure out how many
passwords in P map to it, i.e., our fan-out effect. The probability of a password q in Q is just the sum of
the probabilities of the passwords in P that map to it, so if there are 16 passwords in P that map to q, and
each password in P has a probability of 2-40, then q has a probability of 16 x 2-40 = 24 x 2-40 = 2-36.

The interesting question is how to determine the maximum number of passwords in P that will ever map
to any password in Q. Let us walk through an example, starting by randomly generating a password of
length 14. This original password is 14 characters, and is created by randomly selecting each character
from a 93-character set. We are going to sort these into four non-overlapping categories (upper, lower,
number, symbol).

For each character, we have the following probabilities:

• Prob[lowercase] = 26/93

• Prob[uppercase] = 26/93

• Prob[number] = 10/93

• Prob[symbol] = 31/93

Note that the number of symbols and their probabilities would change on different devices, depending on
the layout of the onscreen keyboards. In the above example, the number of symbols used was 31 because
it is the number of symbols available on the iOS keyboards (second and third screen depths combined),
not including the four symbols that are not visible on standard desktop keyboards.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

26

To generate the password:

i. Randomly choose how many uppercase letters to have. The number of uppercase characters, U, in
the password is drawn from a binomial distribution with trials = 14 and probability = 26/93.

• U ~ binomial(trials = 14, prob = (26/93))

ii. Randomly choose how many lowercase letters to have. The number of lowercase characters, L, in
the password is drawn from a binomial distribution with trials = 14-U and probability = 26/93.

• U ~ binomial(trials = 14-U, prob = (26/93))

iii. Randomly choose how many numbers to have. The number of numeric characters, N, in the
password is drawn from a binomial distribution with trials = 14-U-L and probability = 10/93.

• U ~ binomial(trials = 14-U-L, prob = (10/93))

iv. The number of special characters, S, in the password is:

S = 14-U-L-N

Probability theory can analytically compute what this distribution is going to be, so we reached out to
experts from NIST’s Statistical Engineering Division, who graciously consulted with us, providing us
with probability formulas (see Appendix D) and advice regarding whether we should attempt to use said
formulas versus simulating our distributions. Since computing the exact probabilities would have required
specialized mathematical software and more powerful computing hardware than we had access to, we
instead decided to use Monte Carlo simulations to obtain good approximate probabilities for each mix of
upper, lower, numbers, and symbols.

With such simulations, we could then obtain a table of probabilities for each possible mix of upper, lower,
numbers, and symbols. Given the mix, we could then compute how many ways we could generate the
permuted password by putting those different kinds of characters in different orders.

i. There are 14 places to put our U (uppercase) letters. However, it doesn't matter which order we
put them in within those places. So, the number of different ways to arrange the uppercase letters
is:
 �14𝑈𝑈 � = 14 choose U = 14!/((14-U)! U!)

ii. There are 14-U places to put our L lowercase letters, and the number of ways to arrange them is:
 �14−𝑈𝑈𝐿𝐿 �

iii. There are 14-U-L places for our N numbers, and the number of ways to arrange them is:
 �14−𝑈𝑈−𝐿𝐿𝑁𝑁 �

iv. At this point, we know where our characters from the S character category must go, as only once
choice remains.

So, for a password with U uppercase, L lowercase, N numbers, and S symbols, the permutation algorithm
loses W = �14𝑈𝑈 � ∙ �

14−𝑈𝑈
𝐿𝐿 � ∙ �14−𝑈𝑈−𝐿𝐿𝑁𝑁 � choices. Another way of saying this: there are W possible input

passwords that would all get mapped to the same output (iOS friendly) password.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

27

5.3.1 Experiment 1, Fan-Out

After the password permutation, how many passwords would we expect to “map down” to the same user-
friendly password? For this experiment, a random password generator was created16 that adheres to the
following rules:

i. Each password must have at least one member of each character class (uppercase, lowercase,
number, symbol).

ii. No password may start with an uppercase letter.

iii. No password may end with a ".", "?", or "!" character.17

Our value for estimating fan-out is approximate rather than exact, because we do not account for the
rejection rules. That is, when counting how many passwords will map to the same user-friendly password
as "aBCD!123", one of the passwords we count is "BaCD123!", which would not be allowed by the
password rules. The error introduced here should be very small, and it also leads us to slightly

overestimate the entropy loss. That is, our approximation can only lead us to think we're losing slightly

more entropy than we're really losing, not less. Table 4 helps to answer the question “How many

passwords map to the same user-friendly password?”

16 Publicly available from https://github.com/usnistgov/PasswordMetrics.
17 Note that this third rule is somewhat more stringent than the rules used in the original 2014 Stanton and Greene desktop password

typing study [4] and the 2014 Greene et. al mobile password typing study [1], which only precluded ending in an exclamation
mark.

https://github.com/usnistgov/PasswordMetrics

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

28

Table 4 - Fan-out by Password Length

Length 10th Percentile Median 90th Percentile Average

5 60 60 60 60.0

6 120 180 180 159.8

7 210 420 630 451.5

8 840 1680 1680 1329.0

9 1512 3780 7560 3936.2

10 5040 12600 25200 12659.5

11 13860 34650 69300 38946.9

12 27720 110880 277200 132492.4

13 102960 360360 900900 414875.6

14 360360 1261260 3153150 1438513.1

15 675675 3153150 9459450 4729531.2

16 2402400 12108096 40360320 17187712.2

17 6806800 34306272 142942800 55421383.7

18 24504480 147026880 514594080 208414540.2

19 99768240 399072960 1955457504 709865504.5

20 221707200 1551950400 6518191680 2327087101.0

This first experiment measures fan-out, looking at 1000 sample passwords for each length and using the
rules for rejecting passwords without one of every character type, or with a capital letter in front or a
sentence-ending punctuation character at the end. Average fan-out tells us that, for example, the average
14-character random password will have about 1.4 million other 14-character passwords that will all map
to the same user-friendly password. The 90th percentile is a kind of upper-bound: 90 % of the time, there
will be fewer than this many passwords that map to the same user-friendly password. The 10th percentile
is a lower-bound—only 10 % of the time will there be fewer than this many passwords that map to the
same user-friendly password.

5.3.2 Experiment 2, Entropy Loss by Password Length

This second experiment examines how many bits of entropy lost by password length, again on randomly
generated passwords subjected to the aforementioned rejection rules. In Table 5, one can see that on
average, a 17-character password loses 25.7 bits of entropy. That's quite a bit—we would need to add 6
random lowercase letters back to the password to make up for the lost entropy. The following table

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

29

shows our result for this experiment and answers the question “How much entropy is lost by mapping to
user-friendly password?” and the related question "How many randomly chosen lowercase letters would
need to be added to the password to make up for the loss of entropy?"

Table 5 - Entropy Loss by Password Length

Length 10th Percentile Median 90th Percentile Average Additional
Letters

5 5.9 5.9 5.9 5.9 2

6 6.9 7.5 7.5 7.3 2

7 7.7 8.7 9.3 8.8 2

8 9.7 10.7 10.7 10.4 3

9 10.6 11.9 12.9 12.0 3

10 12.3 13.6 14.6 13.6 3

11 13.8 15.1 16.1 15.3 4

12 14.8 16.8 18.1 17.0 4

13 16.7 18.5 19.8 18.7 4

14 18.0 19.9 21.6 20.4 5

15 19.8 21.8 23.2 22.2 5

16 21.5 23.3 25.0 24.0 6

17 22.7 25.0 27.1 25.7 6

18 24.5 27.1 28.9 27.6 6

19 26.1 29.0 30.6 29.3 7

20 27.9 30.7 32.6 31.2 7

To measure usability, specifically efficiency, we evaluated time to complete the task based on keystrokes,
so this is a nice apples-to-apples comparison here. For example, a 12-character password needs about 4
additional lowercase letters to make up for the loss in entropy from mapping the password down, so we

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

30

might expect that the mapped-down password will be worth it if the new format of the password means
that we save more than 4 keystrokes. The mapped-down format should be even better than that, because
nothing is going to be easier to type in than lowercase letters, and changing keyboards is difficult for
users. Each keyboard change is like a mini task interruption, so reducing keyboard changes not only
reduces keystrokes required, but also yields cognitive benefits by reducing working memory load.

It is actually possible to enhance our original permutation scheme, where the order of character categories
was fixed: uppercase, lowercase, numbers, symbols (four choices). By allowing the mapped-down
passwords to be in any of these arrangements, as long as all characters are kept in the same class (that is
lowercase, uppercase, numbers, symbols or numbers, lowercase, symbols, uppercase, etc.) it will increase
the number of possible selections. That's 4 x 3 x 2 = 24 additional choices, and so it's worth about one
lowercase letter's worth of entropy to select the order of the character classes randomly.

5.3.3 Experiment 3, Additional Length Required for All-Lowercase Passwords

How much more password length would we need to just change over to all-lowercase letters?
(Understanding of course that for IT departments to accept this, it would obviously need to preclude the
use of dictionary words.) Table 6 shows how long an all-lowercase password must be, in order to give us
the same entropy as one of these randomly selected passwords from 93 possible characters.

Table 6 - Required Additional Length for All-Lowercase Passwords

Complex Password Length All-Lowercase Password Length Required Extra Letters

5 7 2

6 9 3

7 10 3

8 12 4

9 13 4

10 14 4

11 16 5

12 17 5

13 18 5

14 20 6

15 21 6

16 23 7

17 24 7

18 25 7

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

31

19 27 8

20 28 8

What this tells us is that we could simply replace that 12-character multi-symbol password with a 17-
character all-lowercase password. To compare things, that's:

• 12-character password from 93 possible characters:

o }EZh@CAMokZ0

• 16-character password from 93 possible characters, sorted into character classes in a fixed order:
Here, we've generated the additional lowercase string ihxu:

o hokihxuEZCAMZ0}@

• 15-character password from 93 possible characters, sorted into character classes with the order of
the classes adding back a few bits of entropy: Here, we only needed three extra lowercase

characters to get back the entropy we lost by mapping the password down: ihx

o 0hokihx}@EZCAMZ

• 17-character password that's all lowercase:

o tvpllxtfdjuhpyugl

5.4 Considerations of Password Permutation

Ideally, one should generate passwords from the start to be mobile-device friendly rather than permuting
them post-generation. This would certainly make sense, if investigating the usability of password
generation for mobile devices was the initial research goal. However, recall that this work was based on
previously conducted password usability studies, the first of which was a desktop study [4] where mobile
device constraints were not considered during stimuli generation—nor should they have been, as it was a
desktop study. When those same stimuli were used in a subsequent mobile study [1], the negative effects
of onscreen keyboard changes on participant performance were enormous. This led to the password
permutation idea and corresponding question on entropy loss, the joint focus of the current work.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

32

6 Discussion and Conclusions

We set out to answer what seemed a simple question from a usability researcher: how much entropy is
lost as a result of permuting system generated passwords to be more usable for mobile devices? Along the
way, we discovered that each side—usability and security—had much to learn in terms of language and
concepts that we each take for granted in our respective fields of study. By having security and usability
researchers working closely together, each learned core vocabulary and principles from the other’s field.
By documenting these fundamental concepts as we have, we hope to support future usable security
collaborations, both internal and external.

All too often, researchers propose a means of improving usability or improving security without actually
measuring the resulting change on the opposing axis18. Here, we proposed a means of improving usability
for system-generated passwords (i.e., permuting them by grouping like character classes together to
minimize onscreen keyboard changes and thereby improve ease of entry on mobile devices), and a means
of measuring the resulting change in security. Usability is well-defined, with an associated ISO standard
for the definition of usability, ISO 9241-11 [5], as are methods for its measurement, whereas no single
standard definition of security exists. This makes usable security research both interesting and
challenging, particularly within constraints of the mobile domain.

No single mobile platform has a native onscreen keyboard where all characters are available at all times.
Given the screen size of mobile devices, the mobile equivalent of the standard QWERTY desktop
keyboard would be quite difficult to implement without having keys that were even smaller and more
difficult for people to tap. Therefore, we must accept that onscreen keyboard constraints are inevitable
given the current state of mobile device technology, and that complex passwords are particularly difficult
to enter on mobile devices. Permuting passwords in order to make them easier for mobile entry is one
option for dealing with this issue. The number of keystrokes saved—the efficiency gained—via
permutation depends on the number of screen depth changes in the original password rather than on the
length of the original password. The number of screen depth changes in turn depends on the frequency
and placement of symbols and numbers, as those are the two character categories that require switching
back and forth between onscreen keyboards.

The fact that passwords containing numbers and symbols require changing onscreen keyboards is a
fundamental difference between desktop and mobile platforms, yet it does not appear that current
password policies have taken this fundamental difference into account. The effects that mobile device
constraints have on both usability and security of passwords need to be systematically explored and
measured in order to better inform password policies for the increasingly mobile work environment. With
the current research, we have accomplished an initial piece of such systematic exploration.

We have created publicly available code from which other researchers may benefit, and we certainly hope
that others will expand upon our initial three experiments. In our first experiment, we measured fan-out,
looking at 1000 sample passwords for each length (ranging from 5 to 20 characters) to see how many
passwords that when permuted, map down to the same user-friendly password. Average fan-out tells us

18 We use the term "opposing axis" not because we feel that the two concepts—usability and security—should theoretically be in

opposition to one another, but merely for purposes of exposition. Envisioning usability and security on opposing axes of a
graph makes visualization easier, as does the mental image conjured by the commonly used phrase "the intersection of usability
and security," where one visualizes two intersecting lines.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

33

that, for example, the average 14-character random password will have about 1.4 million other 14-
character passwords that will all map to the same user-friendly password.

In our second experiment, we measured entropy loss by password length, with password length again
ranging from 5 to 20 characters. We found that on average, a 14-character random password loses 20.4
bits of entropy due to the password permutation. For a 14-character password, the entropy loss could be
mitigated by adding five additional lowercase letters back to the password. Since lowercase letters are so
much easier for people to type—not only do they require fewer keystrokes on mobile devices, but letters
in general are more practiced than numbers or symbols—this prompted our third experiment, where we
examined how much additional length we would need to simply change over to all lowercase letters.

As with the first two experiments, we examined passwords ranging in length from 5 to 20 characters in
our third experiment. We found that a 14-character random password would need to be 20 characters in
length if it were composed only of lowercase letters. Adding 6 extra characters (to a 14-character random
password) may easily be preferable to typing numbers and symbols. Using all lowercase mobile
passwords would remove the need to change onscreen keyboards at all, which would likely have
significant usability benefits (human data would be needed to measure the extent of such usability
improvements).

As passwords are still the most prevalent means of authentication, this work has implications for helping
protect against online attacks and mitigating offline attacks. While there are many metrics for password
security, it may be that the most meaningful goal is to understand the number of guesses it will likely take
to take for the attacker to guess this password. While we anxiously await the day when the password will
truly be dead, we seek to improve password usability now, without an unacceptably high cost to security.
We hope this work will foster ongoing collaborations between usability and security researchers
everywhere.

6.1 Ethical Considerations

As the current work deals with system-generated passwords and theoretical measurements, the ethical
considerations are quite different from those that would apply to research with user generated passwords.
Nonetheless, we feel that discussion of the ethical considerations of user generated password research is
important and should be included here given the larger goals of the paper (e.g., fostering more informed
dialogue between usability and security researchers). Furthermore, although much can be learned via
basic research on system-generated passwords (e.g., exploration of device constraints and typing times
and error rates), this work may be considered a stepping stone to future work with user generated
passwords. User generated passwords may be obtained in laboratory experiments that must always
undergo Institutional Review Board (IRB) approval for human-subjects testing, a process that may be
unfamiliar to some security researchers.

6.2 Future Work

There are numerous research studies one could run to expand upon this work, ranging from studies with
system generated passwords to studies with user generated passwords. For example, one could test the
permuted passwords, or a small subset of them, in a laboratory study to gather measures of effectiveness
(i.e., error rates) and satisfaction in addition to the currently reported measure of efficiency. Having
behavioral data on the other two facets of usability would be helpful to fully understand the benefits of
our proposed permutation. Recent research has already addressed the benefits of our proposed
permutation for subjective usability, finding that across platforms (smartphone, tablet, and desktop
computer), people rated longer (length 14) permuted passwords as easier to type than shorter (length 10)

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

34

non-permuted passwords [19]. It would also be useful to investigate how easy it would be to write rules
for password cracking tools to guess our permuted passwords.

A laboratory study that directly compares longer, all lowercase passwords with shorter, mixed-character
class passwords (i.e., passwords containing a mixture of uppercase, lowercase, numbers, symbols) is
another obvious future direction. After so many years of password policies requiring uppercase letters,
numbers, and symbols, it is unlikely that organizations would be willing to change their password policies
to permit all lowercase passwords without more data. Such a study could initially test system generated
passwords for greater stimuli control. A subsequent study could test user generated passwords, where
users are given different password requirement sets and asked to generate, practice, then log in with their
generated passwords; one password requirement set would allow all lowercase passwords of a certain
minimum length (not allowing dictionary words), and another would require that uppercase, numbers, and
symbols also be included in the passwords.

All uppercase passwords could also be studied. Since both desktops and mobile devices have the
equivalent of a “caps lock” function, all uppercase passwords really only require one additional key press
to execute on a desktop computer, and two extra key presses on a mobile device (on an iOS device, one
must typically press the shift key twice to turn caps lock on). It would be interesting to see whether people
are now so accustomed to generating passwords containing numbers and symbols that asking them to
generate letter-only passwords actually proves more difficult for them if it breaks their now ingrained
password generation strategies.

There is new research on user generated passwords being conducted in NIST's Information Access

Division’s (IAD) Visualization and Usability Group. That usability research is examining the effects of
different password requirements and formatting on the passwords users generate on desktop computers,
already finding uneven distributions for character frequencies [20], meaning that some letters or symbols
are rarely if ever used, while others are extremely common. This should be of great interest to the security
community, as it aligns with the growing concern that the typical use of “94 possible starting characters”19
in much password security research is incorrect, and the practical starting character space is much
smaller. Having usability and security researchers working together to computer strength or quality
metrics for user generated passwords would complement both fields.

Future studies could expand upon the aforementioned desktop password generation research by
conducting it with mobile devices. If people are sensitive to their mobile device constraints, the starting
character space for user generated passwords may be even further reduced. In order to avoid navigating to
the third (and even the second) onscreen keyboard, people may be unlikely to choose symbols from those
screen depths, especially when they are not required to.

The previously mentioned research ideas are focused on password usability for the end user, but there are
other types of users who are vitally important for system security: system administrators and software
developers. Little usable security research has been conducted with these users, yet they are often
responsible for implementing protocols and software that are vital to the realized security of a system.
Having security and usability researchers working together on topics such as these would greatly benefit

19 Note that the space of 94 starting characters applies to desktop computers, since 26 uppercase letters, 26 lowercase letters, 10

numbers, and 32 symbols are available on traditional desktop keyboards. As previously mentioned, starting character pools
for mobile devices should be computed based on their individual keyboard implementations.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

35

the field of usable security. Only by considering both perspectives—usability and security—can we hope
to strike an optimal balance between the two.

NISTIR 8040 MEASURING USABILITY & SECURITY OF PERMUTED
 PASSWORDS ON MOBILE PLATFORMS

36

Appendix A: Acronyms and Abbreviations

HCI Human-Computer Interaction
IAD Information Access Division
IEC International Electrotechnical Commission
iOS iPhone Operating System
IRB Institutional Review Board
ISO International Organization for Standardization
ITL Information Technology Laboratory
NIST National Institute of Standards and Technology
NISTIR NIST Interagency Report
NSTIC National Strategy for Trusted Identities in Cyberspace
OS Operating System
PIN Personal Identification Number
SP Special Publication
SSL Secure Sockets Layer
TLS Transport Layer Security

37

Appendix B: References

[1] K. K. Greene, M. A. Gallagher, B. Stanton, and P. Y. Lee, “I Can’t Type That!, P@$$w0rd Entry

on Mobile Devices,” in Human Aspects of Information Security, Privacy, and Trust, Lecture
Notes in Computer Science 8533, 2014, pp. 160-171.
http://dx.doi.org/10.1007/978-3-319-07620-1_15.

[2] M. Jakobsson and R. Akavipat, “Rethinking Passwords to Adapt to Constrained Keyboards,”
Mobile Security Technologies 2012 (MoST 2012), San Francisco, California, United States, May
24, 2012.
http://www.mostconf.org/2012/papers/5.pdf [accessed 4/19/2016].

[3] National Strategy for Trusted Identities in Cyberspace, Enhancing Online choice, Efficiency,
Security, and Privacy, 2011.
 http://purl.fdlp.gov/GPO/gpo7204.

[4] B. Stanton and K. Greene, “Character strings, memory, and passwords: What a recall study can

tell us,” in Human Aspects of Information Security, Privacy, and Trust, Lecture Notes in
Computer Science 8533, 2014, pp. 195-206.
http://dx.doi.org/10.1007/978-3-319-07620-1_18.

[5] International Organization for Standardization, Ergonomic requirements for office work with
visual display terminals (VDTs) -- Part 11: Guidance on usability, ISO 9241-11:1998.

[6] E. Frøkjær, M. Hertzum, and K. Hornbæk, “Measuring usability: Are effectiveness, efficiency,

and satisfaction really correlated?” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (CHI ’00), The Hague, The Netherlands, April 1-6, 2000, pp. 345-352.
http://dx.doi.org/10.1145/332040.332455.

[7] A. Adams, and M. A. Sasse, “Users are not the enemy,” Communications of the ACM, vol. 42, no.
12 (December 1999), pp 40-46.
http://dx.doi.org/10.1145/322796.322806.

[8] D. Florêncio, C. Herley, and P. C. van Oorschot, “Password Portfolios and the Finite-Effort User:
Sustainably Managing Large Numbers of Accounts,” in Proceedings of the 23rd USENIX
Security Symposium, San Diego, California, United States, August 20-22, 2014, pp. 575-590.
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/florencio
[accessed 4/19/2016].

[9] National Institute of Standards and Technology, Special Publication (SP) 800-63-2, Electronic
Authentication Guideline, 2013.
http://dx.doi.org/10.6028/NIST.SP.800-63-2.

[10] A. G. Reinhold, The Diceware Passphrase Home Page [Web site], 2016.
http://world.std.com/~reinhold/diceware.html [accessed 4/19/2016].

http://dx.doi.org/10.1007/978-3-319-07620-1_15
http://www.mostconf.org/2012/papers/5.pdf
http://purl.fdlp.gov/GPO/gpo7204
http://dx.doi.org/10.1007/978-3-319-07620-1_18
http://dx.doi.org/10.1145/332040.332455
http://dx.doi.org/10.1145/322796.322806
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/florencio
http://dx.doi.org/10.6028/NIST.SP.800-63-2
http://world.std.com/%7Ereinhold/diceware.html

38

[11] M. Jakobsson and M. Dhiman, “The Benefits of Understanding Passwords,” 7th USENIX

Workshop on Hot Topics in Security (HotSec’ 12), Bellevue Washington, United States, August 7,
2012, 6 pp.
https://www.usenix.org/conference/hotsec12/workshop-program/presentation/jakobsson
[accessed 4/19/2016].

[12] Q., Yue, “My Google Glass Sees Your Password!” presented at Blackhat USA, Las Vegas,
Nevada, United States, August 2-7, 2014.
https://www.blackhat.com/docs/us-14/materials/us-14-Fu-My-Google-Glass-Sees-Your-
Passwords.pdf [accessed 4/19/2016].

[13] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Systems Technical Journal,
vol. 27, no. 3 (July 1948), pp. 379-423.
https://dx.doi.org/10.1002%2Fj.1538-7305.1948.tb01338.x.

[14] J. O. Pliam, “Guesswork and Variation Distance as Measures of Cipher Security,” in Selected

Areas in Cryptography 6th Annual International Workshop (SAC’99), Lecture Notes in Computer

Science 1758, 2000, pp. 62–77.
http://dx.doi.org/10.1007/3-540-46513-8_5.

[15] M. Weir, S. Aggarwal, M. Collins, and H. Stern , “Testing Metrics for Password Creation Policies

by Attacking Large Sets of Revealed Passwords,” in Proceedings of the 17th ACM Conference on

Computer and Communications Security (CCS ’10), Chicago, Illinois, United States, October 4-8,
2010, pp. 162-175.
http://dx.doi.org/10.1145/1866307.1866327.

[16] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cranor, and S.
Egelman, “Of Passwords and People: Measuring the Effect of Password-Composition Policies,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11),
Vancouver, British Columbia, Canada, May 7-12, 2011, pp. 2595-2604.
http://dx.doi.org/10.1145/1978942.1979321.

[17] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, Michelle L. Mazurek, L. Bauer, N. Christin,
and L. F. Cranor, “Encountering Stronger Password Requirements: User Attitudes and

Behaviors,” in Proceedings of the Sixth Symposium on Usable Privacy and Security (SOUPS ‘10),

Redmond, Washington, United States, July 14–16, 2010, article no. 2.
http://dx.doi.org/10.1145/1837110.1837113.

[18] International Organization for Standardization/International Electrotechnical Commission,
Information technology -- Keyboard layouts for text and office systems -- Part 1: General
principles governing keyboard layouts, ISO/IEC 9995-1:2009.

[19] K. K. Greene, “Effects of Password Permutation on Subjective Usability Across Platforms,” in
Human Aspects of Information Security, Privacy, and Trust, Lecture Notes in Computer Science
9190, 2015, pp. 59-70.
http://dx.doi.org/10.1007/978-3-319-20376-8_6.

https://www.usenix.org/conference/hotsec12/workshop-program/presentation/jakobsson
https://www.blackhat.com/docs/us-14/materials/us-14-Fu-My-Google-Glass-Sees-Your-Passwords.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Fu-My-Google-Glass-Sees-Your-Passwords.pdf
https://dx.doi.org/10.1002%2Fj.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/3-540-46513-8_5
http://dx.doi.org/10.1145/1978942.1979321
http://dx.doi.org/10.1145/1837110.1837113
http://dx.doi.org/10.1007/978-3-319-20376-8_6

39

[20] P. Y. Lee, and Y. Choong, “Human Generated Passwords – the Impacts of Password

Requirements and Presentation Styles,” in Human Aspects of Information Security, Privacy, and
Trust, Lecture Notes in Computer Science 9190, 2015, pp. 83-94.
http://dx.doi.org/10.1007/978-3-319-20376-8_8.

http://dx.doi.org/10.1007/978-3-319-20376-8_8

40

Appendix C: Keystroke Counts

 The following tables demonstrate the key sequences a user would need to enter in order to type the 10
passwords from the prior Greene et. al. study [1]. This information is provided for both the original
passwords in the study, and the permuted password using the permutation described within this
document. All sequences are given in reference to an iPhone running iOS 6. Note that passwords and its
associated permuted forms are available in table captions.

Table 7 - Keystroke counts & key sequences for 5c2'Qe and Qce52'

Keystroke count Key sequence, original: 5c2’Qe Key sequence, permuted: Qce52'

1 <.?123> shift

2 5 Q

3 <ABC> c

4 C e

5 <.?123> <.?123>

6 2 5

7 ‘ 2

8 <ABC> ‘

9 shift

10 Q

11 E

total 11 8

41

Table 8 - Keystroke counts & key sequences for 3.bH1o and Hbo31.

Keystroke count Key sequence, original: 3.bH1o Key sequence, permuted: Hbo31.

1 <.?123> shift

2 3 H

3 . b

4 <ABC> o

5 B <.?123>

6 shift 3

7 H 1

8 <.?123> .

9 1

10 <ABC>

11 O

total 11 8

42

Table 9 - Keystroke counts & key sequences for a7t?C2# and Cat72?#

Keystroke count Key sequence, original: a7t?C2# Key sequence, permuted: Cat72?#

1 a shift

2 <.?123> C

3 7 a

4 <ABC> t

5 t <.?123>

6 <.?123> 7

7 ? 2

8 <ABC> ?

9 shift <#+=>

10 C #

11 <.?123>

12 2

13 <#+=>

14 #

total 14 10

43

Table 10 - Keystroke counts & key sequences for m3)61fHw and Hmfw361)

Keystroke count Key sequence, original: m3)61fHw Key sequence, permuted:
Hmfw361)

1 m shift

2 <.?123> H

3 3 m

4) f

5 6 w

6 1 <.?123>

7 <ABC> 3

8 f 6

9 shift 1

10 H)

11 w

totals 11 10

44

Table 11 - Keystroke counts & key sequences for p4d46*3TxY and TYpdx4463*

Keystroke count Key sequence, original:
p4d46*3TxY

Key sequence, permuted:
TYpdx4463*

1 p shift

2 <.?123> T

3 4 shift

4 <ABC> Y

5 d p

6 <.?123> d

7 4 x

8 6 <.?123>

9 <#+=> 4

10 * 4

11 <123> 6

12 3 3

13 <ABC> <#+=>

14 shift *

15 T

16 x

17 shift

18 Y

total 18 14

45

Table 12 - Keystroke counts & key sequences for q80<U/C2mv and UCqmv802</

Keystroke count Key sequence, original:
q80<U/C2mv

Key sequence,
permuted: UCqmv802</

Key sequence, iOS-
optimized permutation:

UCqmv802/<

1 q shift shift

2 <.?123> U U

3 8 shift shift

4 0 C C

5 <#+=> q q

6 < m m

7 <ABC> v v

8 shift <.?123> <.?123>

9 U 8 8

10 <.?123> 0 0

11 / 2 2

12 <ABC> <#+=> /

13 shift < <#+=>

14 C <123> <

15 <.?123> /

16 2

17 <ABC>

18 m

19 v

total 19 15 14

46

Table 13 - Keystroke counts & key sequences for d51)u4;X3wrf and Xduwrf5143);

Keystroke count Key sequence, original:
d51)u4;X3wrf

Key sequence, permuted:
Xduwrf5143);

1 d shift

2 <.?123> X

3 5 d

4 1 u

5) w

6 <ABC> r

7 u f

8 <.?123> <.?123>

9 4 5

10 ; 1

11 <ABC> 4

12 shift 3

13 X)

14 <.?123> ;

15 3

16 <ABC>

17 w

18 r

19 f

Totals 19 14

47

Table 14 - Keystroke counts & key sequences for 6n04%Ei'Hm3V and EHVnim6043%'

Keystroke count Key sequence, original:
6n04%Ei'Hm3V

Key sequence, permuted:
EHVnim6043%'

1 <.?123> shift

2 6 E

3 <ABC> shift

4 n H

5 <.?123> shift

6 0 V

7 4 n

8 <#+=> i

9 % m

10 <ABC> <.?123>

11 shift 6

12 E 0

13 i 4

14 <.?123> 3

15 ‘ <#+=>

16 <ABC> %

17 shift ‘

18 H

19 m

20 <.?123>

21 3

22 <ABC>

48

23 shift

24 V

total 24 17

49

Table 15 - Keystroke counts & key sequences for m#o)fp^2aRf207 and Rmofpaf2207#)^

Keystroke count Key sequence, original:
m#o)fp^2aRf207

Key sequence,
permuted:

Rmofpaf2207#)^

Key sequence, iOS-
optimized permutation:

Rmofpaf2207)#^

1 m shift shift

2 <.?123> R R

3 <#+=> m m

4 # o o

5 <ABC> f f

6 o p p

7 <.?123> a a

8) f f

9 <ABC> <.?123> <.?123>

10 f 2 2

11 p 2 2

12 <.?123> 0 0

13 <#+=> 7 7

14 ^ <#+=>)

15 <123> # <#+=>

16 2 <123> #

17 <ABC>) ^

18 a <#+=>

19 shift ^

20 f

21 <.?123>

22 2

50

23 0

24 7

total 24 19 17

51

Table 16 - Keystroke counts & key sequences for 4i_55fQ$2Mnh30 and QMifnh455230_$

Keystroke count Key sequence, original:
4i_55fQ$2Mnh30

Key sequence,
permuted:

QMifnh455230_$

Key sequence, iOS-
optimized permutation:

QMifnh455230$_

1 <.?123> shift shift

2 4 Q Q

3 <ABC> shift shift

4 i M M

5 <.?123> i i

6 <#+=> f f

7 _ n n

8 <123> h h

9 5 <.?123> <.?123>

10 5 4 4

11 <ABC> 5 5

12 f 5 5

13 shift 2 2

14 Q 3 3

15 <.?123> 0 0

16 $ <#+=> $

17 2 _ <#+=>

18 <ABC> <123> _

19 shift $

20 M

21 n

22 h

52

23 <.?123>

24 3

25 0

53

Appendix D: Probability Formulas

These formulas were provided by Andrew Rukhin of NIST’s Statistical Engineering Division. Since
computing the exact probabilities in the following formulas would have required specialized
mathematical software and more powerful computing hardware than we had access to, we instead decided
to use Monte Carlo simulations to obtain good approximate probabilities for each mix of upper, lower,
numbers, and symbols.

54

55

56

57

58

59

	NISTIR 8040, Measuring the Usability and Security of Permuted Passwords on Mobile Platforms
	1 Introduction
	1.1 Purpose and Scope
	1.2 Document Structure
	1.3 Document Conventions

	2 Exploring Mobile Platforms
	2.1 Literature Review
	2.2 Background

	3 Password Usability Background
	3.1 Effectiveness
	3.2 Efficiency
	3.3 Satisfaction
	3.4 Across Effectiveness, Efficiency, and Satisfaction Measures
	3.5 The Science of Measuring Usability

	4 Password Security Background
	4.1 Password Generation
	4.2 Password Usage
	4.3 Classes of Attacks on Passwords
	4.4 Password Strength Metrics

	5 Towards a New Approach
	5.1 General Methodology
	5.2 Password Permutation and Its Effects on Usability
	5.3 Password Permutation and its Effects on Security
	5.3.1 Experiment 1, Fan-Out
	5.3.2 Experiment 2, Entropy Loss by Password Length
	5.3.3 Experiment 3, Additional Length Required for All-Lowercase Passwords

	5.4 Considerations of Password Permutation

	6 Discussion and Conclusions
	6.1 Ethical Considerations
	6.2 Future Work

	Appendix A: Acronyms and Abbreviations
	Appendix B: References
	Appendix C: Keystroke Counts
	Appendix D: Probability Formulas

