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Reports on Computer Systems Technology 
 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof-of-concept implementations, and technical analyses to advance the 
development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in federal 
information systems. 

Abstract 

Hardware/Server Virtualization is a foundational technology in a cloud computing environment 
and the hypervisor is the key software in that virtualized infrastructure. However, hypervisors are 
large pieces of software with several thousand lines of code and are therefore known to have 
vulnerabilities. Hence a capability to perform forensic analysis to detect, reconstruct and prevent 
attacks based on recent vulnerabilities on an ongoing basis is a critical requirement in cloud 
environments. The purpose of this document is to develop a methodology to enable this forensic 
analysis. Two open-source hypervisors—Xen and Kernel-based Virtual Machine (KVM)-were 
chosen as platforms to illustrate the methodology, and the source for vulnerability data is the 
National Institute of Standards and Technology’s National Vulnerability Database (NIST-NVD). 
The vulnerabilities were classified in terms of hypervisor functionality, attack type, and attack 
source. Based on the relative distribution of vulnerabilities in a hypervisor functionality, two 
sample attacks were launched to exploit vulnerabilities in the target hypervisor functionality, and 
the associated system calls were logged. The gaps in evidence data that is required for fully 
detecting and reconstructing those attacks are identified and techniques required to gather missing 
evidence are incorporated during subsequent attack runs. This is intended to be an iterative process. 
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Executive Summary 

Server/Hardware Virtualization is now an established technology in cloud computing 
environments as it enables ubiquitous access to shared pools of system resources and high-level 
services provisioned with minimal management effort. The key enabling software of this 
technology is the hypervisor. This software layer lies between the physical hardware (called the 
hypervisor host) and multiple application workloads executing in Virtual Machines (VMs or guest 
machines). The hypervisor supports the guest machines by presenting to their operating systems 
(OSs) a virtual hardware platform and managing their execution.  

However, hypervisors are large pieces of software with many lines of code and known 
vulnerabilities. Hence a capability to perform forensic analysis to detect, reconstruct and prevent 
attacks based on recent vulnerabilities on an ongoing basis is a critical requirement in cloud 
environments. The purpose of this document is to develop a methodology to enable this forensic 
analysis.  

The first step of the methodology is to analyze the recent vulnerabilities and attacks on hypervisor 
products. Two open-source hypervisors - Xen and Kernel-based Virtual Machine (KVM)-were 
chosen as platforms to illustrate the methodology, and the source for vulnerability data is the 
National Institute of Standards and Technology’s National Vulnerability Database (NIST-NVD).  
The vulnerabilities were classified based on three categories – the hypervisor functionality where 
the vulnerability exists, attack type and attack source. The outcome of this step is to obtain the 
relative distribution of recent hypervisor vulnerabilities for the two products in the three categories. 

The second step of the methodology is to identify the hypervisor functionality that is most 
impacted and to build sample attacks. These sample attacks were run for the chosen target 
hypervisor functionality, and the associated system calls were logged. The third step is an iterative 
process to determine the gaps in evidence data that is required for fully detecting and 
reconstructing those attacks and to identify techniques required to gather the needed evidence 
during subsequent attack runs. 

The intended benefit of the methodology is to enable all stakeholders (cloud providers and 
customers) to gain a better understanding of recent hypervisor vulnerabilities and attack trends, 
identify forensic information needed to reveal the presence of such attacks, and develop guidance 
on taking proactive steps to detect and prevent those attacks in their operating environments. 
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1 Introduction 

Most cloud services are provided through a virtualized infrastructure. Since virtualization of all 
system resources—including processors, memory, and Input/Output (I/O) devices—makes it 
possible to run multiple operating systems on a single physical platform (host), virtualization is a 
key technology in cloud computing environments that enables ubiquitous access to shared pools 
of system resources and high-level services provisioned with minimal management effort [1, 2]. 
An Operating System (OS) directly controls hardware resources in a non-virtualized system, but 
virtualization, typically performed by a hypervisor (also called a virtual machine monitor or 
VMM) [3] within a cloud environment, provides a mechanism that abstracts the hardware and 
system resources from an OS. As a software layer that lies between the physical hardware and the 
Virtual Machines (VMs or guest machines), a hypervisor supports the guest machines by 
presenting the guest OSs with a virtual operating platform and managing their execution. 

However, hypervisors are large pieces of software with many lines of code and known 
vulnerabilities [4]. While there is published research dedicated to characterizing and assessing 
hypervisor vulnerabilities as well as detecting and forensically analyzing the corresponding attacks 
[4-8], there is no formal methodology for enabling forensic analysis on open-source hypervisors, 
such as Kernel-based Virtual Machine (KVM) and Xen. Motivated by the work presented in [4], 
which characterized hypervisor vulnerabilities as of July 2012 with the objective of preventing 
their exploitation, this document considers the recent vulnerability reports associated with Xen and 
KVM in the NIST National Vulnerability Database (NIST-NVD). The objective is to analyze 
recent trends in hypervisor attacks, provide suggestions for mitigating hypervisor attack risks, and 
identify evidence of those attacks. The main contributions of this publication are as follows: (1) 
all vulnerabilities of the Xen and KVM hypervisor products from the 2016 and 2017 NIST 
National Vulnerability Database (NIST-NVD) were analyzed and classified based on their 
underlying functionalities, attack types, and sources of attacks; (2) classification of the above 
mentioned Xen and KVM hypervisor vulnerabilities based on three categories – hypervisor 
functionality, attack types and attack sources, and generating a relative distribution of the number 
of vulnerabilities (3) Use the previous data as the basis to develop sample attacks that exploit 
vulnerabilities in a target hypervisor functionality and run with system call logging capability, to 
identify coverage of the evidence needed for detecting, reconstructing and preventing these 
attacks. 

The rest of the publication is organized as follows. Section 2 presents an overview of hypervisor 
taxonomy and briefly describes the architecture of Xen and KVM hypervisor products as well as 
related work in the area of vulnerability/forensic analysis. Section 3 discusses the gathering of 
recent vulnerabilities in the two hypervisor products and the classification of those vulnerabilities 
in terms of hypervisor functionality, attack types and attack sources. Section 4 describes the sample 
attacks, information gathered in the initial log configuration, and discusses the gaps in forensic 
evidence that is required for fully detecting and reconstructing those attacks. Identification and 
discussion of techniques required to gather the needed evidence and the inclusion of those 
techniques in subsequent attack runs are also part of this section. Section 5 provides the summary 
and benefits. 
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2 Technology Background and Related Work 

This section provides an overview of hypervisor taxonomy and briefly describes the various 
building blocks in the architecture of two open-source hypervisor products. It also summarizes 
related work in the area of hypervisor vulnerability/forensic analysis. 

2.1 Hypervisors 

Hypervisors are software and/or firmware modules that virtualize system resources such as the 
Central Processing Unit (CPU), memory, and devices. In [9], Popek and Goldberg classify 
hypervisors as Type 1 hypervisors and Type 2 hypervisors. Type 1 hypervisors run directly on the 
host’s hardware to control the hardware and manage guest operating systems (Guest OS). For this 
reason, Type 1 hypervisors are sometimes called bare metal hypervisors and include Xen, 
Microsoft Hyper-V, and VMware ESX/ESXi. Type 2 hypervisors are similar to other computer 
programs that run on an OS as a process. VMware Player, VirtualBox, Parallels Desktop for Mac, 
and Quick Emulator (QEMU) are Type 2 hypervisors. Some systems have features of both. For 
example, Linux's Kernel-based Virtual Machine (KVM) is a kernel module that effectively 
converts the host OS to a Type 1 hypervisor but is also categorized as a Type 2 hypervisor because 
Linux distributions are still general-purpose OSs with other applications competing for VM 
resources [10]. 

According to the 2015 State of Hyperconverged Infrastructure Market Report by ActualTech 
media [23], there are four leading products in the hypervisor market: Microsoft Hyper-V, VMware 
VSphere/ESX, Citrix XenServer/Xen, and KVM. The first two - Microsoft Hyper-V and VMware 
VSphere/ESX are commercial products, while the last two are open-source products. These open-
source products (i.e., Xen and KVM) were chosen as platforms for illustrating the methodology 
that forms the subject of this document. Their architectures are briefly discussed below. 

2.1.1 Xen 

Figure 1 shows the architecture of Xen. In this design, the Xen hypervisor provides two types of 
domains – a single control domain (also called Domain0 or Dom0) and multiple guest domains 
(also called DomainU or DomU). Since the hypervisor supports two different virtualization modes, 
Paravirtualization (PV) and Hardware-assisted Virtualization (HVM) [11], a total of three different 
types of VMs – Domain0 VM (Dom0-VM), DomainU--PVM (DomU-PVM) and DomainU--
HVM (DomU-HVM) can be hosted on the Xen platform. Dom0 is the initial domain started by 
the Xen hypervisor on booting up a privileged domain that plays the administrator role and supplies 
services for DomU VMs. For the two kinds of DomU guests, PV is a highly efficient and 
lightweight virtualization technology introduced by Xen in which Xen PV does not require 
virtualization extensions from the host hardware. Thus, PV enables virtualization on hardware 
architectures that do not support HVM, but it requires PV-enabled kernels and PV drivers to power 
a high performance virtual server. HVM requires hardware extensions, and Xen typically uses 
QEMU, a generic hardware emulator [15], for simulating PC hardware (e.g., CPU, Basic Input 
Output System (BIOS), Integrated Drive Electronics (IDE), Video Graphics Array (VGA), 
network cards, and Universal Serial Bus (USBs)). Because most I/O and network operations in 
HVM mode are done by using simulation technologies, performance of DomU-HVMs are inferior 
to DomU-PVMs[28]. Xen 4.4 provides a new virtualization mode named Para Virtualized 
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Hardware (PVH). PVH guests are lightweight HVM-like guests that use virtualization extensions 
in the host hardware. Unlike HVM guests, instead of using QEMU to emulate devices, PVH guests 
use PV drivers for I/O and native OS interfaces for virtualized timers and virtualized interrupts. 
PVH guests require PVH-enabled guest OS [11].  

 

Figure 1: The Xen architecture 

2.1.2 KVM 

In the open-source hypervisor projects, the Kernel-based Virtual Machine (KVM) is a relatively 
new product which was first introduced in 2006 and soon merged into the Linux kernel (2.6.20). 
KVM is a full virtualization solution for Linux on x86 hardware containing virtualization 
extensions (Intel VT or AMD-V) where VMs run as normal Linux processes [12]. Figure 2 shows 
the KVM architecture, in which the KVM module uses QEMU to create guest VMs running as 
separate user processes. Because KVM is installed on top of the host OS, it is considered a Type 
2 hypervisor. However, the KVM kernel module turns the Linux kernel into a Type 1 bare-metal 
hypervisor, providing the power and functionality of even the most complex and powerful Type 1 
hypervisors. 
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Figure 2: The KVM architecture 

2.2 Related Work 

Hypervisor attacks are categorized as external attacks and defined as exploits of the hypervisor's 
vulnerabilities which allow attackers to gain accessibility and authorization over the hypervisors 
[13]. In support of hypervisor defense, Perez-Botero et al. characterized Xen and KVM 
vulnerabilities based on hypervisor functionalities in 2012 [4]. However, these vulnerabilities 
cannot be used as the basis for characterizing many recent attacks. Using the NIST 800-115 
security testing framework, Thongtua et al [5] assessed the vulnerabilities of widely used 
hypervisors, including VMware ESXi, Citrix XenServer, and KVM then performed some sample 
experiments in order to derive severity scores, and attack impacts. In an effort to develop 
hypervisor forensic methods, researchers discussed the attacks on hypervisors, their forensic 
mechanisms and challenges [8], and leveraged existing memory forensic techniques to perform 
forensic analysis on hypervisor attacks [7]. 
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3 Classification of Hypervisor Vulnerabilities  

This section describes the first step of our methodology which involves the collection of recent 
vulnerabilities in Xen and KVM hypervisor products and classifying them based on three 
categories-Hypervisor Functionality, Attack Types and Attack Sources.  

A brief description of the information sources that were used and the steps adopted as part of the 
approach for obtaining the relative distribution of vulnerabilities is given in Sections 3.1, 3.2, and 
3.3. 

3.1 The Hypervisor Vulnerabilities Data in the NIST-NVD 

The NIST-NVD is the U.S. government repository of standards-based vulnerability management 
data and includes databases of security checklist references, security-related software flaws, 
misconfigurations, product names, and impact metrics [14].  The first task of the first step is to 
obtain all vulnerabilities (tagged with Common Vulnerabilities and Exposures (CVE) numbers)) 
in two open-source hypervisors (Xen and KVM) from the NIST-NVD for the years 2016 and 2017.  

 As listed in Appendix A, a search of the NIST-NVD for the vulnerabilities based on keyword 
“Xen” and “KVM” posted during the years 2016 and 2017 revealed 83 Xen hypervisor 
vulnerabilities and 20 KVM hypervisor vulnerabilities. These vulnerabilities were then classified 
based on the following three categories: 

• Hypervisor Functionality where the vulnerability exists (attack vector channel) 
• Attack Type (impact of the attack by exploiting the vulnerability) 
• Attack Source (users in different virtualization component levels (e.g., guest OS, host OS or 

hypervisor) and different privilege levels (e.g., user, administrator) who can launch attacks if 
malicious)). 

3.2  Classifying Vulnerabilities Based on Hypervisor Functionality 

To obtain a better understanding of different hypervisor vulnerabilities in terms of impacted 
hypervisor functions, Perez-Botero et al. considered 11 basic functionalities that a traditional 
hypervisor provides and mapped vulnerabilities to them [4]. These functionalities include:  

1) Virtual CPUs (vCPU) 
2) Symmetric Multiprocessing (VSMP) 
3) Soft Memory Management Unit (MMU) 
4) I/O and Networking 
5) Paravirtualized I/O 
6) Interrupt and Timer mechanisms 
7) Hypercalls 
8) VMExit 
9) VM Management 
10) Remote Management Software  
11) Hypervisor Add-ons 
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In the approach adopted in this document, we used the above 11 functions in a slightly modified 
way. The functionalities 4 and 5 were merged into a single functionality based on the fact that they 
both pertain to I/O. (A detailed description of all these functionalities can be found in Appendix 
B). All reported Xen and KVM vulnerabilities during the years 2016 and 2017 were mapped to 
these hypervisor functionalities based on the approach in [4], which are listed in Appendix A.  A 
brief description of sample vulnerabilities associated with functionalities is given in Table 1: 

Table 1: A sample vulnerability for each hypervisor functionality 

Hypervisor 
Functionality Sample Vulnerability 

vCPU 

CVE-2017-10923 is an example of vCPU vulnerability in which Xen 
through 4.8.x does not validate a vCPU array index upon sending a 
software generated interrupt (SGI), which allows a guest OS user to cause 
a denial-of-service (DoS) attack, finally resulting in crashing the 
hypervisor. 

VSMP NONE 

Soft MMU 

An example of soft MMU vulnerability is CVE-2017-17565, which existed 
up to Xen version 4.9.x. Due to an incorrect assertion related to machine-
to- people (M2P), this vulnerability allows a paravirtualized guest OS user 
to cause a DoS attack when both the shadow mode and log-dirty mode are 
set up and working. 

I/O and 
Networking 

CVE-2017-15589 is an example of an I/O and networking vulnerability 
discovered in Xen versions through 4.9.x which allows x86 HVM guest OS 
users to obtain sensitive information from the host OS (or an arbitrary guest 
OS). In these versions of Xen, at least one write path was found wherein 
the data that had been stored in an internal structure could contain bits from 
an uninitialized hypervisor stack slot. A subsequent emulated read would 
retrieve these bits. 

Interrupt/Timer 

CVE-2018-7542 is an example of an interrupt/timer vulnerability caused 
by leveraging the mishandling of configurations that lack a local Advanced 
Programmable Interrupt Controller (APIC). It was discovered in Xen 4.8.x 
through 4.10.x. This vulnerability allows an x86 PVH guest OS user to 
cause a DoS attack (a NULL pointer dereference and hypervisor crash). 

Hypercalls 

An example of hypercall vulnerability is CVE-2017-8903, which is 
reported through Xen 4.8.x on 64-bit platforms that might allow a PV guest 
OS user to execute arbitrary code on the host OS by mishandling page 
tables after an IRET hypercall. 

VMExit 

The exploit of a VM Exit-handling code usually leads to a DoS attack. An 
example of a VMExit vulnerability is CVE-2017-2596, in which the 
“nested_vmx_check_vmptr” function in arch/x86/kvm/vmx.c in the Linux 
kernel through 4.9.8 improperly emulates the VMXON instruction that puts 
the processor in Virtual Machine Extensions (VMX) root mode. This then 

https://nvd.nist.gov/vuln/detail/CVE-2017-10923
https://nvd.nist.gov/vuln/detail/CVE-2017-17565
https://nvd.nist.gov/vuln/detail/CVE-2017-15589
https://nvd.nist.gov/vuln/detail/CVE-2018-7542
https://nvd.nist.gov/vuln/detail/CVE-2017-8903
https://nvd.nist.gov/vuln/detail/CVE-2017-2596
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Hypervisor 
Functionality Sample Vulnerability 

allows a KVM L1 guest OS user to cause a DoS attack (the host OS 
memory consumption) by leveraging the mishandling of page references. 

VM Management 

CVE-2016-4963 is an example vulnerability of VM management. The libxl 
device-handling in Xen through 4.6.x allows local guest OS users access to 
the driver domain to cause a denial of service (management tool confusion) 
by manipulating information in the backend directories in xenstore. 

Remote  
Management 

Software 

The exploit of the management functionality may allow a host compromise. 
An example of VM management functionality vulnerability is CVE-2016-
5302. When a deployment has been upgraded from an earlier release, 
XenServer 7.0 before the vendor's Hot x XS70E003 may allow a remote 
attacker on the management network to compromise a host by leveraging 
credentials for an active directory account. 

Hypervisor 
Add-ons 

CVE-2016-0749 is an example vulnerability of hypervisor add-ons. By 
leveraging the smartcard interaction in Simple Protocol for Independent 
Computing Environments (SPICE) as KVM add-ons, a remote attacker can 
cause a DoS attack (QEMU-KVM process crash) or possibly execute 
arbitrary code via vectors related to connecting to a guest VM, which 
triggers a heap-based buffer overflow. 

3.3 Obtaining Relative Distribution of Vulnerabilities 

After tagging each vulnerability with the three categories listed above, the number of 
vulnerabilities were summarized for each category and percentages of occurrence within each 
category were computed to obtain their relative distribution.  

Table 2: The vulnerabilities of Xen and KVM classified by hypervisor functionality 

Number Hypervisor Functionality Xen (Number & Percentage 
of the Total) 

KVM (Number & 
Percentage of the Total) 

1 vCPU 6 (7 %) 4 (20 %) 

2 VSMP 0 (0 %) 0 (0 %) 

3 Soft MMU 34 (40 %) 5 (25 %) 

4 I/O and Networking 

24 (29 %) 
Five are fully-virtualized; 

19 are paravirtualized; 
none are direct access or 

self-virtualized. 

4 (20 %) 
All are fully-virtualized. 

5 Interrupt/Timer 7 (8 %) 3 (15 %) 

6 Hypercalls 3 (4 %) 1 (5 %) 

7 VMExit 1 (1 %) 2 (10 %) 

https://nvd.nist.gov/vuln/detail/CVE-2016-4963
https://nvd.nist.gov/vuln/detail/CVE-2016-5302
https://nvd.nist.gov/vuln/detail/CVE-2016-5302
https://nvd.nist.gov/vuln/detail/CVE-2016-0749
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Number Hypervisor Functionality Xen (Number & Percentage 
of the Total) 

KVM (Number & 
Percentage of the Total) 

8 VM Management 7 (8 %) 0 (0 %) 

9 Remote Management 
Software 1 (0 %) 0 (0 %) 

10 Hypervisor Add-ons 0 (0 %) 1 (5 %) 

Classifications based on the hypervisor functionalities are shown in Table 2. With the exception 
of the functionality of virtual symmetric multiprocessing, all functionalities were reported as 
having vulnerabilities. The number of vulnerabilities and the percentages within each hypervisor 
offering are listed. The table reveals that there are more reported Xen vulnerabilities than KVM. 
One of the reasons can be attributed to a broader user base for Xen. Furthermore, approximately 
69 % of the vulnerabilities in Xen and 45 % of the vulnerabilities in KVM are concentrated in two 
functionalities—Soft MMU and I/O and Networking. A detailed reading of CVE reports reveals 
that these vulnerabilities primarily originated in page tables and I/O grant table emulation. 
Additionally, the vulnerabilities based on the I/O and Networking functionality were also 
associated with each of the four types of I/O virtualization: (1) fully virtualized devices, (2) 
paravirtualized devices, (3) direct access devices, and (4) self-virtualized devices. Table 2 shows 
that most of the I/O and networking vulnerabilities in Xen came from paravirtualized devices, 
while all I/O and networking vulnerabilities in KVM came from fully-virtualized devices. This is 
due to the fact that in most Xen deployments, I/O and networking functionality is configured using 
a paravirtualized device, while in KVM, that functionality is configured using a fully virtualized 
device. 

Table 3: The types of attacks caused by Xen and KVM vulnerabilities 

Type of Attack Xen (Number & 
Percentage of the Total) 

KVM (Number & 
Percentage of the Total) 

Denial-of-service (DoS) 48 (four have other 
impacts) (44 %) 

17 (three have other 
impacts) (63 %) 

Privilege escalation 33 (16 have other 
impacts) (30 %) 

3 (two have other 
impacts) (11 %) 

Information leakage 15 (five have other 
impacts) (14 %) 5 (19 %) 

Arbitrary code execution 8 (two have other 
impacts) (7 %) 

2 (all have other impacts) 
(7 %) 

Reading/modifying/deleting a file 3 (3 %) 0 (0 %) 

Others including compromising a 
host, canceling other administrators’ 

operations and corrupting data 
3 (3 %) 0 (0 %) 

Classifications based on the attack types and the sources of attacks are listed in Table 3 and Table 
4, respectively. Table 3 reveals that the most common attack type was DoS (44 % for Xen and 
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63 % for KVM), indicating that attacking cloud services' availability could be a serious cloud 
security problem. The other top attacks were privilege escalation (30 % for Xen and 11 % for 
KVM), information leakage (14 % for Xen and 19 % for KVM), and arbitrary code execution (7 % 
for Xen and 7 % for KVM). Although each of these thre;e attacks occurs with less frequency than 
a DoS attack, they all carry the potential risk of either leaking sensitive user information or 
compromising the hosts or guest VMs. Table 4 shows that the greatest source of all attacks was 
guest OS users (76 % for Xen and 85 % for KVM). This suggests that cloud providers must closely 
monitor guest users' activities in order to reduce attack risks. 

Table 4: Attack Sources and Number of Exploits 

Source of Attack Xen (Number & Percentage of 
the Total) 

KVM (Number & Percentage of 
the Total) 

Administrator 2 (Management) (2 %) 0 (0 %) 

Guest OS administrator 17 (including HVM and PV 
administrators) (20 %) 1 (5 %) 

Guest OS user 
63 (including Advanced RISC 
Machine (ARM), X86, HVM 

and PV users) (76 %) 

17 (including KVM L1, L2, and 
privileged users) (85 %) 

Remote attacker 1 (1 %) 1 (including an authenticated 
remote guest user) (5 %) 

Host OS user 0 (0 %) 1 (5 %) 
 



NISTIR 8221  ENABLING FORENSIC ANALYSIS USING 
  HYPERVISOR VULNERABILITIES DATA 

10 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221 

 

4 Sample Attacks and Forensic Analysis 

The second step of the methodology is to identify the hypervisor functionality that is most 
impacted by the vulnerabilities (from relative distribution) and use that as the basis to build sample 
attacks. Since numerous vulnerabilities are related to the Xen soft MMU functionality, this section 
illustrates two sample attacks that exploit vulnerabilities in this functionality, CVE-2017-7228 and 
CVE-2016-6258, to demonstrate how the requisite evidence for detecting and reconstructing 
hypervisor attacks is determined. 

4.1 The Two Sample Attacks 

As presented in Section 2.1.1., the Xen hypervisor can host three types of VMs, Dom0-VM, 
DomU-PVM and DomU-HVM. The PV module in the hypervisor that implements PV mode and 
supports DomU-PVMs has been widely utilized for its higher performance [25]. However, since 
this module uses complex code to emulate the MMU, it introduces many vulnerabilities, such as 
CVE-2017-7228 and CVE-2016-6258. 

Known by Xen as XSA-212, CVE-2017-7228 was first reported by Jann Horn of Google’s Project 
Zero in 2017 [20]. Horn discovered that this vulnerability in X86 64 bit Xen (including 4.8.x, 4.7.x, 
4.6.x, 4.5.x, and 4.4.x versions) was caused by an insufficient check on the function 
“XENMEM_exchange”, which allows the PV guest user as the function caller to access hypervisor 
memory outside of the PV guest VM’s provisioned memory. Therefore, a malicious 64-bit PV 
guest who can make a hypercall “HYPERVISOR_memory_op” function to invoke the 
“XENMEM_exchange” function may be able to access all of a system’s memory. The consequent 
VM escape from DomU to Dom0 (the process of breaking out of a guest VM and interacting with 
the hypervisor’s host operating system) can enable the PV guest user to cause hypervisor host 
crash and information leakage. The resulting increase in privilege can also enable the malicious 
PV guest user to execute commands like “qvm-run victim firefox" to open a Firefox web-browser 
in the “victim” guest VM, which can only be executed by Dom0 as shown in Figure 3. 

CVE-2016-6258 is also known as XSA-182, which was reported by Jeremie Boutoille from 
Quarklab in 2016 [21]. In the PV module, page tables are used to map pseudo-physical/physical 
addresses seen by the guest VM to the underlying memory of the machine. Since there is a 
vulnerability in Xen PV page tables that allows updates to be made to pre-existing page table 
entries, the malicious PV guests can access the page directory with an updated write privilege to 
execute the VM escape, breaking out of DomU to control Dom 0. 

Both types of attacks were launched on the PV module configured in Qubes 3.1 with Xen 4.6 [22]. 
As illustrated in Figure 3, the attacker impersonating the PV guest root user could execute a 
command, “qvm-run victim firefox,” that can only be executed by Dom0 to open the victim PV 
guest’s Firefox web browser. Both attacks allowed the PV guest users to gain the control of Dom0.  
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Figure 3: CVE-2017-7228 and CVE-2016-6258 Attacks 

4.2 Identifying Evidence Coverage for Forensic Analysis 

The subsection describes the third step of our methodology that seeks to determine the gaps in 
evidence data that is required for fully detecting and reconstructing those attacks and to identify 
techniques required to gather missing evidence during subsequent attack runs. Towards this goal, 
the analysis of existing evidence was conducted as follows: 

It has been observed that both attacks used vulnerabilities related to hypercalls and soft MMU in 
Xen in addition to using Xen’s device activity logs. The affected processes’ runtime syscalls were 
therefore logged to perform a forensic analysis. As an example, Appendix C illustrates the syscalls 
obtained by using the “strace” Linux command on the running “attack” program of CVE-2017-
7228. Analysis of the device activity logs and runtime syscalls showed the relevant evidence 
originated from the syscalls captured from the attackers’ VMs. Despite the noise among syscalls 
that can be found in most programs, other syscalls revealed that the attack program injected a 
loadable kernel module into the kernel space which exploited the vulnerability to control the 
Dom0. This then opened the Firefox browser in the victim’s guest VM.  

Evidence acquisition plays an important role in forensic analysis by determining and 
reconstructing attacks. As presented in a previous work which illustrated the use of a layered 
graphical framework to reconstruct attack scenarios [24], relevant evidence was identified and 
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collected to reconstruct the corresponding attack path(s) representing the attack scenarios. During 
this process, an attack path with missing attack steps led to the collection of additional supporting 
evidence. An analysis of the syscalls captured for two sample attacks revealed that while the 
syscalls obtained using “strace” Linux command were useful for forensic analysis, they lacked 
attack details and had the following deficiencies: (1) the syscalls did not provide details of how 
features of the loadable kernel module used Xen’s memory management to launch the attack; and 
(2) the syscalls were collected from the attacker’s guest VM, which could easily be tampered with 
or removed by the attacker. The VM introspection technique and corresponding memory analysis 
tools are therefore recommended to obtain more supporting and admissible evidence from the run-
time memory.   

4.3 Use of Virtual Machine Introspection (VMI) for Forensics 

The VMI is a process that allows for the external viewing of the state of a VM, either from a 
privilege VM or VMM itself. The state information includes CPU state (e.g., registers), all 
memory, and all I/O device states such as the contents of storage devices or register states of I/O 
controllers. Leveraging this capability, VMI-based applications can be built to perform forensic 
analysis in the following ways: 
  

1. The VMI-based application can capture the entire memory and I/O state of a VM that is 
suspected of being compromised or attacked by taking a checkpoint (snapshot). The 
captured state of the running VM under observation can be compared to either: (a) a 
suspended VM in a known good state or (b) the original VM image from which the running 
VM was instantiated. [26]. 

2. A VMI-based application can be built to perform execution path analysis on the monitored 
VM. This is achieved by tracing—analyzing the sequence of VM activities and the 
corresponding complete VM state (e.g., memory map, IO access). This aids in the 
construction of a detailed attack graph with the VM state as nodes and the VM activities 
as edges, thereby tracing the path through which the current compromised state was 
reached [27]. This approach addresses deficiencies in performing forensic analysis that 
simply uses the system calls from the compromised VMs as follows: 

• There is the possibility that syscalls/hypercalls from the compromised VM could 
be tampered with or entirely removed by the attacker. In this approach, the sequence 
of VM states and VM activities are captured from outside the compromised VM, 
thus eliminating this possibility. 

• All variables that characterize a VM state and a VM activity are captured, helping 
to reconstruct the attack details based on memory access information with the 
ability to detect even malicious attacks, such as code and data modification. 

Though VMI addresses deficiencies in forensic analysis that simply uses the system calls from 
the compromised VM, VMI tools must reconstruct the operational semantics of the guest 
operating system based on low-level sources such as physical memory and CPU registers [29]. 
Because LibVMI [30] provides VMI function on Xen and KVM,and bridges the semantic gap by 
reconstructing high-level state information from low-level physical memory data, we used 
LibVMI as the introspection tool to capture evidence from our two sample attacks. In order to 
use LibVMI on the two attacks, we installed Xen 4.6 in Debian 8 with the privileged Dom0 and 
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both PV guests in DomU configured as Kernel 3.10.100 and Ubuntu 16.04.5, respectively. By 
running current LibVMI (release 0.12) installed on Dom0, we captured all running processes and 
injected Linux modules of the guest attack VM. We illustrated the processes captured during the 
attack time of CVE-2017-7228 in Appendix D, in which the two command lines following 
“root@debian” show the two programs vmi-process-list and vmi-module-list were executed to 
capture the running processes and modules of the attacker’s VM, pv-attacker in our experiment. 
Lines between “[0]”  and “[704]”  are the captured processes (each line is composed of the 
number of the process, the name of the process and the kernel task list’s address where the 
process name was retrieved); and lines following the command “vmi-module-list pv-attacker” 
are the captured modules (each line shows the module name). By comparing the captured 
processes and modules during the attack time with those from some other time (e.g., during 
normal execution) , it was easy to identify the attack process (named as attack in Line [704]) and 
the injected attack  module (named as test as the first listed module. Its extension,.ko, is omitted 
by the program).  
 
While an introspection tool such as LibVMI provides an effective way to detect the hypervisor 
attacks, it has limitations. First, to perform consistent memory access, LibVMI pauses and resumes 
the guest VM (e.g., our experiment showed that the attacker’s VM was paused for about 0.035 756 
s and 0.036 173 s for capturing the running process and injected modules, respectively). Second, 
because the VMI tool is only effective during the attack time, an attacker can easily utilize an in-
VM timing mechanism, such as “kprobes” (the tracing framework built into kernel), to evade a 
passive VMI system [31]. Third, storing the captured snapshots of the guest VMs for forensic 
analysis often requires a large amount of storage space. Our current work addresses constructing 
the detailed attack path by analyzing the attacker’s VM snapshots and improving upon the timing 
and memory issues related to using introspection.  
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5 Summary and Benefits 

The vulnerabilities in two open source products, Xen and KVM, were analyzed and classified 
based on the hypervisor functionality where they exist, attack type and attack source. The analysis 
showed that most attacks on the two hypervisors were caused by vulnerabilities that existed in the 
soft MMU and I/O and Networking functionalities; the two most common hypervisor attack types 
were DoS and privilege escalation attacks; and that most attackers were guest OS users. Based on 
this information, two sample attacks were launched for forensic analysis with the log capture of 
system call data. The collected data on the sample attacks showed that evidence that is critically 
required for fully detecting and reconstructing those attacks was the runtime memory access 
information, but this information was missing from the log of the current run. VMI was identified 
as the requisite technique to gather this needed evidence and was incorporated in the subsequent 
attack run.  

The intended benefit of the methodology is to enable all stakeholders (cloud providers and 
customers) to gain a better understanding of recent hypervisor vulnerabilities and attack trends, 
identify forensic information needed to reveal the presence of such attacks, and develop guidance 
on taking proactive steps to detect and prevent those attacks in their operating environments. 
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Appendix A—Xen and KVM Vulnerabilities 

Table 5: The 83 Xen Vulnerability Entries in NIST-NVD (2016-2017) 

No. Xen-CVE-Entry Functionality No. Xen-CVE- Entry Functionality 

1 CVE-2017-15588 Hypercall 43 CVE-2016-9381 MMU 

2 CVE-2017-7228 Hypercall 44 CVE-2016-9383 MMU 

3 CVE-2017-8903 hypercall 45 CVE-2016-9384 MMU 

4 CVE-2016-3961 I/O and networking 46 CVE-2016-9385 MMU 

5 CVE-2016-5403 I/O and Networking 47 CVE-2016-9386 MMU 

6 CVE-2016-9637 I/O and networking 48 CVE-2016-9932 MMU 

7 CVE-2016-9815 I/O and networking 49 CVE-2017-10912 MMU 

8 CVE-2016-9816 I/O and networking 50 CVE-2017-10915 MMU 

9 CVE-2016-9817 I/O and Networking 51 CVE-2017-10918 MMU 

10 CVE-2016-9818 I/O and Networking 52 CVE-2017-14316 MMU 

11 CVE-2017-10911 I/O and networking 53 CVE-2017-14431 MMU 

12 CVE-2017-10913 I/O and networking 54 CVE-2017-15591 MMU 

13 CVE-2017-10914 I/O and networking 55 CVE-2017-15592 MMU 

14 CVE-2017-10920 I/O and networking 56 CVE-2017-15593 MMU 

15 CVE-2017-10921 I/o and networking 57 CVE-2017-15595 MMU 

16 CVE-2017-10922 I/O and networking 58 CVE-2017-15596 MMU 

17 CVE-2017-12134 I/O and networking 59 CVE-2017-17044 MMU 

18 CVE-2017-12135 I/O and networking 60 CVE-2017-17045 MMU 

19 CVE-2017-12136 I/O and networking 61 CVE-2017-17046 MMU 

20 CVE-2017-12137 I/O and Networking 62 CVE-2017-17563 MMU 

https://nvd.nist.gov/vuln/detail/CVE-2016-9381
https://nvd.nist.gov/vuln/detail/CVE-2017-7228
https://nvd.nist.gov/vuln/detail/CVE-2016-9383
https://nvd.nist.gov/vuln/detail/CVE-2017-8903
https://nvd.nist.gov/vuln/detail/CVE-2016-9384
https://nvd.nist.gov/vuln/detail/CVE-2016-3961
https://nvd.nist.gov/vuln/detail/CVE-2016-9385
https://nvd.nist.gov/vuln/detail/CVE-2016-5403
https://nvd.nist.gov/vuln/detail/CVE-2016-9386
https://nvd.nist.gov/vuln/detail/CVE-2016-9637
https://nvd.nist.gov/vuln/detail/CVE-2016-9932
https://nvd.nist.gov/vuln/detail/CVE-2016-9815
https://nvd.nist.gov/vuln/detail/CVE-2017-10912
https://nvd.nist.gov/vuln/detail/CVE-2016-9816
https://nvd.nist.gov/vuln/detail/CVE-2017-10915
https://nvd.nist.gov/vuln/detail/CVE-2016-9817
https://nvd.nist.gov/vuln/detail/CVE-2017-10918
https://nvd.nist.gov/vuln/detail/CVE-2016-9818
https://nvd.nist.gov/vuln/detail/CVE-2017-14316
https://nvd.nist.gov/vuln/detail/CVE-2017-10911
https://nvd.nist.gov/vuln/detail/CVE-2017-14431
https://nvd.nist.gov/vuln/detail/CVE-2017-10913
https://nvd.nist.gov/vuln/detail/CVE-2017-15591
https://nvd.nist.gov/vuln/detail/CVE-2017-10914
https://nvd.nist.gov/vuln/detail/CVE-2017-15592
https://nvd.nist.gov/vuln/detail/CVE-2017-10920
https://nvd.nist.gov/vuln/detail/CVE-2017-15593
https://nvd.nist.gov/vuln/detail/CVE-2017-10921
https://nvd.nist.gov/vuln/detail/CVE-2017-10922
https://nvd.nist.gov/vuln/detail/CVE-2017-12134
https://nvd.nist.gov/vuln/detail/CVE-2017-17044
https://nvd.nist.gov/vuln/detail/CVE-2017-12135
https://nvd.nist.gov/vuln/detail/CVE-2017-17045
https://nvd.nist.gov/vuln/detail/CVE-2017-12136
https://nvd.nist.gov/vuln/detail/CVE-2017-17046
https://nvd.nist.gov/vuln/detail/CVE-2017-12137
https://nvd.nist.gov/vuln/detail/CVE-2017-17563
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No. Xen-CVE-Entry Functionality No. Xen-CVE- Entry Functionality 

21 CVE-2017-12855 I/O and networking 63 CVE-2017-17564 MMU 

22 CVE-2017-14318 I/O and networking 64 CVE-2017-17565 MMU 

23 CVE-2017-14319 I/O and networking 65 CVE-2017-17566 MMU 

24 CVE-2017-15589 I/O and networking 66 CVE-2017-8905 MMU 

25 CVE-2017-15597 I/O and networking 67 CVE-2016-7093 MMU 

26 CVE-2017-7995 I/O and networking 68 CVE-2016-9382 MMU 

27 CVE-2017-8904 I/O and networking 69 CVE-2016-3710 vCPU 

28 CVE-2017-15594 Interrupt/Timer 70 CVE-2016-3712 vCPU 

29 CVE-2016-7154 Interrupt/Timer 71 CVE-2016-6259 vCPU 

30 CVE-2016-9377 Interrupt/Timer 72 CVE-2017-10916 vCPU 

31 CVE-2016-9378 Interrupt/Timer 73 CVE-2017-10923 vCPU 

32 CVE-2017-10917 Interrupt/Timer 74 CVE-2016-7777 vCPU 

33 CVE-2017-10919 Interrupt/Timer 75 CVE-2016-10025 VM Exit 

34 CVE-2017-15590 Interrupt/Timer 76 CVE-2016-4962 VM 
management 

35 CVE-2016-10013 MMU 77 CVE-2016-4963 VM 
management 

36 CVE-2016-10024 MMU 78 CVE-2016-9379 VM 
management 

37 CVE-2016-3960 MMU 79 CVE-2016-9380 VM 
Management 

38 CVE-2016-4480 MMU 80 CVE-2017-14317 VM 
Management 

39 CVE-2016-5242 MMU 81 CVE-2017-5572 Vm 
Management 

40 CVE-2016-6258 MMU 82 CVE-2017-5573 VM 
management 

41 CVE-2016-7092 MMU 83 CVE-2016-5302 
Remote 

management 
software 

https://nvd.nist.gov/vuln/detail/CVE-2017-12855
https://nvd.nist.gov/vuln/detail/CVE-2017-17564
https://nvd.nist.gov/vuln/detail/CVE-2017-14318
https://nvd.nist.gov/vuln/detail/CVE-2017-17565
https://nvd.nist.gov/vuln/detail/CVE-2017-14319
https://nvd.nist.gov/vuln/detail/CVE-2017-17566
https://nvd.nist.gov/vuln/detail/CVE-2017-15589
https://nvd.nist.gov/vuln/detail/CVE-2017-8905
https://nvd.nist.gov/vuln/detail/CVE-2016-7093
https://nvd.nist.gov/vuln/detail/CVE-2017-7995
https://nvd.nist.gov/vuln/detail/CVE-2016-9382
https://nvd.nist.gov/vuln/detail/CVE-2017-8904
https://nvd.nist.gov/vuln/detail/CVE-2016-3710
https://nvd.nist.gov/vuln/detail/CVE-2016-3712
https://nvd.nist.gov/vuln/detail/CVE-2016-7154
https://nvd.nist.gov/vuln/detail/CVE-2016-6259
https://nvd.nist.gov/vuln/detail/CVE-2016-9377
https://nvd.nist.gov/vuln/detail/CVE-2017-10916
https://nvd.nist.gov/vuln/detail/CVE-2016-9378
https://nvd.nist.gov/vuln/detail/CVE-2017-10923
https://nvd.nist.gov/vuln/detail/CVE-2017-10917
https://nvd.nist.gov/vuln/detail/CVE-2016-7777
https://nvd.nist.gov/vuln/detail/CVE-2017-10919
https://nvd.nist.gov/vuln/detail/CVE-2016-10025
https://nvd.nist.gov/vuln/detail/CVE-2017-15590
https://nvd.nist.gov/vuln/detail/CVE-2016-4962
https://nvd.nist.gov/vuln/detail/CVE-2016-10013
https://nvd.nist.gov/vuln/detail/CVE-2016-4963
https://nvd.nist.gov/vuln/detail/CVE-2016-10024
https://nvd.nist.gov/vuln/detail/CVE-2016-9379
https://nvd.nist.gov/vuln/detail/CVE-2016-3960
https://nvd.nist.gov/vuln/detail/CVE-2016-9380
https://nvd.nist.gov/vuln/detail/CVE-2016-4480
https://nvd.nist.gov/vuln/detail/CVE-2017-14317
https://nvd.nist.gov/vuln/detail/CVE-2016-5242
https://nvd.nist.gov/vuln/detail/CVE-2017-5572
https://nvd.nist.gov/vuln/detail/CVE-2016-6258
https://nvd.nist.gov/vuln/detail/CVE-2017-5573
https://nvd.nist.gov/vuln/detail/CVE-2016-7092
https://nvd.nist.gov/vuln/detail/CVE-2016-5302
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No. Xen-CVE-Entry Functionality No. Xen-CVE- Entry Functionality 

42 CVE-2016-7094 MMU    

 
 

Table 6: The 20 KVM Vulnerability Entries in NIST-NVD (2016-2017) 

No. KVM-CVE-Entry Functionality No. KVM-CVE-Entry Functionality 

1 CVE-2016-0749 Adds-on 11 CVE-2017-12188 MMU 

2 CVE-2016-5412 Hypercall 12 CVE-2016-8630 MMU 

3 CVE-2017-15306 I/O and Networking 13 CVE-2017-2583 MMU 

4 CVE-2016-10150 I/O and Networking 14 CVE-2016-9756 MMU 

5 CVE-2016-3713 I/O and Networking 15 CVE-2017-12154 vCPU 

6 CVE-2017-17741 I/O and Networking 16 CVE-2016-9777 vCPU 

7 CVE-2016-4020 Interrupt/Timer 17 CVE-2017-2584 vCPU 

8 CVE-2017-1000252 Interrupt/Timer 18 CVE-2017-12168 vCPU 

9 CVE-2016-4440 Interrupt/Timer 19 CVE-2017-2596 VM Exit 

10 CVE-2016-9588 MMU 20 CVE-2017-8106 VM Exit 

 

https://nvd.nist.gov/vuln/detail/CVE-2016-7094
https://nvd.nist.gov/vuln/detail/CVE-2017-12188
https://nvd.nist.gov/vuln/detail/CVE-2016-5412
https://nvd.nist.gov/vuln/detail/CVE-2016-8630
https://nvd.nist.gov/vuln/detail/CVE-2017-15306
https://nvd.nist.gov/vuln/detail/CVE-2017-2583
https://nvd.nist.gov/vuln/detail/CVE-2016-10150
https://nvd.nist.gov/vuln/detail/CVE-2016-9756
https://nvd.nist.gov/vuln/detail/CVE-2016-3713
https://nvd.nist.gov/vuln/detail/CVE-2017-12154
https://nvd.nist.gov/vuln/detail/CVE-2017-17741
https://nvd.nist.gov/vuln/detail/CVE-2016-9777
https://nvd.nist.gov/vuln/detail/CVE-2016-4020
https://nvd.nist.gov/vuln/detail/CVE-2017-2584
https://nvd.nist.gov/vuln/detail/CVE-2017-1000252
https://nvd.nist.gov/vuln/detail/CVE-2017-12168
https://nvd.nist.gov/vuln/detail/CVE-2016-4440
https://nvd.nist.gov/vuln/detail/CVE-2017-2596
https://nvd.nist.gov/vuln/detail/CVE-2016-9588
https://nvd.nist.gov/vuln/detail/CVE-2017-8106
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Appendix B—Description of Hypervisor Functionality 

Virtual CPUs (vCPU): A vCPU, also known as a virtual processor, abstracts a portion or share 
of a physical CPU that is assigned to a virtual machine (VM). The hypervisor uses a portion of the 
physical CPU cycle and allocates it to a vCPU assigned to a VM. The hypervisor schedules vCPU 
tasks to the physical CPUs. 

Virtual Symmetric Multiprocessing (VSMP): VSMP is a method of symmetric multiprocessing 
(SMP), which enables multiple vCPU belonging to the same VM to be scheduled to a physical 
CPU that has at least two logical processors. 

Soft Memory Management Unit (Soft MMU): The Memory Management Unit (MMU) is the 
hardware responsible for managing memory by translating the virtual addresses manipulated by 
the software into physical addresses. In an OS running on bare metal, the MMU translates the 
virtual addresses manipulated by the software into physical addresses. The mappings from virtual 
to physical addresses are kept in page tables (PT) and managed by the OS. In a virtualized 
environment, the hypervisor emulates the MMU (therefore called the soft MMU) for the guest 
OSs. This is done by mapping what the guest OS sees as physical memory (often called pseudo-
physical/physical address in Xen) to the underlying memory of the machine (called machine 
addresses in Xen). The mapping table from the physical address to machine address (P2M) is 
typically maintained in the hypervisor and hidden from the guest OS by using techniques such as 
a shadow page table (SPT) for each guest VM[16, 17]. When in SPT mode, the guest OS PT is not 
performing a mapping from virtual-to-machine, but a virtual-to-physical mapping. The Xen 
paravirtualized MMU model requires that the guest OS be directly aware of mapping between 
(pseudo) physical and machine addresses (the P2M table). Additionally, in order to read page table 
entries that contain machine addresses and convert them back into (pseudo) physical addresses, a 
translation from machine to (pseudo) physical addresses provided by the M2P table is required in 
Xen paravirtualized MMU model [17]. 

I/O and Networking:  There are three common approaches that provide I/O services to guest 
VMs. Using the Xen I/O structures illustrated in Figure 4 as an example, these common approaches 
include:  

(1) the hypervisor emulates a known I/O device in a fully virtualized system, and the guests 
use an unmodified driver (called a native driver) to interact with it (illustrated as “Native 
Driver 1” in DomU to “Device Model” in Dom0 in Figure 4);  
(2) a paravirtual driver (known as a front-end driver) in a paravirtualized system is installed 
in the modified guest OS in DomU, which uses shared-memory—asynchronous buffer-
descriptor rings—to communicate with the back-end I/O driver in the hypervisor 
(illustrated as “Front-end Driver” in DomU to “Back-end Driver” to Dom0 in Figure 4); 
(3) the host assigns a device (known as a pass-through device) directly to the guest VM 
(illustrated as “Native Driver 2” in DomU to “Pass-through Device” in Figure 4).   

To reduce I/O virtualization overhead, improve virtual machine performance, and provide I/O 
services to guest VMs, scalable self-virtualizing I/O devices that allow direct access interface to 
multiple VMs are also used. However, the two approaches do not virtualize the I/O since they 
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include direct access, and self-virtualized I/O devices allow the device driver within a guest OS to 
interact with the hardware directly. Furthermore, they scale poorly due to challenges, performance, 
and cost [22]. 

 

Figure 4: Xen I/O structures 

In paravirtualized Xen systems, the front-end and back-end drivers communicate with each other 
using two producer-consumer ring buffers (standard lockless shared memory data structures built 
on grant tables and event channels), where one is used for packet reception and the other is used 
for packet transmission. Though hypervisors enforce isolation across VMs residing within a single 
physical machine, the grant mechanism provides inter-domain communications in Xen, allowing 
shared-memory communications between unprivileged domains by using grant tables [16]. Grant 
tables are used to protect the I/O buffer in a guest domain's memory and share the I/O buffer with 
Dom0 properly, which underpin the split device drivers for block and network I/O. Each domain 
has its own grant table that allows the domain to inform Xen with the kind of permissions other 
domains have on their pages. KVM typically uses Virtio, a virtualization standard for network and 
disk drivers, which is architecturally similar to Xen paravirtualized device drivers which are 
composed of front-end drivers and back-end drivers.   

Interrupt/Timer: Hypervisors should be able to virtualize and manage interrupts/timers [18], the 
interrupt/timer controller of the guest OS, and the guest OS’s access to the controller. The 
interrupt/timer mechanism in a hypervisor includes a programmable interval timer (PIT), the 
advanced programmable interrupt controller (APIC), and the interrupt request (IRQ) mechanisms. 

Hypercall: Hypercalls are similar to system calls (syscalls) that provide user-space applications 
with kernel-level operations. They are performed using the syscall instruction with up to six 
arguments passed in registers. A hypercall layer is commonly available and allows guest OSs to 
make requests of the host OS. Domains will use hypercalls to request privileged operations such 
as updating page tables from the hypervisors. Thus, an attacker can use hypercalls to attack the 
hypervisor from a guest VM.  
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VMExit: According to Belay at el. [19], the mode change from Virtual Machine Extension (VMX) 
root mode to VMX non-root mode is called VMEntry, and the mode change from VMX non-root 
mode to VMX root mode is called VMExit. VM exits are a response to some instructions and 
events (e.g., page fault) from guest VMs and are the main cause of performance degradation in a 
virtualized system. These events could include external interrupts, accesses to control registers, 
task switches, and I/O operation instructions (e.g., INB, OUTB). 

VM management functionality: Hypervisors support basic VM management functionalities, 
including starting, pausing, or stopping VMs. These tasks are managed in Xen Dom0 and KVM's 
libvirt driver. 

Remote Management Software: Remote management software is employed as a user-friendly 
interface that remotely manages the hypervisor through the network. With an intuitive user 
interface that visualizes the status of a system, the remote management software allows 
administrators to tweak or manage the virtualized environment. 

Add-ons: The add-ons of hypervisors use modular designs to add extended functions. By 
leveraging the interaction between the add-ons and hypervisors, an attacker can cause a host to 
crash (a DoS attack) or even compromise the host.  
 
 



NISTIR 8221  ENABLING FORENSIC ANALYSIS USING 
  HYPERVISOR VULNERABILITIES DATA 

21 

This publication is available free of charge from
: https://doi.org/10.6028/N

IST.IR
.8221 

 

Appendix C—The Syscalls Intercepted from the Attacking Program 

The syscalls in this appendix were obtained by employing the Linux command “strace” on the 
running attack program using the vulnerability CVE-2017-7228 (the attack program is named 
“attack”). These syscalls show: (1) the attacker executed the attack program with arguments aimed 
at the victim guest VM (Line 1); (2) the attack program and required Linux libraries have been 
loaded to the memory for the program execution (Line 2 to Line 16); (3) the memory pages of the 
attack program have been protected from access by other processes (Line 17 to Line 23); and (4) 
the attack program injected a loadable Linux module named “test.ko” to the kernel space to exploit 
the vulnerability (Line 24 to Line 31).   

1. execve("./attack", ["./attack", "qvm-run victim firefox"], [/* 30 vars */]) = 0 
2. brk(NULL)                               = 0x8cd000 
3. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3022000 
4. access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory) 
5. open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 
6. fstat(3, {st_mode=S_IFREG|0644, st_size=74105, ...}) = 0 
7. mmap(NULL, 74105, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fa3a300f000 
8. close(3)                                = 0 
9. open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3 
10. read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\240\6\2\0\0\0\0\0"..., 832) = 832 
11. fstat(3, {st_mode=S_IFREG|0755, st_size=2104216, ...}) = 0 
12. mmap(NULL, 3934688, PROT_READ|PROT_EXEC, 

MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fa3a2a42000 
13. mprotect(0x7fa3a2bf9000, 2097152, PROT_NONE) = 0 
14. mmap(0x7fa3a2df9000, 24576, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b7000) = 0x7fa3a2df9000 
15. mmap(0x7fa3a2dff000, 14816, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fa3a2dff000 
16. close(3)                                = 0 
17. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300e000 
18. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300d000 
19. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300c000 
20. arch_prctl(ARCH_SET_FS, 0x7fa3a300d700) = 0 
21. mprotect(0x7fa3a2df9000, 16384, PROT_READ) = 0 
22. mprotect(0x600000, 4096, PROT_READ)     = 0 
23. mprotect(0x7fa3a3023000, 4096, PROT_READ) = 0 
24. munmap(0x7fa3a300f000, 74105)           = 0 
25. open("test.ko", O_RDONLY)               = 3 
26. finit_module(3, "user_shellcmd_addr=1407334317317"..., 0) = 0 
27. fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0 
28. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3021000 
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29. mmap(0x600000000000, 4096, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_LOCKED, -1, 0) = 
0x600000000000 

30. delete_module("test", O_NONBLOCK)       = 0 
31. exit_group(0)                           = ? 
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Appendix D—Forensic Data  Obtained by Using LibVMI 

The running processes obtained from the attacker’s VM: 
root@debian:/home/guest/src/libvmi/libvmi# ./examples/vmi-process-list pv-attacker 
Process listing for VM pv-attacker (id=2) 
[    0] swapper/0 (struct addr:ffffffff81e13500) 
[    1] systemd (struct addr:ffff88007c460000) 
[    2] kthreadd (struct addr:ffff88007c460e00) 
[    3] ksoftirqd/0 (struct addr:ffff88007c461c00) 
[    4] kworker/0:0 (struct addr:ffff88007c462a00) 
[    5] kworker/0:0H (struct addr:ffff88007c463800) 
[    6] kworker/u2:0 (struct addr:ffff88007c464600) 
[    7] rcu_sched (struct addr:ffff88007c465400) 
[    8] rcu_bh (struct addr:ffff88007c466200) 
[    9] migration/0 (struct addr:ffff88007c467000) 
[   10] watchdog/0 (struct addr:ffff88007c4c8000) 
[   11] kdevtmpfs (struct addr:ffff88007c4c8e00) 
[   12] netns (struct addr:ffff88007c4c9c00) 
[   13] perf (struct addr:ffff88007c4caa00) 
[   14] xenwatch (struct addr:ffff88007c4cb800) 
[   15] xenbus (struct addr:ffff88007c4cc600) 
[   16] khungtaskd (struct addr:ffff88007c4cd400) 
[   17] writeback (struct addr:ffff88007c4ce200) 
[   18] ksmd (struct addr:ffff88007c4cf000) 
[   19] crypto (struct addr:ffff88007c568000) 
[   20] kintegrityd (struct addr:ffff88007c568e00) 
[   21] bioset (struct addr:ffff88007c569c00) 
[   22] kblockd (struct addr:ffff88007c56aa00) 
[   23] ata_sff (struct addr:ffff88007c56b800) 
[   24] md (struct addr:ffff88007c56c600) 
[   25] devfreq_wq (struct addr:ffff88007c56d400) 
[   26] kworker/0:1 (struct addr:ffff88007c56e200) 
[   27] kworker/u2:1 (struct addr:ffff88007c56f000) 
[   29] kswapd0 (struct addr:ffff880076060e00) 
[   30] vmstat (struct addr:ffff880076061c00) 
[   31] fsnotify_mark (struct addr:ffff880076062a00) 
[   32] ecryptfs-kthrea (struct addr:ffff880076063800) 
[   48] kthrotld (struct addr:ffff880076131c00) 
[   50] khvcd (struct addr:ffff880076133800) 
[   51] bioset (struct addr:ffff880076134600) 
[   52] bioset (struct addr:ffff880076135400) 
[   53] bioset (struct addr:ffff880076136200) 
[   54] bioset (struct addr:ffff880076137000) 
[   55] bioset (struct addr:ffff880076238000) 
[   56] bioset (struct addr:ffff880076238e00) 
[   57] bioset (struct addr:ffff880076239c00) 
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[   58] bioset (struct addr:ffff88007623aa00) 
[   62] ipv6_addrconf (struct addr:ffff88007623e200) 
[   64] bioset (struct addr:ffff880076132a00) 
[   76] deferwq (struct addr:ffff880076100000) 
[   77] charger_manager (struct addr:ffff880076100e00) 
[  145] kworker/0:1H (struct addr:ffff880004340e00) 
[  147] jbd2/xvda1-8 (struct addr:ffff880004340000) 
[  148] ext4-rsv-conver (struct addr:ffff880004346200) 
[  177] kworker/0:2 (struct addr:ffff880076103800) 
[  181] kworker/0:3 (struct addr:ffff880076065400) 
[  184] kworker/0:4 (struct addr:ffff880076064600) 
[  187] kworker/0:5 (struct addr:ffff880004347000) 
[  189] kworker/0:6 (struct addr:ffff880004345400) 
[  192] kworker/0:7 (struct addr:ffff88007623f000) 
[  194] kworker/0:8 (struct addr:ffff88007623c600) 
[  195] systemd-journal (struct addr:ffff88007623b800) 
[  196] kauditd (struct addr:ffff880076130e00) 
[  198] kworker/0:9 (struct addr:ffff880078820000) 
[  201] kworker/0:10 (struct addr:ffff880078823800) 
[  204] kworker/0:11 (struct addr:ffff880078825400) 
[  206] kworker/0:12 (struct addr:ffff880078827000) 
[  207] kworker/0:13 (struct addr:ffff880076105400) 
[  234] systemd-udevd (struct addr:ffff880076106200) 
[  383] systemd-timesyn (struct addr:ffff88007bd7aa00) 
[  516] dhclient (struct addr:ffff880077b78e00) 
[  560] cron (struct addr:ffff880077b7d400) 
[  562] dbus-daemon (struct addr:ffff880076107000) 
[  574] accounts-daemon (struct addr:ffff880004342a00) 
[  577] systemd-logind (struct addr:ffff880078821c00) 
[  579] rsyslogd (struct addr:ffff880078820e00) 
[  615] sshd (struct addr:ffff880003c88000) 
[  629] login (struct addr:ffff880003c8b800) 
[  630] agetty (struct addr:ffff880003c8e200) 
[  669] systemd (struct addr:ffff880076060000) 
[  674] (sd-pam) (struct addr:ffff880076104600) 
[  677] bash (struct addr:ffff880003c8aa00) 
[  703] sudo (struct addr:ffff880004341c00) 
[  704] attack (struct addr:ffff880004343800)     
 
The obtained injected modules from the attacker’s VM: 
root@debian:/home/guest/src/libvmi/libvmi# ./examples/vmi-module-list pv-attacker 
test            
intel_rapl 
x86_pkg_temp_thermal 
coretemp 
crct10dif_pclmul 
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crc32_pclmul 
ghash_clmulni_intel 
aesni_intel 
aes_x86_64 
lrw 
gf128mul 
glue_helper 
ablk_helper 
cryptd 
autofs4 
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