
Draft NISTIR 82131

2

A Reference for Randomness Beacons3

Format and Protocol Version 24

John Kelsey5

Luı́s T. A. N. Brandão6

René Peralta7

Harold Booth8

This publication is available free of charge from:9

https://doi.org/10.6028/NIST.IR.8213-draft10

11

https://doi.org/10.6028/NIST.IR.8213-draft

Draft NISTIR 821312

13

A Reference for Randomness Beacons14

Format and Protocol Version 215

John Kelsey16

Luı́s T. A. N. Brandão17

René Peralta18

Harold Booth19

Computer Security Division20

Information Technology Laboratory21

This publication is available free of charge from:22

https://doi.org/10.6028/NIST.IR.8213-draft23

May 201924

25

U.S. Department of Commerce26
Wilbur L. Ross, Jr., Secretary27

National Institute of Standards and Technology28
Walter G. Copan, NIST Director and Undersecretary of Commerce for Standards and Technology29

https://doi.org/10.6028/NIST.IR.8213-draft

National Institute of Standards and Technology Interagency or Internal Report 821330
86 pages (May 2019)31

This publication is available free of charge from:32
https://doi.org/10.6028/NIST.IR.8213-draft33

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the
best available for the purpose.

34
35
36
37

There may be references in this publication to other publications currently under development by NIST
in accordance with its assigned statutory responsibilities. The information in this publication, including
concepts and methodologies, may be used by federal agencies even before the completion of such companion
publications. Thus, until each publication is completed, current requirements, guidelines, and procedures,
where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely
follow the development of these new publications by NIST.

38
39
40
41
42
43

Organizations are encouraged to review all draft publications during public comment periods and provide
feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
https://csrc.nist.gov/publications.

44
45
46

Public comment period: May 06, 2019, to August 05, 201947

National Institute of Standards and Technology48
Attn: Computer Security Division, Information Technology Laboratory49

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-893050
Email: beacon-nistir@nist.gov51

All comments are subject to release under the Freedom of Information Act (FOIA).52

https://doi.org/10.6028/NIST.IR.8213-draft
https://csrc.nist.gov/publications
mailto:beacon-nistir@nist.gov

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Reports on Computer Systems Technology53

The Information Technology Laboratory (ITL) at the National Institute of Standards and54
Technology (NIST) promotes the U.S. economy and public welfare by providing technical55
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests,56
test methods, reference data, proof of concept implementations, and technical analyses to57
advance the development and productive use of information technology. ITL’s responsi-58
bilities include the development of management, administrative, technical, and physical59
standards and guidelines for the cost-effective security and privacy of other than national60
security-related information in federal information systems.61

Abstract62

A randomness beacon produces timed outputs of fresh public randomness. Each output,63
called a pulse, also includes metadata and cryptographic elements to support several security64
and usability features. This document specifies a reference “version 2” of a format for pulses65
and of a protocol for beacon operations. The main goal of the description is to serve as a66
baseline for the deployment of numerous interoperable beacons, including the NIST Beacon.67
In the proposed reference, a Beacon periodically outputs a pulse containing 512 fresh random68
bits, time-stamped, signed and hash-chained. For example, each pulse also pre-commits to69
the randomness to be released in the next pulse. The latter enables users to securely combine70
randomness from different beacons. The Beacon protocol also specifies the interface for71
users to interact with the Beacon, in order to obtain information about past pulses.72

Keywords: cryptography; public randomness; beacons; hash chaining; timestamping;73
auditability; unpredictability.74

Acknowledgments75

This reference document is an output of the NIST Beacon project, which started in76
2011. Ron Rivest played an important early role in motivating the creation of the project,77
by pointing out to NIST that a public source of randomness could be valuable for auditing78
voting machines. Michael Fischer was a valuable early collaborator in thinking about a79
theoretical framework for public randomness. Andrew Regenscheid provided valuable80
administrative and technical support to the project. Overall, the NIST Beacon project has81
motivated several outputs, by the Information Technology Laboratory (ITL) and the Physics82
Measurement Laboratory (PML), involving collaboration from various NIST members,83
including Michael Bartock, Lawrence E. Bassham, Joshua Bienfang, Peter L. Bierhorst,84
Thomas Gerrits, Scott C. Glancy, Michaela Iorga, Emanuel H. Knill, Paulina Kuo, Alan85
Migdall, Carl A. Miller, Sae Woo Nam, Andrew Rukhin, Krister Shalm, and Michael86
Wayne. These outputs include the deployment of a prototype NIST randomness Beacon87
in 2013 (version 1), the experimental validation of Bell inequalities (a loophole-free Bell88
test experiment) in 2015, the development in 2017 of a random-number generator based on89
probabilities of quantum photon detection, the upgrade of the NIST randomness Beacon90
implementation in 2018 (version 2). The development of the present document benefited91
from the context of the NIST Beacon project. In turn, we expect this reference document92
to advance the development of technology related to the support of public randomness for93
privacy and auditability applications of societal benefit.94

iii

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Call for Patent Claims95

This public review includes a call for information on essential patent claims (claims whose use would be
required for compliance with the guidance or requirements in this Information Technology Laboratory (ITL)
draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication or by
reference to another publication. This call also includes disclosure, where known, of the existence of pending
U.S. or foreign patent applications relating to this ITL draft publication and of any relevant unexpired U.S. or
foreign patents.

96
97
98
99

100
101

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written or
electronic form, either:

102
103

a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not
currently intend holding any essential patent claim(s); or

104
105

b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring
to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft
publication either:

106
107
108

i) under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or109
ii) without compensation and under reasonable terms and conditions that are demonstrably free

of any unfair discrimination.
110
111

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its
behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions
sufficient to ensure that the commitments in the assurance are binding on the transferee, and that the transferee
will similarly include appropriate provisions in the event of future transfers with the goal of binding each
successor-in-interest.

112
113
114
115
116

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of whether
such provisions are included in the relevant transfer documents.

117
118

Such statements should be addressed to: beacon-nistir@nist.gov119

This call for patent claims is defined in the “ITL Patent Policy — Inclusion of Patents in ITL Publications”
available at https://www.nist.gov/itl/publications-0/itl-patent-policy-inclusion-patents-itl-publications

120
121

iv

mailto:beacon-nistir@nist.gov
https://www.nist.gov/itl/publications-0/itl-patent-policy-inclusion-patents-itl-publications

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Executive Summary122

A “randomness beacon” is a timed source of public randomness. It pulsates fresh randomness123
at expected times, making it available to the public. This can for example consist of timely124
generating and storing random values, timestamped, signed and hash-chained, in a publicly125
readable database. Thereafter, any external user can freely retrieve, via database queries, any126
past pulse (and additional associated data). This document puts forward a reference (version127
2) for randomness beacons, defining a format for pulses and a protocol for beacon operations.128
The goal is to promote the development of an ecosystem of interoperable beacons. This129
reference is labeled as “version 2” for distinction from the initial format (version 1) used by130
the NIST Randomness Beacon prototype deployed in 2013.131

The development of trustworthy sources of public randomness will enable applications132
and services of societal benefit. Beacons offer the potential to improve fairness, auditability133
and efficiency in numerous societal applications that require randomness. Examples include134
selection of control groups for clinical trials, random assignment of court cases to judges and135
drawing the winning numbers in public lotteries. A notable benefit of using public random-136
ness is in enabling after-the-fact verifiability, for the purpose of public transparency. If an137
unforgeable transcript of interactions is available, then parties not involved in a randomized138
procedure can still later check that the used randomness was fresh at the appropriate time.139
Another benefit is the reduction of interaction complexity in multi-party protocols.140

As an example, suppose that a quality-control audit requires testing items randomly141
sampled from a set. If this procedure is in place to test potential falsification of products, then142
it is essential that the sample be unpredictable. Otherwise, a malicious producer that would143
be able to predict the sample would also be able to pass the test while falsifying in advance all144
non-sampled items. There would also be problems if a malicious auditor could undetectably145
control the sample outcome. Such auditor could then, while claiming having sampled146
uniformly at random, bias the process into either detecting too few or too many faulty items147
(if having help from an insider). In general, many processes involving random sampling can148
be made more robust, trustworthy and verifiable by using a public source of randomness.149

The present reference proposes a randomness Beacon that outputs at predictable mo-150
ments in time a pulse containing 512 unpredictable bits of fresh randomness. The usefulness151
of those pulses is enhanced by a number of auxiliary features. An important one is the152
hash-chaining structure that ensures that a sequence of pulses constitutes an immutable153
history. Specifically, a cryptographic hash of each pulse is bound to the next pulse by means154
of an unforgeable digital signature. This means that for each pulse there is a single sequence155
of previous pulses that the beacon database is able to reveal as consistent past history. Since156
the signature is based on public-key cryptography, even an off-line party can verify and157
prove the authenticity of a possessed pulse or sequence thereof.158

A recurring guiding question in the development of the present reference has been: to159
which extent should external parties place trust on the beacon, and which properties can160
they verify? The designed pulse format and beacon protocol facilitates several features for161

v

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

security and envisioned applications. For example, the new design facilitates the distribution162
of trust across beacons. The idea is to allow users to obtain trustworthy randomness by163
securely combining the randomness from several beacons. The user can get a good random164
value even if a single beacon is honest and all other beacons are malicious. For this purpose,165
the new format adds fields that enable a beacon to cryptographically commit, in each pulse,166
to a local random value that is only revealed in the subsequent pulse. If all beacons produce167
their pulses at the minute mark, then they have to choose their random value before seeing the168
respective random value of the others. This allows users to obtain a final random string with169
security assurances similar to what would be obtained through a secure coin-tossing protocol.170

Another enhancement is the use of a skiplist structure, allowing a more efficient veri-171
fication of linkage between two pulses with distant timestamps. In a simple hash chain, such172
verification required analyzing all intermediate pulses, e.g., more than two million pulses173
between 2013 and 2018. In the new structure (version 2) fewer than 200 pulses are sufficient174
to check the linkage between any two pulses originated with a time separation of 50 years.175

The new format also provisions, by means of a uniform resource identifier (URI) field,176
the original source of pulses and the identification of the Beacon authority. This is aligned177
with another goal of this document — to promote that several beacons co-exist as separate178
administrative identities, including across different countries. An essential goal of this179
document is to promote interoperability across beacons. For example, the timestamp of180
pulses is now encoded (up to milliseconds precision) in Universal Time Coordinated (UTC)181
format, to facilitate comparison of timestamps independently of local timezones.182

Applications of a public randomness require a number of security and cryptographic183
guarantees. For better trustworthiness, a main challenge is enhancing security against insider184
threats. For example, it is important to mitigate the possibility of pre-calculation of an un-185
bounded number of pulses by a malicious beacon operator. Version 2 provides a new layer of186
prevention against this, by provisioning in the new pulse format the insertion of unpredictable187
external values. Scheduling such insertions technically prevents, before each external value188
is known, advance calculation of pulses with timestamps beyond the time of insertion.189

Other security aspects are not externally verifiable but warrant appropriate care. For190
example, the internal clock must be well synchronized with global UTC time to ensure timely191
generation and release of calculated randomness. As another example, the pulse randomness192
must be obtained by a proper cryptographic combination and transformation of the output193
of more than one random number generator (RNG). This mitigates the otherwise adverse194
consequences that would arise from a single RNG being compromised. These operational195
protocol aspects that are not externally verifiable are sometimes called beacon promises.196

The interoperability goal also includes allowing users to interact similarly with different197
beacons. For this purpose, this document also specifies a set of core interface rules defining198
how external users can query the beacon database. The beacon web frontend is assumed199
to have a interface that translates well-formed URIs into respective database queries, which200
then elicit replies. This allows users to obtain previously generated pulses, or sequences201
thereof, as well as system values not in pulses (e.g., public verification keys and certificates).202

vi

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Table of Contents203

1 Introduction 1204
1.1 Related work . 1205
1.2 Recommendations and requirements . 2206
1.3 Version numbering . 3207
1.4 Note to Reviewers . 3208
1.5 Document structure . 3209

2 Terminology and notation 4210
2.1 Terminology . 4211
2.2 Notation for pulses and fields . 4212

3 Protocol and pulse fields 6213
3.1 Pulse fields . 6214
3.2 Relations of field values within each chain 8215
3.3 Promises generation and release . 9216
3.4 Time variables . 11217
3.5 Additional recommendations . 12218
3.6 Retrieval interface . 12219

4 The Pulse Format 13220
4.1 Data formatting and representation . 13221

4.1.1 Basic data formats for fields . 13222
4.1.2 Byte serialization of fields . 15223
4.1.3 The Bare Pulse Format . 18224
4.1.4 The Txt pulse format . 19225
4.1.5 Other structured pulse formats . 21226

4.2 Administrative fields . 21227
4.2.1 URI . 21228
4.2.2 Version . 22229
4.2.3 Cipher Suite . 24230
4.2.4 Period . 24231

4.3 Indexation fields . 25232
4.3.1 Chain Index . 25233
4.3.2 Pulse Index . 25234
4.3.3 Timestamp . 25235
4.3.4 Status . 27236

4.4 The local random value . 29237
4.5 External value fields . 30238

4.5.1 External source identifier . 31239
4.5.2 External Status . 33240
4.5.3 External Value . 35241

4.6 Fields with past output values . 35242
4.6.1 Previous . 35243

vii

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

4.6.2 Hour, Day, Month and Year . 36244
4.6.3 Example without gaps . 37245
4.6.4 Example with skipped pulses . 38246
4.6.5 If past output values are lost . 38247

4.7 The precommitment value . 39248
4.8 Signature-related fields . 40249

4.8.1 Signature . 40250
4.8.2 Certificate ID . 40251

4.9 The Output Value . 41252

5 Hash Chains and the Skip List 42253
5.1 Hash Chains . 42254
5.2 Skiplists . 42255
5.3 Verifying a Skiplist . 45256

6 The Beacon Interface 46257
6.1 General syntax for queries and replies . 46258

6.1.1 General query-format . 46259
6.1.2 General reply-format . 46260

6.2 Queries for single pulses . 48261
6.3 Queries for sequences of pulses . 49262
6.4 Queries associated with certificates . 49263
6.5 Queries associated with external values . 50264
6.6 Queries about local functioning . 51265

7 Using a Beacon 52266
7.1 Direct usage — sampling a single integer using the modulo technique . . . 52267
7.2 Ex post facto-verifiable random sampling 53268

7.2.1 Committing upfront . 53269
7.2.2 Deriving a Seed . 55270

7.3 Using the Seed . 56271
7.4 Combining Beacons . 56272

8 Security 58273
8.1 Security model . 58274
8.2 Operational baseline . 60275

8.2.1 Management of signing keys and certificates 60276
8.2.2 Network Security . 61277
8.2.3 Time synchronization . 61278
8.2.4 Maintenance, availability and recoverability 62279
8.2.5 Boundaries and Physical Security 63280

8.3 Intrusion scenarios . 63281
8.3.1 Malicious Beacon App→ full bias on randLocal 64282
8.3.2 Malicious Beacon App→ full prediction and exfiltration attack . . . 65283
8.3.3 Malicious Beacon App→ bias on randOut 65284

viii

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

8.3.4 Malicious time along with compromised database→ rands prediction 66285
8.3.5 Semi-honest Beacon App→ rands prediction 68286
8.3.6 Malicious database and leaked signing key→ change-history attack 69287

8.4 Other recommendations . 70288

9 Future considerations 71289

References 72290

Appendix A Implementation recommendations 74291
A.1 Recommendations about generation and release timeline 74292

List of Figures293

Figure 1 Beacon service components . 5294
Figure 2 Illustration of the generation of the ith pulse by a Beacon App (2.0) 10295
Figure 3 Timeline of pulse generation and release 11296
Figure 4 Pulse example in format Txt . 20297
Figure 5 Obtaining past output values after gaps 39298
Figure 6 The sequence of pulses forms a hash chain 42299
Figure 7 A change in one pulse propagates to all later ones via the hash chain . . . 43300
Figure 8 Linking a trusted ANCHOR pulse to a TARGET pulse for verification . . 44301
Figure 9 Illustration of malicious Beacon App . 64302
Figure 10 Illustration of malicious clock and database 66303
Figure 11 Different predictabilities for different randLocal formulas 69304
Figure 12 Illustration of malicious database and leaked signing key 70305

List of Tables306

Table 1 Field names, aliases and types . 7307
Table 2 Length after byte serialization, per default field type 15308
Table 3 Field names, formats and values for Txt Serialization 21309
Table 4 Attributions defined for cipherSuite . 24310
Table 5 Bit-flags of the status field . 28311
Table 6 Bit-flags of the ext.status field . 34312
Table 7 Length of skiplists (in pulses), by duration 44313
Table 8 Interface calls for individual pulses . 48314
Table 9 Interface call for sequences (skiplists and subchains) of pulses 49315
Table 10 Interface calls for associated data . 50316
Table 11 Interface calls related to usage of external values 50317
Table 12 Queries about local properties of the Beacon 51318
Table 13 Examples of acceptable timing parametrizations 76319
Table 14 Examples of unacceptable timing parametrizations 76320

ix

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

1 Introduction321

This document defines a reference for randomness beacons. At high level, a randomness bea-322
con is a service that regularly outputs randomness, along with cryptographically associated323
metadata, including timestamps and cryptographic signatures. Each output of a beacon is324
called a pulse. A chronological sequence of pulses with certain semantic relations is called325
a chain. Within the context of a chain in a beacon, an individual pulse can be unequivocally326
identified by the value in some of its fields, e.g., by the timestamp (in timeStamp) or by327
the pulse index (in pulseIndex).328

Defining a beacon involves describing the format for pulses and a corresponding protocol329
for beacon operations. NIST deployed in 2013 an initial beacon prototype (version 1). In330
comparison, this document describes a reference, called version 2, that uses a new format331
and protocol for randomness beacons. Interoperability advantages are expected to arise from332
having several administratively independent beacons adhere to this new reference.333

The format defines the fields in pulses and their configuration. Knowledge of the format334
is needed by users to correctly interpret the information contained in pulses and to verify335
their correctness. External users can verify whether or not the beacon is following the format.336

The protocol consists of operational guidelines. Some relate to the secure and timely337
generation of pulses by the beacon, to ensure good quality randomness output, e.g., fresh and338
unpredictable (with full entropy). Other guidelines relate to the timely release of generated339
pulses to a publicly readable database. The adherence by the beacon to some of these340
guidelines is not externally verifiable. Some of those unverifiable protocol guidelines can341
be called promises. There are also guidelines specifying the interface calls (a.k.a. queries)342
that enable external users to perform (e.g., web based) efficient retrieval of past pulses (and343
associated information).344

1.1 Related work345

Randomness beacons were proposed by Rabin in 1983 [Rab83], as a way to implement346
certain cryptographic applications. In a simple version, the beacon would periodically347
pulsate a timestamped and signed integer. Such integers could be used for contract signing348
between several parties. For more complex applications, such as “confidential disclosures”,349
a beacon would pulsate a sequence of n random public keys and, at a latter time, would350
reveal only one of the respective private keys.351

Public randomness can be useful in cryptography [HL93]. Over the years, public ran-352
domness beacons have been considered for various other cryptographic applications, e.g.,353
traceable signatures [KTY04], voting protocols [MN10], currency mixes for anonymous354
payments in cryptocurrencies [BNM+14].355

It is often possible to replace the beacon by well-studied cryptographic primitives356

1

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

from the areas of zero-knowledge proofs and secure multiparty computation. However, a357
trusted randomness beacon remains useful as a facilitator of practical protocols with reduced358
interaction between many parties, as well as of public verifiability of randomized procedures.359

Several works have looked at providing public randomness based on decentralized360
sources of entropy e.g., based on atmospheric noise [Haa18], financial data [CH10], crypto-361
currencies [BCG15], and lotteries [BDF+15].362

A major concern with public sources of randomness is trust. How to know if a beacon363
is trustworthy? From a user perspective, a way to avoid trusting a single beacon is to use364
randomness determined by different beacons. This is conceptually similar to the idea of365
using randomness from two parties to ensure a secure coin-flipping [Blu81]. Recent works366
have demonstrated the ability to implement systems composed of a secure combination367
of randomness from many beacons, where some can be malicious (including aborting).368
Examples of these systems include RandHerd and RandHound [SJK+17], SCRAPE [CD17],369
and HydRand [SJSW18].370

Version 1 of the NIST Randomness Beacon was active as an online prototype starting371
September 05, 2013 [NIS18]. It outputted a string of 512 random bits per minute, along with372
metadata that included a time-stamp and signature. This is conceptually close to the first373
type of beacon described by Rabin, since it generates uniform numbers that are timestamped374
and signed. Version 2 of the NIST Randomness Beacon uses the new format that is described375
in this document. Pulses in the new format contain additional fields. For example, Version 2376
pulses contain fields enabling secure coin-tossing based on randomness from various beacons.377
Other randomness beacon projects, external to NIST, will implement beacons that are inter-378
operable with Version 2. These include projects in Chile [CLC18] and in Brazil [INM18].379

1.2 Recommendations and requirements380

This document provides some guidance promoting interoperable Beacon implementations.381
The guidance includes recommendations and requirements related to the reference for Ran-382
domness Beacons put forward. These are sometimes expressed using terms formatted in383
small caps and bold weight, with special meaning as follows:384

• “SHALL” and “SHALL NOT” indicate requirements to be followed strictly in order to385
conform to the publication and from which no deviation is permitted;386

• “SHOULD” and “SHOULD NOT” indicate that among several possibilities one is rec-387
ommended as particularly suitable, without mentioning or excluding others, or that a388
certain course of action is preferred but not necessarily required, or that (in the negative389
form) a certain possibility or course of action is discouraged but not prohibited.390

• “MAY” and “NEED NOT” indicate a course of action permissible within the limits of391
the publication.392

2

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• “CAN” and “CANNOT” indicate a possibility and capability, whether material, phys-393
ical or causal.394

1.3 Version numbering395

This document covers the version 2 of the Beacon reference. We specify as “2.0.0” the396
detailed version number of the current reference. Future non-major updates of this reference397
SHOULD update the version to “2.y.z” (where y and z are non-negative integers). Those398
potential future revisions SHOULD be defined within revisions of this NISTIR document399
or related official documentation.400

Incrementing z (starting at 0 for each new y) SHALL correspond to simple patches that401
do not break any handling of previous pulses, and which do not require reinitializing any402
ongoing chain. For example, this CAN be from assigning a new cryptographic primitive403
to a previously non-assigned value in the cipherSuite field, by requiring support to new404
interface calls, or by defining for the status field the meaning of previously undefined405
bit-flags (without deprecating existing ones).406

We say that a simple increment of z corresponds to a sub-version update, which does not407
require being reflected within the version field of a pulse, which only show the version up408
to the y level, i.e., “2.y” (e.g., “2.0”), omitting z.409

Incrementing y (e.g., going from version “2.0.z” to “2.1.0”) SHALL correspond to410
changes that require distinct handling across values y. This CAN be for example from411
adding a new field of required parsing by the signature algorithm, by changing the way an412
existing field is calculated, or changing the handling of some previously defined bit flag in413
the statusCode field.414

1.4 Note to Reviewers415

We seek constructive feedback from interested parties, including about the specification of416
pulse format, cryptographic primitives, interface calls, applications, recommendations and417
requirements, security analysis, terminology, and related-work references.418

1.5 Document structure419

The remainder of the document is organized as follows: Section 2 defines terminology and420
notation. Section 3 overviews the beacon protocol and the pulse fields. Section 4 specifies421
in detail all the fields of a pulse. Section 5 explains the hash-chaining of pulses and the422
corresponding skiplists. Section 6 describes the interface that allows users to obtain past423
pulses and associated data. Section 7 provides guidelines for using beacon randomness,424
including how to combine randomness from several beacons. Section 8 makes a security425
analysis. Section 9 mentions some aspects open to consideration with respect to additional426
functionality and changes in format.427

3

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

2 Terminology and notation428

This section defines terminology and notation that will be used throughout this document.429

2.1 Terminology430

The term Beacon denotes the service that provides timestamped, signed and hash-chained431
random numbers. Figure 1 illustrates, at a high level, the components of a beacon:432

1. (beacon) engine — The internal parts of the beacon service where the actual pulses433
are formed. This is a computer with well-defined physical boundaries. It includes an434
internal clock, and internal RNG and the capabilities needed to run the “Beacon App”435
software. These parts are not accessible to the outside.436

2. (web) frontend — The public-facing parts of the beacon, providing a web interface to437
answer requests of information stored in a database (DB). All past pulses, and certain438
associated data, are stored in the DB.439

3. hardware security module (HSM) — A device independent from the beacon engine,440
safeguarding cryptographic keys and performing cryptographic operations.441

4. random number generator (RNG) — A hardware-based generator of true random442
numbers. At least two RNGs SHALL be used in a randomness beacon, and at least443
one SHOULD be independent of the Beacon engine. Additional RNGs MAY be used.444

The following terms relate directly to the generation of pulses:445

• pulse — The periodic message output from a beacon, which contains a timestamp, a446
signature, and a random number, among other fields (described in Section 4).447

• chain — A sequence of hash-chained pulses, produced consecutively, with a fixed448
chain index and increasing pulse index. All pulses in a chain follow the same format.449

• period — The fixed time window between expected consecutive pulses in a chain.450
For the current NIST Beacon this is one minute (specified as 60,000 milliseconds).451

• gap — A time interval during which one or more regularly-scheduled pulses were452
not produced by the beacon, presumably due to some kind of outage.453

2.2 Notation for pulses and fields454

A pulse from a beacon and within a chain. The symbol P is used to denote a pulse. In455
examples hereafter, the beacon authority and the scope of a chain are often left implicit.456

Field names. A pulse is composed of several fields. The expression P.〈fieldname〉 repre-457
sents the value in field 〈fieldname〉 of pulse P. Text in monospaced font type (teletype) is458

4

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

DB
(web

frontend)
Web
(users)

Fw

Legend:
- App: software application
- DB: Database
- Fw: Firewall
- HSM: hardware security module
- RNG: random number generator

Fw

Figure 1. Beacon service components

used for concrete field names, e.g., pulseIndex, timeStamp and localRandomValue. For459
example, P.pulseIndex is the pulse index of pulse P.460

Pulses identified by index. When the beacon authority (e.g., A) and the chain (e.g., j) are461
clear or implicit in the context, pulses CAN be identified via the pulse index i. For example,462
Pi is the ith pulse in the chain. Pulse indices are consecutive positive integers, starting with 1,463
implying Pi.pulseIndex= i. There are never gaps of pulse indices within the same chain,464
so if a pulse Pi exists for some i≥ 2, then Pi−1 also exists. Since pulseIndex is a unique465
identifier of a pulse (within a chain and within a beacon domain), we CAN use 〈fieldname〉i466
(e.g., timeStampi) as an abbreviation to denote Pi.〈fieldname〉.467

Pulses identified by timestamp. P[T] denotes the pulse P with a timestamp T , i.e., satisfy-468
ing P.timeStamp= T , indicating the time promised by the Beacon to not have yet released469
the pulse. T does not necessarily represent the exact release time (see Section 3.3). The470
abbreviation 〈fieldname〉[T] (e.g., outputValue[T]) denotes the value P[T].〈fieldname〉.471

Timestamps are represented as byte strings, using the format described in RFC3339472
[NK02]. For example, 2018-07-23T19:26:00.000Z represents the time-of-day equal to 19473
hours, 26 minutes, 0 seconds and 0 milliseconds in the 23rd day of July of the year 2018.474

Different beacons and chains. The distinction of pulses from different beacons and/or475
different chains CAN be made via indices in the pulse symbol P. For example, PA[T] and476
PB[T] represent two pulses from beacons A and B, respectively, both associated with the477
same timestamp T . Several indices CAN be used concurrently, e.g., PA, j,i denotes the ith478
pulse in the jth chain of beacon A.479

5

https://beacon.nist.gov/beacon/2.0/chain/1/pulse/1

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

3 Protocol and pulse fields480

There are many things a beacon operator needs to do in order to provide a useful Beacon.481
We partition the beacon-protocol guidelines into two main categories of operation:482

1. generation and release of pulses — related to computation and release of pulses by483
the Beacon engine; this part of the protocol deals with verifiable properties of the484
format of pulses and relations between pulses (Section 3.1), as well as with externally-485
unverifiable promises (Section 3.3), and other recommendations (Section 3.5).486

2. retrieval (interface) — related to user interface at the web-frontend (see Section 3.6).487

Some aspects introduced in this section are further detailed in later sections, e.g., the488
pulse format (Section 4) and the retrieval interface (Sections 5 and 6). Certain aspects of489
implementation security outside the scope of this section are described as an operational490
baseline in Section 8.2.491

3.1 Pulse fields492

The NIST Beacon pulse format 2.0 includes the following 21 fields:493

F1. uri — a uniform resource identifier (URI) that uniquely identifies the pulse;494

F2. version — the version of the beacon format being used;495

F3. cipherSuite — the ciphersuite (set of cryptographic algorithms) being used;496

F4. period — the number (denoted by π) of milliseconds between the timestamps of this497
pulse and the expected subsequent pulse;498

F5. certificateId — the hash of the certificate that allows verifying the signature in499
the pulse; the full certificate must be available via the website of the beacon;500

F6. chainIndex — the chain index (integer identifier, starting at 1) of the chain to which501
the pulse belongs;502

F7. pulseIndex — the pulse index (integer identifier, starting at 1), conveying the order503
of generation of this pulse within its chain;504

F8. timeStamp — the time (UTC) of pulse release by the Beacon Engine (the actual505
release time MAY be slightly larger, but SHALL NOT be smaller);506

F9. localRandomValue — the hash() of two or more high-quality random bit sources;507
(For all practical purposes, it is expected to have full entropy; in rigor it MAY forfeit508
up to less than one bit of entropy, while indistinguishable from uniformly random.)509

F10. external.sourceId — the hash() of a text description of the source of the external510
value, or an all-zeros byte string (with exactly hLB = d|hash()|/8e bytes) if there is511
no external value;512

F11. external.statusCode — the status of the external value;513

6

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

F12. external.value — the hash() of an external value, drawn from a verifiable external514
source from time to time, or an all-zeros string if there is no external value;515

F13. previous — the outputValue of the previous pulse;516

F14. hour — the outputValue of the first pulse in the (UTC) hour of the previous pulse;517

F15. day — the outputValue of the first pulse in the (UTC) day of the previous pulse;518

F16. month — the outputValue of the first pulse in the (UTC) month of the previous519
pulse;520

F17. year — the outputValue of the first pulse in the (UTC) year of the previous pulse;521

F18. precommitmentValue — the hash() of the next pulse’s localRandomValue;522

F19. statusCode — the status of the chain at this pulse;523

F20. signatureValue — a signature on all the above fields;524

F21. outputValue — the hash() of all the above fields.525

Field names, types and aliases. Table 1 lists all field names and their types. Field names526
just serve a labeling purpose, not being used as input to computation (e.g., hash or signature)527
of any pulse field. The table also defines aliases used for conciseness in this document.528

Table 1. Field names, aliases and types

Default name Alias
Default

type
F1 uri uriStr
F2 version verStr
F3 cipherSuite cipher uint32
F4 period uint32
F5 certificateId certId hashOut
F6 chainIndex chainId uint64
F7 pulseIndex pulseId uint64
F8 timeStamp time dateStr
F9 localRandomValue randLocal hashOut
F10 external.sourceId ext.srcId hashOut
F11 external.statusCode ext.status uint64

Default name Alias
Default

type

F12 external.value ext.value hashOut
F13 previous out.Prev hashOut
F14 hour out.H hashOut
F15 day out.D hashOut
F16 month out.M hashOut
F17 year out.Y hashOut
F18 precommitmentValue preCom hashOut
F19 statusCode status uint32
F20 signatureValue sig sigOut
F21 outputValue randOut hashOut

“uriStr”, “verStr” and “dateStr” denote UTF8 character strings with respective structural restrictions to URI,
version number and UTC date. “uint32” and “uint64” respectively denote 32-bit and 64-bit unsigned integers.

Data types. A pulse is a structure composed of 21 fields, of which: eleven (11) are hash529
outputs; one (1) is a signature output; three (3) are characters strings; three (3) are unsigned530
integers; three (3) are bit-flag sequences or value-sets also fitting within an unsigned integer.531

Fields have further associated structure. For example, “dateStr” is a character-string type532
that must be specified within the UTC format and incorporates an implicit linear order (≤)533
that allows chronological comparison of any two timestamps.534

7

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

The indication of default data types in Table 1 serves an informative purpose, but the535
field values CAN be represented in various ways depending on the purpose. For example,536
when performing serialization, “hashOut” (for hash outputs) and “sigOut” (for signature537
output) CAN both be converted to byte string format (Byt) when used for hashing, or to538
hexadecimal format (hex) when output within a MIME type text/plain document.539

Section 4.1 discusses in more detail the field types and data representations.540

3.2 Relations of field values within each chain541

The pulses within each chain must satisfy formatting and relational rules (further detailed542
along Section 4).543

Constant or incremental fields. For example, the following short identities hold:544

• pulseIdi+i = pulseIdi +1 = i+1 (each new pulse increments the pulse index by 1);545

• out.Previ = randOuti−1 (the out.prev of a pulse is the randOut of the previous pulse);546

• version, cipher, period and chainId remain constant (and because of that do not547
require specification of the pulse index).548

• timei+1 = timei +(1+ gi)×period, where gi is a non-negative integer (usually 0)549
representing the number of pulse gaps immediately before pulse i (the condition gi > 0550
also has an implication on statusCodei).551

Serialization. A rigorous description of the relation between the values of some fields552
requires specifying how field values are serialized when used as input to a hash function.553
We use an upper bar to denote byte serialization, i.e., 〈fieldname〉i denotes the byte-string554
serialization of 〈fieldname〉i. If the field is not of integer type (uint32 or uint64), then555
its serialization also includes as a prefix the field length encoded as a (serialized) 64-bit556
unsigned integer. Section 4.1.2 describes the details of serialization.557

Relations involving a hash function. Let Fk,i denote Pi.Fk, i.e., the value in the field Fk558
in the pulse with index i. Let || denote concatenation. For succinctness, we CAN write:559

• F21,i = randOuti = hash
(
||k∈{1,...,20}Fk,i

)
, i.e., the output value (randOuti) is the560

hash() output of the “serialized” concatenation of encodings of all other fields.561

• F20,i = sigi = Sign
(
SK,hash

(
||k∈{1,...,19}Fk,i

))
, where Sign is the signature algorithm562

(corresponding to the cipher value), with its first argument SK holding the secret563
signing key (for which there is a certificate(s) with hash equal to certId), and its564
second argument SK being the hash to be signed.565

Similarly, we CAN write relations using aliases, such as:566

8

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• randOuti = hash(urii||versioni||cipheri||periodi||certIdi||chainIdi||pulseIdi||
timei||randLocali||ext.srcIdi||ext.statusi||ext.valuei||(
||x∈{Prev,H,D,M,Y}out.xi

)
||preComi||statusi||sigi

)
567

• preComi = hash(randLocali+1)568

Assembling a pulse. Figure 2 illustrates the generation of a pulse Pi. It depicts how to569
combine several fields to compute sigi and randOuti. For simplicity, the depiction omits570
details about the serialization of fields, including about the ordering and encoding of the571
inputs to various hashes.572

In the Figure: ρi, j is the “raw” random 512-bit string produced by the jth RNG; Mi is the573
input (the needed serialization is left implicit) for the hash of the signature algorithm; Si is574
the signature output; and Pi, produced by Pulsify, is the ith pulse in some structure decodable575
by the database (DB). The DB CAN later provide pulses in various formats, e.g., bare or576
XML. For example, the bare format is bare(Pi) = ||k∈{1,...,21}Fk,i577

The hash of Mi is represented with an asterisk (Hash∗) because it is actually the hash578
specified by the signature protocol (e.g., RSA PKCSv1.5). The hashing is not repeated579
inside the illustrated Signing module. The reason for representing it outside of the HSM580
(where the Signing module is) is to convey that it is possible to even prevent the HSM from581
learning in advance the information needed to compute the “output value” (randOut) of the582
pulse. This is relevant for an adversarial setting where the HSM is semi-honest.583

3.3 Promises generation and release584

A beacon service SHOULD, via its frontend, make pulses available at a steady and predictable585
rate. This requires a proper functioning of the backend, where the Beacon engine makes586
certain promises on which unpredictability, freshness, timeliness and unambiguity hinge.587

• Promise 1: No advanced release. The Beacon engine SHALL NOT release before588
time T a pulse with timestamp T .589

• Promise 2: Generate with entropy. The Beacon engine SHALL compute randLocal590
in each pulse as the hash() of at least two outputs from independent random number591
generators, each expected to have as much entropy as the size of the randLocal field.592

• Promise 3: No advanced generation. When internally computing randLocali+i593
needed for the calculation of preComi, the Beacon engine SHALL sample the needed594
randomness (ρi, j, for j = 1,2[, ...]) from the several local RNGs only after releasing595
the previous pulse (Pi−1) and after time timeStampi−π .596

• Promise 4: No delayed release. If until time T +π/4 the Beacon engine has not597
released a pulse with timestamp T , then it SHALL avoid such release and enforce a598
time-gap in the chain.599

9

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

HSM

Legend: - DB: database

- : release not before timestamp

- HSM: hardware security module

- RNG: random-number generator

- NTP: network time protocol

DB

- ||: concatenation

Ei: external (srcId, status, value) (all-zeros when not available)

NTP

MDi: some metadata (uri, version, cipher, period, certId, chainId)

Pasti = (Ri-1, RH[i-1], RD[i-1], RM[i-1], RY[i-1]): previous (i-1)

and 1st of {hour (H), day (D), month (M) and year (Y)} of previous

Mi = MDi || i || Ti || ri || Ei || Pasti || Ci || zi

i: pulse index (integer, incremented by 1 for each released pulse)

Ti: time (UTC string, ms precision, e.g., "2018-07-23T19:26:00.000Z")

Time
Server
(remote)

Clock
(on chip)

Hash of

external

value

Ri
Ri

Pi (pulse)
pulsify

Pi =
Mi || Ri || Si

RNG #1
(on chip)

Ci: preCom (512 bits)

RNG #2

HashHash

(randLocal of
next pulse)

�i,2

ri+1

(512 bits)

(512
bits)

ri: randLocal (512 bits)

�i,1 || �i,2

[|| �i,3]

RNG #3
(Quantum)

�i,3

(512
bits)

Local
cache

HashHash

ri+1

�i,1

zi: status (32 bits)

HashHash*

Ri: randOut

Hi Si

Mi || Si
HashHash

Mi

Si: sig

Signing*
module

Mi

Si

Figure 2. Illustration of the generation of the ith pulse by a Beacon App (2.0)

• Promise 5: Unambiguous indexation. A beacon SHALL, within each chain, incre-600
ment by 1 the pulse index of each newly released pulse, and SHALL NOT release two601
pulses with timestamps separated by less than one period (π).602

In the above promises the words “time” and “release” are defined from the perspective603
of the Beacon engine. Therefore, it is essential to ensure that the local clock of the Beacon604
engine is adequately synchronized with UTC.605

The above requirements are called “promises” because compliance with them, even606
though essential for security, CANNOT in general be verified by outsiders. The trust that607
users place on the Beacon service should thus depend on the trust they can place on the608
upholding of these promises by the Beacon engine. The promises are subject to being broken609
by a crooked beacon operator, or by an outside attacker compromising the beacon engine,610
or by some kind of programming error or equipment failure.611

In a non-compromised beacon engine, the promises imply the following properties:612

• Promises 1 and 2 ⇒ unpredictability of “rands”: randOuti and randLocali−1613
remain unpredictable to outsiders at least until the time instant timeStampi.614

• Promise 3 ⇒ freshness: randOuti and preComi depend on randomness sampled615

10

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

start
gen.
Pi

Time

release Pi
(inc. Ri)

π: intended pulsation period

obtain
Pi

start
gen.
Pi+1

obtain
Pi+1

release
Pi+1

(inc. ri+1)

ri+1

Ri

∆

δγ

Ti

∆

δγ

ri+1

Ri

Ti+1

Legend:
gen. (generating); inc. (including);
γ: time taken to generate a pulse;
∆: anticipation of generation start;

Ti: scheduled allowed time for Pi release;
δ : release delay, after allowed release time;
Ri: Pi.randOut; ri+1: Pi+1.randLocal.

(Section 8.3.1 describes a solution that significantly reduces the window of predictability of randLocal)̇

Figure 3. Timeline of pulse generation and release

within less than one pulsation period from timeStampi; whenever statusCodei = 0,616
which implies i> 1 and Pi not following immediately after a time-gap, randLocali de-617
pends on randomness sampled within less than two pulsation periods from timeStampi.618

• Promise 4⇒ timeliness: except in cases of time-gaps and/or of delays or failures619
outside the Beacon engine (e.g., in the external database and frontend), each released620
pulse will be available to users shortly after the time indicated in its timestamp.621

• Promise 5⇒ unambiguity: within a chain, an index uniquely identifies a pulse and622
a timestamp uniquely identifies either a gap in the chain or a pulse.623

3.4 Time variables624

Figure 3 shows a timeline for pulse generation and release. It depicts: the anticipated-625
generation-start offset ∆, before the allowed release time; the duration γ needed for pulse626
generation; the pulse-release offset δ , after the allowed release time. The promises require:627

∆ <π (avoid too-early generation-start) (1)
0≤δ (avoid too-early release) (2)

max(δ ,γ−∆)<π/4 (avoid too-late release) (3)

The red bars indicate the time-intervals during which a semi-honest beacon App (i.e.,628
passively corrupted), capable of exfiltrating internal state but otherwise following the proto-629
col, could break the unpredictability property with respect to randOut (Ri) and randLocal630

11

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

(ri). Conversely, an honest Beacon must take all reasonable precautions to avoid early631
disclosure of components from calculated pulses.632

3.5 Additional recommendations633

The defined promises still leave some timeline flexibility. Yet, there is envisioned utility634
in having a Beacon engine with predictable rate. Thus, besides the defined promises, we635
recommend that a Beacon engine SHOULD perform the pulse release at time 0+, and start636
the pulse generation (including the sampling of raw randomness from the RNGs) as late637
as possible while obtaining the pulse by time 0−. The symbols 0− and 0+ mean values as638
close as possible to 0, respectively from below or above.639

The time restrictions SHOULD be adjusted according to the possibility of local-clock640
skew (σ), to still meet the promises and the above-mentioned recommendations even in641
the presence of clock drift between consecutive synchronizations. Appendix A.1 specifies642
recommendations to promote better timing expectations and interoperable implementations:643

• hard recommendations request that the maximum skew ahead (σ+) and behind (σ−)644
of UTC be estimated and enforced below one tenth of the period, and that on the basis645
of such estimation the other parameters (∆,δ ,γ) be set in such a way that the promises646
1, 3 and 4 are met even when taking the skew into account.647

• soft recommendations ask for a fine-tuning of the time parameters such that the gener-648
ation start and end, and the release time, are all as close as possible to the timeStamp.649

The appendix also defines the concepts of tuning slack (η) and time accuracy (α), to help650
quantify a kind of “distance” to an ideal implementation. Tables 13 and 14 therein exemplify651
acceptable and unacceptable parameter sets, in terms of hard time-recommendations.652

3.6 Retrieval interface653

The beacon interface determines the ability of external users to obtain released pulses and654
associated data. Section 6 provides further details on the retrieval interface. Some requests655
are of mandatory support, whereas others are simply recommended but left as optional in656
this specification. For example, the beacon frontend must:657

• Make all previous pulses available for retrieval (see Section 6.2).658

• Provide skiplists upon request (see Section 6.3). (Skiplists allow efficient verification659
of consistency between two distant pulses, as discussed in section 5.)660

• Provide associated data which is referenced but not included in pulses; Such associated661
data includes public-key certificates (§6.4) and external source descriptions §6.5.662

It is recommended, though optional, that a randomness Beacon enables retrieval of any663
other associated data that may improve usability of the beacon. This MAY include, for664
example, pre-images of past external values (see Section 6.5).665

12

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

4 The Pulse Format666

Version 2.0 of the pulse format has become more complex, compared to the version (1) used667
in the initial NIST beacon prototype. Some of the new complexity intends to make operating668
a beacon easier. Other parts intend to improve the security against a misbehaving beacon.669
Still others intend to make it easier to securely combine outputs from different beacons.670

This section starts by describing used data formats (§4.1), for representation of fields and671
compositions thereof, including serialization procedures. It then describes the meaning and672
calculation procedures for each field of a pulse. The description follows the fields ordering673
already defined in Section 3.1, but also organizing fields by topics: administrative (§4.2),674
indexation (§4.3), the local random value (§4.4), the external source (§4.5), past outputs675
(§4.6), precommitment (§4.7), signature related (§4.8), and the output value (§4.9).676

4.1 Data formatting and representation677

4.1.1 Basic data formats for fields678

The handling of pulses and associated data involves parsing diverse elements with various679
syntaxes and representations. For different purposes, the same data, often contextualized680
within a field, CAN be expressed with different representations.681

We refer to the following basic data formats:682

• B64: A base 64 encoding, allowing characters A–Z, a–z, 0–9, + and /. For example,683
it is used to encode a PEM file (whose hash() is certId) containing the public684
certificate(s) corresponding to the secret signature key.685

• bin: A UTF8 string of zeros (0) and ones (1) expressing a sequence of bits. This is686
useful for example to describe a sequence of bit flags. The prefix “0b” (without the687
quotes) MAY be used to denote that what follows is a value written in binary format.688
When the length of the variable is implicit, the representation MAY omit left zeros.689

• Byt: A string of bytes (bit octets), where any byte value (0 through 255) is allowed.690
It is used for example for encoding inputs for hashing, and is not used for textual691
printing. Two specialized formats are uint32 and uint64, correspondingly consisting692
of 4 and 8 bytes representing unsigned integers (in big-endian order).693

• dec: A UTF8 string expressing an integer in decimal format, without padding left694
zeros; the only allowed characters are 0, 1, ..., 9.695

• hex: A UTF8 string of hexadecimal characters (0, 1, ..., 9, A, B, ..., F), with the696
letters in upper-case. The prefix “0x” (without the quotes) MAY be used to denote697
that what follows is a value written in hexadecimal. When the length is implicit, the698
representation MAY omit left zeros.699

13

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• str: A UTF8 character string [Yer03].700

Examples of varying representations.701

• randOut is a byte string when used as a hash input, but is expressed in hexadecimal702
when part of an XML output.703

• pulseId is an octet of bytes when used as a hash input, but is expressed as a decimal704
string when used as a component of the uri field.705

• status is a quartet of bytes when used as a hash input, but CAN also be interpreted706
as a sequence of 32 bit-flags when describing its meaning, and CAN be expressed in707
hexadecimal within some pulse representations.708

It is thus useful to have notation to disambiguate the representation required of a field.709

Encoding into a basic format. Sometimes it is necessary to ensure that a variable is710
converted/encoded into a particular format. Function encode is used for that purpose:711

• encode(var, f orm) denotes a value var represented in format form, using the minimal712
number of base elements of format form.713

• encode(var, f orm : len) is the same but conditioned to an exact length len (the number714
of base elements of format form), e.g., if-need-be adding leading zeros.715

The actual transformation MAY depend on the format of the input, but we leave that716
implicit. For example: when converting from hex to Byt, each pair of hexadecimal characters717
is converted into one byte; when converting from bin to Byt, then each octet of bits is718
converted into one byte.719

Endianness. All encodings are in big-endian order. For example:720

• encode(x,uint32) = encode(x,Byt,4), receiving as input an unsigned integer x721
between 0 and 232−1, encodes it as a 32-bit string in big-endian, using 4 bytes.722

• encode(x,uint64) = encode(x,Byt,8), receiving as input an unsigned integer x723
between 0 and 264−1, encodes it as a 64-bit string in big-endian, using 8 bytes.724

Examples.725

• encode(S,Byt) converts the input S into a sequence of bytes;726

• encode(H,Byt : BLenHash) converts H into a sequence of exactly BLenHash bytes;727

• ZeroH= encode(0,Byt : BLenHash) is a constant sequence of BLenHash bytes, all728
with value 0, where BLenHash is the number of bytes in a hash output.729

14

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• encode(S,hex) converts the input S into a sequence of hexadecimal characters (e.g.,730
useful when representing hash outputs in a Txt pulse format for human readability).731

Alternative notation. It is sometimes useful to define variable strings with resort to732
variable components/fields. The uri field is one such case, where some of its components733
vary across pulses. In that setting, when expressing a variable supposed to be instantiated734
with a particular format, we use the following notation:735

• 〈field:form〉 denotes a field “field” to be replaced with a value with format “form”736

• 〈field:form:len〉 denotes the same but conditioned to using exactly len base elements737
of format “form”.738

4.1.2 Byte serialization of fields739

For unambiguous transmission or processing it is sometimes useful to encode a sequence of740
fields into a single data packet that enables proper parsing. For example, hash functions and741
signature algorithms process inputs received as strings of bytes. Thus, when preparing the742
input needed to compute the hashes and signature needed within a pulse, we construct the743
corresponding byte-string input from the needed fields.744

The process of producing a single byte-sequence from a sequence of fields is denoted745
byte serialization (or simply serialization). The procedure processes each field at a time,746
in one or two steps. If the field is of uint32 or uint64 type, then the field serialization747
is simply the (big endian) byte encoding into 4 or 8 bytes, respectively. For other types748
(non-integer), the field serialization produces a concatenation of two components: the second749
component is the byte-string encoding of the field value (sometimes with a fixed length);750
the first component is the byte-string encoding of the length (number of bytes) of the second751
component. Table 2 shows the length after byte serialization of each default data type752
previously identified in Table 1.753

Table 2. Length after byte serialization, per default field type

Default
field type

Length
prepended?

Number of bytes
(not counting the prepended length encoding)

(8 bytes) General Example

uriStr Yes
variable
(> 33)

50 if domain=beacon.nist.gov,
pulseId:dec=1 and chainId:dec=1

verStr Yes ≥ 3 3 if version:dec=“2.0”
dateStr Yes 24
hashOut Yes BLenHash 64 if cipher=0

sigOut Yes BLenSig
512 if cipher=0 and the

RSA modulus has 4096 bits
uint32 No 4
uint64 No 8

15

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Auxiliary BytLen function. Let BytLen(S) return the uint64 (8-bytes) encoding of the754
length (len), in number of bytes, of the byte encoding of the input S, i.e.:755

BytLen(S) = encode(len(encode(S,Byt)),uint64). (4)

Byte serialization of single fields. We define three byte-serialization functions for indi-756
vidual fields. Despite some redundancy, their distinction enable us to make more evident757
what is the default type of each input field, and corresponding restrictions (e.g., hashes have758
an expected fixed length).759

• Byt serialize string(S), receiving as input a UTF8 string, outputs a byte string,760
resulting from the concatenation of two components: the 2nd is the byte encoding of761
the UTF8 string S; the 1st is the BytLen of the second component. The result is:762

BytLen(S) ‖ encode(S,Byt) (5)

Remark. For the UTF8-string fields version and time, The number of bytes in the763
UTF8-string fields version and time is equal to the corresponding number of UTF8764
characters, since the characters must be within the ASCII (American Standard Code765
for Information Interchange) collection of 128 characters. Conversely, the UTF8-766
string field uri is allowed to include non-ASCII characters, which require more than767
one byte. Prefixing (an encoding of) the number of bytes, rather than the number of768
characters, eases the process of parsing a sequence of serialized fields, since the jump769
across fields does not requiring parsing the UTF8 characters.770

• Byt serialize hash(H), receiving as input a hash value, calculates its byte encod-771
ing and then prefixes its BytLen, which must correspond to BLenHash. The output is:772

encode(BLenHash,uint64)||encode(H,Byt : BLenHash). (6)

The integer BLenHash is a global variable denoting the number of bytes (e.g., 64773
bytes if the hash function is SHA512) of the hash in use within a chain. We leave774
implicit the verification that the length of the byte encoding of the input is not larger775
than BLenHash. (Otherwise the case is considered as an error.)776

When a field of type hashOut is set to “zero” to represent an absent hash() value, the777
serialization produces an all-zeros string of the same length (BLenHash bytes) as a778
normal hash() output. We denote such constant byte string as ZeroH.779

• Byt serialize sig(S), receiving as input a signature value, calculates its byte en-780
coding and then prefixes the corresponding BytLen, which must be the encoding of781

16

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

BLenSig. The output is:782

encode(BLenSig,uint64)||encode(H,Byt : BLenSig). (7)

The integer BLenSig is a global variable within a chain, e.g., with value 512 if the783
signature algorithm uses RSA with a 4096-bit modulus.784

Byte serialization of a sequence of fields. The serialization of sequences of fields is785
required in several cases related to pulse handling, such as for encoding:786

• the input of the hash that is signed to produce sig;787

• the hash pre-image of randOut;788

• a pulse in the bare pulse format;789

• the hash pre-image of ext.value.790

Algorithm 1 describes function Byt serialize fields, which serializes a sequence791
(vector) of fields. The algorithm sequentially processes each field, taking into account the792
each field type. The output is a sequence of bytes.793

Algorithm 1 Serialize field sequence to a byte string.
1: function BYT SERIALIZE FIELDS(vector)
2: 〈 f ield1, . . . , f ieldn〉

parse←− vector
3: Z← “” (empty string)
4: for i = 1, ...,n do
5: x← value(f ieldi) t← type(f ieldi)
6: if t = uint32 then Z← Z ‖ encode uint32(x)
7: else if t = uint64 then Z← Z ‖ encode uint64(x)
8: else if t ∈ {uriStr,verStr,dateStr} then Z← Z ‖ Byt serialize string(x)
9: else if t = hashOut then Z← Z ‖ Byt serialize hash(x)

10: else if t = sigOut then Z← Z ‖ Byt serialize sig(x)
11: else abort
12: return (Z)

Example (input for hashing needed before signing). The procedure for producing the794
cryptographic signature (sig) that is part of a pulse requires hashing the sequence of795
preceding fields. Recalling the notation introduced in Sections 3.1 and 3.2, the input of such796
hash is equal to ||k∈{1,...,19}Fk,i. This is the same as797

Byt serialize fields(vector) , (8)

17

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

where vector =
〈
Fk,i : k = 1, ...,19

〉
, or, more precisely, vector = 〈 uri, version,798

cipher, period, certId, chainId, pulseId, time, randLocal, ext.srcId,799
ext.status,ext.value, out.Prev, out.H, out.D, out.M, out.Y, preCom, status 〉.800

As a concrete example, Algorithm 2 shows the unrolled serialization operation.801

Algorithm 2 Serialize the hash input of the sig field of a pulse

1: Z← Byt serialize string(uri)
2: Z← Z ‖ Byt serialize string(version)
3: Z← Z ‖ encode(cipherSuite,uint32)
4: Z← Z ‖ encode(period,uint32)
5: Z← Z ‖ Byt serialize hash(certificateId)
6: Z← Z ‖ encode(chainIndex,uint64)
7: Z← Z ‖ encode(pulseIndex,uint64)
8: Z← Z ‖ Byt serialize string(timeStamp)
9: Z← Z ‖ Byt serialize hash(localRandomValue)

10: Z← Z ‖ Byt serialize hash(external.sourceId)
11: Z← Z ‖ encode(external.statusCode,uint64)
12: Z← Z ‖ Byt serialize hash(external.value)
13: Z← Z ‖ Byt serialize hash(previous)
14: Z← Z ‖ Byt serialize hash(hour)
15: Z← Z ‖ Byt serialize hash(day)
16: Z← Z ‖ Byt serialize hash(month)
17: Z← Z ‖ Byt serialize hash(year)
18: Z← Z ‖ Byt serialize hash(precommitmentValue)
19: Z← Z ‖ encode(statusCode,uint32)
20: return (Z)

4.1.3 The Bare Pulse Format802

The bare pulse format if a byte-string pulse representation (Byt format) that concatenates803
all byte-serialized fields of a pulse, including corresponding prefixes of the field lengths804
for the non-integer field types. This forms an unambiguous sequence of bytes. Recalling805
the notation introduced in Sections 3.1 and 3.2, the bare pulse is equal to:806

barei = ||k∈{1,...,21}Fk,i (9)

Algorithm 3 (construct bare pulse()) shows a corresponding pseudo-code for generation807
of a bare pulse, based on the 2 example.808

18

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Algorithm 3 Unambiguously encode an entire pulse as a byte string.
1: function CONSTRUCT BARE PULSE(uri,version,period, . . . ,outputValue)
2: Z← Byt serialize fields(uri,version,period, . . . ,statusCode)
3: Z← Z ‖ Byt serialize sig(signatureValue)
4: Z← Z ‖ Byt serialize hash(outputValue)
5: return (Z)

4.1.4 The Txt pulse format809

The Txt format for pulses intends a balance between conciseness and human-readability and810
is aimed for inclusion in MIME type text/plain documents. It has a simple logic:811

• It starts and ends with delimiter lines of the description of a pulse;812

• Within the delimited description, each new line identifies a field name (abbreviated),813
the format that follows, and the respective field value, followed by a line break.814

This design also enables a straightforward concatenation of multiple Txt pulses.815

Figure 4 shows a concrete example. Algorithm 4 shows concise pseudo-code for function816
Txt Serialize, to produce a Txt serialization of a pulse. The Txt serialization of a pulse817
CAN be expressed as Txt Serialize(vector), where vector = 〈(Ai,Ri,Fi) : i = 1, ...,21〉, with818
the field alias Ai and the representation format Ri corresponding to field Fi being determined819
from Table 3.820

Algorithm 4 Txt serialization of a pulse
Require: Input vector has 21 elements
Require: Elements Ai and Ri are from Table 3

1: function TXT SERIALIZE(vector)
2: print "-----BEGIN BEACON-PULSE FORMAT TXT-----\n"
3: for i = 1, ...,21 do
4: x← vectori
5: print Ai + ":" + Ri + "=\"" + encode(x,Ri) + "\"\n"
6: print "-----END BEACON-PULSE FORMAT TXT-----\n"

The sequence “\n” represents a line break; the sequence “\"” represents the double quote character ".

Hexadecimal serialization. When producing certain output documents, e.g., MIME type997
text/plain, fields CANNOT use the full spectrum of bytes. A useful alternative serialization998
is based on hexadecimal characters (0...9, A...F). Each byte (value between 0 and 255)999
is represented in hex format, as a pair of hexadecimal characters. For example, a 512-bit1000
hash() output is then represented with 128 hexadecimal characters. The serialization MAY1001
omit prefixing the length if the beginning and end of the hexadecimal string is otherwise1002

19

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

-----BEGIN BEACON-PULSE FORMAT TXT-----

uri:str="https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394"

version:str="Version 2.0"

cipher:hex="00000000"

period:dec="60000"

certId:hex="5501e3d72bc42f3b96e16de4dcadcb16768e109662bd16d667d5fd9aee585af31bbdc5dd4f53592276

064b53dddd76c8f3604b2a41db6e09f78f82bb5d6569e7"

chainId:dec="1"

pulseId:dec="220394"

time:str="2018-12-26T16:07:00.000Z"

randLocal:hex="5FF1E44E70C019C42C77FA72D5228A2E663416D0778BFAC826F6B4757B634B076C50ED2D5A3975C

BAF237C211A027EDAFF3E241A885D69EAA7237E2744E6C1E2"

ext.srcId:hex="000

000"

ext.status:hex="0000000000000000"

ext.value:hex="000

000"

previous:hex="BA646CC4E7AE195D2C85E9D3AE9C9722B974F2134699D2493FA9E296C34995E8E471B329CB5F6323

5982CEE3395A749C618E61466847951D543ADC2FBAD23ECB"

out.H:hex="E75A5877169CC15220BCB11C8DA18159F14B880D85C5F3E9E462D010DC49BFCFE36D116D72C1D32A95A

E8FFD9F0B6CE20DC073ED881BA36D5EF4687DC5B12328"

out.D:hex="CDD24473B4427C3D3C856C66DF669444CE79D1262F94F4CC745E037AB781245A560E722514A62BEFF9A

BE3B72EAFDF5EAE5A43EA806F5571B05EA04B8E7B02B7"

out.M:hex="A9EDA202336C7DB1F05DE3BB24AAC1B54E98C9BD46CDF3D193FAE2BF4E0CD696AD6A743DFDF4DC48E59

85BE329652E0A74816C7B69BBAF644FF0ACA352207FFB"

out.Y:hex="7665F054F21B50DF62CD3E50AF8EB783E30D271B091DE051212D301E0E3D17FFCF0367DB41CFFD3C51E

88BDE0B0621F49EB03435BC373D5D49480941A8B3547E"

preCom:hex="269908B840E79BE71991FFE62CEC4EBAEB3C050E93D71248CBB3E4358445FF0858D1D2CCF899A19B86

1C0C11CECCF16A0859AFD68E58481D4ADB1BE61F30E419"

status:hex="00000000"

sig:hex="17943D886DA8C7C24B9244BE5BD5DF281983D28CFFC8928846BC26529309C9724F6849F039591361DAF6B

8DDAB6BC275CF86F448AF1800996889508D08D8AAAD19586E7A4B04FC4C97F1DA6D619EFAE2332150328C79C23BB9F

E6A03E8FABDFF1AD66C5A8789D28AED4D25FF0FC5E88BE366280D7516A504EFD63706641828DDBF3C7082524F36E77

EE9E07A9801D0C3BAD0646AA89DDDD8E2B4C0D7F8ED67664864B598E59ABF20CA8D761BB7B32B9A32698A22935D2C7

127952625BB5580B2847FBBC8DFEF9039C4F5ACF12877E11121D031AED58217286F8DCF291C6E315773B42FF470B1A

B587F787D44381F6E655DB903F1601B65AAC86BC2B7083AEEA9B3A27A5A208674056EFBB3C44629F333C810ADAD00E

4FCFCE48E54F8FB7FC700598EA3E6497821736D24E5DA801A8B9DEC28A2B68E50FE13752270EB9CA7912B21EB6C104

E78D105D0C0A635686B9A8CA26F87A1E63F0E411FD228F21B08BCD24660B305A4A42A9229154DE364FAB4DFF257A59

DEA814034BF65C38A4C7AAEE79FEE5CC69010B1FE9759E23F192E218A19D9B8E95F6DD37D5D2F672E6CF0A0D457D9C

619B1808274C2B0B2D3A3A7A8D8B1BB423FDDC56110784F2E0B7A23F065B56EC6E40234786DAB8C840E47811950331

CBCFADEAD2EEE901D1C0A3A7E18D18A93089FC4E1CEFBA7571D2E47F10893D24BAD967FCA9DAEA67AD6B7F390AFC0"

randOut:hex="0A8863E03E200F694CBA50F0F9A009B078555FE637B07CA2C0A0E4D564080173787B26376C4762377

A139D1BCAA916A10419504850EB7CF91552A17FDCAA0463"

-----END BEACON-PULSE FORMAT TXT-----

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

Note: the value “Version 2.0” was indeed used in the version field of the exemplified pulse, but a correct
implementation SHALL use “2.0” instead. The NIST beacon will correct this for pulses with chainId ≥ 2.

Figure 4. Pulse example in format Txt

patent. This is the case whenever the representation is delimited by non-hexadecimal1003
characters, e.g., double quotes as in "08A0". The prefix 0x MAY also be used to make more1004
explicit the start of an hexadecimal string, e.g., as in "0x08A0".1005

As another example, a pulse MAY be represented in text format, representing the se-1006

20

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Table 3. Field names, formats and values for Txt Serialization

#
(i)

Alias
(Ai)

Format
(Ri)

Value
(Fi)

1 uri str F1

2 version str F2

3 cipher hex:8 F3

4 period hex:8 F4

5 certId hex:HL F5

6 chainId dec F6

7 pulseId dec F7

#
(i)

Alias
(Ai)

Format
(Ri)

Value
(Fi)

8 time str F8

9 randLocal hex:HL F9

10 ext.srcId hex:HL F10

11 ext.status hex:16 F11

12 ext.value hex:HL F12

13 out.Prev hex:HL F13

14 out.H hex:HL F14

#
(i)

Alias
(Ai)

Format
(Ri)

Value
(Fi)

15 out.D hex:HL F15

16 out.M hex:HL F16

17 out.Y hex:HL F17

18 preCom hex:HL F18

19 status hex:8 F19

20 sig hex:SL F20

21 randOut hex:HL F21

HL and SL are used as abbreviations of BLenHash and BLenSig, respectively.

quence of all fields in a sequence that favors human readability, including some fields1007
represented in hexadecimal format, others in decimal, and others in UTF8 format.1008

4.1.5 Other structured pulse formats1009

The bare and the txt formats are not the only ways in which a pulse can be represented. As1010
mentioned with further detail in Section 6.1.2, other generic standardized formats, such as1011
HTML, JSON, XML, etc., are possible. The detailed definition of some of these formats is1012
left outside this report, being deferred to auxiliary documents. Nonetheless, for the purpose1013
of interoperability, it is currently defined that a Beacon SHALL be able to support at least1014
the JSON format.1015

Besides the mandatory values in a pulse, the additional structured formats MAY (option-1016
ally) include auxiliary information (not part of the hash-chain), such as:1017

• the order (1...21) of each mandatory field, as defined in Section 3.1;1018

• timestamps (time) and pulse indices (pulseId) of the included past output values1019
(out.Prev, out.H, out.D, out.M, out.Y);1020

• the public key used for signature verification;1021

• the timings (∆, γ and δ) of pulse generation and release (in milliseconds).1022

4.2 Administrative fields1023

These fields tell the user how to interpret the rest of the pulse, and give general information1024
about what to expect from the beacon.1025

4.2.1 URI1026

Field name: uri1027

21

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Default type: uriStr (a type of byte-string)1028

Relations: contains components derivable from version, chainId and pulseId.1029

Example. The uri value in the first pulse of the first chain of the NIST Randomness1030
Beacon version 2.0 is the following string:1031

https://beacon.nist.gov/beacon/2.0/chain/1/pulse/1 (10)

Description: It is a URI [BLFM05], specifying a valid URL from which the beacon1032
pulse is expectedly available upon release. It is a variable length string structured as1033
〈webPrefix:str〉/beacon/〈version:str〉/chain/〈cid:dec〉/pulse/〈pid:dec〉, where:1034

• 〈webPrefix:str〉 is a string 〈scheme:str〉://〈domain:str〉/〈optContext/ :str〉, where:1035

– 〈scheme:str〉 is the scheme component of a URI. In the current Beacon reference,1036
the only allowed scheme is https (Hyper Text Transfer Protocol Secure). Future1037
beacon references MAY allow other (secure) schemes.1038

– 〈domain:str〉 is the expected beacon web domain; typically this will be a parent1039
of the domain certified in the public certificate(s) of the beacon signature key.1040
The current NIST beacon implementation uses beacon.nist.gov as its domain,1041
whereas the domain of the signature certificate is engine.beacon.nist.gov.1042

– 〈optContext/ :str〉 is a possibly empty string denoting an optional context. If not1043
empty it CAN be anything that is legal to appear in the hier-part (hierarchical1044
partitioning component) of a URL, but restricted to terminating with a front1045
slash character “/” and not containing the substring “chain/” nor the characters1046
“?” (used for queries) and “#” (used for fragments) — see Section 6 for details.1047

• 〈version:str〉 is the version number (as a UTF8 string), e.g., “2.0” or “2.0-beta1”.1048

• 〈cid:dec〉 is the decimal representation of the integer value that appears in the chainId1049
field of the pulse.1050

• 〈pid:dec〉 is the decimal representation of the pulseId field of the pulse.1051

Recommendation: when generating experimental (a.k.a. beta) pulses with the real signa-1052
ture key, the 〈optContext/〉 sub-field SHOULD indicate the beta quality, possibly redundantly1053
with the “beta” that appears in the version value.1054

4.2.2 Version1055

Field name: version1056

22

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Default type: verStr (a type of byte-string)1057

Relations: its value must remain constant within each chain.1058

Description. It is a variable-length string that indicates how to interpret the fields of the1059
pulse. The value presented in this field is of the form 2.y, which is “2.0” in the version1060
considered at the time of this writing.1061

Version updates requiring change of value. Incrementing the value y SHALL happen1062
when the pulse format is updated in a way that requires a pulse handling incompatible with1063
the previous version, e.g., if adding or changing the order of fields used as input to the1064
hash() used in the calculation of the pulse signature signatureValue or the output value1065
randOut.1066

Identifying beta versions. The 〈version〉 value SHOULD contain the string “beta” when-1067
ever producing experimental pulses with a signature that uses the same key as used to to1068
be used with non-beta pulses. For example, “2.0-beta” or “2.0-beta1” and/or “2.0-beta2”1069
would denote version values used for beta testing. This allows repetition of values of1070
chain—pulse indices while doing tests (which MAY involve creating real signatures). The1071
“beta” expression signals users that such pulses MAY contain errors due to experimental1072
procedures, including not obeying promises relating to timing or index-uniqueness.1073

Sub-versioning updates. As previously mentioned, some minor updates of the beacon1074
reference MAY refer to a sub-version that is not reflected in the version or uri fields. These1075
updates, which refer to component z within 2.y.z, do not interfere with the interpretation of1076
any previous pulses. This includes adding a specification for interpreting a new (previously1077
undefined) value of the statusCode or cipherSuite fields. Those sub-version upgrades1078
MAY require updating software for better parsing of new values, but must not imply any loss1079
or invalidation of the relations between previous pulses within the same version value 2.y.1080

Consider that some version 2.0.z defines how to interpret the first n bit-flags of field1081
statusCode, and that the n+1th through the m bit-flags are open for definition in future1082
versions. Then, a software built for version 2.0.z CAN simply ignore those flags, or output1083
a warning if/when detecting that they are filled with non-default values in a pulse with1084
version=2.0.1085

Consider that a new cipher value is defined in a sub-version update. Since cipher1086
CANNOT change within a chain, the update does not interfere with the parsing of any pulses1087
continuing from a pre-existing chain. If a software for version 2.0.w encounters an unknown1088
cipher value, then it SHOULD output a corresponding informative warning/error to the user.1089

Remark (version in the NIST beacon). In the initial NIST Beacon implementation1090
of version 2.0, the pulses of chain 1 used value “Version 2.0” in the version field. The1091

23

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

prefix “Version ” is to be discontinued; the second chain of the NIST Beacon corrected1092
the version value to simply “2.0”.1093

4.2.3 Cipher Suite1094

Field name: cipherSuite or (abbreviated) cipher1095

Default type: uint321096

Relations: its value must remain constant within each chain.1097

Description. It is a 32-bit integer used to indicate which cryptographic standards are used1098
for the hash function and signature. Table 4 describes the existing attributions for defined1099
cipherSuite values. At present, only value 0 is defined.1100

Table 4. Attributions defined for cipherSuite

cipherSuite

value

Hash function Signature standard

Name
Byte length
(BLenHash) Name

Byte length
(BLenSig)

0
SHA512
[NIS15] 64

RSA with PKCS 1.5
padding [NIS13a] (but
allowing more keys sizes

256+ i, for
some i ∈ N0

The outputs of both hash function and signature algorithms are represented as big-endian integers and are
serialized as byte strings. The hash function is defined for all uses of hash(), including in the signature. For
each signature key, the signature length BLenSig is fixed as the length of the RSA modulus. Note that using
only 2048 bits (=256 bytes) for RSA is not considered enough to provide 128 bits of security.

The hash function is represented as hash(), such that hash(x) is the hash of some1101
byte-string serialized input x. The signature function is represented as SIGN(,), such that1102
SIGN(SK,H) uses the signing key SK to produce the signature of a message whose hash1103
(using hash()) is H.1104

4.2.4 Period1105

Field name: period1106

Default type: uint321107

Description. Is is a 32-bit unsigned integer that specifies the number of milliseconds of1108
increment between the timeStamp values of two consecutive pulses when there are no gaps.1109
The pulsating period of a chain is sometimes represented with symbol π .1110

24

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Relations: its value must remain constant within each chain; for example, if the period of1111
a chain is one minute, then all pulses of that chain will have π = 60,000 (sixty thousand).1112

4.3 Indexation fields1113

The indexation fields allow identifying a pulse with respect to its order and position with the1114
sequence(s) of generated pulses.1115

4.3.1 Chain Index1116

Field name: chainIndex or (abbreviated) chainId1117

Default type: uint641118

Description. It is the positive integer index of the chain to which this pulse belongs. It has1119
value 1 for the initial chain of each Beacon administrative domain implementing the Beacon1120
reference version 2. The chain index is incremented by 1 for each new chain.1121

Relations. The values in the fields version, cipherSuite and period SHALL be invari-1122
ant within each chain. This implies in particular that any new value in any of these fields1123
must happen in the first pulse of a new chain.1124

Also, a chain SHALL NOT continue if the Beacon, e.g., due to some malfunctioning,1125
loses the ability to ensure certain needed relation across the sequence of pulses. For example,1126
a Beacon SHALL NOT continue a chain if it CANNOT produce a new pulse that satisfies the1127
defined hash-chaining properties related to past output values within the chain.1128

4.3.2 Pulse Index1129

Field name: pulseIndex or (abbreviated) pulseId1130

Default type: uint641131

Description. It is the positive integer index of this pulse within its chain. The first pulse of1132
each chain has index 1, and each new pulse in each chain increments pulseId by 1.1133

4.3.3 Timestamp1134

Field name: timeStamp or (abbreviated) time1135

Default type: dateStr (a type of byte string)1136

Description. It contains a timestamp, representing a time instant, in the Universal Time1137
Coordinated (UTC) standard, rather than in local time.1138

25

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

As mentioned in Section 3.3, the timeStamp in a pulse does not represent the exact1139
release time, but rather the promised time before which the Beacon engine does not release1140
the pulse (see Promise 1), and the reference for other time limits on release (see Promise 4)1141
and generation start (see Promise 3).1142

Format. The value in the timeStamp field is represented as a string with 24 single-byte1143
characters, following the format in RFC3339 [NK02]:1144

〈year〉-〈month〉-〈day〉T〈hour〉:〈minute〉:〈second〉.〈millisecond〉Z (11)

The string is composed by a date, followed by an identifier character “T” (denoting that1145
a time of day will follow), then by the time of day, and finally by a character “Z” (denoting1146
“Zulu”, meaning the zero hours zone, which identifies the UTC format).1147

The date is a 10-byte string, composed of three numeric components — a 4-digit year, a1148
2-digit month and a 2-digit day — separated by a dash “-”. The time of day is a 13-byte1149
string composed of four numeric components — a 2-digit hour, a 2-digit minute, a 2-digit1150
second and a 3-digit millisecond components — the first three separated by a colon “:” and1151
the last one separated by a dot “.”. For example:1152

• the timestamp 1945-06-26T16:59:11.000Z identifies the date of signing the United Na-1153
tions Charter, on June 06, 1945, at the UTC time 16 hours, 59 minutes and 11 seconds.1154

• the timestamp 2019-01-01T00:00:00.000Z identifies the starting instant of the year1155
2019, in UTC time, up to millisecond precision.1156

The beacon format requires pulses to always use this format in the timeStamp field, includ-1157
ing the “T” and “Z” characters, and the seconds and milliseconds components.1158

When serializing fields, an integer is also used to describe the number of bytes (24) of1159
characters used to express the timeStamp string.1160

Abbreviation. For improved readability, in the remainder of this document we often use1161
an abbreviated format for timestamps. This is specially useful since we adopt as default1162
examples cases where timestamps have the second and millisecond components equal to1163
0. In such cases, we use a space (“ ”) instead of “T”, and omits the seconds, milliseconds,1164
and “Z”. For example, for a beacon that pulsates with a period of 1 minute, and whose1165
promises establish the minute mark as the allowed release time for pulses, we CAN say in1166
this document, but not in the actual pulses, that the timestamps1167

2020-01-01 00:00

2020-01-01 01:01

2020-01-01 02:02

26

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

are expected to be the first ones to appear in the year 2020. However, the actual timestamps1168
in the corresponding pulses SHALL be written as1169

2020-01-01T00:00:00.000Z

2020-01-01T01:01:00.000Z

2020-01-01T02:02:00.000Z.

Relations. If T is the timestamp in a pulse, then T −π and T +π are the previous and the1170
next timestamps, if there are no time-gaps.1171

4.3.4 Status1172

Field name: statusCode or (abbreviated) status1173

Default type: uint321174

Description. It is a sequence of 32 bits (a.k.a. bit flags), indicating the current status of the1175
chain. Each flag indicates some aspect of the status, as defined in Table 5. The ordering (1st,1176
2nd,..., 32th) of flags is from right to left, to match the ordering of least significant bits (LSBs)1177
of the 32-bit unsigned integer corresponding to the (big-endian) serialization of the bit-vector.1178

Detailed explanation. In the current Beacon reference version (2.0.0), only the four1179
right-most flags are defined with a fixed meaning. All other flags are by default set to1180
0, unless if/when possibly defining a new meaning for them. The 5th through the 16th1181
rightmost flags are reserved for future sub-versions (including 2.0.z) or versions (2.y.z) of1182
the beacon format. The 17th through the 32nd rightmost flags are reserved for individual1183
beacon operators to define. The definition of the latter require that a description be available1184
for users — see corresponding interface call (5k) in Section 6.61185

Example values. Let 0bX...X be a sequence of bits X...X, where the ith X, counting1186
from right to left, represents the ith LSB of (i.e., with additive weight 2i−1 in the) integer1187
value status. Compared with an enumeration of all possible status integer values, the1188
specification using bit-flags is specially useful considering that the number of possible1189
combinations grow exponentially with the number of flags. We enumerate several special1190
examples:1191

• status = 0b0 = 0: Indicates a normal transition since the previous pulse in the chain:1192
without a time gap; without a change of certId; with randLocal being well related1193
to the preCom in the previous pulse; with more pulses being expected for this chain.1194

• status = 0b1 = 1: The randLocal value does not correspond to a previous preCom1195
in the chain. In an ideal functioning, this status occurs only if this pulse is the first1196

27

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Table 5. Bit-flags of the status field

LSB
Variable

name What?
if set
(1)

if unset
(0)

Possible values
in the 1st pulse

of a chain

1st FLS rndloc

randLocal without
corresponding

preCom in chain?
yes no 1

2nd FLS gap Gap in chain? yes no 0
3rd FLS certid certId changed in chain? yes no 0
4th FLS end End of chain? yes no 0

5th–16th —
Reserved for definition

in future versions — — —

17th–32th —
Reserved for local

definition (per beacon) — — —

LSB = least significant bit. The FLS prefix indicates a flag of the status field.

in a chain. However, an abnormal functioning of a Beacon CAN lead to a non-first1197
pulse with this status code, if the sequence of pulses would not have gaps and at the1198
same time the field randOut was not populated (i.e., was filled with all zeros). Such1199
abnormal case SHOULD warrant an external application to invalidate the pulse for1200
the purpose of combining beacons (see Section 7.4).1201

• status = 0b10 = 2: The pulse follows after a gap without loss of randLocal —1202
whenever the previous pulse has a timeStamp value more than one period (π) away1203
in the past, and randLocal is still related as expected with the preCom of the previous1204
pulse in the chain.1205

• status = 0b11 = 3: The pulse follows after gap with loss of randLocal — whenever1206
the previous pulse has a timeStamp value more than one period (π) away in the past1207
and the hash pre-images of the previous preCom as been lost. In this case the field1208
randLocal is filled with an all-zeros string.1209

• status = 0b100 = 4: The value certId in a non-staring pulse (i.e., with1210
pulseId> 1) has changed since the previous pulse in the chain.1211

• status = 0b1000 = 8: The pulse is, by purposed planning, the last in the chain.1212

• status = 0b1010 = 10: The pulse follows after a gap and is marked as the last in1213
the chain.1214

Notes.1215

• There is no flag identifying the beginning of a chain; that property CAN already be1216
determined from checking pulseId=? 1.1217

28

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• Even though FL rndloc is equal to 1 in the first pulse of a chain, the field randLocal1218
in a new chain MAY still be filled with the pre-image of preCom of the (last) pulse1219
of another chain.1220

• The requirement that the first pulse of a chain has FL end= 0 intends to enforce that1221
chains are composed of more than one pulse.1222

Flags for local definitions. The definition of local flags must preserve the syntax of all1223
remaining aspects of pulses. For example, a Beacon MAY specify (one or more) flags to:1224

• represent some information about the use of RNGs, e.g., whether or not more than1225
two RNGs have been sampled;1226

• indicate information about the generation-start timing, e.g., using 8 bits to encode the1227
number of seconds in advance at which the local randomness was sampled;1228

• indicate whether the certificate in use has expired;1229

• indicate whether the signing key has changed in comparison with the previous pulse.1230

Use-case. The status field is specially useful to indicate when there is something1231
irregular or unusual about the chain between the previous and current pulse. For certain1232
applications, the statusCode field may be useful to signal to users whether the pulse is1233
acceptable for use or not. For example, when combining pulses from different beacons,1234
it may be necessary to require that there were no previous gaps and that the randLocal1235
is correct. This CAN be easily filtered by checking that the 1st and 2nd LSBs are 0, without1236
prejudice of then performing other necessary verifications.1237

4.4 The local random value1238

Field name: localRandomValue or (abbreviated) randLocal1239

Default type: hashOut1240

Relations. It is the hash() preimage of the preCom value output in the previous pulse. In1241
the first pulse of a chain it is filled with an all-zeros string.1242

Description. It is a 512-bit value with 512 bits∗ of entropy, generated by the Beacon1243
engine during the process of generation of the previous pulse, but kept secret from the1244
outside until its release. (∗ Actually, since the value is the output of a cryptographic-hash1245
function, the actual entropy MAY forfeit up to less than one bit of entropy, while remaining1246
indistinguishable from uniformly random.)1247

The randLocal must be entirely unpredictable to any attacker outside the beacon1248
engine. By convention, it is the result of hashing with hash() the concatenation of two or1249

29

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

more 512-bit random values from independent sources. For example, if the beacon has1250
three independent random bit generators providing random numbers ρ1,ρ2,ρ3, then1251

randLocal= hash(ρ1 ‖ ρ2 ‖ ρ3). (12)

The combination of randomness from several RNGs brings an important security ad-1252
vantage. Even if all but one RNGs fail or are malicious, the resulting randLocal is still a1253
high-quality random number. For example, any RNG providing good randomness prevents1254
any malicious RNG from exfiltrating information via the randLocal field. However, there1255
is no way for a user of the Beacon to determine whether randLocal has been calculated1256
from a correct combination of randomness sampled from several RNGs.1257

Remark (On the timing of learning randLocal). For the purpose of the timing of pulse1258
generation, the beginning of generation of each pulse corresponds to the starting moment1259
of sampling of the RNGs. In the current design, the randLocal value is then obtained by1260
the Beacon App, still before the actual pulse output (randOut) is calculated. Section 8.3.11261
mentions a conceivable alternative (for future versions), where the randLocal value would1262
be calculated in a different way, satisfying a different relation with preCom, such that it1263
could only be obtained after the end of the pulse generation, and such that it could not be1264
fully decided even by a malicious Beacon operator.1265

Guidance (gaps with loss of local random value). Very rarely, the Beacon engine MAY1266
suffer a memory failure such that the pre-generated randLocal value is lost. In this case, if1267
the chain continues then the next pulse will fill randLocal with all-zeros and the 2nd bit1268
flag of the status field will be set to 1 (see Table 5).1269

It is not expected that pre-generated randLocal value is lost without the occurrence1270
of a gap. Such conceivable event would represent, for a non-starting pulse, an abnormal1271
condition marked with a status value 1.1272

4.5 External value fields1273

The format 2.0 for pulses specifies three fields — ext.srcId, ext.status, ext.value —1274
that support the inclusion of a verifiable external source of entropy. Using an external source1275
enables providing strong assurance, to the outside world, that even a malicious beacon1276
could have not computed far ahead in the past the output values (randOut) of pulses.1277

Informal summary. The field ext.value MAY sometimes, optionally, be filled with the1278
hash of a value generated by an external source. The hashing CAN be computed locally (e.g.,1279
the hash of the results of public lotteries) or externally (e.g., if directly using the randOut1280
value of another beacon, which is already a hash). The value SHOULD be obtained according1281

30

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

to a description whose hash() is recorded in the field ext.srcId. Certain aspects of the use1282
of the external source are indicated by corresponding elements of the ext.status field.1283

The purpose of the ext.value field is to introduce some value that is outside the control1284
of the beacon operator, is hard to predict before a certain moment in time, and is relatively1285
easy for anyone to verify after the fact. For example, a given beacon might use the hash of the1286
closing prices of some stock market, the hash of the winning lottery numbers from diverse1287
state lotteries, or the hash of every thousandth block of some popular public blockchain.1288
For proper usability and security, there must be no ambiguity, given the text hashed by1289
ext.srcId, about the correct value of ext.value.1290

While the use of external sources is optional, the three fields are always present. When,1291
upon starting a new chain, an external value has not been previously used, the fields1292
ext.value and ext.srcId are filed with all zeros, i.e., with ZeroH. Once an external value1293
is used for the first time, the same value CAN be repeated in subsequent pulses until a new1294
external value is used. The repetition is useful since it continues giving to those standalone1295
pulses an element that enables proving that the pulse generation did not happen before the1296
existence of the external value, i.e., without need to show relations to a previous pulse.1297

It can be useful to identify whether the external value in a pulse appeared for the first1298
time in that pulse or in a previous one. It is in the first use that such value is most relevant1299
with respect to mitigating a pre-computation attack by a malicious beacon. For that reason1300
the ext.status field contains one flag used to indicate when the ext.value has changed.1301
As a complementary relational feature, the pulse MAY also show, optionally, in part of its1302
ext.status field, the pulseId of the first pulse which used the same value of ext.value.1303

4.5.1 External source identifier1304

Field name: external.sourceId or (abbreviated) ext.srcId1305

Field type: hashOut1306

Relations: ext.value= hash(ext.TextSrcDesc)1307

(Notice that ext.TextSrcDesc is not a pulse field.)1308

Description. It is filled with the hash() of a MIME type text/plain document, encoded as1309
a UTF8 string (ext.TextSrcDesc), describing the external source of entropy, including1310
instructions for updating ext.value. When an external source is not used in a pulse, the1311
field is set to ZeroH.1312

To allow complete verification of all pulses, the text description of any source identifier1313
ever used by the Beacon SHALL be available to users. Section 6.5 defines an interface1314
call (4m) that specifies how users CAN obtain the text description ext.TextSrcDesc1315
corresponding to a ext.srcId value.1316

31

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Requirement.1317

• Encoding of text description. The description text (ext.TextSrcId) SHALL be spec-1318
ified as a UTF8 string. Is is used directly as the input of hash(), used to compute1319
ext.srcId, being interpreted directly as a byte-string (each UTF8 character MAY1320
be between 1 and 4 bytes long). Notice that here we do not apply Byt serialize -1321
string, which would otherwise prefix the byte length of the text description.1322

Recommendations. A definition of an external source SHOULD specify several attributes:1323

1. External source (text description): a short description of the type of value.1324

2. Intended update frequency: the expected frequency with which the ext.value1325
field will be updated with respect to this source.1326

3. Intended update moment: the first timestamp intended for each new ext.value.1327

4. Repeat until new available value (yes/no): a “yes” or “no” answer to whether1328
the value ext.value SHOULD continue repeating, in opposition to reverting to an1329
all-zeros string, until a new external value is available for update.1330

5. Local hashing (yes/no): whether the Beacon needs to hash the value obtained from1331
the external source. By default, we assume that external values SHOULD be hashed.1332
However, this CAN be avoided if the value is already described as a suitable hash out-1333
put of an externally obtainable pre-image. For example, this is the case if the external1334
source value is the randOut value of some other compliant beacon. In that case, not1335
doing local hashing has the benefits of allowing an easier external search for any used1336
ext.value, and allowing an easier verification by the user (e.g., side-by-side com-1337
parison of the randOut in one beacon vs. the external.value in another beacon).1338

6. Default URL for access (uriStr): the expected URL from which users CAN obtain1339
information about the value and authenticity of the pre-image of the used ext.value.1340

7. Recommended sampling trials (string): when to retry sampling, if initial trials fail.1341

8. Fall back options: what to do if the external source is unavailable beyond a1342
reasonable time window.1343

A sketch example of a source identifier — Output values from an external beacon.1344
“External source: from the Chilean Beacon (https://beacon.clcert.cl/), the output value1345
(randOut) of the pulse with largest timeStamp value with 〈hour〉 component not larger than1346
12. Intended update frequency: daily. Intended update moment: for every “15:00:00.000”1347
UTC time mark, update the external value in the first (local) pulse with timeStamp with1348
〈hour〉 component not smaller than 15. Repeat until new available value: yes. Local hashing:1349
no. Default URL for access: https://beacon.clcert.cl/beacon/2.0/time/previous/〈date〉-1350
12:00:00.001Z” where 〈date〉 is the current day if sampled after 15:00:00.000. Recom-1351

32

https://beacon.clcert.cl/

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

mended sampling trials: starting at 12:05, sample the external source once every 5 minutes1352
until obtaining randOut of a pulse with timeStamp not inferior to 12:00. Fall back options:1353
None. (Always use the latest randOut value of the external beacon obtained from the1354
recommended trials.)1355

The definition of an external source SHOULD be precise and careful. We currently defer1356
those definitions to a future addendum or separate document, and simply enumerate here, in1357
high-level, a few other examples of conceivable sources:1358

• stock markets — the closing index of some stock market, from the current trading1359
day, e.g., updated at 23:00 local time on trading days (not on holidays).1360

• time synchronization information — the recorded offsets between national official1361
clocks across many countries, with respect to a universally accepted global clock,1362
possibly updated once an hour.1363

• independently run lotteries — results from national lotteries occurring at predictable1364
days, across several states or countries.1365

• seismic or weather data sources — using structured data from a reliable publisher1366
that allows search of corresponding historical data.1367

Additional aspects. A more detailed set of recommendations and examples is deferred to1368
a future separate document.1369

4.5.2 External Status1370

Field name: external.statusCode or (abbreviated) ext.status1371

Default type. uint641372

Description. It is a sequence of 64 bits, informing aspects of the status of the use of1373
an external source. It provides useful information on how to interpret the use of fields1374
ext.srcId and ext.value.1375

Serialization. When part of a hash input, it is serialized as a 64-bit unsigned integer.1376
However, for ease of reference it CAN be described as a pair of 32-bit unsigned integers: the1377
first, of optional filling, represents the index of the first pulse that used the same ext.value1378
— if not filled it is set to ZeroH. the second represents a sequence of 32 bit-flags denoting1379
aspects of the status of the use of an external source. In the latter, the ordering (1st, 2nd,...,1380
32th) of flags is from right to left, to match the ordering of least significant bits (LSBs) of1381
the 64-bit unsigned integer corresponding to the (big-endian) serialization of the bit-vector.1382

Example values. Let 0bX...X be a sequence of bits X...X, where the ith X, counting from1383
right to left, represents the ith LSB of (i.e., with additive weight 2i−1 in) the integer value1384

33

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Table 6. Bit-flags of the ext.status field

LSB Variable name What?
if set
(1)

if unset
(0)

1st FLE extValUsed External value is used in this pulse? yes no
2th FLE SrcIdChan ext.srcId has changed? yes no
3th FLE extValChan ext.value has changed? yes no
4th FL extValOld ext.value failed to update? yes no
5th FLE WhyOld A missed update is internal fault? yes no
6rd FLE RegNewSrcId Registration of new ext.srcId? yes no

7th–15th — Reserved for future definition — —
16th FLE showsFirstPid Is ext.FistPidSameExt filled? yes no

17th–32th —
Reserved for local

definition (per Beacon) — —

33th–64th ext.FistPidSameExt
pulseId (a 32-bit index) of the

first pulse with same ext.value (Optional use)

LSB = least significant bit. The FLE prefix indicates a flag of the ext.status field.

ext.status. We enumerate several examples:1385

• ext.status = 0b0 = 0: No external value used; implies that ext.value and1386
ext.srcId are all zeros.1387

• ext.status = 0b1 = 1: ext.value is in use (1st flag is 1), filled with a (possibly1388
hashed) value obtained from an external source, either in repetition (4th flag is 0) or1389
being in the first pulse in the chain (4rd flag is 0).1390

• ext.status = 0b10 = 2: The ext.srcId field is filled with a new value, but there1391
is no corresponding value in the ext.value field. This case is used to signal to users1392
that the new ext.srcId value is the identifier of a new potential source, to be used1393
later. This is called a registration of a new ext.srcId.1394

• ext.status = 0b1001 = 9: The ext.value in use (FLE extValUsed = 1) was1395
supposed to have already changed (FL extValOld= 1), but it has not changed due1396
to some external problem (FLE WhyOld= 0).1397

• ext.status = 0x11 0000 8001 = 17 · 232 + 215 + 20: The current ext.value1398
appeared in this chain for the first time in the pulse with pulseId = 0x11 = 17.1399

Recommendation (registration of new external source identifier). It is convenient to1400
limit ext.srcId to be filled with values previously announced to users. For that purpose,1401
whenever a new source identifier scrNew is devised by a Beacon, it SHOULD first be1402
registered in a pulse, by issuing a pulse with ext.srcId= scrNew, ext.value= ZeroH1403

34

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

and FLE RegNewSrcId= 1. From that point onward, it becomes “non-surprising” to have an1404
external value filled in ext.value, with a corresponding source Id ext.srcId= scrNew.1405

Flags for local definitions. The current definition of the external.statusCode field1406
allows 16 bits to be defined locally by each beacon. This CAN for example be used to1407
indicate additional useful information about how to interpret information of external values,1408
or external source descriptions. For example, a beacon MAY decide to use several bits to1409
indicate with more detail the reason for a missed update of an external value.1410

4.5.3 External Value1411

Field name: external.value or (abbreviated) ext.value1412

Default type. hashOut1413

Description. It is filled with the hash() of the sampled value of an external source of entropy1414
whose description is committed (by a hash) in the ext.srcId field. The sampled value1415
must be encoded as a UTF8 string, and used directly as the input of hash(), when used to1416
compute ext.value, being interpreted directly as a byte-string (each UTF8 character MAY1417
be between 1 and 4 bytes long). Notice that here we do not apply Byt serialize string,1418
which would otherwise prefix the byte length of the text description.1419

Since the use of an external source is optional, when not in use the fields ext.value,1420
ext.status and ext.srcId are set to zero (e.g., a string of integers zero when serialized1421
as a byte-string).1422

4.6 Fields with past output values1423

The previous beacon format (1.0) had a single field (previous) containing the outputValue1424
value of a past pulse (the previous one). This ensured that the sequence of pulses formed a1425
hash chain. The new beacon format has five such fields, in order to support more efficient1426
ways of proving consistency between pulses. These values are maintained within a single1427
chain of pulses (that is, the sequence of pulses with the same chainId value from a given1428
beacon operator).1429

The extra named fields permit a very efficient proof of an intact hash chain between1430
pulses at any two timestamps T1 and T2, as will be further discussed in Section 5.1431

4.6.1 Previous1432

Field name: previous or out.Prev.1433

Field type. hashOut1434

35

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Description. It is filled with the randOut value of the previous pulse. This field ensures1435
that an unbroken sequence of pulses forms a hash chain. If the most recent pulse in the1436
chain is known, an alteration of any earlier pulse in the chain CAN be easily detected. This1437
hash-chaining ensure that even the beacon operator has no power to rewrite the history1438
previous to a known pulse.1439

Chain-start values. When a new chain starts, if possible the previous field SHOULD be1440
filled with the value in the randOut field of the last pulse of the previous chain. All other1441
past-output fields (out.H, out.D, out.M, out.Y) are set to ZeroH.1442

4.6.2 Hour, Day, Month and Year1443

Each pulse replicates, besides the previous output value (out.Prev), several other past1444
output values chosen in accordance to a relation of time values. Concretely, each pulse with1445
index (pulseId) i includes the first representative pulse of each UTC timestamp component1446
related to the timestamp of the previous pulse (i.e., with pulseId= i−1). There are four1447
such fields, corresponding to the time components hour, day, month and year.1448

Field names: hour or out.H; day or out.D; month or out.M; year or out.Y.1449

Field types. hashOut1450

Description: Each pulse replicates several past output values, i.e., the randOut value from1451
past previous pulses. For each of the named fields x ∈ {hour,month,day,year}, the past1452
pulse from which to collect the randOut value is chosen as follows:1453

1. Look at the UTC timestamp T ′ of the pulse previous to the current one.1454

2. Let T ′′ be the first timestamp, present in some past pulse, whose truncation down to the1455
precision of the x component (hour, month, day or year) is equal to the corresponding1456
truncation of T ′.1457

3. Fill P[T].x with value P[T ′′].randOut. More concretely:1458

• year gets randOut from the first pulse with timeStamp with the same UTC1459
year as the timeStamp of the previous pulse.1460

• month gets randOut from the first pulse with timeStamp with the same UTC1461
year and month and as the timeStamp of the previous pulse.1462

• day gets randOut from the first pulse with timeStamp with the same UTC year,1463
month and day as the timeStamp of the previous pulse.1464

• hour gets randOut from the first pulse with timeStamp with the same UTC1465
year, month, day and hour as the timeStamp of the previous pulse.1466

36

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

In other words, for any field 〈x〉 ∈ {hour, day, month, year}, the value 〈x〉i (i.e., Pi.〈x〉)1467
is filled with the randOut j, where j is the pulseId of the first pulse whose truncation1468
of timeStamp, down to the precision of the time component 〈x〉, equals the correspond-1469
ing truncation of timeStampi−1. For example, yeari = outputValue j, where j is the1470
pulseIndex value in the first pulse whose UTC year in timeStamp j is equal to the UTC1471
year of timeStampi−1.1472

Values in beginning of a chain. In the first pulse of a chain:1473

• The values out.H, out.D, out.M, and out.Y start out as ZeroH.1474

• When possible, the field out.Prev SHOULD be filled with the randOut of the previ-1475
ous chain, if it is available; otherwise, previous MAY also start as zeros.1476

In the second pulse of a chain, every one of the past output value fields (out.Prev,1477
out.H, out.D, out.M, out.Y) is filled with the value of the randOut field in the first pulse,1478
since that pulse is the first pulse of the chain with the same hour, day, month, and year as the1479
previous (i.e., the first) pulse.1480

Conceivable future update of format. Various Beacons or chains MAY have different1481
pulsating period. If as part of a chain a Beacon outputs a pulse once every 5 seconds, then1482
the corresponding skiplists could be more efficient if the hash chaining also included the1483
output value of the first pulse with the minute equal to the previous pulse. Correspondingly,1484
if a Beacon outputs once every day, then the fields previous, hour and day would become1485
redundant and the chain would be more efficient by removing the hour and day fields.1486
Considering the above, it is conceivable a future update that enables some flexibility on1487
the choice, for each chain, of which past pulses are selected, and including indexations1488
fields (e.g., pulseId and time) for the included past pulses.1489

4.6.3 Example without gaps1490

The box on the right shows an example
of how to fill the fields of past output val-
ues, when there is no interference from
time gaps. We consider as example a chain
whose first pulse was issued with timestamp
2018-07-23 19:26.

1491
1492
1493
1494
1495
1496

Example for P[2018-11-22 16:32]

previous← P[2018-11-22 16:31].randOut

hour← P[2018-11-22 16:00].randOut

day← P[2018-11-22 00:00].randOut

month← P[2018-11-01 00:00].randOut

year← P[2018-07-23 19:26].randOut

The only unexpected value is for the out.Y field, which does not have a date of 2018-1497
01-01 (January 01, 2018) because the first pulse of the chain as a posterior date.1498

37

https://beacon.nist.gov/beacon/2.0/chain/1/pulse/171592
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/171591
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/171560
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/170600
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/140365
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/1

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

4.6.4 Example with skipped pulses1499

Beacons SHOULD be operational most of the time, but hardware failures, software failures,1500
power outages, and other problems CAN occur from time to time, and so there are times1501
when pulses MAY be skipped. This introduces some complexity in the rule for determining1502
the value in fields hour, day, month, and year.1503

The general rule is to start from the timeStamp of the previous pulse, and then determine1504
the first pulse in that hour, day, month, and year. However, the first pulse in an hour MAY1505
have a timestamp with a minute component different from 00.1506

Example with consecutive skipped pulses. Consider
the example on the right, with a time-gap between
2018-12-26 16:08 and 2019-01-22 13:24. This time-gap ex-
isted in the chain with index 1 of the NIST Randomness Bea-
con version 2, due to a U.S. Government shutdown. The men-
tioned gap means that after the issued pulse with timestamp
2018-12-26 16:07 (and pulseId= 220,394) several expected
pulses were skipped, such that the subsequent issued pulse has
timestamp 2019-01-22 13:25 (and pulseId= 220,395).

1507
1508
1509
1510
1511
1512
1513
1514
1515

2018-07-23 19:26
2018-07-23 19:27

...
2018-12-26 16:06
2018-12-26 16:07

[Gap (skipped pulses)]
2019-01-28 13:25
2019-01-28 13:26

Assuming no other pulses have been skipped, we CAN determine the linking fields for1516
the first two pulses after the outage. The existing relations are depicted in Fig. 5.1517

• First pulse after outage. P[2019-01-28 13:25] is the first pulse produced after the1518
exemplified outage. Highlighted in yellow background in Fig. 5 is the previous field,1519
which was filled with the randOut value of the previous pulse, which had a surprising1520
timestamp (because of the time gap). The link is to a pulse produced more than one1521
month in the past, due to the exemplified outage. In relation to the previous pulse,1522
all the other fields with past output values link to the output values of past pulses1523
generated at the expected times. Specifically, they link to the first pulse produced in1524
the {hour, day, month, year} specified in the timestamp of the previous pulse.1525

• Second pulse after outage. P[2019-01-28 13:26] is the second pulse produced after1526
the outage. In this case, the potentially surprising linking timestamps (highlighted in1527
yellow in Fig. 5) are those used to populate the out.H, out.D, out.M and out.Y fields.1528
Those four fields contain the same value, since the gap crossed the year boundary.1529

4.6.5 If past output values are lost1530

It is conceivable, although unexpected, that a memory problem in the Beacon App MAY1531
lead it to lose access to the past output values needed for hash-chaining of each new pulse.1532
The Beacon SHALL NOT continue the same chain without a proper hash-chaining of all1533
those fields. Thus, it the Beacon operator wishes to continue the chain, it SHALL update the1534
state of the Beacon App with information about the past pulses (which by then SHOULD be1535

38

https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220396

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Example: During a U.S. Government shutdown, the NIST Beacon had a gap in chain 1 between times 2018-12-26 16:08 and 2019-01-28 13:24.
1st pulse after gap: P[2019-01-28 13:25]

previous ← P[2018-12-26 16:07].randOut
hour ← P[2018-12-26 16:00].randOut
day ← P[2018-12-26 00:00].randOut

month ← P[2018-12-01 00:00].randOut
year ← P[2018-07-23 19:26].randOut

2nd pulse after gap: P[2019-01-28 13:26]

previous ← P[2019-01-28 13:25].randOut
hour ← P[2019-01-28 13:25].randOut
day ← P[2019-01-28 13:25].randOut

month ← P[2019-01-28 13:25].randOut
year ← P[2019-01-28 13:25].randOut

Figure 5. Obtaining past output values after gaps

externally known, since they had already been released to the Beacon databases and possibly1536
queried from the outside). This update is contrary to the usual logical flow of information,1537
which is supposed to be unilateral between the Beacon Engine and the database of pulses.1538

4.7 The precommitment value1539

Field name: precommitmentValue or (abbreviated) preCom1540

Default type: hashOut1541

Relations: The field is defined as Pi.preCom= hash(Pi+1.randLocal)1542

Description: It is a hash commitment to the next pulse’s randLocal. This requires the1543
beacon to know randLocal of the next pulse before this pulse is output. The purpose of the1544
field is to facilitate combining of outputs from multiple beacons, as discussed in Section 7.4.1545

Guidance (simple gaps). When there is a gap in the sequence of pulses, the beacon engine1546
SHOULD have the next localRandomValue value stored. Under most circumstances, then,1547
the next pulse, even if it appears after a lengthy gap in the sequence of pulses from the beacon,1548
SHOULD have randLocal such that precommitmentValue= hash(localRandomValue).1549

For example, suppose there is a sequence of pulses with
timestamps as exemplified on the right, with a time-gap
of with pulses skipped between 2019-01-22 01:13 and
2019-01-22 05:24: Under normal circumstances, the beacon
engine will have retained the randLocal value committed
by P[2019-01-22 01:12].preCom. In such case we will have:

1550
1551
1552
1553
1554
1555

2019-01-22 01:11
2019-01-22 01:12

[Gap (skipped pulses)]
2019-01-22 05:25
2019-01-22 05:26

P[2019-01-22 01:12].preCom] = hash(P[2019-01-22 05:25].randLocal) (13)

and P[2019-01-22 05:25].status= 0b10 will indicate that a time gap existed in the produc-1556
tion of pulses and that the pre-image of precommitmentValue remained intact.1557

39

https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220394
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220387
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/219427
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/183558
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/1
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220396
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395
https://beacon.nist.gov/beacon/2.0/chain/1/pulse/220395

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Guidance (gaps with loss of local random value). Very rarely, the Beacon engine MAY1558
suffer a catastrophic failure such that the pre-generated randLocal value is lost. In that case,1559
P[2019-01-22 05:25].status= 0b11 will indicate both a gap before 2019-01-22 05:25 and1560
also a failure to reveal a pre-image of preCom. In this case, randLocal is set to all-zeros,1561
implying P[2019-01-22 01:12].preCom 6= hash(P[2019-01-22 05:25].randLocal).1562

4.8 Signature-related fields1563

4.8.1 Signature1564

Field name: signatureValue or (abbreviated) sig1565

Default type: sigOut1566

Relations: F20,i = sigi = SignSK
(
hash

(
||k∈{1,...,19}Fk,i

))
; or, as a sequence of three steps:1567

Z←Byt serialize fields(〈uri,version,
cipher,period,certId,chainId,pulseId,time,

randLocal,ext.srcId,ext.status,ext.value,

previous,hour,day,month,year,preCom,status〉) (14)
H←hash(Z) (15)

sig←SIGN(SK,H), where SK is the secret signing key. (16)

Description: A (cryptographic) digital signature of the hash() of a concatenation of the1568
byte-serialization of all previous fields in the pulse. When cipher= 0, the value produced1569
is an RSA signature using PKCSv1.5 padding, encoded unambiguously as a byte string (see1570
Section 4.1.2).1571

The signature allows a user to confirm that the pulse came from the beacon claimed in1572
the uri field, and has not been altered since then. In the case of an attempt by the beacon1573
operator to alter previous beacon pulses (aka, to rewrite history), the signature CAN be1574
used to provide evidence of its misbehavior — the existence of a properly signed beacon1575
pulse which is not on the chain of pulses is unambiguous evidence of misbehavior by the1576
beacon. (It is not necessarily evidence of malfeasance, but it is unambiguous evidence that1577
the beacon is not following the protocol.)1578

4.8.2 Certificate ID1579

Field name: certificateId or (abbreviated) certId1580

Default type: hashOut1581

40

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Description. It is the hash() of a Base 64 encoded PEM formatted file (X.509 ASN.11582
encoding), following the RFC 5280 [CSF+08] specification, containing the certificate(s)1583
of the public counter-part of the Beacon signing key used to produce the value in the1584
signatureValue field of the pulse. The signing key must always have a corresponding1585
certificate, even if it is self-signed. However, it is recommended that certificates be attested1586
by some external entity (a certification authority, the Certificate Transparency log, etc.).1587

Retrieving the certificate(s). The beacon must make available online the current cer-1588
tificate and all previous certificates, so that it is always possible to verify signatures and1589
certificates of old pulses. This is handled by interface call 3g defined in Section 6.4.1590

4.9 The Output Value1591

Field name: outputValue or (abbreviated) randOut1592

Default type: hashOut1593

Relations: F21,i = randOuti =
(
hash

(
||k∈{1,...,120}Fk,i

))
, that is:1594

Z←Byt serialize fields(〈uri,version,
cipher,period,certId,chainId,pulseId,time,

randLocal,ext.srcId,ext.status,ext.value,

previous,hour,day,month,year,preCom,status,sig〉) (17)
randOut←hash(Z) (18)

Description: The value in the randOut field is called the output value of the pulse. It is1595
the hash() of the values in all previous fields of the pulse. This accomplishes several goals:1596

1. Since it hashes preCom, which in turn is the hash of a fresh randLocal (to be released1597
only in the next pulse), it contains fresh (and approximately) full entropy.1598

2. Even if a malicious Beacon operator controls any other field (e.g., preCom,1599
ext.srcId, ext.value), controlling n bits of randOut would require computational1600
effort exponential in n.1601

3. A sequence of consecutive pulses constitutes a hash chain, which means each pulse1602
with a latest timestamp commits all previous pulses.1603

Guidance: User applications relying on a single Beacon SHALL use randOut, rather than1604
randLocal, as the public randomness output of the Beacon (see Section 7 for details).1605

41

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

5 Hash Chains and the Skip List1606

Each pulse contains an outputValue field, which is the hash of all the other fields in the1607
pulse. Each pulse also contains a previous field, which contains the outputValue of the1608
previous pulse. Putting these two fields together, a sequence of pulses makes up a hash1609
chain. A hash chain ensures that once a single pulse is known, previous pulses CANNOT1610
be changed without leaving obvious evidence in the chain.1611

5.1 Hash Chains1612

A sequence of consecutive pulses makes up a hash chain, as shown in Fig. 6. The Figure1613
also illustrates the relation between three fields in consecutive pulse:1614

• timeStamp — incremented by 1 minute in each pulse.1615

• previous — a copy of the outputValue field from the previous pulse.1616

• outputValue — the hash() of all other fields in its pulse.1617

localRandomValue
2019-01-01 02:19

...
previous

outputValue

SHA512

localRandomValue
2019-01-01 02:20

...
previous

outputValue

SHA512

localRandomValue
2019-01-01 02:21

...
previous

outputValue

Figure 6. The sequence of pulses forms a hash chain

In order to make these diagrams legible, most pulse fields are omitted, some fieldnames1618
are shortened, and timeStamp values are in the yyyy-mm-dd hh:mm (RFC3339) format.1619
All examples in this document assume that the beacon is producing pulses once per minute.1620

The important security property of a hash chain is that changing any record requires1621
changing all future records. That is, if we alter any field in a given pulse, this must1622
change its outputValue, since that value is the hash of the other fields of the pulse. That1623
outputValue is then included in the next pulse. A changed value there must lead to a1624
changed value in the outputValue of the next next pulse. And so on — any change to1625
a pulse propagates forward forever. Figure 7 shows an example of how this works. This1626
property implies that, as long as beacon pulses are widely seen and recorded, it is impossible1627
for even the beacon operator to alter a past pulse without detection.1628

5.2 Skiplists1629

Section 5.1 showed that, by verification of the hash-chain created across consecutive pulses,1630
anyone who has recorded the pulse at time T CAN later review any previous pulse at time1631

42

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

localRandomValue*
2019-01-01 02:19

...
previous

outputValue

localRandomValue
2019-01-01 02:20

...
previous

outputValue

localRandomValue
2019-01-01 02:21

...
previous

outputValue

localRandomValue
2019-01-01 02:22

...
previous

outputValue

localRandomValue*
2019-01-01 02:19

...
previous

outputValue*

localRandomValue
2019-01-01 02:20

...
previous*

outputValue*

localRandomValue
2019-01-01 02:21

...
previous*

outputValue*

localRandomValue
2019-01-01 02:22

...
previous*

outputValue*

Figure 7. A change in one pulse propagates to all later ones via the hash chain

T −K, and verify that the latter has not been changed. However, checking the chain across1632
every consecutive pulse requires examining every pulse from time T −K through time T ,1633
as illustrated in Fig. 8a. Using this approach, verifying that a pulse from one year ago is1634
consistent with the most recent pulse requires examining over half a million pulses, which1635
can be unworkably long. A security mechanism that is impractically inefficient will seldom1636
be used. The solution to this problem is a skiplist.1637

Consider that a user of the beacon starts out knowing the value of one pulse (the1638
ANCHOR), from 2022-10-04 17:35. The user wants to verify that the value of a much1639
earlier pulse (the TARGET), at 2019-11-29 22:08, is consistent with the later (ANCHOR)1640
pulse. The user thus contacts the beacon frontend and requests a skiplist from the beacon.1641
The beacon responds with a short sequence of pulses constituting an intact hash chain from1642
TARGET to ANCHOR.1643

Why is it possible to construct a short intact hash chain between such distant pulses?1644
Because of the additional linking fields added in version 2.0.0, namely year, month, day,1645
and hour. These ensure that there are many different hash chains, of many different lengths,1646
running through the sequence of pulses.1647

The existence of all these linking fields (year, month, day, hour, as well as previous),1648
and all the corresponding combinations of hash chains, means that, between a given1649
TARGET and ANCHOR, there are in general many different pulse sequences that contain1650
an intact hash chain. Algorithm 5 gives a procedure for selecting a minimal-length chain.1651
The same algorithm is illustrated in Fig. 8b.1652

Figure 8 compares, side by side, the case of a complete hash-chain (in Fig. 8a) vs.1653

43

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

2019-11-29 22:58

2022-10-04 17:35

2022-10-04 17:33

2019-11-29 23:01

2019-11-29 23:00

2019-11-29 22:59

2022-10-04 17:34

.

.

.

TARGET: I want to
verify this pulse

ANCHOR: I trust
this pulse

About
1.5

million
pulses

(a) Long subchain

TARGET: I want to
verify this pulse

ANCHOR: I trust this pulse

5. Steps forward by years

4. Steps forward by months

3. Steps forward by days

2. Steps forward by hours

2. Steps forward by minutes

2022-10-04 17:35

2022-01-01 00:00

2021-01-01 00:00

2020-01-01 00:00

2019-12-01 00:00

2019-11-30 00:00

2019-11-29 23:00

2019-11-29 22:59

2019-11-29 22:58

6. Final step to ANCHOR

(b) Short skiplist

Figure 8. Linking a trusted ANCHOR pulse to a TARGET pulse for verification

the case of a corresponding skiplist (in Fig. 8b). The efficiency improvement brought1654
by the skiplist is huge: from about 1.5 million pulses to 9 pulses. However, this example1655
was chosen to provide a relatively short skiplist, for ease of explanation. In general, for1656
TARGET and ANCHOR points Y years apart (each on a uniformly random minute, hour1657
and day of the corresponding year), we expect a skiplist to be about Y + 62 pulses long.1658
On average we need to obtain, besides the TARGET and the ANCHOR, about 28.5 pulses1659
that are not first-in-an-hour, 11.5 first-in-an-hour pulses that are not first-in-a-day, 14.51660
first-in-a-day pulses that are not first-in-a-month , 5.5 first-in-a-month pulses that are not1661
first-in-a-year, and Y first-in-a-year pulses.1662

To verify the performance of the skiplists in the general case, we randomly selected1663
TARGET and ANCHOR points which were different time-intervals apart: one day, 30 days,1664
one year, and ten years. For each duration, we repeated the experiment 100,000 times, and1665
found the shortest, average, and longest skiplists from all our experiments. The results are1666
summarized in Table 7.1667

Table 7. Length of skiplists (in pulses), by duration

Time interval Minimum Average Maximum
1 day 2 43.2 84

30 days 2 57.8 113
1 year 3 63.2 124

10 years 12 72.1 132

44

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Algorithm 5 Construct a skiplist from TARGET to ANCHOR.
1: function MAKE SKIPLIST(TARGET, ANCHOR)
2: path← []
3: current← TARGET
4: while current< ANCHOR do
5: path← pp ‖current
6: if current is first pulse in its year then
7: current← first pulse in NEXT year
8: else if current is first pulse in its month then
9: current← first pulse in NEXT month

10: else if current is first pulse in its day then
11: current← first pulse in NEXT day
12: else if current is first pulse in its hour then
13: current← first pulse in NEXT hour
14: else
15: current← NEXT pulse
16: path← path ‖ANCHOR
17: return (path)

5.3 Verifying a Skiplist1668

The new beacon frontend supports requests for skiplists — when asked, it will produce a1669
skiplist that provides an intact hash chain between a requested TARGET and ANCHOR1670
value. The skiplists are short and efficient to construct, so supporting such requests imposes1671
little burden on the frontend (web server).1672

Similarly, verifying a skiplist is very efficient. The requirement for a skiplist to be valid1673
is simple: each pulse in the skiplist must contain the outputValue field of the previous1674
pulse in one of its linking fields (that is, year, month, day, hour, or previous). We provide1675
a procedure for verifying that a skiplist gives an intact hash chain in Algorithm 6.1676

Algorithm 6 Verify a skiplist from TARGET to ANCHOR.
1: function VERIFY SKIPLIST(TARGET, ANCHOR, path)
2: n← number of entries in path. // path is indexed from 1 to n
3: Q← path[1]
4: for i← 2 . . .n do
5: current← path[i]
6: if Q.out /∈ current.{year,month,day,hour,previous} then
7: return False
8: return True

45

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

6 The Beacon Interface1677

This section describes the interface that a beacon frontend SHOULD support for retrieval1678

requests (a.k.a. calls or queries) by users. The Beacon Engine is not involved in the handling1679

of queries, since it SHOULD be isolated as much as possible. Instead, queries received via1680

a web-interface (frontend) are processed as queries to the external database of the Beacon.1681

The section describes first a general syntax for queries (Section 6.1) and then the mandatory1682

and optional queries. The calls are organized according to the type of requested data:1683

individual pulses (Section 6.2), sequences of pulses (Section 6.3), related to certificates1684

(Section 6.4), related to external values (Section 6.5), and related to local functioning1685

(Section 6.6). The calls identified as optional MAY be changed, deprecated or promoted1686

to mandatory in future sub-versions (2.0.z) or versions (2.y.z) of the Beacon Reference.1687

6.1 General syntax for queries and replies1688

A deployed Beacon SHOULD use an application programming interface (API) based on1689

representational state transfer (REST) calls conveyed through URIs. Queries are trans-1690

formed into GET operations, then resulting in a reply in some expected language/format. It1691

is intended that users CAN use a regular web-browser to query a beacon.1692

6.1.1 General query-format1693

Any query must be specifiable via an appropriate URI that contains as prefix a URL that1694

identifies the beacon. This URL prefix, denoted hereafter as 〈beaconURL〉, is not a field1695

of the pulse format but is a prefix of the value in the uri value of the most recent pulses.1696

Recalling the definitions in §4.2.1, the value 〈beaconURL〉 CAN be described as:1697

〈beaconURL〉= 〈webPrefix:str〉/beacon/〈version:str〉. (19)

For example, this value is https://beacon.nist.gov/beacon/2.0 in the current NIST beacon.1698

The full URI is composed of the mentioned prefix and additional elements that specify1699

the parameters of the query. These additional elements MAY for example include timestamp1700

values, or pulse and chain indices. Each query indicates a type of intended response, such as a1701

single pulse (§6.2), or a sequence of pulses (§6.3). There are also queries for associated data,1702

such as for an X.509 certificate (§6.4), or for the text that describes an external source (§6.5).1703

6.1.2 General reply-format1704

Possible reply formats include bare (a simple concatenation of byte-serialized fields, similar1705

to what was described in Section 4.1.3), txt (a MIME type text/plain document, assembled1706

46

https://beacon.nist.gov/beacon/2.0

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

in a .txt file with UTF8 encoding), hypertext markup language (HTML), javascript object1707

notation (JSON), and extensible markup language (XML).1708

This document defined the bare and txt formats. The specification of the remaining1709

formats is currently deferred to a future external document.1710

The reply format MAY either be implicitly decided by the Beacon or explicitly specified1711

by the user when making a query. For the latter, the user appends to the query URI the string1712

“?format=〈format〉”, where 〈format〉 is a short identifier of the intended format, e.g., bare,1713

html, json, txt, xml. For example, a URI ending with “?format=xml” will specify a query1714

whose output SHOULD be produced with an XML format.1715

Mandatory support. In the current beacon reference version (2.0.0), a beacon is only re-1716

quired to satisfy at least one of the above mentioned formats. Future reference updates (2.0.z1717

and 2.y.z) MAY require that the support for some specific formats becomes mandatory. Sec-1718

tion 6.6 specifies an optional (recommended) query (5j) whose reply enumerates/describes1719

the types of format supported by the Beacon for each type of query.1720

When a reply format is specified explicitly, the reply SHOULD enable saving the output1721

as a file with a name extension (.txt, .json, .xml, ...) that identifies the format.1722

Remark on types of format. Fieldnames are not part of the content of a pulse, and so do1723

not appear in the bare format. However, some reply formats (e.g., xml) contain a structure1724

that labels each field value with is a corresponding field name. This motivates distinguishing1725

two types of reply format:1726

• Untagged. Some formats contain an implicit structure that is not obvious from the1727

output alone and does not explicitly identify the type of included components. For1728

example, in the case of replies containing a pulse, this happens with the bare and the1729

bare-txt formats, similar to what was described in Section 4.1.3. Those formats do1730

not specify any fieldname, and instead consist simply of a concatenation of serialized1731

field values, in an expected order and length.1732

• Tagged. Some formats contain a structure of tags that enable explicit identification of1733

the type of content. For example, in the case of replies containing a pulse, the reply1734

will contain tags that identify each field by fieldname. This intends to make easier the1735

parsing and consistency checking of of values of each field of a pulse.1736

Error responses. Each of the described calls returns either a suitable reply, when one1737

exists, or an error message.1738

47

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

6.2 Queries for single pulses1739

Table 8 enumerates the mandatory calls for single pulses, showing their designations and1740

the corresponding URIs. Each of the described queries returns either a suitable pulse (if one1741

exists) or else a 404 error message.1742

Table 8. Interface calls for individual pulses

Designation URI
1p Pulse 〈pid:dec〉 in Chain 〈cid:dec〉 〈beaconURL〉/chain/〈cid:dec〉/pulse/〈pid:dec〉
1q Pulse at Time GEQ to 〈ts:str〉 〈beaconURL〉/pulse/time/〈ts:str〉
1r Pulse at Time Previous to 〈ts:str〉 〈beaconURL〉/pulse/time/previous/〈ts:str〉
1s Pulse at Time Next to 〈ts:str〉 〈beaconURL〉/pulse/time/next/〈ts:str〉
1t Latest Pulse 〈beaconURL〉/pulse/last

Below follows a description of the output of each call:1743

1p. Pulse 〈pid:dec〉 in Chain 〈cid:dec〉. Returns, from within the chain with index1744

〈cid:dec〉 (or, if 〈cid:dec〉=last, from the chain with maximal index), the pulse P1745

that has pulse index P.pulseIndex=〈pid:dec〉 (or, if 〈pid:dec〉=last, the pulse with1746

maximal pulse index). Although the fields 〈pid:dec〉 and 〈cid:dec〉 are here described1747

as requiring decimal format, they MAY also be filled with the four-character string1748

“last” to denote a query for the corresponding largest produced value(s) (of chainId1749

and/or pulseId, respectively).1750

1q. Pulse at Time GEQ to 〈ts:str〉. Returns the pulse that has the smallest time value1751

greater or equal (GEQ) to the timestamp specified by 〈ts:str〉. Particularly: if there1752

is a pulse P satisfying P.time=〈ts:str〉, then that pulse is returned; otherwise the pulse1753

with smaller 〈ts’〉=P.time satisfying 〈ts’〉> 〈ts〉 is returned, if one exists.1754

1r. Pulse at Time Previous to 〈ts:str〉. Returns the pulse that has the larger time value1755

that is smaller than the time specified by 〈ts:str〉.1756

1s. Pulse at Time Next to 〈ts:str〉. Returns the pulse that has the smaller time value1757

that is larger than 〈ts:str〉.1758

1t. Latest Pulse. Returns the last available pulse on the last chain, i.e., the pulse Pj,i1759

satisfying P.chainId = j and P.pulseId = i, such that there is no other pulse1760

with larger chain index (in chainId), and such that within the chain with index1761

j there is no pulse with pulse index (in pulseId) larger than i. Note that this1762

query is an abbreviation of what CAN also be obtained with the query 1p, as1763

〈beaconURL〉/chain/last/pulse/last1764

48

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

6.3 Queries for sequences of pulses1765

Table 9 enumerates the mandatory calls for sequences of pulses. The currently defined1766

sequences are skiplists and subchains. Each of the described queries returns either a suitable1767

non-empty sequence of pulse (if one exists) or else a 404 error message.1768

Table 9. Interface call for sequences (skiplists and subchains) of pulses

Designation URI Opt?

2m
Skiplist between Times
〈ts1:str〉 and 〈ts2:str〉

〈beaconURL〉/skiplist/time/〈ts1:str〉/
〈ts2:str〉

2n
Skiplist in Chain 〈cid〉 between

Pulses 〈pid1:dec〉 and 〈pid2:dec〉
〈beaconURL〉/skiplist/chain/〈cid:dec〉/

pulse/〈pid1:dec〉/〈pid2:dec〉

2o
Subchain across Times
〈ts1:str〉 and 〈ts2:str〉

〈beaconURL〉/subchain/time/〈ts1:str〉/
〈ts2:str〉 yes

2p
Subchain of Chain 〈cid:dec〉 across

Pulses 〈pid1:dec〉 and 〈pid2:dec〉
〈beaconURL〉/subchain/chain/〈cid:dec〉/

pulse/〈pid1:dec〉/〈pid2:dec〉 yes

“Opt?=yes”means that the support is optional (i.e., not mandatory).

2m. Skiplist between Times 〈ts1:str〉 and 〈ts2:str〉. Returns a sequence of pulses, in1769

ascending chronological order of the value in the timeStamp field, and such that:1770

i) the first pulse in the sequence has timestamp exactly 〈ts1:str〉;1771

ii) any pair (P,P′) of consecutive pulses in the sequence satisfies P.randOut =1772

P′.〈field〉, for some 〈field〉 in {out.Prev,out.H,out.D,out.M,out.Y};1773

iii) the last pulse in the sequence has timestamp exactly 〈ts2:str〉.1774

2n. Skiplist in Chain 〈cid〉 across Pulses 〈pid1〉 and 〈pid2〉. Reply is similar to the case1775

of query 2m (“Skiplist between Times 〈ts1〉 and 〈ts2〉”), but the anchor and target1776

pulses in the query are instead defined by pulse indices (in pulseId), within the scope1777

of a particular chain index (in chainId).1778

2o. Subchain across Times 〈ts1:str〉 and 〈ts2:str〉. Similar to call 2m (“Skiplist between1779

Times”) but changing condition ii) as follows: “any pair (P,P′) of consecutive pulses1780

in the sequence satisfies P.randOut= P′.previous.1781

2p. Subchain of Chain, across Pulses 〈pid1:dec〉 and 〈pid1:dec〉. This is a dual of the1782

call 2o (“Subchain across Times”). The reply is similar to that of the call 2n (“Skiplist1783

in Chain, across between Pulses”), but changing condition ii) as follows: “any pair1784

(P,P′) of consecutive pulses in the sequence satisfied P.randOut= P′.previous.1785

6.4 Queries associated with certificates1786

Table 10 enumerates queries related to certificates.1787

49

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Table 10. Interface calls for associated data

Designation URI Opt?

3g Certificate with ID 〈certId:hex〉 〈beaconURL〉/certificate/〈certId:hex〉
3h List certIDs in Chain 〈cid:dec〉 〈beaconURL〉/listCertIds/chain/〈cid:dec〉 yes

3g. Certificate with ID 〈certId:hex〉. Returns a Base 64 encoded RFC 5280 PKIX1788

Certficate (PEM Format) file whose hash() is equal to 〈certId:hex〉.1789

3h. List certIDs in Chain 〈cid〉. Returns a list of all distinct certId values used by the1790

Beacon in the chain(s) with certId indicated by 〈cid〉. Using 〈cid〉=“All” indicates1791

that the reply SHOULD cover all values certId used across all chains. For each1792

distinct certId, it also shows the values version, cipher, chainId, pulseId and1793

time, of the pulses where the corresponding certId was first used and/or when the1794

previous pulse had a different certificate. Thus, the reply is actually a list of sixtets.1795

6.5 Queries associated with external values1796

Table 11 enumerates calls related to external values.1797

Table 11. Interface calls related to usage of external values

Designation URI Opt?

4m
External Source Description with

Identifier 〈extSrcId:hex〉 〈beaconURL〉/extSrcId/〈extSrcId:hex〉

4n Pre-image of extSource 〈extValue:hex〉 〈beaconURL〉/extValue/〈extValue:hex〉 yes

4o
List first PulseIds for all extValues

with Source Identifier 〈extSrcId:hex〉
〈beaconURL〉/listPulseIds/extSrcId/

〈extSrcId:hex〉 yes

4p
Range of PulseIds in Chain 〈cid:dec〉

using extValue 〈extValue:hex〉
〈beaconURL〉/listPulseIds/chain/
〈cid:dec〉/extValue/〈extValue:hex〉 yes

4m. External Source Description with Identifier 〈extSrcId:hex〉. Returns a MIME1798

type text/plain document whose hash() is (in hexadecimal format) 〈extSrcId:hex〉.1799

The document contains a description of an external source and provides guidance1800

to when and how to include content generated therefrom. The content generated1801

in that form, from time to time, is the one whose hash() is to be placed in the field1802

external.value of some pulses. If the beacon does not recognize 〈extSrcId:hex〉1803

as a used ext.srcId, then it returns a 404 error.1804

4n. Pre-image of extSourceValue 〈extValue:hex〉. Returns the content whose hash() is,1805

in hexadecimal format, the value 〈extValue:hex〉 that is used in the field ext.value1806

of some pulse produced by the Beacon. If 〈extValue:hex〉 is the all-zeros string (641807

hexa-decimal characters “0” if the used hash() has 512 bits of output), then the1808

50

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

reply is a message explaining that the all-zeros string is the default value when an1809

external source has not been used in some chain. If the Beacon does not recognize1810

the provided 〈extValue:hex〉, then it returns a 404 error response.1811

4o. List first PulseId for all extValues with Identifier 〈extSrcId:hex〉. Returns a1812

list of triplets 〈chainId, pulseId, time〉 of the first pulses that have used each1813

external-source value corresponding to the identifier 〈extSrcId:hex〉.1814

4p. Range of PulseIds in Chain 〈cid:dec〉 using extValue 〈extValue:hex〉. Returns an1815

abbreviated list (range) of the pulseId indices of all pulses, within chain 〈cid:dec〉,1816

than have the value 〈extValue:hex〉 in the field ext.value. The elements of the1817

abbreviated list are written succinctly as ranges, where for example p1 : p2 denotes1818

the sequence p1, p1 +1, ..., p2.1819

6.6 Queries about local functioning1820

Table 12 enumerates calls related to local properties of the Beacon functioning.1821

Table 12. Queries about local properties of the Beacon

Designation URI Opt?
5j Supported queries 〈beaconURL〉/queries yes
5k Local status flags 〈beaconURL〉/status/flags yes
5l Local history 〈beaconURL〉/history/ yes

5j. Supported queries. Returns a structured description of the supported queries, ex-1822

plaining for each the syntax of the URI query and the default and supported reply1823

formats (containing some non-empty subset of {bare, bare-txt, html, json, xml}).1824

5k. Local status flags. Returns a MIME type text/plain document containing a human1825

readable description of the defined bit flags of the statusCode field. The output is a1826

file named “beacon-status-flags.txt” Each new line is of the form: “Flag #n (the nth1827

LSB of the statusCode field): additive value equal to 2n: set (1) if 〈describe if 1〉;1828

unset (0) if 〈describe if 0〉.” In this description, n is to be replaced by a corresponding1829

integer between 1 and 32.1830

5l. Local history. Returns a MIME type text/plain document containing a human read-1831

able description of relevant information about the local functioning of the Beacon.1832

This MAY include anything deemed useful by the Beacon operator, including an1833

explanation about past or planned outages, existing time-gaps, chain terminations,1834

external repositories storing past pulses.1835

51

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

7 Using a Beacon1836

A beacon is useful in many situations. For example:1837

1. When multiple parties want to coordinate some action based on a random number, but1838
do not want any one among them to be able to exert control over the random number.1839

2. When someone wants proof that some computation could not have been started before1840
a particular time T .1841

3. When one party wants to demonstrate to the world (including many people who will1842
only become interested much later) having carried out some random process fairly,1843
without “cooking” random numbers.1844

4. When multiple parties want to run some cryptographic protocol based on a shared1845
random string, but do not want the added communications overhead of establishing a1846
shared random string.1847

In this section, we discuss useful techniques for using a beacon intelligently. This is sim-1848
ply an attempt to provide a cookbook for people who are not cryptographers, but would like1849
to know how to use a beacon. It may also act as a kind of Schelling point, helping different1850
people to efficiently coordinate on doing things the same way without a lot of negotiation.1851

7.1 Direct usage — sampling a single integer using the modulo technique1852

When a single random integer is needed, it CAN be extracted very simply from the field1853
randOut of a single pulse, by using the modulo technique. If the integer is to be sampled1854
from within the range Range = [0,N−1], with the number of bits of N being significantly1855
smaller than the number of bits (512) in randOut, then an application CAN use1856

randOut mod (N). (20)

The application software needs to support arithmetic with precision large enough to handle1857
the 512 bits of the randOut field (a hash output).1858

To sample an integer from a more general range Range = [L, L+N− 1], where L is1859
any non-negative integer, and N is limited as before, the application CAN compute1860

L+(randOut mod (N)). (21)

As hinted above, the suitability of the modulo technique is conditioned to a limitation1861
on the size of N, as compared to 2512. This relates to the distribution bias (e.g., see1862
Ref. [NIS13b]) induced by taking the modulo, when N is not a power of 2.1863

As a simple rule, to ensure that the bias is negligible, we recommend that the modulo1864
technique be used only if N is not greater than 2384. This guarantees a bias smaller than1865

52

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

2−128 (i.e., under the working assumption that the hash output randOut is uniformly1866
random in [0,2512− 1]). Exceptionally, the technique CAN also be used if N is an exact1867
power of two, not larger than 2512, since then the modulo does not produce bias.1868

Section 7.3 discusses the case where the range is of width larger than 2512, or when more1869
than one random number is required.1870

7.2 Ex post facto-verifiable random sampling1871

Random sampling is used extensively in industry, research, and activities like lotteries. After1872
the sampling has been done, it may be hard to convince a distrusting third person that the1873
sampling was indeed random. In this section we discuss how this CAN be achieved using a1874
public source of randomness.1875

In order to conduct random sampling that is ex post facto-verifiable, the user must first1876
derive a seed, Z, from the output of the beacon. The seed needs to be derived in a way that1877
includes all relevant information. Often, it will be worthwhile to cryptographically bind1878
some particular information into the seed. That seed MAY then be used to generate a longer1879
sequence of pseudorandom output bits, or to select some value from a set of possible values.1880

We CAN thus split the process of using the beacon outputs into three phases:1881

1. commit upfront — commit upfront, before the time of the required beacon pulse(s),1882
to how the seed will be obtained and what will be done with the seed;1883

2. derive a seed — receive the intended pulses and derive a seed from them;1884

3. use the seed — use the seed to do something previously committed to.1885

7.2.1 Committing upfront1886

An essential principle for secure use of beacon randomness is that everything about the1887
use of the future random number from the beacon needs to be specified in advance.1888

High-level example. If a user plans to use the beacon to select a subset of polling places1889
to audit from an election, the user needs to specify, in advance:1890

1. Which beacon will be used, e.g., by specifying the administrative domain, e.g., spec-1891
ified with the help of the webPrefix sub-field included in the uri (see Section 4.2.1).1892

2. Which beacon pulse (specifying the chainId and time) will be used (assuming the1893
chain remains active and without gaps including the intended timestamp and vicinity).1894

3. The set of polling places and how many of them will be selected.1895

4. The program for using a seed to select a subset of polling places for audits.1896

53

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

5. How to handle exceptional conditions, e.g., if the beacon fails to produce a pulse1897
at the specified time (due to a time gap), or if the chain ends before the intended time.1898

Procedure. In order to make the commitment clear, we recommend the following steps:1899

1. Write a single program, Prog, which will take as input a seed Z to be obtained from1900
the beacon pulse(s) used, and which will produce the desired output from this step.1901

2. Write a committing statement M, containing:1902

(a) A text, M1, explaining how the seed Z is to be constructed from a beacon pulse1903
(and which pulse) and from the hash H (not yet computed) of the committing1904
statement M. For Example:1905

The seed Z shall be obtained as the SHA512 hash of the

concatenation of: the SHA512 hash (H) of the committing

statement M; and the randOut value (P[T].randOut)

of the NIST Beacon pulse with timestamp T equal to

2018-07-04 12:00:00.000.

1906

(b) The hash() (in hex string representation) of the program Prog.1907

(c) A text, M3, describing what will be done with the outputs of Prog. For example:1908

Each of the 16 outputs is the number of a precinct to be

audited by hand.
1909

(d) A text, M4, that indexes (order and file name) and explains the content of the1910
auxiliary documents needed to specify what is happening. For example:1911

File #1, named precincts.pdf, with 372,824 bytes, contains

the precinct map that labels each precinct and its polling

place. File #2, named voters.ods, with 142,193 bytes,

contains a spreadsheet with the number of registered voters

per polling place.

1912

(e) A text, M5, that describes the hash() (as hex strings) of each of the auxiliary1913
files, in the same order they are described. For example:1914

The auxiliary files have the following SHA512 hashes: File

#1 --- efda3b6628211e02 aba9cdae11fcff5f 34550211f54558ef fd13687ab204e4db

5b9121332e5931c8 564bc858ec9545bd 8dc81d9da5b2eaa3 7e7e9bf251307dc7; File

#2 --- 27881a1d15e0df72 cbc4aa8ed393dbd4 7de5b6fde72d8cfe 0e9da389af1e6c7c

c95089c7bdc52c38 cee79bb3473a90e8 2fb96968b9978700 b7438e53b9059797.

1915

3. Commit in public to H = hash(Prog ‖M). Optionally, one CAN also publish imme-1916
diately the actual program Prog and committing statement M. Nonetheless, they are1917
both already committed by the hash H.1918

4. When the intended beacon pulse (P[T]) becomes available, derive the seed Z as1919
described and use it as the input to the program Prog.1920

54

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

5. Report the results of the program.1921

Requirement: A program that will run based on a future beacon pulse must be entirely1922
deterministic, given the beacon pulse and other inputs.1923

Although a committing statement M SHOULD be published before the timestamp of the1924
pulse being used to generate the seed, it is important to have a clearly defined committing1925
statement, even if not published ahead of time.1926

When the committing statement will not be published ahead of time, it is specially1927
important that a “distinguished” (i.e., default) timestamp be used, to mitigate the possibility1928
(or appearance) that someone might try many timestamps until they found one that fits their1929
purposes unusually well. That is1930

1. On each day, the default timestamp to use is yyyy-mm-dd 12:00:00.000.1931

2. On each month, the default timestamp to use is yyyy-mm-01 12:00:00.000.1932

If a specific reason justifies using a different timestamp, such as1933
2018-09-13 17:35:00.000, that reason SHOULD be explained ahead of time by the1934
user of the beacon. (An example of a good reason would be some predetermined schedule1935
for using the beacon pulse, which needed to start immediately after 17:35.)1936

When a committing statement is not being published before the pulse to be used, the1937
user SHOULD choose the timestamp with UTC of noon (yyyy-mm-dd 12:00:00.000) on a1938
day, and if possible SHOULD use the one on the first of the month. If the committing1939
statement is published or committed to in public (by revealing H, for example) at least1940
a day in advance, then this is not necessary. However, users of the beacon SHOULD use1941
these distinguished/default timestamps whenever possible, and SHOULD explain any other1942
choices made. (For example, if some auditing process must start promptly at 10:14 PM local1943
time, that would be a good reason to use a different pulse.)1944

7.2.2 Deriving a Seed1945

The simplest way to derive a seed, which is appropriate in almost all cases, is to hash1946
together a committing statement with the randOut of the beacon pulse described in the1947
committing statement. Thus, if we have a committing statement that says we will use the1948
pulse at 2019-02-22 12:00, then we compute the seed as1949

H← hash(committing statement referencing NIST beacon pulse at 2019-02-22 12:00)

Z← hash(H ‖ P[2018-07-04 12:00].randOut)

Recall that the randOut field is the hash() of all other fields in the beacon pulse. This1950
limits the ability of even a crooked or subverted beacon to exert control over the results.1951

55

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

7.3 Using the Seed1952

When a seed Z needs to be used to generate a very long output string, such as might be used1953
for many different individual outputs, we recommend the procedure based on Algorithm 7.1954

Algorithm 7 Generate distinct values from a short seed.
1: function EXPAND(Z, i)
2: V ← hash(0x00 ‖ Z)
3: return (hash(0x01 ‖V ‖ encode uint(i,64)))

For each new index i, Algorithm 7 outputs a new distinct output Yi = EXPAND(Z, i),1955
with n bits (the bit-length of the output of hash()). Thus, by incrementing the index i, the1956
function CAN be used to generate, from a single seed Z, as many pseudo-random n-bit1957
values as desired.1958

If the range of output values needed is within [A, . . . ,B−1] and if log2(B−A)≤ n−128,1959
then each value CAN be mapped into a result in that range, with a bias less that 2−128, as:1960

result← A+(Yi (mod B−A)) (22)

7.4 Combining Beacons1961

The preCom and randLocal fields are used to derive a seed from a combination of beacons.1962
The procedure also uses the field randOut, in order to achieve security against misbehavior1963
by one of the beacons.1964

The procedure specification requires identifying the involved beacons, e.g., A and1965
B (preferably administratively independent) and the future sampling timing T . These1966
parameters are described in a (committing) statement M and then the statement is hashed1967
into a commitment H = hash(M) of the procedure.1968

The process is then as follows (exemplified for the case of only two beacons operating1969
on the same pulsating schedule):1970

1. Within the time window T and T +3π/4, sample pulses A[T] and B[T] and check their1971
standalone correctness. If any of PA[T] and PB[T] is not obtained until time T +3π/4,1972
or if any of them is invalid, then abort this attempt to combine beacon pulses, else1973
continue. The notion of valid vs. invalid needs to be unambiguously identified by1974
the user application. In any case, the case of a gap or lost randLocal in any of the1975
required pulses of any of the Beacons (A and B) SHOULD invalidate the combination.1976

Note: Since Promise 1 requires beacons to not release the next pulse before T +π ,1977
the sampling window ensures that the user either gives up or learns A[T].preCom and1978
B[T].preCom before anyone knows A[T +π].randLocal and B[T +π].randLocal.1979

56

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

2. Within the time window T +π and T +2π , sample pulses PA[T +π] and PB[T +π]1980
and check their standalone correctness. If any of PA[T] and PB[T] is not obtained until1981
time T +2π , or if any of them is invalid, then abort this attempt to combine beacon1982
pulses, else continue.1983

3. If for any Beacon the 1st bit-flag of statusCode[T + π] is set to 1 (indicating1984
that exceptionally randLocal is not a pre-image of the previous preCom), i.e., if1985
d[T +π].statusCode&1 = 1 for any d ∈ {A,B}, then abort this attempt to combine1986
beacon pulses, else continue.1987

4. Verify that Pd[T].preCom = hash(Pd[T +π].randLocal) for both beacons1988
d ∈ {A,B}. If this is false for some Beacon (which is publishable evidence of a1989
Beacon misbehavior), then abort this attempt to combine beacon pulses, else continue.1990

5. Verify that Pd[T +π].previous = Pd[T].randOut for both beacons d ∈ {A,B}. If1991
this is false for some Beacon (which is publishable evidence of a Beacon misbehavior),1992
then abort this attempt to combine beacon pulses, else continue.1993

6. Output the seed Z, defined as:1994

Z← hash(A[T].randOut ‖ B[T].randOut ‖ A[T +π].randLocal ‖ B[T +π].randLocal ‖ H)1995

When everything goes correctly, the result is a seed that incorporates as pre-image the1996
hash of the committing statement. It also incorporates the randOut fields from A[T] and1997
B[T], which in turn incorporate the sig and ext.value fields from those pulses. The latter1998
two provide authenticity and timeliness guarantees.1999

Security against one malicious Beacon. The described procedure enables security even2000
in the face of one malicious beacon (but not both). Suppose beacon A is honest but beacon2001
B is dishonest. Once B has sent B[T], it has committed to at most one value x (satisfying2002
B[T].preCom = hash(x)) to be used in the B[T + π].randLocal of the next pulse. This2003
means that if it uses any different value x′ in the B[T +π].randLocal field of the next pulse2004
the verifications performed by the user will fail in step 4.2005

Additional considerations. Additional aspects are deferred to a future separate document.2006
This MAY include:2007

• how to combine many beacons (namely more than two), while being resilient against2008
time-gaps in a few beacons.2009

• how to combine beacons with different periods and/or with different time offsets (e.g.,2010
a beacon that outputs at each 30 seconds mark)?2011

• possible distinct guidelines for distinct settings, e.g., a user is obtaining randomness2012
for a one-time non-auditable use, vs. a user intends to obtain randomness for future2013
auditability / ability to prove correctness to third parties.2014

57

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

8 Security2015

In this section we consider the security of the randomness Beacon service. A security2016
analysis is important to enable reflecting on expressive security claims, helping trust to be2017
leveled with trustworthiness. Even if beacon operators believe that the system is initialized2018
in a safe state, we want security to hold in the long run, against conceivable adversarial2019
threats. For example, some components of the beacon may be compromised as a result2020
of an external attack, or upon intentional misbehavior of an insider (beacon operator). Some2021
components of the beacon architecture may also fail spontaneously.2022

Section 8.1 introduces a characterization of our security model of interest, categorizing2023
security properties and adversaries. Section 8.2 describes an operational baseline for the2024
beacon functioning. Attackers may be able to affect the security of the beacon service by2025
inducing a departure from this baseline. Section 8.3 considers several intrusion scenarios2026
where essential components of the beacon become compromised. This analysis illustrates2027
some limits of the beacon security when facing various types of intrusion. Section 8.42028
concludes with a few miscellaneous observations.2029

8.1 Security model2030

Types of security properties. Based on the pulse format and beacon interface, we can2031
conceive an enumeration of desired security properties. We can also consider categories2032
to which those properties pertain, such as for example:2033

• relations — correct hash chaining and signing, incremental sequencing of indices2034
and timestamps, consistent record keeping (authentic past history);2035

• availability — timely pulse releases, accessible past pulses, automatic operations2036
(reduced human operator intervention);2037

• “rands” quality — unpredictable, unbiased, fresh and/or independent randomness in2038
the randLocal, preCom and randOut fields. (Note: we sometimes use the term rands2039
as a shortname for the two main random values of interest: randOut and randLocal)2040

Baseline. Intuitively, the above mentioned properties follow from the pulse format, in a2041
baseline uncompromised implementation in which:2042

• the Beacon App and HSM compute as expected;2043

• the internal state of the Beacon App and HSM are unbreached;2044

• the RNGs provide fresh randomness with full entropy;2045

• the local clock is synchronized with UTC;2046

• communication is fast and synchronous;2047

• the databases are available and correct.2048

58

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Adversary. But how to withstand an adversarial compromise of system components? A2049
security analysis needs to consider cases where subsets of components are compromised, e.g.,2050
due to adversarial intrusion that makes the system depart from the baseline uncompromised2051
scenario. It thus matters to characterize the capabilities and goals of the adversary.2052

We consider two main types of adversarial behavior upon compromise:2053

• semi-honest, also known as honest-but-curious or passive, meaning it can exfiltrate2054
internal state, but without deviating from the protocol specification with respect to2055
interaction with non-compromised components;2056

• malicious, also known as active, meaning that it may have an arbitrary behavior,2057
including contrary to the beacon specification.2058

In the remainder, the terms “adversary” and “attacker” are used interchangeably to denote2059
either a compromised component of the beacon architecture, or an entity that coordinates2060
information and actions with one or more compromised components. An act of intrusion /2061
compromise can occur at the onset of a beacon implementation (e.g., by inadvertently using2062
hardware with an unknown malicious sub-component), or during the beacon operation.2063

Adversarial capabilities. An important characterization of each idealized adversary is2064
its capability, which includes the control it has over the computational and communication2065
capabilities of compromised components (e.g., parts of the beacon engine, web frontend,2066
time server, database, and/or even users) and also the possible access it has to covert2067
communication channels, computational resources and illegitimately obtained information.2068

Adversarial goals. We focus on five categories of what an attacker “wants”:2069

1. know the future in advance — to predict (or share knowledge of) some randomness2070
before the time indicated in the timestamp of a pulse;2071

2. influence the future — to induce with non-negligible probability some property (e.g.,2072
a bias in 0’s) of the random values (randOut or randLocal) in a pulse;2073

3. change the past — to alter a previously released pulse without detection, i.e., making2074
users believe that the pulse in a past time is different from what had already been fixed;2075

4. fork a chain — to make different users believe in the validity of two different pulses2076
(e.g., different randOut) with same indices (pulse and chain) and timestamp;2077

5. deny service — to induce the beacon service to become unable to pulsate with the2078
intended period, possibly even forcing it to end a chain.2079

This is not an exhaustive list, but it helps us reason about a number of desired operational2080
defensive-features of the beacon.2081

Crypto assumptions. We also assume the satisfiability of cryptographic assumptions:2082

59

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• a cryptographic hash is one-way and collision resistant and its output is indistinguish-2083
able from random when the input is unpredictable;2084

• the signature scheme is unforgeable and the public-key is unforgeably certified, such2085
that security against forging signatures depends only on secrecy of the signing key.2086

8.2 Operational baseline2087

A number of procedures needed by randomness beacons CAN be modularly conceptualized2088
in order to describe a reference mode of operation. Some procedures are inherently2089
related to the rules for generating pulses and the definition of interfaces (as described in2090
Sections 3 through 6). Other procedures are somewhat independent of the syntax of pulses2091
and interfaces and apply more generically to operational aspects of putting together all2092
the components of a beacon implementation. This subsection deals with the latter: key2093
management, network protocols, time synchronization, and administrative actions (e.g.,2094
updates, backups and maintenance) and physical configuration.2095

Each beacon MAY have unique implementation characteristics, regarding the supporting2096
hardware and software components. This subsection covers high-level operational aspects2097
that are likely to be applicable to most beacon implementations.2098

8.2.1 Management of signing keys and certificates2099

Key generation and isolation. Since the authenticity of pulses relies on cryptographic2100
signatures, it is essential to protect the private signing key in use for each chain. By a2101
separation of concerns principle, the private signing key SHOULD be isolated from the2102
overall Beacon App. In other words, the ability to sign SHOULD be modularly protected and2103
separated from the remaining complexity of pulse generation. The Beacon App SHOULD2104
thus be able to request signatures and obtain a corresponding reply, but SHOULD NOT be2105
able to to access the actual signing key.2106

Certification. A signing key CAN either be self-signed (self-certified); or certified by an2107
external certification authority (CA). There MAY exist more than one certificate for each key,2108
e.g., in order to handle the renovation of certificates across time (ensuring no certification2109
time-gaps) and/or for applicability to users with different validation requirements. The set2110
of all certificates for all signing keys ever used to sign pulses must be available to users upon2111
request — to enable users to validate any past pulse. More concretely, each value ever used2112
in the certId field of a pulse must correspond to a certificate (or vector thereof) that the2113
beacon service is able to find and provide to a requesting user. Since certificates are public,2114
they are stored in the publicly accessible Database, and CAN be backed up anywhere else.2115

The following items are not mandatory for a beacon to operate, but are recommended:2116

1. Certification authority (CA). A Beacon SHOULD obtain from a widely trusted CA a2117
certificate for its public (signature-verification) key; at least one such public certificate2118
(but possibly more) SHOULD be valid in any period of pulse generation by a beacon.2119

60

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

2. Certificate transparency (CT). The signing-key certificate SHOULD be logged into2120
a CT [LLK13] log, to promote the detection of conceivable issuance-and-use of rogue2121
Beacon-signing-key certificates produced by compromised CAs.2122

3. Certificate expiration. It is recommended that any certificate has a validity period2123
no longer than 5 years from the time of issuance, including because of conceivable2124
future revisions of approved signature algorithms and parameters.2125

4. Certificate revocation. A Beacon SHOULD publicize its certificate-revocation policy.2126

Isolation of the signing capability. Given the paramount importance of protecting the2127
signing key, it is important to ensure its secure isolation and access. This justifies the use of2128
a signing module, with a controlled interface allowing signature requests by the Beacon App.2129
This module SHOULD provide a well-defined access-control mechanism, and be capable of2130
securely performing signatures without key leakage. For example, this MAY be implemented2131
using a hardware security module (HSM) with FIPS 140-2 level 3 certification.2132

It nonetheless conceivable that a beacon is implemented without the use of a certified2133
HSM. However, in the remainder we continue referring to an HSM as a possible hardware2134
device providing intended security properties. Ideally, an HSM would allow generating and2135
containing the key without it ever leaving the HSM, and possibly even allowing a limitation2136
of the rate of signatures per amount of time.2137

8.2.2 Network Security2138

The flow of information between components of the Beacon requires control. At a first2139
logical level, some flows are unidirectional, using a push model. For example, the database2140
receives data sourced at the Beacon App, but not the other way around. There are however2141
exceptional designated circumstances (e.g., see Section 8.2.4) that warrant a special admin-2142
istrative mode of operation where, for example, the Beacon App accepts additional input,2143
e.g., for reposition of accidentally lost state.2144

The network connections SHOULD, as much as possible, be dedicated and isolated from2145
unrelated services. This can be particularly helpful in reducing the surface for potential attack2146
initiated from other components. It can also help with reducing the delay of communications.2147

8.2.3 Time synchronization2148

A secure beacon service offers two main features related to time: it generates pulses as late2149
as possible to enable a timely release; it releases pulses not before the time indicated in the2150
timeStamp field. These features require the ability to reliably measure time. At a logical2151
level, this can be comprised to an assumption that the local clock of the beacon engine has2152
(relative to an intended precision) a small enough offset from UTC. At a practical level, the2153
implementation must explicitly provision for a correct synchronization of the local clock.2154

We enumerate here three vectors for accomplishing synchronization:2155

61

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

1. use the network time protocol (NTP) to interactively synchronize with a time server2156
assumed to have the correct UTC time;2157

2. use a non-interactive protocol, using the time read from a receive-only signal, such as2158
based on the global positioning system (GPS);2159

3. use a local clock certified to have time drift less than a certain threshold, throughout a2160
long duration;2161

These three options are not mutually exclusive, and CAN conceivably be combined.2162
Correspondingly, some adversarial capabilities may enable time manipulation attacks2163
[MCBG16].2164

8.2.4 Maintenance, availability and recoverability2165

Updates and downtime. The software and hardware platform of an implemented Beacon2166
service MAY require updates (e.g., security patches, replacement) at diverse moments in2167
time. Such actions CAN induce downtime of the beacon service, e.g., if an update requires a2168
reboot of the operating system that underlies the Beacon App. For example:2169

• Power outages in beacon engine. If the Beacon Engine temporarily losses of power,2170
then then the pulse generation will be stopped temporarily. Skipping the generation of2171
pulses for some time leads to time gaps in an active chain.2172

• Externally-inaccessible database. If the external database is temporarily unavailable2173
frmo the outside, then users will not have access to the beacon pulses during some2174
time. In the latter case the generation of pulses CAN still remain without gaps, and at2175
a later stage the produced pulses become available for consultation.2176

Since availability is itself a security aspect, the above considerations justify a balance2177
between frequency of updates and the resulting frequency of gaps.2178

Backups and recoverability. It is crucial to ensure the long-term availability of public2179
records of the beacon, including pulses and associated data. Thus, an essential aspect of2180
availability pertains to actual loss of information, e.g., a database loss due to problems with2181
the underlying storage medium. Since the records have an “unlimited” lifetime, there must2182
exist backups of the database(s). Two distinct possibilities are enumerated here:2183

• to enhance continuous (and real-time) availability, a state-machine replication2184
implementation CAN enable data access even when one database replica (out of2185
several) fails;2186

• to enhance long-term availability, regardless of possible temporary downtimes, a state2187
recovery protocol CAN define how to replace a failed component, and how to setup2188
its initial state to match that of an offline or online backup replica.2189

A special case pertains to the Beacon App memory, which in normal functioning2190
SHOULD not receive information (about pulses) from outside of the Beacon Engine. Some2191
of the records therein, pertaining to some past pulses (previous, hour, day, month, year),2192

62

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

are needed for the generation of new pulses. If this memory is lost, e.g., if the memory2193
modules irrecoverably fail, then a replacement will have to be updated with an initial state2194
(unless a new chain starts). Such setup is an example of an administrative action with a flow2195
of information contrary to the one mentioned in Section 8.2.2.2196

With respect to the internal storage of the beacon app, it is worth noticing a difference2197
between the loss of randLocal and the loss of past output values. Since randLocal is2198
(by design) not present in previous pulses, it CANNOT be recovered from them. For this2199
reason, there is an exception provisioned for the case of loss of randLocal: the next pulse2200
proceeds by filling the first bit-flag of status with value 1, meaning “randLocal without2201
corresponding preCom”, and omitting the randLocal value (i.e., filling it with all zeros).2202
Except for the first pulse in a chain, we do not allow not including past output values.2203

8.2.5 Boundaries and Physical Security2204

Recommendation (access boundaries). The access boundaries of the system SHOULD2205
be well defined, to help enumerating conceivable attack vectors that may exploit2206
permeabilities thereof. A relevant defense line pertains to physical security measures,2207
limiting the possible physical attacks and deterring certain types of insider attacks. It is thus2208
encouraged that each administrative domain of a beacon defines a physical security policy2209
for its beacon implementation. This MAY include defining rules of access to the beacon2210
machinery, and corresponding audit rules (e.g., based on access logs). For example, should2211
there be a guard determining who can enter the room and logging all entries? How should2212
the access logs be audited, and by whom?2213

Recommendation (ability to shutdown). A Beacon SHOULD be setup with the ability2214
for human beacon operators to physically shutdown the service, and to be able to signal to2215
the outside world that such shutdown will, is or has occur(ed) (somewhat equivalent to a2216
key revocation operation). Conversely, it is possible to conceive a fully virtualized beacon2217
implementation, following the reference format and running in completely autonomous2218
mode, without human operators being able to shut it down after bootstrap.2219

8.3 Intrusion scenarios2220

We now consider intrusion scenarios where a subset of components becomes compromised:2221

1. Malicious Beacon App→ full-bias attack on randLocal2222

2. Malicious Beacon App→ full prediction and exfiltration attack2223

3. Malicious Beacon App→ bias attack on randOut2224

4. Malicious time along with compromised database→ “rands” prediction attack2225

5. Semi-honest Beacon App→ “rands” prediction attack2226

6. Malicious database knowing the signing key→ change-history attack2227

63

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

8.3.1 Malicious Beacon App→ full bias on randLocal2228

Specification. The value ri+1 = Pi+1.randLocal released in pulse Pi+1 is the hash pre-2229
image of the value Ci = Pi.preCom released in pulse Pi. Supposedly, this randLocal value2230
ri+1 is computed as ρ ′i ≡Hash(ρ1,i || ρ2,i [|| ρ3,i]), where the (at least two) values ρ j,i are the2231
“raw” outputs from the several RNGs learned by the Beacon App (but not revealed outside)2232
during the process of generating pulse Pi.2233

Attack vector. Since the “raws” are not revealed outside, a malicious Beacon App can2234
undetectably ignore them and decide an arbitrary randLocal ρi and then hash it to obtain2235
Ci. The compromise scenario is depicted in Fig. 9.2236

HSM

Clock

RNG

Beacon

 App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

Figure 9. Illustration of malicious Beacon App

Mitigation in place. The rules for combining beacons (Section 7.4) specify that2237
randLocal SHOULD only be used to combine randomness from different beacons. The2238
result of the combination leads to good randomness if at least one beacon is uncompromised.2239
Nonetheless, the fact the randLocal can be fully biased by a malicious beacon SHOULD2240
be an explicit consideration by users. This is specially relevant in the face of adversaries2241
capable of affecting several beacons.2242

The trustworthiness on a beacon providing unbiasable randomness SHOULD be distinct2243
when comparing randLocal vs. randOut. A malicious Beacon App can fully determine2244
the value randLocal, while it only has limited bias on randOut (see Section 8.3.3). In2245
particular, such compromise CAN lead the beacon to become deterministic (if using a2246
deterministic signature algorithm), during the periods without change of external.value2247
and certificateId.2248

A conceivable mitigation requiring changing the calculation of a field value. The men-2249
tioned attack would be prevented with a conceivable simple redefinition of the calculation2250
of randLocal (without additional fields). This, however, requires a change in the format2251
specification and is thus conceived only for a potential future version of the format.2252

64

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

The idea is to make randLocali+1 not be simply the pre-image of preComi but rather the2253
XOR of the pre-image and randOuti. Then, even a malicious Beacon App could not fully2254
control the value randLocal, while still committing to it in a verifiable manner. Concretely,2255
we would have the following:2256

• (as currently done) ρi = hash(ρi,1||ρi,2[||ρi,3...])2257

• (as currently done) Pi.preCom= hash(ρi)2258

• (as a change) Pi+1.randLocal= ρi⊕Pi.randOut (instead of Pi+1.randLocal= ρi)2259

This means that when a malicious Beacon App chooses the value randLocal it still2260
does not know the resulting value Pi+1, which will then be obtained upon a hash calcula-2261
tion. Since ⊕ is a computationally-invertible permutation, the verification by users is still2262
straightforward, by simply defining ρi = Pi.randOut⊕Pi+1.randLocal and then checking2263
that hash(ρi) = Pi.preCom.2264

As a further benefit, in this scenario the value of randLocal depends on the use of the2265
HSM, which allows limiting further the possible bias that a malicious Beacon App can2266
induce, as already described in Section 8.3.3 for randOut. This mitigation thus equalizes the2267
amount of bias that the Beacon has with respect to the two rands (randOut and randLocal).2268

8.3.2 Malicious Beacon App→ full prediction and exfiltration attack2269

As mentioned in Section 8.3.1, a malicious Beacon App can undetectably decide in advance2270
the value randLocal of each pulse, provided it presents a corresponding preCom in the2271
previous pulse.2272

In fact, a malicious Beacon App can for example define randLocal as an enciphering2273
of a counter, e.g., ρi = EncK(i), where Enc is a block-cipher with appropriate output length,2274
K is a secret key shared with an outside adversary, and i is the counter. The adversary2275
can then predict in advance all values Pi.randLocal for any i. This also means there is no2276
assurance on randOut being fresh, unbiased or unpredictable.2277

This attack vector also allows the beacon App to exfiltrate internal state that it may learn2278
about the Beacon Engine. Particularly, it can use it to covertly communicate with an outside2279
party, encrypting information into a ciphertext that is inditinguishable from random and2280
which can only be read by the outsider.2281

It is worth noticing that the mitigation technique (different calculation of randLocal)2282
presented in Section 8.3.1, while capable of preventing the full bias of randLocal is not2283
sufficient to prevent the exfiltration or full prediction attack.2284

8.3.3 Malicious Beacon App→ bias on randOut2285

Attack vector. A malicious Beacon App, with access to a honest HSM, can generate many2286
pulses in advance, by simply not waiting enough between each signing request. The Beacon2287
App can thus try many different values of randLocal and produce different signature2288

65

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

requests to the HSM, until obtaining a signature whose respective hash — the randOut2289
value — will have a particular property. For example, if the HSM has the capability (e.g., as2290
a feature of rapid cryptographic operations) to perform about 220 signatures per minute, then2291
the malicious Beacon App can induce the result of the final randOut to satisfy a predicate2292
that happens about once in a million in average (e.g., all zeros in the twenty least significant2293
bits). Since the Beacon App can also accelerate the generation of pulses, it can conceivably2294
first compute a full day worth of pulses and then perform the bias attack on the pulse for the2295
next day, therefore gaining control over about 10 more bits.2296

Mitigations. One possible mitigation is to have an HSM (or even simply a proxy) that2297
induces a mandatory delay between signing requests, and/or which limits the number of2298
allowed signing requests per established session.2299

Another conceivable mitigation is to partition the Beacon App in a way that a component2300
that requests the signature never gets to see the signature result. If the beacon operator has2301
control over the network communication flow, then it may prevent a malicious intruder from2302
communicating across those two components, therefore effectively preventing the signature-2303
requester component from knowing whether or not it should request a new signature.2304

8.3.4 Malicious time along with compromised database→ rands prediction2305

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Figure 10. Illustration of malicious clock and database

Attack vector (malicious local-clock). We describe an attack where the Beacon App and2306
HSM remain honest, but the local clock and the (internal or external) database become2307
compromised. The compromise scenario is depicted in Fig. 10.2308

A malicious local clock can for example induce the generation of an entire-day pulse-set2309
in a single hour. For each generated pulse, the honest Beacon App then releases the pulses2310
to the internal database, unaware that they were released ahead of time. After enough2311
generated pulses in advance, the malicious clock can slow down until becoming again2312
synchronized with UTC.2313

66

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

A semi-honest database can leak the anticipated knowledge to an adversary, thus2314
breaking the unpredictability property. A malicious database and-or web interface can2315
also delay the release of the anticipated pulses to users, thereby making the compromise2316
undetectable. The beacon operators and users never detect that a time-skew occurred and2317
that pulses were generated in advance.2318

Possible mitigations.2319

• Authenticated clock. By having the Beacon App use an external authenticated clock,2320
the forward time skew would not possible. The Beacon App would only accept2321
timestamps already validated by some trusted signature.2322

• Authenticated timestamps, via ext.value. Another mitigation is to periodically2323
incorporate authenticated timestamps into the pulse, via the ext.value field mech-2324
anism. Concretely, one CAN define an external source (ext.srcId) that describes2325
using an authenticated timestamp as the hash pre-image of ext.value, at particular2326
moments in time. This would allows external users to verify that the pulses were only2327
generated after the Beacon App had knowledge of the authenticated timestamp. Con-2328
ceivably, this CAN also be done based on randomness values from different beacons,2329
which by the specification in this document are authenticated by the respective beacons.2330
The use of an authenticated/timestamps output value from at least one uncompromised2331
beacon would be sufficient to guarantee unanticipated pulse generation.2332

Another attack vector (honest local-clock, malicious time-server). Even with an intact2333
beacon engine, a timing attack can be launched from a malicious external time-server, outside2334
of the beacon engine. Suppose that the Beacon App relies on its underlying operating system2335
(OS) to control “sleep” system calls, trusting that the OS will “awake” the App at the2336
intended time. Suppose also that the OS, in control of the local clock, is responsible for2337
initiating the time-synch protocol with the time-server. The time server can then induce an2338
undetectable skew rate, which will depend on the time-synch scheduling frequency.2339

For simplicity we assume the case of a 1 minute period between pulses. For an un-2340
detectable attack, each synchronization cannot skew the time forward by more than one2341
minute, or otherwise it would induce a time gap in the chain, which would be detectable.2342
For example, suppose the OS only requests synchronization approximately once every two2343
minutes. The local-clock time is then limited to advance, in average, at 1.5 times the speed2344
of regular time. This means that for a single hour the clock is not able to skew more than2345
30 minutes, i.e., about 30 pulses. If instead the synchronization happens once every 102346
seconds, then the rate can be has high as about 6 times. The consequences are more restricted2347
than the case of the attack described with a fully malicious clock. Some consequences /2348
detectability of the attack may be implementation-specific, e.g., depending on whether the2349
sleep/awake actions depend on timestamps vs. computation cycles. If the communication2350
in the time-synchronization protocol is not protected, then it is enough to have a malicious2351
intrusion of the network channel.2352

67

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Mitigation. The attack described in the case of a malicious local clock included a second2353
phase where the clock would slowly get back into the correct time. A Beacon App CAN2354
conceivably be programmed to analyze clock adjustments and throw an exception when2355
detecting too many (too large) time-skews, backward and forward. For example, a Beacon2356
App CAN be defined to alert the Beacon operator if detecting that in a 2 minute span2357
(according to local-clock time) the time-synch operation lead to a time-skew greater than 102358
seconds. This would further reduce the possible skew rate of anticipated production/release2359
of pulses.2360

8.3.5 Semi-honest Beacon App→ rands prediction2361

Advanced knowledge of rands. Within the operational guidelines for timely generation2362
and release of pulses (see Fig. 3 in Section 3.3), it is unavoidable that a semi-honest Beacon2363
App has privileged knowledge of randLocal during a time window up to π +∆ (i.e., in2364
advance of allowed time for pulse release); it also has privileged knowledge of randOut for2365
a time window of up to max(0,∆− γ).2366

Some mitigations — possible and conceivable.2367

• M1 (possible). Adequate parametrization of generation and release time. As2368
already recommended in Section A.1, the generation and release parameters SHOULD2369
be adjusted to allow smaller windows of predictability. Making γ > ∆ removes the2370
predictability of randOut by a semi-honest Beacon App. (Compare Fig. 11 vs. Fig. 3.)2371
However, this does not eliminate the predictability of randLocal. Even in the extreme2372
of choosing ∆≤ 0 (not depicted in Fig. 11), i.e., starting the generation only after the2373
allowed release time, randLocali+1 would still be learned before the whole pulse Pi.2374

• M2 (conceivable): A slight change in randLocal definition. Section 8.3.1 sug-2375
gested a simple change in the calculation of randLocali+1, where it becomes equal to2376
the XOR of randOuti and the pre-image of preComi. Then, the value of randLocal2377
would only be learned after the pulse is generated. This reduces slightly the time-2378
window of advanced knowledge (See “case M2” in Fig. 11)2379

• M3 (conceivable future). A radical change in randLocal definition. The pre-2380
dictability of randLocal against a semi-honest Beacon App could be eliminated2381
upon a significant change in the definition of randLocal, and depending on further2382
capabilities by the HSM. The idea is to let randLocali+1 be defined as a pre-image2383
of a one-way permutation with trapdoor that requires the help of the HSM only after2384
a pulse has been computed, and such that the value is nonetheless still committed2385
by preComi. Let (Ksec,Kpub) be a new secret/public key pair for a one-way trapdoor2386
permutation P; let Ksec be protected by the HSM, never revealed to the Beacon2387
App, but usable by the HSM upon request the Beacon App. The new randLocal is2388
computed by the Beacon App as follows:2389

– as usual, obtain ri+1 = hash(ρi,1||ρi,2[||ρi,3...]);2390

– as usual, publish preComi = hash(ri+1) in pulse Pi;2391

68

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Time

π: intended pulsation period

randLocali+1

∆

δ

γ

Ti

∆

δ

Ti+1

randLocali+1

randLocali+1M1:

release
Pi

release
Pi+1

M2:

M3:

γ

obtain
Pi

obtain
Pi+1

start
gen.
Pi

start
gen.
Pi+1

Legend: red rectangles (window of predictability of randLocal); Let ri+1 = hash(ρi,1||ρi,2[||ρi,3...]) and
preComi = hash(ri+1). Then, randLocali+1 equals: ri+1 in M1; ri+1⊕randOuti in M2; P−1

Ksec
(ri+1) in M3.

Figure 11. Different predictabilities for different randLocal formulas

– as part of computing Pi+1, and by using γ ≈ ∆, wait till very close to2392
timeStampi+1 to query the HSM for randLocali+1 = P−1

Ksec
(ri+1).2393

– continue the computation of Pi+1 and release it shortly after time timeStampi+12394

The verifiability equation for users is then hash(PKpub(randLocali+1)) =
? preComi,2395

because ri+1 = PKpub(P
−1
Ksec

(ri+1)). Since a semi-honest Beacon App queries the2396
HSM only after timeStampi+1, it only learns randLocali+1 at that time, therefore2397
reducing the predictability time-window. By using appropriate timing parameters, this2398
could effectively reduce to 0 the window of predictability, with respect to the allowed2399
release time timeStamp+i+1.2400

8.3.6 Malicious database and leaked signing key→ change-history attack2401

A conceivable stealing of the HSM key. Suppose an insider attacker has temporary phys-2402
ical access (e.g., less than a minute) to the HSM and to the administrator and operator cards2403
of the HSM, along with corresponding pass-phrases. By connecting to the HSM using the2404
stolen credentials, the attacker can backup the module key. Suppose the attacker also gains2405
access to the key-blob (which is also backed up, in encrypted format, possibly in the cloud).2406
The attacker can now hide, decrypt the key-blob offline and produce signatures on its own.2407

A complementary attack vector is conceivable depending on the policy for renew-2408
ing/backing up/copying the module key. If there is a secondary HSM with the same module2409
key, there is a larger attack surface to steal/replicate the module key.2410

69

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

The compromise scenario is depicted in Fig. 12.2411

HSM

Clock

RNG

Beacon
App

RNG
#3

Beacon Engine

Time
server

Pulse

RNG Sign

external
entropy

Fw

DB Web

Fw

Figure 12. Illustration of malicious database and leaked signing key

A conceivable change-history attack. Suppose the attacker is further able to maliciously2412
compromise the internal or external database (already away from the beacon engine). If the2413
attacker knows the HSM signing key, it is then able to choose any past or present point in the2414
chain (pulse i) and replace the whole chain from that point onward. The new chain satisfies all2415
needed relational properties. The different chain produced by the Beacon App never gets out.2416

The attack can then completely ignore future pulses produced by the Beacon App. This2417
succeeds because the Beacon App does not receive feedback from the outside.2418

A possible mitigation. If the attacker changes past pulses that have already been sent2419
outside, then it is at risk of a user finding a non-repudiable inconsistency. However, there is2420
no guarantee that a single user tricked by the a ttacker is able to confirm what other users2421
have already received. A mitigation to this is to improve the ability for users to obtain pulses2422
stored by external repositories. For example, if the first pulse of each day is stored in some2423
high-reliable public website, then it CAN serve as anchor to verify any past pulse. A beacon2424
CAN provide information about these anchors in order to have the user verify a skiplist2425
connecting the anchor to the target past value.2426

8.4 Other recommendations2427

• Not a random oracle. A theoretical public random oracle (in the usual sense) would2428
not know the hash pre-image of the outputted randomness. However, in the case of2429
the Beacon here defined the actual pre-image is part of the procedure of verifying2430
correctness. This means that the randomness CAN be used in applications where the2431
knowledge of the hash pre-image is not a problem.2432

• Code review. Since the Beacon is a public service, it is recommended that the2433
software code of the Beacon App be published (e.g., open source) for external review2434
by the community. This CAN be done without prejudice of retaining privacy of certain2435
security parameterizations, such as firewall configurations, time-synch schedules, etc.2436

70

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

9 Future considerations2437

In settling a concrete version 2.0.0, some design decisions were taken on the side of2438
restricting functionality. This section describes a few identified items whose consideration2439
may benefit from feedback from stake-holders, and may motivate changes in future versions.2440

1. Cipher suite values. Allow new values for the cipher field. Any update2441
SHOULD reflect an update of the sub-version (value z in the version number 2.y.z),2442
while y NEED NOT change. Existing chains continue as is, since the cipher value2443
SHALL NOT change within a chain. Conceivable updates include allowing ECC-based2444
signatures, post-quantum safe signatures, threshold signatures and SHA3 hashes.2445
Advantages include reducing the size and increasing the security; disadvantages2446
include increased complexity for supporting the full suite of allowed algorithms.2447

2. Hash values zero. For conciseness, allow a hash zero to be serialized as a simple2448
(uint64) encoding of length 0, i.e., indicating that no hash follows. In the current2449
specification, whenever a hashOut field is not applicable (e.g., sometimes for2450
ext.srcId, ext.value, randLocal, ...) it is instead being filled with an all-zeros2451
string (i.e., exactly BLenHash bytes with value zero).2452

3. Other past output values. Enable a dynamic specification of which past output2453
values are included in the pre-image of the randOut. For example, if a chain outputs2454
pulses with a period of five seconds (12 times faster than the current NIST beacon),2455
then it may be useful to also include as past value the first pulse with the same time-2456
with-minute-precision as the previous pulse. Conversely, a chain that outputs one pulse2457
per hour could dispense the out.H field; a chain that outputs one pulse per day could2458
also dispense the out.D field. This can be achieved with a change in format that would2459
enable parsing the number of past output values that follow, and identifying the time re-2460
lation with the previous pulse (and/or the pulse index difference with the current pulse).2461

4. Multiple certificates. Explain how the reply to a query for the certificate(s)2462
corresponding to a certificateId value CAN include multiple certificates. In the2463
current document, the description of the PEM file (the hash pre-image of certId)2464
assumes a single certificate for the signature key. Advantages in allowing several2465
simultaneous certificates to be valid (and verifiable), for the same key in use, include:2466

(a) It widens the scope of acceptability of pulses, since it allows validation of2467
pulses by different external users that have different requirements on certificate2468
acceptance. This is likely to happen when different external users are from2469
administratively independent jurisdictions, e.g., different countries, with2470
stringent legal requirements (e.g., what can be accepted in a court of law).2471

(b) It allows for simultaneous use of different certification technologies, e.g.,2472
conceivable future use of some experimental post-quantum secure certificate,2473
along side with continuing to use a standard certification technology.2474

(c) It allows use of several keys in some kind of multi/threshold signatures where2475
it may be useful to account for several public keys.2476

71

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

References2477

[BCG15] J. Bonneau, J. Clark, and S. Goldfeder. On Bitcoin as a public randomness source.2478
Cryptology ePrint Archive, Report 2015/1015, 2015. https://eprint.iacr.org/2015/2479
1015.2480

[BDF+15] T. Baignères, C. Delerablée, M. Finiasz, L. Goubin, T. Lepoint, and M. Rivain.2481
Trap Me If You Can – Million Dollar Curve. Cryptology ePrint Archive, Report2482
2015/1249, 2015. https://eprint.iacr.org/2015/1249.2483

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier2484
(URI): Generic Syntax. RFC 3986, January 2005. DOI:10.17487/RFC3986.2485

[Blu81] M. Blum. Coin flipping by telephone. A Report on CRYPTO 81, pages 11–15,2486
1981. Also at COMPCON’82, pp. 133-137, IEEE, 1982. Also as “Coin flipping2487
by telephone – a protocol for solving impossible problems.” at SIGACT News,2488
15:23–27, 1983, DOI:10.1145/1008908.1008911.2489

[BNM+14] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Felten. Mix-2490
coin: Anonymity for Bitcoin with accountable mixes. In International Conference2491
on Financial Cryptography and Data Security, pages 486–504. Springer, 2014.2492

[CD17] I. Cascudo and B. David. SCRAPE: Scalable Randomness Attested by Public2493
Entities. In D. Gollmann, A. Miyaji, and H. Kikuchi (eds.), Applied Cryptog-2494
raphy and Network Security – ACNS, pages 537–556. Springer International2495
Publishing, 2017. DOI:10.1007/978-3-319-61204-1˙27.2496

[CH10] J. Clark and U. Hengartner. On the Use of Financial Data As a Random Beacon.2497
In Proceedings of the 2010 International Conference on Electronic Voting2498
Technology/Workshop on Trustworthy Elections, EVT/WOTE’10, pages 1–8,2499
Berkeley, CA, USA, 2010. USENIX Association.2500

[CLC18] CLCERT. CLCERT Randomness Beacon Project, 2018.2501

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.2502
Internet X.509 Public Key Infrastructure Certificate and CRL Profile. RFC,2503
5280(5280):1–151, May 2008. DOI:10.17487/RFC5280.2504

[Haa18] M. Haahr. RANDOM.ORG: True Random Number Service, 1998–2018.2505

[HL93] A. Herzberg and M. Luby. Public Randomness in Cryptography. In E. F. Brickell2506
(ed.), Advances in Cryptology — CRYPTO’ 92, vol. 740 of LNCS, pages2507
421–432. Springer Berlin Heidelberg, 1993. DOI:10.1007/3-540-48071-4˙29.2508

[INM18] INMETRO. Brazilian Randomness Beacon Project (FAPESP), 2018.2509

[KTY04] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable Signatures. In C. Cachin2510
and J. L. Camenisch (eds.), Advances in Cryptology - EUROCRYPT 2004,2511

72

https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1249
https://doi.org/10.17487/RFC3986
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.17487/RFC5280
https://doi.org/10.1007/3-540-48071-4_29

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

pages 571–589, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.2512
DOI:10.1007/978-3-540-24676-3˙34.2513

[LLK13] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC,2514
6962(6962), June 2013. DOI:10.17487/RFC6962.2515

[MCBG16] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg. Attacking the Network2516
Time Protocol. In NDSS, 2016.2517

[MN10] T. Moran and M. Naor. Split-ballot Voting: Everlasting Privacy with2518
Distributed Trust. ACM Trans. Inf. Syst. Secur., 13(2):16:1–16:43, March2519
2010. DOI:10.1145/1698750.1698756. See prior version at CCS’07,2520
DOI:10.1145/1315245.1315277.2521

[NIS13a] NIST. FIPS 186-4, Digital Signature Standard (DSS), Federal Information2522
Processing Standard (FIPS) Publication. Technical report, Department of2523
Commerce, 2013. DOI:10.6028/NIST.FIPS.186-4.2524

[NIS13b] NIST. FIPS 186-5, Digital Signature Standard (DSS), Federal Information Pro-2525
cessing Standard (FIPS) Publication. Technical report, Department of Commerce,2526
2013. DOI:10.6028/NIST.FIPS.186-4. (Expected to appear in May 2019).2527

[NIS15] NIST. FIPS 180-4, Secure Hash Standard, Federal Information Processing2528
Standard (FIPS) Publication. Technical report, Department of Commerce, 2015.2529
DOI:10.6028/NIST.FIPS.180-4.2530

[NIS18] NIST. NIST Randomness Beacon Project, 2013–2018.2531

[NK02] C. Newman and G. Klyne. Date and Time on the Internet: Timestamps. RFC2532
3339, July 2002. DOI:10.17487/RFC3339.2533

[Rab83] M. O. Rabin. Transaction protection by beacons. Journal of Computer and2534
System Sciences, 27(2):256–267, 1983. DOI:10.1016/0022-0000(83)90042-9.2535

[SJK+17] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer,2536
and B. Ford. Scalable bias-resistant distributed randomness. In IEEE (ed.),2537
Security and Privacy (SP), 2017 IEEE Symposium on, pages 444–460, 2017.2538
DOI:10.1109/SP.2017.45.2539

[SJSW18] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl. HydRand: Practical2540
Continuous Distributed Randomness. Cryptology ePrint Archive, Report2541
2018/319, 2018. https://eprint.iacr.org/2018/319.2542

[Yer03] F. Yergeau. UTF-8, a transformation format of ISO 10646. RFC 3629, STD2543
63, November 2003. DOI:10.17487/RFC3629.2544

73

https://doi.org/10.1007/978-3-540-24676-3_34
https://doi.org/10.17487/RFC6962
https://doi.org/10.1145/1698750.1698756
https://doi.org/10.1145/1315245.1315277
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.17487/RFC3339
https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1109/SP.2017.45
https://eprint.iacr.org/2018/319
https://doi.org/10.17487/RFC3629

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Appendix A Implementation recommendations2545

A.1 Recommendations about generation and release timeline2546

The promises in Section 3.3 leave some implementation flexibility. For example: in an2547
extreme with (∆,δ) = (π,π/4), a slow pulse generation could use time equal to up to five2548
fourths of a period (i.e., γ ≤ 5π/4); in the opposite extreme, an ideal generation/release2549
timeline would, if assuming no skew to UTC, have (∆,δ ,γ)≈ (0,0,0), with δ ≥ 0.2550

In contrast to the allowed flexibility, it is useful that a Beacon has a predictable rate and2551
that it releases pulses as close as possible to the indicated timestamp, provided it satisfies the2552
promises. Therefore, in the following we put forward several recommendations to promote2553
more concrete expectations and interoperable implementations.2554

The following recommendations represent aspirational implementation goals, rather than2555
promises. The goals MAY possibly be overruled by other implementation concerns specific2556
to each Beacon implementation. For example, some time uncertainty about asynchronous2557
communications in the beacon engine MAY lead a beacon operator to set additional safety2558
margin with respect to generation or release time (while compliant with the promises).2559

Need to handle the clock skew. A detailed analysis SHOULD consider the maximum2560
estimated skew (σ), of the local clock, with respect to UTC. The actual skew will depend on2561
the quality of the local clock, on the synchronization frequency, and on the synchronization2562
protocol. For the most part, we simply assume that the time-server used as reference for2563
UTC synchronization is itself accurately synchronized with UTC, but in Section 8.3.4 we2564
consider the case of malicious compromise of the time server.2565

Hard time-recommendations. Let σ+ and σ− respectively represent reasonable majo-2566
rants for the maximum absolute skew ahead (σ+) and behind (σ−) of UTC. Then, take the2567
necessary precautions to ensure:2568

• R1 — Avoid too-large skew: σ+ < π/10 and σ− < π/10.2569

• R2 — Avoid too-early release (≈ Promise 1): δ ≥ σ−2570

• R3 — Avoid too-late release (≈ Promise 3): max(δ ,γ−∆)< π/4−σ+2571

• R4 — Avoid too-early generation start (≈ Promise 4): ∆ < π−σ+−2572

Soft time-recommendations (fine-tuning). Conditioned to the hard time-recommenda-2573
tions, try to fine-tune the implementation to enable timing parameters to minimize η and η ′,2574
subject to the following conditions:2575

• R5 — Minimize the skew: 0≤ σ−,σ+ ≤ η2576

• R6 — Minimize the release instant: 0≤ δ −σ− ≤ η2577

• R7 — Maximize the generation start instant: 0≤ ∆− γ−σ+ ≤ η2578

74

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

• R8 — Minimize the generation duration: 0≤ γ ≤ η ′2579

Recall that in R8 the parameter γ denotes the time taken between initiating the sampling2580
of randomness from the local RNGs and obtaining the full pulse (including the signature2581
and respective hash).2582

Definition (tuning slack) A Beacon engine satisfying recommendations (R5, R6 and2583
R7) for some parameter value η is said to be within tuning slack η . Except when noticed2584
otherwise, η is expressed in seconds.2585

Note that recommendations R5, R6 and R7 are about deciding when to do something,2586
whereas recommendation R8 is about the time that a computation takes.2587

Definition (time accuracy) A Beacon Engine is said to have time accuracy within α if2588
α ≥max(∆− γ−σ−,δ ′+σ+), where δ ′ = max(δ ,γ−∆). In other words, time accuracy2589
within α means that the generation-time start time and the maximum release time are both2590
(relative to the assumed duration γ and to the timeStamp value of the corresponding pulse)2591
distanced to the optimal values by a value that is bounded by α . Except when noticed2592
otherwise, α is expressed in seconds.2593

Note: the auxiliary definition for δ ′ is just to account for a possible misconfiguration of2594
other parameters; in practice, it does not make sense to define (δ ,γ,∆) such that γ−∆ > δ ;2595
in regular parameterizations one will always have δ = δ ′.2596

Examples of acceptable and non-acceptable parametrizations. As a way of example2597
for beacon operators, Table 13 exemplifies several conceivable timing parameterizations that2598
are acceptable within the scope of promises and hard recommendations. Correspondingly,2599
Table 14 shows unacceptable parameterizations, when some hard recommendation fails.2600
The values are merely illustrative. In practice it is always desirable to ensure that the skew2601
is lower than 1 second.2602

Generation-start not after timeStamp. Row #4 is an example where there is an2603
inactivity gap between the end of the generation (at t = 2) and the release (at t = 3), since2604
δ > γ −∆. It would be conceivable to decide ∆ = −1 (i.e, to have a negative value) to2605
remove the gap, without delaying the release. However, while ensuring that the important2606
promise of no early release is met, we decide for having a gap as a way to ensure that a2607
correct clock (i.e., without skew during this generation, regardless of σ− and σ+) starts2608
the generation process not after timeStamp.2609

Other factors to consider. A decision of timing parameters CAN depend on other factors,2610
such as the possible variability in the duration of pulse generation (γ), and/or the accuracy2611
of “awake” times (T −∆ and T +δ) upon a “sleep” system call. Other timing adjustments2612
MAY also happen after a time synchronization, and/or due to asynchronous interactions.2613

75

NISTIR 8213 (DRAFT) A REFERENCE FOR RANDOMNESS BEACONS

Table 13. Examples of acceptable timing parametrizations

π ∆ γ δ σ− σ+ Recomm. Conceivable intervals Slack Accur-
R1 R2 R3 R4 Generation Release (η) acy (α)

1 60 0.2 0.1 0.1 0.1 0.1 Y Y Y Y [−0.3,0] [0,0.2] 0.1 0.2
2 60 2 1 1 1 1 Y Y Y Y [−3,0] [0,2] 1 2
3 60 0 1 1 1 1 Y Y Y Y [−1,2] [0,2] 1 2
4 60 1 2 1 1 1 Y Y Y Y [−2,2] [0,2] 1 2
5 60 5 2 3 3 1 Y Y Y Y [−8,2] [0,4] 3 4
6 60 30 15 8 2 2 Y Y Y Y [−32,−13] [6,10] 28 13
7 60 59 5 0.5 0.5 0.5 Y Y Y Y [−59.5,−53.5] [0,1] 58.5 53.5

Legend: All values are in seconds; N (No); Y (Yes). The conceivable intervals of generation = [−∆−
σ−,−∆+ γ +σ+] and release = [δ ′−σ−,δ ′+σ+] (with δ ′ = max(δ ,−∆+ γ)), are relative to timeStamp.

Table 14. Examples of unacceptable timing parametrizations

π ∆ γ δ σ− σ+ Recomm. Conceivable intervals Slack Accur-
R1 R2 R3 R4 Generation Release (η) acy (α)

8 60 5 3 1 2 1 Y N Y Y [−7,−1] [−1,2] 3 2
9 60 11 3 5 8 5 N N Y Y [−19,−3] [−3,10] 8 10

10 60 10 5 14 3 3 Y Y N Y [−13,−2] [11,17] 7 17
11 60 55 5 10 8 2 N Y Y N [−63,−48] [2,12] 48 42
12 60 57 2 12 3 3 Y Y N N [−60,−52] [9,15] 54 52

Legend from Table 13 applies.

76

	A Reference for Randomness Beacons
	Preamble
	Disclaimer
	Public comment period
	Reports
	Abstract
	Keywords
	Acknowledgments
	Call for Patent Claims

	Executive Summary
	Contents
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Related work
	1.2 Recommendations and requirements
	1.3 Version numbering
	1.4 Note to Reviewers
	1.5 Document structure

	2 Terminology and notation
	2.1 Terminology
	2.2 Notation for pulses and fields

	3 Protocol and pulse fields
	3.1 Pulse fields
	3.2 Relations of field values within each chain
	3.3 Promises generation and release
	3.4 Time variables
	3.5 Additional recommendations
	3.6 Retrieval interface

	4 The Pulse Format
	4.1 Data formatting and representation
	4.1.1 Basic data formats for fields
	4.1.2 Byte serialization of fields
	4.1.3 The Bare Pulse Format
	4.1.4 The Txt pulse format
	4.1.5 Other structured pulse formats

	4.2 Administrative fields
	4.2.1 URI
	4.2.2 Version
	4.2.3 Cipher Suite
	4.2.4 Period

	4.3 Indexation fields
	4.3.1 Chain Index
	4.3.2 Pulse Index
	4.3.3 Timestamp
	4.3.4 Status

	4.4 The local random value
	4.5 External value fields
	4.5.1 External source identifier
	4.5.2 External Status
	4.5.3 External Value

	4.6 Fields with past output values
	4.6.1 Previous
	4.6.2 Hour, Day, Month and Year
	4.6.3 Example without gaps
	4.6.4 Example with skipped pulses
	4.6.5 If past output values are lost

	4.7 The precommitment value
	4.8 Signature-related fields
	4.8.1 Signature
	4.8.2 Certificate ID

	4.9 The Output Value

	5 Hash Chains and the Skip List
	5.1 Hash Chains
	5.2 Skiplists
	5.3 Verifying a Skiplist

	6 The Beacon Interface
	6.1 General syntax for queries and replies
	6.1.1 General query-format
	6.1.2 General reply-format

	6.2 Queries for single pulses
	6.3 Queries for sequences of pulses
	6.4 Queries associated with certificates
	6.5 Queries associated with external values
	6.6 Queries about local functioning

	7 Using a Beacon
	7.1 Direct usage — sampling a single integer using the modulo technique
	7.2 Ex post facto-verifiable random sampling
	7.2.1 Committing upfront
	7.2.2 Deriving a Seed

	7.3 Using the Seed
	7.4 Combining Beacons

	8 Security
	8.1 Security model
	8.2 Operational baseline
	8.2.1 Management of signing keys and certificates
	8.2.2 Network Security
	8.2.3 Time synchronization
	8.2.4 Maintenance, availability and recoverability
	8.2.5 Boundaries and Physical Security

	8.3 Intrusion scenarios
	8.3.1 Malicious Beacon App — full bias on randLocal
	8.3.2 Malicious Beacon App — full prediction and exfiltration attack
	8.3.3 Malicious Beacon App — bias on randOut
	8.3.4 Malicious time along with compromised database — rands prediction
	8.3.5 Semi-honest Beacon App — rands prediction
	8.3.6 Malicious database and leaked signing key — change-history attack

	8.4 Other recommendations

	9 Future considerations
	References
	Appendix A Implementation recommendations
	A.1 Recommendations about generation and release timeline

