
NISTIR 8176

Security Assurance Requirements for
Linux Application Container

Deployments

Ramaswamy Chandramouli

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8176

NISTIR 8176

Security Assurance Requirements for
Linux Application Container

Deployments

Ramaswamy Chandramouli
Computer Security Division

Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8176

October 2017

U.S. Department of Commerce
Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

i

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

National Institute of Standards and Technology Internal Report 8176
37 pages (October 2017)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8176

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition purposes, federal agencies may wish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

Comments on this publication may be submitted to:

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: NISTIR8176@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
mailto:NISTIR8176@nist.gov

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

ii

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof-of-concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems.

Abstract

Application Containers are slowly finding adoption in enterprise IT infrastructures. Security
guidelines and countermeasures have been proposed to address security concerns associated with
the deployment of application container platforms. To assess the effectiveness of the security
solutions implemented based on these recommendations, it is necessary to analyze those
solutions and outline the security assurance requirements they must satisfy to meet their intended
objectives. This is the contribution of this document. The focus is on application containers on a
Linux platform.

Keywords

application container; capabilities; Cgroups; container image; container registry; kernel loadable
module; Linux kernel; namespace; Trusted Platform Module.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

iii

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Acknowledgments

The author is thankful to Serban Gavrila for technical feedback and to Isabel Van Wyk for her
editorial review.

Audience

The target audience for this document includes system architects and system administrators for
container stacks in enterprise infrastructures or in infrastructures used for offering container
services as part of an overall cloud service.

Trademark Information
All registered trademarks or trademarks belong to their respective organizations.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

iv

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Executive Summary

Application containers are now slowly finding adoption in production environments due to the
following advantages: short development and deployment cycle, resource efficiency through
lightweight virtualization, and availability of tools for automating the processes involved. At the
same time, addressing security concerns during deployment is equally important to the
enterprise. To address these concerns, security guidelines and countermeasures have been
proposed by NIST through the Application Container Security Guide (NIST Special Publication
800-190) (referred to in this document as the Container Security Guide).

The Container Security Guide identified security threats to the components of the platform
hosting the containers and related artifacts involved in building containers and storing them prior
to launch. Taking into consideration the overall security implications for the entire ecosystem
involving containers, the document also provided security countermeasures for and through six
entities including Hardware, Host Operating System (OS), Container Runtime, Image, Registry
and Orchestrator.

To carry out these recommendations in the form of countermeasures, one or more security
solutions are needed. For these security solutions to effectively meet their security objectives, it
is necessary to analyze those security solutions and detail the metrics they must satisfy in the
form of security assurance requirements. This is the objective and contribution of this document.

Linux and its various distributions form the predominant host OS component of the deployed
container platforms. Since they are open-source products, sufficient security related information
is available to analyze the security solutions that can be configured using features provided by
Linux. Hence the focus of this document is on security assurance requirements for security
solutions for application containers hosted on Linux. The target audience includes system
security architects and administrators who are responsible for the actual design and deployment
of security solutions in enterprise infrastructures hosting containerized hosts.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

v

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Table of Contents
Executive Summary ... iv

1 Introduction .. 1

1.1 Scope of the Document .. 1

1.2 Document Structure .. 3

2 Security Solutions for Linux Application Container Stack 5

2.1 Linux Kernel Feature – Namespaces .. 5

2.2 Linux Kernel Feature – Cgroups ... 5

2.3 Linux Kernel Feature – Capabilities .. 6

2.4 Kernel Loadable Modules (or Linux Security Module or LSM) 6

2.5 Application Container Security Configuration Process 6

3 Hardware-based Security Solutions for Containers ... 7

3.1 vTPM in the host OS Kernel – Security Assurance Requirements 7

3.2 vTPM in a Dedicated Container – Security Assurance Requirements 8

3.3 Leveraging Trusted Execution Support of Hardware 9

4 Assurance Requirements for Host OS Protection .. 10

4.1 Requirements for Generic Host OS Protection ... 10

4.2 Assurance Requirements for Host OS Protection for Container Escape 10

5 Assurance Requirements for Container Runtime Configuration 12

5.1 Requirements for Secure Connection ... 12

5.2 Requirements for Isolation-based Configurations ... 12

5.2.1 Process Isolation for Containers ... 12

5.2.2 Filesystem Isolation for Containers ... 13

5.2.3 IPC Isolation for Containers .. 14

5.2.4 Network Isolation for Containers .. 14

5.2.5 User and Group-level Isolation for Containers 16

5.3 Requirements for Resource Limiting Solutions ... 16

5.4 Requirements for Least Privilege Configuration for Containers 17

5.5 Requirements for Device Isolation Solutions .. 17

5.6 Requirements for Container Launching Options ... 19

6 Assurance Requirements for Image Integrity Solutions 22

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

vi

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

7 Assurance Requirements for Image Registry Protection 23

8 Assurance Requirements for Orchestration Functions 24

9 Adverse Side Effect of Some Security Solutions .. 25

10 Summary and Conclusions ... 26

List of Appendices

Appendix A— Acronyms .. 277

Appendix B— References .. 288

List of Figures

Figure 1 – Container Technology Stack .. 2

Figure 2 – vTPM Implemented in a Kernel Module ... 8

Figure 3 – vTPM located in a dedicated Container ... 9

List of Tables

Table 1– Linux Resource Control using Cgroups .. 17

Table 2 – Prohibited Options for Container Launching .. 19

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

1

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

1 Introduction

Application containers are now slowly finding adoption in production environments due to the
following advantages: short development and deployment cycle, resource efficiency through
lightweight virtualization, and availability of tools for automating the processes involved. To
address the security concerns in these environments, the Application Container Security Guide
(National Institute of Technology (NIST) Special Publication 800-190) [1] (referred to in the rest
of this document as the Container Security Guide) identified security threats to the components
of the platform hosting the containers as well as related artifacts involved in building containers
and storing them prior to launch. Taking into consideration the overall security implications for
the entire ecosystem involving containers, the Container Security Guide also provided security
countermeasures for and through six entities including Hardware, Host Operating System (OS),
Container Runtime, Image, Registry and Orchestrator.

To implement these countermeasures, one or more security solutions are needed. This document
discusses potential security solutions that provide the functionality necessary in countermeasures
and the kind of security assurance requirements each should satisfy. These security solutions can
be broadly classified as:

(a) Hardware-based root of trust providing integrity for boot process

(b) Configuration options using host OS kernel features and kernel loadable modules

(c) Protection measures for building and storing container images

(d) Configuration options in Orchestrator tools used for rolling out a production
infrastructure that involves multiple containers and multiple hosts

The purpose of this document is to examine each of the security solutions in the context of the
security objectives they are designed to meet and to develop assurance requirements that they
should satisfy in order to be effective. The host OS considered is Linux due to the following:

(a) Ubiquitous adoption in container stacks

(b) Linux distributions are open-source and allow for sufficient security related information
to be made publicly available

1.1 Scope of the Document

The functional architecture diagram of a container technology stack is shown in Figure 1. In this
diagram, the stack is comprised of the Physical Host (or Virtual Machine (VM)), Container OS
(which we will refer to as Host OS in this document), Container Runtime, and the multiple
containers. Additionally, tasks such as creating a virtual network linking containers within and
across container hosts (Container Networking), creating clusters of container hosts (Container
Cluster Management), creating pathway programs to identify and discover a specific container
providing a particular service (Service Discovery), scheduling of containers across a cluster
(Container Scheduling), and scheduling of specific business applications within various
containers (Application Scheduling) that are all performed by multiple tools are incorporated

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

2

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

under the umbrella of an Orchestrator software. Before actually launching them as containers on
various container hosts, templates of components that constitute a container called Container
Image are created using appropriate development tools. These container images are stored in a
container registry (Image Management) and are then pulled into container hosts and launched as
containers using Container Runtime tools. The container runtime also provides the interfaces for
configuring host OS parameters and settings associated with kernel-loadable modules to enable
secure deployment of various containers.

Figure 1 – Container Technology Stack

• As depicted in Figure 1, the security functional layer spans all functional layers of the
container technology stack. The security solutions covering these layers, however, must
be implemented through the following components:

(a) Physical Host (i.e., hardware, since container hosting on VMs is out of scope for
this document)

(b) Container OS (Host OS) interfaces

(c) Container Runtime interfaces

(d) Image Management and Registry Interfaces

(e) Orchestrator Interfaces

The containers running in the container stack can either be system containers or application
containers. A container that behaves like a full OS and runs programs such as sshd (secure
session establishment) and syslogd (logging capability) is called a system container, while one
that runs only an application is called an application container [2]. This document focuses on

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

3

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

application containers. Before analyzing the security solutions and identifying the assurance
requirements they should satisfy, it is necessary to state the execution model of the application
containers and the assumed attack model. First, the application is run within a container as a
single operating system process. The container has a copy of the application code itself as well as
the software stack (consisting of binaries and libraries) [3]. In most cases, this stack can be
assembled using some type of library system, avoiding the need for the developer to build and
configure the stack from scratch. These quickly assembled stacks are given different names in
different container product offerings (e.g., buildpacks, cartridges, etc.). There are stacks for
many of the popular programming language runtimes such as Java, PHP, Node.js, and Ruby. For
specialized applications, developers can create their own customized stack. The deployment
model in a container architecture may involve running copies of the same application in parallel
within separate containers, even spread across different container hosts. In this scenario, the
infrastructure may have a mechanism to distribute incoming requests across all instances of the
same application using some form of load balancer.

The attack model assumed here is that the vulnerability in the application code of the container
or its faulty configuration (e.g., the container is configured to run in privileged mode) has been
exploited by an attacker. This would allow the attacker to take control of and compromise the
privilege code in container runtime and host OS kernel where the latter is trusted by the
application code in the container to provide some protection guarantees such as process isolation
[4]. An example of such an attack is the replaying, recording, modifying, and dropping of a
network packet or a file system access. The security solutions discussed in this document are
intended to protect the container runtime and host OS against these types of attacks. Solutions to
address the inherent insecure characteristics of the application code itself, such as programming
bugs, design flaws or execution models, are beyond the scope of this document.

1.2 Document Structure

The remainder of this document is organized into the following sections and appendices:

 Section 2 provides an overview of the functions of various Linux kernel features
(Namespaces, Control Groups (Cgroups), Capabilities) and kernel loadable modules in
providing security for the containerized stack;

 Section 3 discusses hardware-based security solutions for container environments;

 Section 4 outlines host OS protection measures and their associated assurance requirements;

 Section 5 presents, in detail, several container runtime configuration solutions that guarantee
container isolation for artifacts such as processes, filesystems, inter-process communication
(IPC), and networks. It also presents solutions for limiting resources and ensuring least
privilege. All solutions are analyzed, and a set of assurance requirements that must be
satisfied are presented;

 Section 6 defines assurance requirements for building and maintaining container images;

 Section 7 briefly discusses assurance requirements for container registry protection;

 Section 8 outlines basic security assurance requirements for Orchestration tools;

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

4

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

 Section 9 identifies some undesirable side effects of some security solutions and the need to
exercise caution in the use of such solutions;

 Section 10 summarizes the various security solution areas that were covered in the document;

 Appendix A provides the definition for acronyms used in the document; and

 Appendix B contains a list of references.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

5

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

2 Security Solutions for Linux Application Container Stack

In section 1.1, the host OS (in this context, Linux) interfaces were listed as mechanisms for
implementing security solutions for a container stack. There are two types of interfaces: Linux
kernel interfaces and Kernel Loadable Module (or Linux Security Module or LSM) interfaces.
The Linux kernel features associated with the former type of interfaces are: Namespaces,
Cgroups, and Capabilities. Out of these, the Namespaces and Cgroups kernel features provide
isolation of processes running on top of the host OS and can be the driving features for
development of the concept of containers. The salient functions of Linux kernel features and
kernel-loadable module features are briefly described in the following sections to provide context
for the security configurations and solutions analyzed in the subsequent sections.

2.1 Linux Kernel Feature – Namespaces

Namespaces divide the identifier tables and other structures associated with kernel global
resources into separate instances. Thus, they partition filesystems, processes, users, network
stacks, Inter-process communication (IPC) objects, host names, and other components into
separate pieces. For example, each filesystem namespace has its own root directory and mount
table [2]. These distinct namespaces can then be bundled in any frequency or combination to
provide a unique view of resources for each container and subsequent accessibility to them. The
restricted view of resources for a process within a container can be extended to a child process.
Configuration capabilities, such as remapped root file systems and virtual network devices, are
some of the security solutions that can be enabled using the Namespaces feature. The assurance
of a security solution based on namespaces depends on the methods used to enforce namespace
isolation, which in turn depends on the kind of metadata associated with each namespace that
implements the appropriate access control.

The namespace concept has expanded into a general framework for isolating a range of kernel
global resources, the former scope of which was system-wide. Thus, the associated API has also
grown to include several system calls. However, there are still some resources that are not
namespace-aware (e.g., devices).

2.2 Linux Kernel Feature – Cgroups

Control Groups (Cgroups) are a kernel mechanism for specifying and enforcing hardware
resource limits and access controls to a process or a group of processes. Their goal is to prevent a
process from hogging all available resources and starving other processes and containers on the
host. Thus, Cgroups isolate and limit a given resource over a group of processes to control
performance or security. Controlled resources include Central Processing Unit (CPU) shares,
Random Access Memory (RAM), network bandwidth, and disk I/O [5]. It can also be used for
task control.

The security protection provided by Cgroups are:

(a) Preventing Denial-of-Service Attacks: It can provide protection against denial-of-service
attacks preventing situations such as runaway containers by using features such as task
freezing via SIGSTOP, setting limits on process ID (PID) using PID Cgroup to restrict

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

6

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

the maximum number of processes per user, and specifying network control parameters
such as buffer limits and traffic priority levels (enforced by iptables).

(b) Device Integrity Protection: It can restrict access to devices using label-based access
control or using a feature that allows the specification a device whitelist.

The configuration of Cgroups is enabled by mounting a special Cgroup virtual filesystem
(pseudo-filesystem) similar to /proc or /sys that allows viewing of the state of namespaces and
controls. The vulnerability of this mechanism is that attacks, such as unmounting or mounting-
over, can invalidate the resource limits set by Cgroups configurations. Cgroups can be
configured and managed outside of the container management frameworks since it is a
configuration feature purely associated with the kernel of the host OS.

2.3 Linux Kernel Feature – Capabilities

The Capabilities feature in Linux kernel helps to partition the extensive set of privileges
available to root so that processes (in our context, containers) can be allocated just the privileges
needed to perform a specific function. Prior to the introduction of the Capabilities feature, a
process that needs to open network sockets must be run as a root to perform this single function.
This meant that a bug in the corresponding binary, such as /bin/ping, could allow attackers to
gain all privileges for the root on the system [6]. By enabling the capability CAP_NET_RAW, a
version of ping can be created that has only the privileges enabled by this capability rather than
full root privileges. The security consequence of this is that the potential attackers would gain
significantly fewer privileges from exploiting the ping utility.

2.4 Kernel Loadable Modules (or Linux Security Module or LSM)

Kernel Loadable Modules, as the name implies, are modules loaded into the Linux kernel and
provide security functions to augment those provided by namespaces, Cgroups, and Capabilities.
Examples include SELinux, AppArmor, and Seccomp. SELinux provides controls on access to
objects by applying categories to processes and objects while AppArmor performs the same
function by applying profiles to processes. Seccomp enables specification of system call
restrictions, and thus reduces the Linux kernel attack surface.

2.5 Application Container Security Configuration Process

The Linux host OS kernel features—such as namespaces, Cgroups, and Capabilities—can be
leveraged to create a secure configuration for each container. Many container runtime products
offer APIs to create secure configurations for containers within a host. A typical container
runtime, generally accessed through a client, contains a library that directly makes the syscalls
and performs work on behalf of its client such as creating the required kernel namespaces,
Cgroups, and management of capabilities. Other administrative functions that may have security
implications (e.g., lack of availability due to uneven workloads) such as distribution of
containers across hosts and the creation of host clusters are managed by a set of tools called
Orchestrators.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

7

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

3 Hardware-based Security Solutions for Containers

The Container Security Guide, under the topic of Hardware Countermeasures, recommends a
trusted computing model that starts with the measured/secured boot, provides a verified system
platform, and builds a chain of trust rooted in hardware. This chain of trust then extends to
bootloaders, the OS kernel, and the OS components to enable cryptographic verification of boot
mechanisms, system images, container runtimes, and container images. The technical solutions
for implementing a trusted platform module (TPM) for a containerized host are outlined in [7].
Two such approaches are discussed in this document as well as the security assurance required
for each solution.

Both approaches involve a combination of hardware-based, or physical, TPM and a software-
based vTPM (virtual TPM). The difference between the two approaches is in the location where
vTPM is placed in the container stack. The security solution where vTPM is placed in the Linux
kernel is discussed in section 3.1, and the solution where vTPM is placed in a dedicated
container is the topic of section 3.2.

Building a TPM architecture is not the only type of approach for providing trust rooted in
hardware for the container stack. Another type of approach that has been proposed is to leverage
the trusted execution support of some CPU architectures to protect processes running in a
container against attacks from sources inside the same container stack. This includes privileged
software in the same stack such as the container runtime and host OS kernel [8]. A mechanism or
security solution based on this type of approach is discussed and analyzed in section 3.3.

3.1 vTPM in the host OS Kernel – Security Assurance Requirements

In an architectural approach suggested in [7], a software-based module called vTPM (virtual
TPM) is placed into the OS kernel. To make this module available to several containers, it needs
to be virtualized. This is accomplished using a kernel module that provides an arbitrary number
of software-based vTPMs, which are exposed to containers through the usual mechanisms and
present a character device type interface to the container userspace. This functionality can be
implemented by having the container runtime (or container manager) ask the host OS kernel to
create a new vTPM and assign the virtual device to a container. The vTPMs are linked to the
TPM implemented in the hardware platform (referred to as “physical TPM”) that hosts the
container stack. The schematic diagram of this architectural approach is illustrated in Figure 2.

The security assurance requirements for the above discussed architectural approach can be
looked at for the following scenarios:

The host OS is completely trusted: The trust-in-host OS can be established by extending the root
of trust from the hardware using the hardware-based, or physical TPM. Since the host OS is
trusted to prevent unauthorized access by containers and processes, it can also be trusted to
prevent unauthorized access to the in-kernel vTPM. Moreover, there is the assurance that
containers cannot modify the host kernel by loading new modules or by exploiting vulnerabilities
in the kernel. Containers can therefore reliably attest to their own state by using the hash extend
feature of the vTPM.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

8

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Figure 2 – vTPM Implemented in a Kernel Module

The host OS is not completely trusted, and independent trust is needed on vTPM: To implement
trust on vTPM, a scheme using the same mechanism used for establishing hardware TPM
(physical TPM) trust has been referred to in [7]. In the physical TPM, the hardware platform
provider signs an endorsement key (EK) stating that the TPM is trustworthy. This is then
extended by giving each vTPM instance its own endorsement key and deploying protocols for
signing the endorsement keys of vTPMs using the hardware-based TPM.

3.2 vTPM in a Dedicated Container – Security Assurance Requirements

The software-based vTPM with the same functionality described in section 3.1 is built and
hosted in a dedicated container (referred to as vTPM management container). The schematic
diagram of this architectural approach is given in Figure 3. This vTPM has two primary features:

(a) Access to hardware-based (physical) TPM

(b) Exposes the vTPM interface to other containers through a communication channel, which
can be a local UNIX domain socket or another IPC mechanism. If the IPC mechanism is
employed, the container using the vTPM service requires an additional piece of software
(denoted as “adapter” in figure 3) that presents the IPC interface as a standard character
device. In the container that is hosting the vTPM, a daemon will process requests from
other containers instead of a kernel module as it was in the previous case.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

9

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Figure 3 – vTPM located in a dedicated Container

The security assurance provided by this architectural approach is the same as the one provided
by the host OS in the container stack. A host OS, such as Linux, provides isolation between
processes belonging to different containers through the Namespaces feature. If this functionality
works correctly, no process belonging to a different container can access the state of the vTPM
deployed in a dedicated container. In other words, the security of this implementation is
jeopardized only in the event of a container escape attack. Still, this approach provides less
protection than the approach in section 3.1 (vTPM in the host Kernel) since the kernel is more
reliable in limiting the kind of access it exposes to the Userspace.

3.3 Leveraging Trusted Execution Support of Hardware

In 2015, Intel released the Software Guard eXtensions (SGX) [8] for their CPUs, which provided
the hardware mechanism for protecting user-level software from privileged system software
using the concept of secure enclaves. An enclave page cache (EPC) is a region of protected
physical memory where application code and data reside and are protected by CPU access
controls. When code and data in EPC pages are moved to DRAM, they are instantaneously
encrypted using an on-chip memory encryption engine (MEE) and then decrypted when they are
transferred from DRAM to EPC pages. The integrity of the enclave memory itself is also
protected by mechanisms that detect memory modifications and rollbacks. Thus, enclaves are
trusted execution environments provided by SGX to applications residing in the container. This
technology is likely to be available in mid 2018.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

10

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

4 Assurance Requirements for Host OS Protection

4.1 Requirements for Generic Host OS Protection

Installing a container-specific OS (as opposed to a generic OS distribution), keeping OS versions
up-to-date and patched, utilizing logging features that can track anomalous accesses to the OS,
and any escalation to perform privileged operations form the crux of Host OS countermeasures
in the Container Security Guide. In addition to the above countermeasures, it is also a good OS
security practice to disable all unused interfaces (Serial or Proprietary) on the host and minimize
the user and administrative accounts and groups. In addition to these, there are Linux-specific
patches, such as grsecurity [9] and PaX [10], that are available for Linux distributions. All
measures combined should provide the following security assurance for the host OS:

(a) Prevent manipulation of program execution by modifying memory (e.g., buffer overflow
attacks)

(b) Prevent attempts to reroute code to existing procedures (e.g., system calls in common
libraries)

4.2 Assurance Requirements for Host OS Protection for Container Escape

The host OS should be protected to mitigate threats that result from container escape or breakout,
and all containers should be protected from other containers on the host. There are many
solutions available in Linux environments that enable these protections, but the three solutions
analyzed in this document are SELinux, AppArmor, and Seccomp, all of which utilize kernel-
loadable modules (referred to using the acronym LKM, or Linux Kernel Module). SELinux, or
Security Enhanced Linux, can be used to assign categories to processes and objects (e.g., files,
sockets) and specify access restrictions based on certain combinations of categories. For
example, a specific SELinux label can be applied to a container to enforce a security policy (e.g.,
a container hosting a Webserver can only open ports 80 or 443) [6]. AppArmor is another LKM
product that helps enforce mandatory access control policies by applying profiles to processes
that enable restriction of privileges they have at the level of Linux capabilities and file access.
The controls are thus data-centric and are at a coarser level of granularity compared to SELinux.
SECure COMPuting (Seccomp) is a module that can define and enforce an access control
method that enables specification of the number of system calls available for an application
within a container to interface with the kernel. Limiting system calls provides a restricted
execution environment and thus reduces the kernel attack surface. The allowed list (i.e.,
whitelist) and prohibited list (i.e., blacklist) of system calls for a process are set up using the
syscall filter [11].

The overall goal of the kernel-loadable modules, or LKMs, described above is to provide another
level of security checks on the access rights of processes and users beyond that provided by the
standard file-level access control (discretionary access control, or DAC) in Linux [6]. This goal
then drives the following security assurance requirements that need to be satisfied:

(a) A user authorized to run applications in the container should not be allowed access to the
above described kernel-loadable modules.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

11

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

(b) If using SELinux, the chcon utility used to label the files and parent folders should be
used at the correct levels in the file system hierarchy such that it results in least
privileges.

(c) If using Seccomp, both a syscall whitelist (a list of allowable calls) and a syscall blacklist
(a list of prohibited calls) should be generated. The choice of system calls in the whitelist
for a container should be based on the type of application(s) hosted in the container,
deployment situation, and container size. The system calls included in the blacklist are
for high risk, possibly vulnerable, known dangerous, and explicitly disallowed ones [11].
Some examples in this category include system calls that allow for loading kernel
modules, rebooting, triggering mount operations, and other administrative calls.

(d) The seccomp implementation uses the Berkley Packet Filter system (BPF) and hence the
whole installation is often called seccomp-bpf. Seccomp-bpf allows for definition of both
whitelist and blacklist for system calls, has features for argument checking on those calls
and also options for obtaining any of the following filter return values (kill, trap, trace,
errno) [15]. A minimal configuration of seccomp-bpf should involve defining a whitelist
of system calls with kill as the filter return value. The initial contents of the whitelist
should include basic system calls (signal handling, read, write, exit). The processing logic
should start with verifying the architecture (since syscall numbers are tied to
architecture), and then loading the syscall number and comparing it against the whitelist.
If no good match is found, the process should be killed. Optionally, an extra feature of
seccomp filter that temporarily catches the failed syscall and reports it (instead of
immediately exiting) can be deployed. This can provide the assurance that the syscall list
(whitelist) is final and there is no need to change this unless the application or its program
libraries change.

(e) If using Seccomp, the sandboxes created by seccomp filters must not allow the use of the
ptrace command. If ptrace is allowed, the tracer can modify the process’s system call to
bypass the filter and therefore call blocked or restricted system calls.

(f) A minimal configuration feature that should be available is one that allows for the
partitioning of containers in the host to different security domains.

(g) LKMs should have features to prevent containers’ ability to mount/remount sensitive
directories and/or specific system directories critical to security enforcement (Cgroups,
procfs, sysfs).

(h) LKMs should have features to create a security profile for the administrators of container
runtime using a combination of the above features.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

12

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

5 Assurance Requirements for Container Runtime Configuration

As already described in section 2.5, all security configuration parameters for containers, except
for those dealing with cluster management and scheduling, are set using APIs provided by
container runtime. Although most of them involve Linux kernel features (Namespaces, Cgroups,
Capabilities) and Linux kernel modules, these tasks have been included under this section since
they are performed by the container runtime making syscalls to Linux host OS interfaces. The
overall organization of this section is as follows:

(a) Section 5.2 discusses configurations involving Linux’s Namespace feature, which
provides isolation for various resources

(b) Section 5.3 discusses configurations using the Cgroups feature, which is primarily
utilized for setting resource limits and thus preventing denial of service attacks

(c) Section 5.4 discusses configurations using the Capabilities feature, which enables the
allocation of least privileges

(d) Section 5.5 discusses the configurations for device isolation, which can be enabled using
a combination of Cgroups and kernel-loadable label-based enforcement modules

(e) Section 5.6 discusses configuration parameters that can be set at the time of launching the
containers rather than being pre-configured using the functions discussed above

Before analyzing these functions, the need for a configuration feature for the container runtime
itself is outlined in section 5.1.

5.1 Requirements for Secure Connection

Container runtime modules are implemented with a daemon that listens through a Unix socket
and thus enables remote administration of the runtime. It is possible under certain circumstances
for members in the administrative group to change the Unix socket to a TCP socket [10]. Any
connection to this TCP socket can allow attackers to pull and run any container in privileged
mode, thereby giving them root access to the host. The security assurance requirement for the
TLS connection involves the encryption and authentication of both sides (container runtime
module as well as the client tool used for remote administration) of the connection before
establishing the TLS session.

5.2 Requirements for Isolation-based Configurations

5.2.1 Process Isolation for Containers

Process Isolation is a core security requirement for containers to ensure the integrity of various
applications running in different containers as well as in the host. A process isolation mechanism
in a container environment should meet the following requirements [4]:

(a) Ability to distinguish processes running in different containers from each other and from
those running on the host

(b) Limit cross-container process visibility

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

13

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

(c) Prevent certain type of attacks such as:

(i.) A process running in one container influencing a process running in another
container using interfaces provided by the OS for process management (e.g.,
signals and interrupts)

(ii.) A process running in one container directly accessing the memory of a process
running in another container by using special system calls (e.g., the ptrace()
allows a debugger process to attach and monitor the memory of a debugged
process)

To provide process isolation, a Linux kernel feature called process id (PID) namespace is used.
A PID namespace is a mechanism that groups processes and controls their ability to see (e.g., via
proc pseudo-filesystem) and interact (e.g., sending signals) with one another. A PID namespace
is created using clone() or unshare() system call and is associated with one or more containers.
The first process carries the id PID1, and the identifiers for subsequent processes increase
sequentially. Thus, the PID namespaces feature also provides PID virtualization. Two processes
in different PID namespaces can have the same PID.

5.2.2 Filesystem Isolation for Containers

The goal of filesystem isolation is to prevent illegitimate access to filesystem objects from one
container to another and from any container to the host. The filesystem is an OS interface that
allows processes to store and share data as well as interact with one another. Access to data for a
container application is determined by its access to file systems through the filesystem mount
points. Therefore, access to data can be restricted by making the list of filesystem mount points
visible and accessible to a container application. This is accomplished through the mount
namespace. First, a named mount namespace is created along with a set of file system mount
points. This mount namespace is then associated with a process that can only see and issue
system calls such as mount() or unmount() on those mount points. It also operates on files that
are within that mount namespace and accessible through those mount points. The following are
the security solutions for filesystem isolation and their limitations:

(a) All Linux-based OS virtualization solutions utilize a mount namespace that allows for the
separation of mounts between the containers and the host. This is intended to facilitate
customization of the environment visible to users and processes. This feature does not
guarantee data isolation between the containers. Containers inherit the view of filesystem
mounts from their parent and can access all parts of the filesystem even though each
container is created within a new mount namespace.

(b) The typical solution for process filesystem access containment is by using the chroot()
system call, which binds a process to a subtree of the filesystem hierarchy. This allows a
container to share resources with the host by mounting them within the subtree visible
inside the container. However, this feature cannot provide the requisite protection in the
presence of privileged processes (i.e., processes with the CAP_SYS_CHROOT privilege),
which can escape the chroot jail due to the fact that the chroot() system call only affects
the pathname resolution.

(c) A better protection for filesystem objects is provided by modifying the root filesystem for
processes in a container as opposed to just modifying the root directory (which the chroot

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

14

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

() system call enables) [4]. This is enabled by the pivot_root () call, which moves the
mountpoint of the old root filesystem to a directory under the new root filesystem and
puts the new root filesystem in its place. This provides filesystem level protection since
the old root filesystem can be unmounted when it is carried out inside the mount
namespace of the container, thus rendering the host root filesystem inaccessible for
processes inside the container.

(d) Another filesystem-level protection strategy is to disallow mounting and unmounting of
filesystems for processes running inside a jail by default and enforce granular control of
this privilege using options in the allow_mount* command.

(e) Another mechanism to strengthen filesystem isolation is to designate a separate user
namespace per container, which maps the user and group ids to a lesser privileged range
of host UIDs and groups.

Because of the limitation of each of the above security solutions, the assurance requirements for
total filesystem-level protection involves a combination of configurations including mount
namespace, chroot, pivot_root, and user namespace needed for:

• Isolating mount points by mount namespace
• Changing the root directory for each process using chroot()
• Changing the root filesystem visible to each process (container) using pivot_root()
• Restricting user access scope using user namespace

5.2.3 IPC Isolation for Containers

Inter-process communication (IPC) isolation for containers means that processes in a container
must be restricted to communicate via certain IPC primitives only within that same container. An
IPC object (or associated mechanism) can be either a filesystem-based IPC object or non-
filesystem-based. Filesystem-based IPC objects, such as domain sockets and named pipes, can be
isolated using a combination of mount namespace and pivot_root features (section 5.2.2 above)
since they prevent processes from accessing filesystem paths outside of their own container.

However, there are other IPC objects such as System V IPC objects, semaphore sets (arrays),
shared memory segments, and message queues. These IPC objects can be isolated in Linux with
the help of IPC namespaces that allow the creation of a completely disjointed set of IPC objects.
Each IPC namespace has its own set of System V IPC identifiers and its own POSIX message
queue filesystem. Objects created in an IPC namespace are visible to all other processes that are
members of that namespace but are not visible to processes in other IPC namespaces. IPC objects
accessible for a process can be listed using the ipcs command and removed using the ipcrm
command.
5.2.4 Network Isolation for Containers

Network level isolation for containers is provided through the network namespace feature. For
each network namespace that is created, a set of network devices, IP addresses, IP routing
tables, /proc/net directory, and port numbers can be associated with it. Each container can have
its own virtual network device and applications that bind to the per-namespace port number

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

15

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

space. Suitable routing rules in the host system can direct network packets to the network device
associated with a specific container. It is therefore possible to have, for example, multiple
containerized web servers on the same host system with each server bound to port 80 in its (per-
container) network namespace.

Network connectivity is a core requirement for all production grade applications running on
containers such as web apps and multi-tier apps. The containers can be connected using a logical
IP network called the overlay network. The typical network configuration on a container
platform (consisting of containers, container runtime, host OS and the physical host) involves
creating a network bridge on the container host. Each container on a host is connected to that
bridge. A router captures Ethernet packets from its bridge-connected interface in promiscuous
mode, and captured packets are forwarded over the user datagram protocol (UDP) to router peers
running on other container hosts. These UDP “connections” are duplex, can traverse firewalls,
and can be encrypted [12]. Each container is connected to the bridge using a layer 2 (link layer)
virtualized network interface (VNI) with a valid Link Layer address or a Network Address
Translation (NAT) for layer 3 connectivity. The Linux Layer 2 network isolation is based on the
concept of Network Namespace, which allows for the creation of several networking stacks that
provide a view of being completely independent of the containers [4].

The simplest configuration for network isolation using layer 2 VNI involves defining a pair of
virtually linked Ethernet (veth) interfaces. One of the interfaces is assigned to the same network
namespace as the container and the other to the host namespace. A virtual link is then established
between the two interfaces, thus connecting the container to physical networks. There are two
options for enabling this link [4]:

(a) Network Bridge Device: The veth interface and the host physical interface are connected
using a virtual network bridge device. In this option, all container and host interfaces are
attached to the same link layer bridge and thus receive all link layer traffic on the bridge.

(b) Routing Tables: Another option is to utilize routing tables to forward the traffic between
the virtual network interface (to which the container is connected) and physical network
interfaces (resident at the host). In this option, containers can communicate with each
other only when a network route is explicitly provided.

Security Analysis: The network isolation functionality provided by these two options forces a
container process to use a designated virtual network segment or a designated network route
(e.g., over a VPN connection). Between the two options, the routing table use presents a slightly
higher security assurance than the network bridge device solution since the latter allows a
container address to be visible to all containers connected to the bridge.

Another approach to provide network connectivity for containers is to use the MACVLAN
interface [13], which also allows each container to have its own separate link layer address. The
Virtual Ethernet Port Aggregator (VEPA) is the most widely used mode for configuring this
option for isolating the containers. However, complete assurance of network isolation can be
provided at the process level in containers only if the namespace-based approaches are
augmented with label-based access controls and the isolation of the process from other global
namespaces.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

16

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

5.2.5 User and Group-level Isolation for Containers

Some processes may need some subset of root privileges. The user namespaces feature can be
used to restrict the privileges of some user IDs to that needed subset. The user namespace
isolates the user and group ID number spaces. In other words, a process's user and group IDs can
be different inside and outside of a user namespace. The most interesting case here is that a
process can have a normal unprivileged user ID outside of a user namespace while at the same
time having a user ID 0 inside of the namespace. This means that the process has full root
privileges for operations inside the user namespace, but is unprivileged for operations outside the
namespace.

Starting in Linux 3.8, unprivileged processes can create user namespaces, which opens a raft of
interesting new possibilities for applications. Since an otherwise unprivileged process can hold
root privileges inside the user namespace, unprivileged applications now have access to
functionality that was formerly limited to root [4].

5.3 Requirements for Resource Limiting Solutions

The primary protection mechanism for denial-of-service attacks in Linux container environments
is the Cgroups feature that enables setting limits for various resources. The “limits” specification
feature is restricted not only to hardware artifacts such as CPU, memory, and storage, but also to
processes and tasks. In addition to the limits feature, Cgroups enables the designation of a
collection of potential “resource hogging tasks” that can be frozen by sending a SIGSTOP signal.
It can later be unfrozen by sending a SIGCONT signal [11].

In addition to its main role of preventing against denial-of-service attacks, the Cgroups feature
also provides marginal network-level protection with a method (using network classifier Cgroup)
that tags network packets with a “classid” value. This can then be used as a parameter for
filtering certain packets. (The classid value can also be used for priority handling based on
Quality of Service (QoS) requirements, though that feature falls under performance enhancement
and not strictly security.)

The following table provides the list of hardware resources for which the Cgroups feature either
enables setting up of resource limits or access control.

Table 1– Linux Resource Control using Cgroups

Resource “Limit” Feature or Access Control

CPU Specific number of CPUs or amount of “CPU Shares” for a group of processes

Memory “Hard” and “Soft” memory allocation units for a group of processes

BLKIO Set disk read or write speeds, operations per second, queue controls, and wait
times on block devices designated by major and minor numbers; provides
more granular access control compared to filesystem specific controls

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

17

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Devices Create a whitelist for devices based on either: (a) Type (character vs block) or
(b) Major and Minor numbers

Cgroups configuration should provide the following assurances:

(a) It should not expose container host information, such as the kernel ring buffer via dmesg,
which can assist in kernel exploitation or information leaks.

(b) It should not allow local disk access, even within user namespaces and mount restricted
namespaces via raw disk, device, or make node (mknod) access [11].

5.4 Requirements for Least Privilege Configuration for Containers

As already mentioned, the Capabilities feature in Linux can be used to partition the set of root
privileges. All container runtime products, such as LXC, Docker, and CoreOS Rkt, come with a
default capability profile where some capabilities for containers are enabled and some are
disabled [11]. Due to the privilege needs of the application running in the container, some of the
defaults have be modified (i.e., some capabilities that have been enabled by default need to be
disabled, and some capabilities disabled by default need to be enabled). However, for most
applications hosted in containers, the following assurance requirements must be satisfied while
configuring the Capabilities feature in Linux:

(a) Capabilities that provide the privilege to manipulate a non-name spaced kernel parameter
(e.g., Sys Time) will have the effect of that parameter modified not only for the container
but also for the host and for all other containers. Hence such capabilities (e.g.,
CAP_SYS_TIME) should not be enabled.

(b) Capabilities that provide the broad set of privileges almost equal to that of root should not
be enabled (e.g., CAP_SYS_ADMIN).

(c) There is no need to enable the capability CAP_SYS_MODULE, which allows for the
loading and unloading of kernel modules as this will lead to insecure privilege escalation.

(d) The Capabilities feature should always be used in conjunction with user namespace as
any privilege escalation to the process due to enabling some Capabilities by error will be
limited to the namespace.

5.5 Requirements for Device Isolation Solutions

In Linux, access to devices is enabled by device nodes, which are special files that provide an
interface to the host device drivers. Device nodes are separated from the rest of the filesystem,
and their nodes are placed in the /dev directory. These nodes are not namespace-aware. The
creation of device nodes is performed by the udevd daemon process issuing the mknod system
call. The permission for a process to create device nodes (for accessing block or character
devices) is provided by the CAP_SYS_MKNOD capability. Containers are given access to device
nodes if the corresponding devices are to be shared among containers or between different
containers and the host. However, device nodes are security-sensitive since they provide
interfaces to device drivers. These drivers present significant attack vectors because they expose
interfaces (particularly the storage interface) to code running in the kernel space, which may be

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

18

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

abused to gain illegitimate data access, escalate privileges, or mount other attacks.

One possible solution for providing device-level isolation between containers is the use of
“device namespace,” provided the referenced input/output (physical) devices are namespace-
aware. Unfortunately, many Linux kernel distributions do not support the device namespace
feature. Where available, this feature can be used to create virtual devices for each container,
which can be multiplexed for access to a physical host device. Further, when Linux device
drivers controlling physical devices are not namespace-aware and the devices assume only one
controlling master host, access privileges for them are hard to securely grant for unprivileged
containers unless the device is used exclusively by a single container.

In the absence of the device namespace feature, two features are utilized for controlling access to
devices for containers. They are: (a) control groups, or Cgroups; and (b) access control based on
labels. The Cgroups subsystem for devices is used to create a whitelist, formatted for devices
based on type (i.e., character vs block) and device major and minor numbers. The wild card “all”
applies to all device types and major and minor numbers, and it is typically used as a default
deny before whitelisting explicit devices [11].

There are two label-based enforcement methods available in Linux environments: Security-
Enhanced Linux (SELinux) and Apparmor. In SELinux, category labels are applied to processes
and data/devices and access for a process is denied to a resource if it does not belong to the
correct category. For example, a specific label can be applied to a given container X and data to
be consumed by that container is assigned the same label. Because of the flexibility in assigning
a category SELinux can be used to enforce fine-grained policies. AppArmor is another label-
based system that offers a pathname-based access control (as opposed to filesystem nodes within
SELinux). The restrictions can be aggregated to define a profile for a specific application,
process, or container. A common weakness for all these label-based systems is that the controls it
provides can be subverted through direct execution of system calls.

The assurance requirements for device isolation solutions therefore are:

(a) All containers must be prevented from creating new device nodes, and the
CAP_SYS_MKNOD capability should not be enabled for them

(b) All mountpoints inside containers should have the nodev flag (through the use of nodev
option in the mount command) set to prevent them from being used to create files to
access device drivers

(c) All containers should only be allowed to access the following set of devices since they
are characterized as safe [4] due to the observations given below:

• Purely virtual devices – such as pseudo-terminals and virtual network interfaces; the
security guarantee comes from the fact that these devices are explicitly created for
each container and not shared

• Stateless devices – such as random, null, and others; sharing these devices among all
containers and the host is safe because they are stateless

• User namespace-aware devices – if the device (through the device driver code)
supports verifying capabilities of the process in the corresponding user namespace,

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

19

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

then such a device can be safely exposed to a container since the specified restrictions
will be enforced

(d) When Cgroups and label-based enforcement systems are both used for controlling access
to devices, care should be taken to ensure that their respective rules do not create conflict.

5.6 Requirements for Container Launching Options

Every container runtime product has a command to launch containers with many options. The
assurance requirements associated with the secure use of this command are stated as a set of
options that should be avoided [4]. As a best security practice, containers should not use options
that will enable sharing any namespaces associated with the container host when launched [11].
If this is not the case, it may not only enable the container to view the resources/objects
associated with that namespace but also manipulate those resources/objects by subverting the
isolation provided by static configuration of namespaces for the container. The following table
provides the list of namespaces for which sharing the corresponding host counterpart should not
be used in the container launch options.

Table 2 – Prohibited Options for Container Launching

Namespace/ Example
Resource-Object Brief Description Security Threat

Unix Timesharing System
(UTS)

All containers are assigned
their own UTS namespace
and thus have no need to
know the UTS namespace of
the host

Processes within the
container can see and
manipulate the hostname and
domain of the host

IPC/ Shared Memory
Segment

Shared Memory segments for
inter-process communication
between application modules
are set up for faster
communication as they are
faster than REST API calls

Processes within the
container can see and
manipulate host IPC object

Filesystem Host-sensitive directories
should not be mounted in
read-write mode as container
volumes

Gives containers the ability to
modify the files in those
directories with a potential to
jeopardize host security

Setting net=host in the
container launching
command

The networking mode for the
container should not be set
equal to host

This will give privileges to a
container that only a host
should have (e.g., shutting
itself down) or access to
networking services that only

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

20

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Namespace/ Example
Resource-Object Brief Description Security Threat

the host needs

Publishing container ports to
the host

This is done for setting up
communication to and from
that container

The default option of
publishing to all interfaces
should not be used; by
specifying the interface that
the port should bind to
explicitly, traffic into and
from the container is
restricted to the given
interface

Inter-container
communication

If it exists, the option to
enable blanket inter-container
communication must not be
enabled; instead, explicit
communication channels
must be set up between two
containers that need to
communicate.

Any compromised container
can attack any other container
on the host

In addition to container launch options that involve objects shared with the host, there are some
parameters exclusively applicable to the container that should be set when launching containers.

(a) Containers should always be launched with a specific memory limit to prevent denial-of-
service attacks or certain applications leaking memory that may eventually consume all
the memory on the host.

(b) Containers should always be launched by specifying the number of CPU shares. The
default value (Total CPU/number of containers) may not be sufficient for some
containers, resulting in denial of service. The number of CPU shares assigned to a
container should be such that no container can starve others with default settings. Further,
if there exists a group of containers that dominates others in CPU usage, then a lower
default value should be assigned to containers in that group to ensure fair distribution of
CPU shares.

(c) If the host OS Linux distribution supports a label-based system (e.g., SELinux), a policy
template should be set up, the container engine should be started with an option to
recognize the template, and the container launching API should have an option to
recognize the policy template parameter and include it as part of the launch parameter.

(d) Containers should be launched only with “required” capabilities by initially dropping all
capabilities and then adding only the required ones. The following capabilities in general

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

21

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

should not be present (i.e., NET_ADMIN, SYS_ADMIN, SYS_MODULE) in the container
configuration since they provide more privileges than what is required for most
deployments.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

22

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

6 Assurance Requirements for Image Integrity Solutions

The integrity of the container images is of paramount importance since they are converted to
running instances, some of which may host mission-critical applications. The image
countermeasures covered in the Container Security Guide include recommendations for
monitoring images for malware and other vulnerabilities, proper image configuration, separating
secrets from image files, and ensuring trust in images through cryptographic signatures and
regular updates. The security solutions needed for carrying out these recommendations should
include the following assurance requirements:

(a) There should exist a means to create metadata linking each image to its base image.

(b) There should exist a feature to rebuild the image automatically if the linked base image
changes [6].

(c) When any changes are made to the base image or dependent image (e.g., patching a
vulnerability), changes should not be made to the running containers. Instead, the
corresponding image should be recreated and the container re-launched using the
modified image. Thus, a single master, or golden image, is to be maintained for any
service.

(d) When employing “image signing” solutions for digitally signing and uniquely identifying
each image, the following requirements should be met [6]:

1. There should be robust key management to minimize the possibility of key
compromise. One approach is to have a PKI system that issues a certificate to each
developer exclusively for signing the image. The private key associated with this
certificate will then be the “signing key” that is used to sign all container images in a
repository.

2. Replay attacks must be mitigated by embedding expiration timestamps in signed
container images. Alternatively, a special key can be used to sign the metadata for
the repository, ensuring that the images in the repository do not contain stale
versions of the image with valid signatures.

(e) In addition to creating a unique identifier for an image using digital signatures, the
integrity of individual components of the image can be ensured by using labels such as
key/value pairs for each component.

(f) Images should be built such that the application(s) in them are not used for any privilege
escalation attacks. This can be achieved by disabling the chmod a-s command, which
removes the suid bit, or removing setuid and setgid binaries in them [6].

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

23

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

7 Assurance Requirements for Image Registry Protection

The suggested registry countermeasures in Container Security Guide include developing secure
connections to registries and ensuring that they do not contain out-of-date vulnerable images by
pruning them out through an automated process or controlling their accidental deployment
through use of discrete version numbers. Some assurance requirements unrelated to these
countermeasures yet still critical to processes involving creating, posting, and removing images
into and from registries are:

(a) The number of accounts accessing the registry must be limited since the common threat
in some environments is account hijacking when a diverse set of clients has access to a
container registry. One such environment is the registry maintained by cloud service
providers who offer container services.

(b) The permission to create container image registries and add or remove content to
registries must be cryptographically protected.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

24

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

8 Assurance Requirements for Orchestration Functions

The use of an Orchestration platform (consisting of a suite of tools) in a containerized
infrastructure is intended to perform the following functions:

• Enable the definition of a cluster (a named group of container hosts that can be managed as a
single entity) and schedule containers into the cluster. The cluster configuration should
support specification of parameters such as the amount of CPU/Memory to reserve, the
number of replicas (i.e., duplicate copies of the same container to be run), and the
circumstances under which a container should continue to run or be taken offline.

• Enable automated deployment of containers in various clusters/hosts (container scheduling).
This is achieved by integrating various automation tools to execute automation scripts as part
of an orchestrated workflow and to obtain feedback and status results for those automation
tasks. This kind of integration depends on the interfaces that the automation tools provide
and the type of formats (open or closed) that they follow [14].

• Provisioning, or defining new container hosts and attaching them to existing clusters.

The suggested orchestration countermeasures in the Container Security Guide include granular
access control of administrative actions based on hosts, containers and images as parameters, use
of enterprise-grade authentication services using strong credentials and directories, and isolating
containers to separate hosts based on the sensitivity level of the applications running in them. In
addition to these countermeasures, the orchestration artifacts should satisfy the following
security assurance requirements:

(a) Clusters should have capabilities for logging and monitoring the resource consumption
patterns of individual containers to avoid unanticipated spikes in resource usage leading to
non-availability of critical resources.

(b) The Orchestration platform must be usable on containerized infrastructures with more than
one host OS. In other words, the orchestration tools used must be container-host OS-neutral.
Using different tools for different container host OS platforms increases the probability of
denial-of-service attacks in those environments since the enterprise is not able to obtain a
global picture of resource usage for all running containers in the entire containerized
infrastructure of the enterprise.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

25

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

9 Adverse Side Effect of Some Security Solutions

While discussing a security solution (e.g., using mount namespace) in the context of a security
objective (i.e., filesystem isolation), certain augmenting solutions are recommended since the
solution under discussion cannot meet the objective by itself. However, there are some security
solutions that, irrespective of any augmenting controls, impose certain limitations on the
functionality and performance of certain container functions. Despite their direct impact
affecting only functional and performance aspects, they may have an indirect impact on certain
security parameters. For example, while setting up system call filters (with whitelist and
blacklist) using Seccomp as a security solution (since system calls are not namespace-aware and
thus ruling out the use of the namespaces feature), the presence of malicious processes can
introduce accidental leakage between containers. Further, the choice of system calls to be
allowed is based on a current set of applications in the container, and this security solution has
the potential to introduce application incompatibility since applications can be migrated between
containers for load-balancing reasons.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

26

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

10 Summary and Conclusions

The security solutions analyzed in this document can be summarized as follows:

(a) Providing authenticity and attestation of integrity for software components of a container
stack such as Linux (Host OS), container runtime, and the containers using hardware-
based root-of-trust solutions such as TPM and vTPM

(b) Utilizing hardware-based protection for shielding one container from another as well as
shielding containers from higher privileged software, such as Linux kernel, using the safe
execution model provided by hardware architecture (e.g., Intel SGX)

(c) Utilizing Linux kernel features (Namespaces, Cgroups, Capabilities) and loadable kernel
module (LKM) features for protection of the Linux kernel itself and for protecting one
container from another

(d) Protection measures for container runtime, container images, container registry, and
container orchestration tools.

The conclusion from the analysis is that every security solution must satisfy some security
assurance requirements to effectively provide necessary and sufficient security guarantees.

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

27

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Appendix A—Acronyms

Selected acronyms and abbreviations used in this paper are defined below.

EPC

IPC

MEE

NAT

PID

PKI

SGX

TPM

UDP

UTS

VM

VNI

Enclave Page Cache

Inter-process Communication

Memory Encryption Engine

Network Address Translation

Process ID

Public Key Infrastructure

Software Guard eXtensions

Trusted Platform Module

User Datagram Protocol

UNIX Timesharing System

Virtual Machine

Virtualized Network Interface

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

28

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

Appendix B—References

[1] NIST Special Publication (SP) 800-190, Application Container Security Guide, National
Institute of Standards and Technology, Gaithersburg, Maryland, September 2017.
https://doi.org/10.6028/NIST.SP.800-190.

[2] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, An Updated Performance Comparison

of Virtual Machines and Linux Containers, IBM Research Report, RC25482 (AUS1407-
001), July 21, 2014.
https://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257
D2300681E7B/$File/rc25482.pdf.

 [3] Cloud Standards Customer Council, Practical Guide to Platform-as-a-Service, Version

1.0, September 2015. http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-
to-PaaS.pdf.

[4] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, Security of OS-level virtualization

technologies, Cornell University Library, July 16, 2014. https://arxiv.org/abs/1407.4245.

[5] T. Combe, A.Martin, and R. Pietro, “To Docker or Not to Docker: A Security

Perspective,” IEEE Computer 3(5), September-October 2016, pp. 54-62.
https://doi.org/10.1109/MCC.2016.100.

[6] A. Mouat, Docker Security, O’Reilly Media, 2015.

[7] S. Hosseinzadeh, S. Laurén , and V. Leppänen, “Security in container-based

Virtualization through vTPM,” Proceedings of IEEE/ACM 9th International Conference
on Utility and Cloud Computing, Shanghai, China, December 2016, pp. 214-219.
https://doi.org/10.1145/2996890.3009903.

[8] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.
Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P.
Pietzuch, and C. Fetzer, “SCONE: Secure Linux Containers with Intel SGX,”
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), Savannah, Georgia, United States, November 2–4, 2016.
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf.

[9] grsecurity, https://grsecurity.net/features.php

[10] Home Page of The PaX Team [Web site], https://pax.grsecurity.net/

[11] A. Grattafiori, Understanding and Hardening Linux Containers – Version 1.1, NCC
Group Whitepaper, June 29, 2016. https://www.nccgroup.trust/us/our-
research/understanding-and-hardening-linux-containers/.

https://doi.org/10.6028/NIST.SP.800-190
https://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
https://domino.research.ibm.com/library/cyberdig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-to-PaaS.pdf
http://www.cloud-council.org/deliverables/CSCC-Practical-Guide-to-PaaS.pdf
https://arxiv.org/abs/1407.4245
https://doi.org/10.1109/MCC.2016.100
https://doi.org/10.1145/2996890.3009903
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://grsecurity.net/features.php
https://pax.grsecurity.net/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/

NISTIR 8176 SECURITY ASSURANCE FOR LINUX CONTAINERS

29

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.IR

.8176

[12] N. Kratzke, “About Microservices, Containers and their Underestimated Impact on
Network Performance,” CLOUD COMPUTING 2015: The Sixth International
Conference on Cloud Computing, GRIDs, and Virtualization, Nice, France, 2015, pp.
165-169. https://doi.org/10.13140/RG.2.1.2039.3046.

[13] Linux Containers, LxC project, https://linuxcontainers.org/lxc/introduction/.

[14] B. Kirsch, What to choose from the top orchestration software on the market, January 2017.
http://searchitoperations.techtarget.com/feature/What-to-choose-from-the-top-orchestration-
software-on-the-market.

[15] K. Cook, Using Simple Seccomp filters, November 2012. https://outflux.net/teach-
seccomp/

https://doi.org/10.13140/RG.2.1.2039.3046
https://linuxcontainers.org/lxc/introduction/
http://searchitoperations.techtarget.com/feature/What-to-choose-from-the-top-orchestration-software-on-the-market
http://searchitoperations.techtarget.com/feature/What-to-choose-from-the-top-orchestration-software-on-the-market
https://outflux.net/teach-seccomp/
https://outflux.net/teach-seccomp/

	NISTIR 8176, Security Assurance Requirements for Linux Application Container Deployments
	Executive Summary
	1 Introduction
	1.1 Scope of the Document
	1.2 Document Structure

	2 Security Solutions for Linux Application Container Stack
	2.1 Linux Kernel Feature – Namespaces
	2.2 Linux Kernel Feature – Cgroups
	2.3 Linux Kernel Feature – Capabilities
	2.4 Kernel Loadable Modules (or Linux Security Module or LSM)
	2.5 Application Container Security Configuration Process

	3 Hardware-based Security Solutions for Containers
	3.1 vTPM in the host OS Kernel – Security Assurance Requirements
	3.2 vTPM in a Dedicated Container – Security Assurance Requirements
	3.3 Leveraging Trusted Execution Support of Hardware

	4 Assurance Requirements for Host OS Protection
	4.1 Requirements for Generic Host OS Protection
	4.2 Assurance Requirements for Host OS Protection for Container Escape

	5 Assurance Requirements for Container Runtime Configuration
	5.1 Requirements for Secure Connection
	5.2 Requirements for Isolation-based Configurations
	5.2.1 Process Isolation for Containers
	5.2.2 Filesystem Isolation for Containers
	5.2.3 IPC Isolation for Containers
	5.2.4 Network Isolation for Containers
	5.2.5 User and Group-level Isolation for Containers

	5.3 Requirements for Resource Limiting Solutions
	5.4 Requirements for Least Privilege Configuration for Containers
	5.5 Requirements for Device Isolation Solutions
	5.6 Requirements for Container Launching Options

	6 Assurance Requirements for Image Integrity Solutions
	7 Assurance Requirements for Image Registry Protection
	8 Assurance Requirements for Orchestration Functions
	9 Adverse Side Effect of Some Security Solutions
	10 Summary and Conclusions
	Appendix A— Acronyms
	Appendix B— References

