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Reports on Computer Systems Technology 73 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 74 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 75 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 76 
methods, reference data, proof of concept implementations, and technical analyses to advance the 77 
development and productive use of information technology. ITL’s responsibilities include the 78 
development of management, administrative, technical, and physical standards and guidelines for 79 
the cost-effective security and privacy of other than national security-related information in federal 80 
information systems. 81 

Abstract 82 

NIST SP 800-90 series support the generation of high-quality random bits for cryptographic and 83 
non-cryptographic use. The security of a random number generator depends on the unpredictability 84 
of its outputs, which can be measured in terms of entropy. NIST SP 800-90 series uses min-entropy 85 
to measure entropy. A full-entropy bitstring has an amount of entropy equal to its length. Full-86 
entropy bitstrings are important for cryptographic applications, as these bitstrings have ideal 87 
randomness properties and may be used for any cryptographic purpose. Due to the difficulty of 88 
generating and testing full-entropy bitstrings, SP 800-90 series assume that a bitstring has full 89 
entropy if the amount of entropy per bit is at least 1 − ε, where ε is at most 2−32. This report provides 90 
a justification for the selection of ε. This is accomplished as follows.  The report begins by defining 91 
full entropy in terms of a hypothetical distinguishing game.  The report then derives two results 92 
following from this definition.  First, it is shown how output satisfying this definition can be 93 
generated using a conditioning function acting on data having a known entropy level.  Second, the 94 
actual entropy level of output produced by such a process is computed, thereby providing support 95 
for the selected value of ε. 96 
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 Introduction 114 

The NIST SP 800-90 series [1][2][3] support the generation of high-quality random bits for 115 
cryptographic and non-cryptographic use. The security of a random number generator depends on 116 
the unpredictability of its outputs, which can be measured in terms of entropy. NIST SP 800-90 117 
series uses min-entropy to measure entropy. A full-entropy bitstring has an amount of entropy 118 
equal to its length. Full-entropy bitstrings are important for cryptographic applications, as these 119 
bitstrings have ideal randomness properties and may be used for any cryptographic purpose. Due 120 
to the difficulty of generating and testing full-entropy bitstrings, SP 800-90 series assume that a 121 
bitstring has full entropy if the amount of entropy per bit is at least 1 − ε, where ε is at most 2−32. 122 
This report provides the foundation for the selection of this value of ε.  This is accomplished as 123 
follows.  The report begins by defining full entropy in terms of a hypothetical distinguishing game.  124 
The report then derives two results following from this definition.  First, it is shown how output 125 
satisfying this definition can be generated using a conditioning function acting on data having a 126 
known entropy level.  Second, the actual entropy level of output produced by such a process is 127 
computed, thereby providing support for the selected value of ε. 128 
 129 

 Full Entropy Definition 130 

The definition of full entropy is based on a distinguishing game where an adversary attempts to 131 
distinguish between two cases – REAL and IDEAL. Assume that the adversary is provided with 132 
𝑊𝑊 𝑛𝑛-bit outputs 𝑏𝑏1,, 𝑏𝑏2, … , 𝑏𝑏𝑊𝑊. In the REAL case,  the outputs are generated by a  conditioning 133 
function applied to a specified quantity of raw entropy data.  In the IDEAL case, the outputs are 134 
generated by an ideal randomness source. Each case has a probability of ½. n-bit outputs generated 135 
in the REAL case  are defined as having full entropy with respect to 𝑊𝑊and 𝛿𝛿 (where 𝛿𝛿 > 0) if the 136 
probability that a computationally unlimited adversary can correctly distinguish between the 137 
REAL and IDEAL cases is no more than 1

2
+ 𝛿𝛿. 138 

 Derivation of Conditions for Full Entropy 139 
Suppose that random output is generated by processing a quantity of entropy data using a 140 
conditioning function. The first result following from the above definition is that given values of 141 
𝑊𝑊and 𝛿𝛿, it is possible to find a threshold such that if the min-entropy of the input to the 142 
conditioning function meets or exceeds that threshold, the conditioning function output will satisfy 143 
the above definition of full entropy. 144 

Let 𝐵𝐵 = {𝑏𝑏1,, 𝑏𝑏2, … , 𝑏𝑏𝑊𝑊} be the set of observed 𝑛𝑛-bit outputs and consider the likelihood ratio 145 
𝑃𝑃𝑃𝑃[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|𝐵𝐵]
𝑃𝑃𝑃𝑃[𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅|𝐵𝐵]. Clearly, the adversary will conclude that 𝐵𝐵 was produced by the REAL case if this 146 
likelihood ratio is greater than one and by the IDEAL case otherwise. Since the REAL and IDEAL 147 
cases are equally likely, we can rewrite this likelihood ratio as 𝑃𝑃𝑃𝑃[𝐵𝐵|REAL]

𝑃𝑃𝑃𝑃[𝐵𝐵|IDEAL] using Bayes Theorem. 148 
For ease of computation, compute the base-2 log of the likelihood ratio and denote the resulting 149 
statistic as 𝑋𝑋. The adversary will conclude that 𝐵𝐵 was produced by the REAL case if 𝑋𝑋 > 0 and 150 
by the IDEAL case otherwise. If 𝑝𝑝𝑗𝑗 denotes the probability of the jth possible output from the 151 
conditioning function applied to the specified quantity of raw entropy data, so that 𝑝𝑝𝑏𝑏𝑖𝑖 denotes the 152 
probability of the ith observed output in the REAL case, the following is true: 153 
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𝑋𝑋 = log2 �
𝑃𝑃𝑃𝑃[𝐵𝐵|REAL]
𝑃𝑃𝑃𝑃[𝐵𝐵|IDEAL]� 154 

= log2(𝑃𝑃𝑃𝑃[𝐵𝐵|REAL]) − log2(𝑃𝑃𝑃𝑃[𝐵𝐵|IDEAL]) 155 

= log2 ��𝑝𝑝𝑏𝑏𝑖𝑖

𝑊𝑊

𝑖𝑖=1

� − log2(2−𝑛𝑛𝑊𝑊) 156 

= ��𝑛𝑛 + log2𝑝𝑝𝑏𝑏𝑖𝑖�
𝑊𝑊

𝑖𝑖=1

 157 

The statistic 𝑋𝑋 is a random variable that depends on the set 𝐵𝐵 of observed 𝑛𝑛-bit outputs 𝑏𝑏𝑖𝑖 and the 158 
probabilities 𝑝𝑝𝑏𝑏𝑖𝑖 of those outputs in the REAL case. To assess the adversary’s distinguishing 159 
success probability, the probability distribution of 𝑋𝑋 in both the REAL and IDEAL cases is 160 
required. Note that 𝑋𝑋 is the sum of 𝑊𝑊 individual random variables 𝑥𝑥𝑖𝑖 = 𝑛𝑛 + log2𝑝𝑝𝑏𝑏𝑖𝑖. We will 161 
assume that these variables, being determined by the generation of independent outputs 𝑏𝑏𝑖𝑖, are 162 
independent and identically distributed. (In the IDEAL case, this assumption is clearly valid. In 163 
the REAL case, it is a reasonable assumption given the generation of the outputs 𝑏𝑏𝑖𝑖from separate 164 
entropy source sequences.) As determined below, an appropriate value of 𝑊𝑊 for our purposes is 165 
248. It is reasonable to assume that this value of 𝑊𝑊 is sufficiently large to satisfy the Central Limit 166 
Theorem, so 𝑋𝑋 is approximately normally distributed. 167 
In the distinguishing scenario, the adversary has complete knowledge of the conditioning function 168 
and its input space, and therefore, being computationally unlimited, can determine the REAL case 169 
output probabilities 𝑝𝑝𝑗𝑗. These  probabilities are determined by the interaction between the 170 
conditioning function used and the space of possible inputs to that function. For the purposes of 171 
this analysis, these probabilities cannot be precisely determined. However, it is possible and useful 172 
to consider the 𝑝𝑝𝑗𝑗 as random variables rather than fixed values and use statistics associated with 173 
these random variables to find the probability distribution of 𝑋𝑋. The characteristics of the entropy 174 
source and the selected length of the entropy source sequences input to the conditioning function 175 
effectively result in a selection from a large number of possible input spaces for the conditioning 176 
function, each having a different set of probabilities for the input values. Since the conditioning 177 
function was designed to obscure any dependencies between inputs and outputs, there is no simple 178 
relationship between the output probabilities resulting from the many different input spaces. It is 179 
therefore reasonable to treat the conditioning function output probabilities 𝑝𝑝𝑗𝑗 as random variables. 180 

Consider 𝑝𝑝𝑗𝑗, treated as a random variable. Suppose that there are 𝑀𝑀 possible inputs to the 181 
conditioning function, with probabilities {𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑀𝑀}. (Note that no assumptions are made on 182 
the input probability distribution.) This analysis treats the conditioning function as a mapping that 183 
uniformly assigns an 𝑛𝑛-bit output to each input in the input space so that, a priori, any specific 184 
output value is assigned to a given input value with probability 2−𝑛𝑛 (note that multiple input values 185 
can be assigned a given output value). The output probability 𝑝𝑝𝑗𝑗 can then be written as, 𝑝𝑝𝑗𝑗 =186 
∑ 𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗𝑀𝑀
𝑖𝑖=1 , where 𝐼𝐼𝑖𝑖,𝑗𝑗 = 1 if the conditioning function maps the ith input to the jth output, and 𝐼𝐼𝑖𝑖,𝑗𝑗 =187 

0 otherwise. Then 𝐸𝐸�𝑝𝑝𝑗𝑗� = ∑ 𝑞𝑞𝑖𝑖𝐸𝐸�𝐼𝐼𝑖𝑖,𝑗𝑗�𝑀𝑀
𝑖𝑖=1 = ∑ 2−𝑛𝑛𝑞𝑞𝑖𝑖𝑀𝑀

𝑖𝑖=1 = 2−𝑛𝑛. Similarly, 188 
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𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑗𝑗� = �𝑉𝑉𝑉𝑉𝑉𝑉�𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗�
𝑀𝑀

𝑖𝑖=1

 189 

= ��𝐸𝐸 ��𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗�
2� − �𝐸𝐸�𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗��

2�
𝑀𝑀

𝑖𝑖=1

 190 

= �(2−𝑛𝑛𝑞𝑞𝑖𝑖2 − 2−2𝑛𝑛𝑞𝑞𝑖𝑖2)
𝑀𝑀

𝑖𝑖=1

 191 

= (2−𝑛𝑛 − 2−2𝑛𝑛)�𝑞𝑞𝑖𝑖2
𝑀𝑀

𝑖𝑖=1

 192 

The value of 𝑀𝑀, the number of possible inputs to the conditioning function and the number of 193 
terms in this sum, is dependent on the characteristics of the entropy-source outputs and the 194 
conditioning function input bit length used. However, it will be determined below that in order to 195 
satisfy the definition of full entropy specified above, the input min-entropy 𝐻𝐻 must be such that is 196 
that 𝐻𝐻 ≥ 𝑛𝑛 + 64. Therefore, 𝑀𝑀 must be at least 2𝑛𝑛+64. It is reasonable to assume that this is large 197 
enough to satisfy the Central Limit Theorem, so that 𝑝𝑝𝑗𝑗, being the sum of this large number of 198 
individual random variables 𝑞𝑞𝑖𝑖𝐼𝐼𝑖𝑖,𝑗𝑗, is approximately normally distributed. Now write 𝑝𝑝𝑗𝑗 as 𝑝𝑝𝑗𝑗 =199 
2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗�. Then 𝜃𝜃𝑗𝑗 = 2𝑛𝑛𝑝𝑝𝑗𝑗 − 1, so 𝐸𝐸�𝜃𝜃𝑗𝑗� = 2𝑛𝑛𝐸𝐸�𝑝𝑝𝑗𝑗� − 1 = 0 and 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� = 22𝑛𝑛𝑉𝑉𝑉𝑉𝑉𝑉�𝑝𝑝𝑗𝑗� =200 
(2𝑛𝑛 − 1)∑ 𝑞𝑞𝑖𝑖2𝑀𝑀

𝑖𝑖=1 . Since the input collision entropy 𝐻𝐻2 = −log2 ∑ 𝑞𝑞𝑖𝑖2𝑀𝑀
𝑖𝑖=1 , 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� = (2𝑛𝑛 −201 

1)2−𝐻𝐻2 holds. Note that 𝜃𝜃𝑗𝑗 = 2𝑛𝑛𝑝𝑝𝑗𝑗 − 1 is also approximately normally distributed. 202 

The mean and variance of 𝑋𝑋 depend on whether the source is REAL or IDEAL. Let 𝜇𝜇𝑅𝑅 =203 
𝐸𝐸[𝑥𝑥𝑖𝑖|𝑉𝑉𝐸𝐸𝑉𝑉𝑅𝑅], 𝜇𝜇𝐼𝐼 = 𝐸𝐸[𝑥𝑥𝑖𝑖|IDEAL], 𝜎𝜎𝑅𝑅2 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|REAL], and 𝜎𝜎𝐼𝐼2 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|IDEAL]. 204 

Now derive 𝜇𝜇𝑅𝑅, 𝜇𝜇𝐼𝐼, 𝜎𝜎𝑅𝑅2, and 𝜎𝜎𝐼𝐼2. Each of these values is computed by summing over the relevant 205 
expression using 2−𝑛𝑛 or 𝑝𝑝𝑗𝑗 as the probability weighting factors for the IDEAL and REAL cases, 206 
respectively. Thus, 207 

𝐸𝐸[𝑥𝑥𝑖𝑖|𝐼𝐼𝐼𝐼𝐸𝐸𝑉𝑉𝑅𝑅] = 𝐸𝐸�𝑛𝑛 + log2𝑝𝑝𝑏𝑏𝑖𝑖|IDEAL� 208 

= ��𝑛𝑛 + log2𝑝𝑝𝑗𝑗�2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

 209 

= ��𝑛𝑛 +
ln �2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗��

ln2 �2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

 210 

=  �
ln�1 + 𝜃𝜃𝑗𝑗�

ln2
2−𝑛𝑛

2𝑛𝑛

𝑗𝑗=1

 211 

The Taylor series for ln�1 + 𝜃𝜃𝑗𝑗� is 𝜃𝜃𝑗𝑗 −
𝜃𝜃𝑗𝑗

2

2
+ 𝜃𝜃𝑗𝑗

3

3
− 𝜃𝜃𝑗𝑗

4

4
+ ⋯. In Section 2.2. below, it is shown 212 

that for cases of interest, �𝜃𝜃𝑗𝑗� is on the order of 10−8 or smaller. For such values of 𝜃𝜃𝑗𝑗, ln�1 + 𝜃𝜃𝑗𝑗� ≅213 
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𝜃𝜃𝑗𝑗, and it can be shown that if the terms beyond 𝜃𝜃𝑗𝑗2 are omitted, the relative error in ln�1 + 𝜃𝜃𝑗𝑗� is 214 
on the order of 10−16. The sum above is therefore approximately 215 

�
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln2
2−𝑛𝑛

2𝑛𝑛

𝑗𝑗=1

=
1

ln2
∑ 𝜃𝜃𝑗𝑗2𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
−

1
2ln2

∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
. 216 

The first sum in this expression is zero by definition of 𝜃𝜃𝑗𝑗. To evaluate the second sum, note that 217 
the sum is computed over the 2𝑛𝑛 values of 𝜃𝜃𝑗𝑗. Each of these 2𝑛𝑛 values can be considered as a 218 
specific value of the corresponding random variable. Since these random variables have the same 219 
distribution, the 2𝑛𝑛 values can also be treated as a sample of any one of these random variables. 220 

By definition, 𝑉𝑉𝑉𝑉𝑉𝑉[𝜃𝜃𝑗𝑗] = 𝐸𝐸[𝜃𝜃𝑗𝑗2] − 𝐸𝐸[𝜃𝜃𝑗𝑗]2. The term 
∑ 𝜃𝜃𝑗𝑗

22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
 is the sample mean of 𝜃𝜃𝑗𝑗

2 and is, 221 
therefore, approximately 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� + 𝐸𝐸[𝜃𝜃𝑗𝑗]2. Substituting the values of 𝐸𝐸�𝜃𝜃𝑗𝑗� and 𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� found 222 
above, the following is obtained: 223 

𝐸𝐸[𝑥𝑥𝑖𝑖|IDEAL] ≅ −
1

2 ln 2
�𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� + 𝐸𝐸�𝜃𝜃𝑗𝑗�

2� 224 

= −
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2 225 

The derivation of 𝐸𝐸[𝑥𝑥𝑖𝑖|REAL] is similar and is as follows. 226 

𝐸𝐸[𝑥𝑥𝑖𝑖|REAL] = 𝐸𝐸�𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖 |REAL� 227 

= ��𝑛𝑛 + log2 𝑝𝑝𝑗𝑗�𝑝𝑝𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

 228 

= ��𝑛𝑛 +
ln �2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗��

ln 2 �𝑝𝑝𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

 229 

= �
ln�1 + 𝜃𝜃𝑗𝑗�

ln 2
𝑝𝑝𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

 230 

= �
ln�1 + 𝜃𝜃𝑗𝑗�

ln 2
2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗�

2𝑛𝑛

𝑗𝑗=1

 231 

≅�
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln 2
2−𝑛𝑛�1 + 𝜃𝜃𝑗𝑗�

2𝑛𝑛

𝑗𝑗=1

 232 

≅
1

ln 2
∑ 𝜃𝜃𝑗𝑗2𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
+

1
2 ln 2

∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
 233 

≅
1

2 ln 2
�𝑉𝑉𝑉𝑉𝑉𝑉�𝜃𝜃𝑗𝑗� + 𝐸𝐸�𝜃𝜃𝑗𝑗�

2� 234 

=
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2 235 
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Reusing portions of these calculations, the variance of 𝑥𝑥𝑖𝑖 in the IDEAL case is obtained as follows: 236 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|IDEAL] = 𝐸𝐸 ��𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖�
2|IDEAL� −  𝐸𝐸�𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖 |IDEAL�2 237 

≅��
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln 2 �

2

2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

− �−
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2�

2

 238 

≅
1

(ln 2)2
∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
− �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 239 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 − �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 240 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 �1 −

1
4

(2𝑛𝑛 − 1)2−𝐻𝐻2� 241 

Similarly, the variance of 𝑥𝑥𝑖𝑖 in the REAL case is obtained as follows: 242 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥𝑖𝑖|REAL] = 𝐸𝐸 ��𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖�
2|REAL� −  𝐸𝐸�𝑛𝑛 + log2 𝑝𝑝𝑏𝑏𝑖𝑖 |REAL�2 243 

≅��
𝜃𝜃𝑗𝑗 −

𝜃𝜃𝑗𝑗2
2

ln 2 �

2

2−𝑛𝑛
2𝑛𝑛

𝑗𝑗=1

�1 + 𝜃𝜃𝑗𝑗� − �
1

2 ln 2
(2𝑛𝑛 − 1)2−𝐻𝐻2�

2

 244 

≅
1

(ln 2)2
∑ 𝜃𝜃𝑗𝑗22𝑛𝑛
𝑗𝑗=1

2𝑛𝑛
− �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 245 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 − �

1
2 ln 2

(2𝑛𝑛 − 1)2−𝐻𝐻2�
2

 246 

=
1

(ln 2)2
(2𝑛𝑛 − 1)2−𝐻𝐻2 �1 −

1
4

(2𝑛𝑛 − 1)2−𝐻𝐻2� 247 

Note that for typical values of 𝑛𝑛, 𝜇𝜇𝐼𝐼 and 𝜇𝜇𝑅𝑅 are closely approximated as − 1
2 ln2

2𝑛𝑛−𝐻𝐻2 and 248 
1

2 ln2
2𝑛𝑛−𝐻𝐻2, respectively. Also, assuming that 𝐻𝐻2 will need to exceed 𝑛𝑛 by at least a moderate 249 

amount in order to satisfy the definition of full entropy, 𝜎𝜎𝐼𝐼2 = 𝜎𝜎𝑅𝑅2 can be closely approximated as 250 
𝜎𝜎2 = 1

(ln 2)2 2𝑛𝑛−𝐻𝐻2. The log likelihood ratio statistic 𝑋𝑋 is therefore approximately normally 251 
distributed with means and variance as follows: 252 

𝐸𝐸[𝑋𝑋|REAL] = −𝐸𝐸[𝑋𝑋|IDEAL] = −𝑊𝑊𝜇𝜇𝐼𝐼 ≅
𝑊𝑊

2 ln 2
2𝑛𝑛−𝐻𝐻2 253 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋|REAL] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋|IDEAL] = 𝑊𝑊𝜎𝜎2 ≅
𝑊𝑊

(ln 2)2 2𝑛𝑛−𝐻𝐻2 254 

Now consider the probability that the adversary correctly determines whether the REAL or IDEAL 255 
case produced the observed sample 𝐵𝐵. This probability is as follows: 256 
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𝑃𝑃𝑃𝑃[Correct] = 𝑃𝑃𝑃𝑃[IDEAL]𝑃𝑃𝑃𝑃[Correct|IDEAL] + 𝑃𝑃𝑃𝑃[REAL]𝑃𝑃𝑃𝑃[Correct|REAL] 257 

=
1
2
𝑃𝑃𝑃𝑃[𝑋𝑋 < 0|IDEAL] +

1
2
𝑃𝑃𝑃𝑃[𝑋𝑋 > 0|REAL] 258 

Note that because of the symmetry resulting from 𝑋𝑋 having a normal distribution with variance 259 
𝑊𝑊𝜎𝜎2 in both the REAL and IDEAL cases and expected values that are negatives of each other in 260 
these two cases, 𝑃𝑃𝑃𝑃[𝑋𝑋 < 0|IDEAL] = 𝑃𝑃𝑃𝑃[𝑋𝑋 > 0|REAL], which gives the following: 261 

𝑃𝑃𝑃𝑃[Correct] = 𝑃𝑃𝑃𝑃[𝑋𝑋 < 0|IDEAL] 262 

= 𝑃𝑃𝑃𝑃 �
𝑋𝑋 −𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

<
0 −𝑊𝑊𝜇𝜇𝐼𝐼
√𝑊𝑊𝜎𝜎2

|IDEAL� 263 

Since in the IDEAL case, 𝑋𝑋 is normally distributed with mean 𝑊𝑊𝜇𝜇𝐼𝐼 and variance 𝑊𝑊𝜎𝜎2, the value 264 
𝑧𝑧 = 𝑋𝑋−𝑊𝑊𝑊𝑊𝐼𝐼

√𝑊𝑊𝜎𝜎2
 is a standard normal random variable, so this probability is 𝐹𝐹 �−𝑊𝑊𝑊𝑊𝐼𝐼

√𝑊𝑊𝜎𝜎2
�, where 𝐹𝐹 is the 265 

CDF of the standard normal distribution. 𝐹𝐹(𝑥𝑥) ≤ 1
2

+ 1
2
�1 − 𝑒𝑒−2𝑥𝑥2 𝜋𝜋⁄  when 𝑥𝑥 > 0 (see Section 266 

26.2.24 of [4]). Thus, 𝑃𝑃𝑃𝑃[Correct] = 𝐹𝐹 �−𝑊𝑊𝑊𝑊𝐼𝐼
√𝑊𝑊𝜎𝜎2

� ≤ 1
2

+ 𝛿𝛿 if the following inequality is satisfied: 267 

1
2

+
1
2
�1 − 𝑒𝑒

−2�−𝑊𝑊𝑊𝑊𝐼𝐼
√𝑊𝑊𝜎𝜎2

�
2
𝜋𝜋�
≤

1
2

+ 𝛿𝛿 268 

From the derivations above, −𝑊𝑊𝑊𝑊𝐼𝐼
√𝑊𝑊𝜎𝜎2

= 1
2 √𝑊𝑊 ∙ 2

𝑛𝑛−𝐻𝐻2
2 , giving the following sequence of inequalities: 269 

1
2
�1 − 𝑒𝑒−2�

1
4𝑊𝑊∙2𝑛𝑛−𝐻𝐻2� 𝜋𝜋� ≤ 𝛿𝛿 270 

1 − 𝑒𝑒−
1
2𝑊𝑊∙2𝑛𝑛−𝐻𝐻2 𝜋𝜋� ≤ 4𝛿𝛿2 271 

1 − 4𝛿𝛿2 ≤ 𝑒𝑒−
1
2𝑊𝑊∙2𝑛𝑛−𝐻𝐻2 𝜋𝜋�  272 

ln(1 − 4𝛿𝛿2) ≤ −
1
2
𝑊𝑊 ∙ 2𝑛𝑛−𝐻𝐻2 𝜋𝜋�  273 

−2𝜋𝜋 ln(1 − 4𝛿𝛿2) ≥ 𝑊𝑊 ∙ 2𝑛𝑛−𝐻𝐻2 274 

log2(2𝜋𝜋) + log2(− ln(1 − 4𝛿𝛿2)) ≥ log2 𝑊𝑊 + 𝑛𝑛 − 𝐻𝐻2 275 

𝐻𝐻2 ≥ 𝑛𝑛 + log2 𝑊𝑊 − log2(2𝜋𝜋) − log2(− ln(1 − 4𝛿𝛿2)) 276 

Note that since collision-entropy 𝐻𝐻2 is an upper bound on min-entropy 𝐻𝐻, the above inequality 277 
holds when 𝐻𝐻2 is replaced by 𝐻𝐻. Thus, the inequality is as follows: 278 

𝐻𝐻 ≥ 𝑛𝑛 + log2𝑊𝑊 − log2(2𝜋𝜋) − log2(− ln(1 − 4𝛿𝛿2)) 279 
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Since 4𝛿𝛿2 ≅ 0 when 𝛿𝛿 ≅ 0, − ln(1 − 4𝛿𝛿2) is closely approximated by 4𝛿𝛿2, so the inequality 280 
can be written as: 281 

𝐻𝐻 ≥ 𝑛𝑛 + log2 �
𝑊𝑊
𝛿𝛿2�

− (𝑙𝑙𝑙𝑙𝑙𝑙2𝜋𝜋 + 3) 282 

The following table shows the minimum difference 𝐻𝐻 − 𝑛𝑛 for various values of 𝑊𝑊 and 𝛿𝛿. 283 
 284 

Table 1. Minimum value of 𝑯𝑯− 𝒏𝒏 for various values of 𝑾𝑾 and 𝜹𝜹 285 

W        δ 2−20 2−18 2−16 2−14 2−12 2−10 2−8 

232 67.3 63.3 59.3 55.3 51.3 47.3 43.3 

240 75.3 71.3 67.3 63.3 59.3 55.3 51.3 

248 83.3 79.3 75.3 71.3 67.3 63.3 59.3 

256 91.3 87.3 83.3 79.3 75.3 71.3 67.3 

 286 

It is assumed in SP 800-90C that there is an upper bound of 264 bits on the amount of output that 287 
an adversary attempting a distinguishing attack can request. Consider the combination 𝑊𝑊 = 248 288 
and 𝛿𝛿 = 2−10. Given 𝑊𝑊 = 248 𝑛𝑛-bit RBG outputs, each output can be up to 216 = 65536 bits 289 
long without exceeding the 264 data-quantity bound. Note that  290 
10 000 random bit generators, each producing 1000 outputs per second, would require nearly a 291 
year to produce 𝑊𝑊 = 248 outputs. According to the table above, an adversary who obtains 𝑊𝑊 =292 
248 𝑛𝑛-bit outputs has a distinguishing probability no greater than 1

2
+ 𝛿𝛿 = 1

2
+ 2−10 ≅ 0.501 when 293 

𝐻𝐻, the conditioning function input min-entropy for each 𝑛𝑛-bit output, is at least 𝑛𝑛 + 63.3. This 294 
minimum value, rounded up to 𝑛𝑛 + 64, is used in this document as the condition for satisfying the 295 
full entropy definition. 296 

 Justification of Claim on 𝜽𝜽𝜽𝜽 297 
In order to derive the conditions for full entropy, sums of powers of 𝜃𝜃𝑗𝑗 higher than 𝜃𝜃𝑗𝑗

2 were omitted. 298 
This did not affect the validity of the conclusion if 𝜃𝜃𝑗𝑗 is sufficiently near zero. This is established 299 
as follows. Recall that there are 2𝑛𝑛 values of 𝜃𝜃𝑗𝑗, each of which is approximately normally 300 
distributed with mean zero and variance approximately 2𝑛𝑛−𝐻𝐻2. Consider the largest 𝜃𝜃𝑗𝑗, 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 =301 
𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗�𝜃𝜃𝑗𝑗�. 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 is 𝑧𝑧 = 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

2
𝑛𝑛−𝐻𝐻2
2

 standard deviations away from zero, which is the mean of 𝜃𝜃𝑗𝑗. The 302 

value of 𝑧𝑧 is expected to be such that in a collection of 2𝑛𝑛 standard normal random variables, 303 
approximately one is greater than or equal to this value of 𝑧𝑧. If 𝑓𝑓(𝑧𝑧) and 𝐹𝐹(𝑧𝑧) are the density 304 
function and the CDF of the standard normal distribution, respectively, then for large 𝑧𝑧, 1 −305 
𝐹𝐹(𝑧𝑧) ≅ 𝑓𝑓(𝑧𝑧)

𝑧𝑧
 (see Section 26.2.12 of [4]). The desired value of 𝑧𝑧, therefore, gives (1 − 𝐹𝐹(𝑧𝑧))2𝑛𝑛 ≅306 
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1, which leads to 2𝑛𝑛

𝑧𝑧√2𝜋𝜋
𝑒𝑒−

𝑧𝑧2

2 = 1, or 𝑧𝑧2 + 2 ln 𝑧𝑧 = 2𝑛𝑛 ln 2 − ln(2𝜋𝜋). Since 𝑧𝑧2 dominates the left 307 

side of this equation, the desired value of 𝑧𝑧 is approximately �2𝑛𝑛 ln 2 − ln (2𝜋𝜋). The value of 308 

𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 is then expected to be approximately 2
𝑛𝑛−𝐻𝐻2
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋). For any of the typical values 309 

of 𝑛𝑛 and a value of 𝐻𝐻2 given by the lower bound computation above, 𝐻𝐻2 ≥ 𝑛𝑛 + 64, so 2
𝑛𝑛−𝐻𝐻2
2 ≤310 

2−32, and it can be calculated that 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 is a positive value that with high likelihood is less than 311 
10−8. A similar argument leads to 𝜃𝜃𝑚𝑚𝑖𝑖𝑛𝑛 being approximately −𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥, so it is expected that �𝜃𝜃𝑗𝑗� ≤312 
10−8 for all 𝑗𝑗. Therefore, it is safe to omit powers of 𝜃𝜃𝑗𝑗 higher than 𝜃𝜃𝑗𝑗

2, since it is shown in Section 313 
2.2 that doing so has a negligible effect.  314 

 Derivation of Full Entropy Threshold 315 
The second result following from the above definition of full entropy is the derivation of an 316 
estimate of the min-entropy of an 𝑛𝑛-bit output, given that the input to the conditioning function 317 
has a collision entropy of 𝐻𝐻2. The above result gives 𝜃𝜃𝑚𝑚𝑚𝑚𝑥𝑥 ≅ 2

𝑛𝑛−𝐻𝐻2
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋), which 318 

implies that the corresponding value 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗�𝑝𝑝𝑗𝑗� is approximately 2−𝑛𝑛 �1 +319 

2
𝑛𝑛−𝐻𝐻2
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)�. If the min-entropy of the input to the conditioning function is 𝐻𝐻, then 320 

𝐻𝐻2 ≥ 𝐻𝐻, so 321 

𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 2−𝑛𝑛 �1 + 2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)�. 322 

The output min-entropy corresponding to this value of 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 is: 323 

−log2𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 ≥ 𝑛𝑛 − log2 �1 + 2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)� 324 

= 𝑛𝑛 −
𝑙𝑙𝑛𝑛 �1 + 2

𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)�

𝑙𝑙𝑛𝑛2
 325 

Since H ≥ n + 64, 2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋) is a very small positive number, so 𝑙𝑙𝑛𝑛 �1 +326 

2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)� ≅ 2

𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋), giving 327 

−log2𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 ≥ 𝑛𝑛 −
2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)

ln2
 328 

Dividing this value by 𝑛𝑛 gives an average per-bit min-entropy of at least 329 

1 −
2
𝑛𝑛−𝐻𝐻
2 �2𝑛𝑛 ln 2 − ln(2𝜋𝜋)

𝑛𝑛𝑙𝑙𝑛𝑛2
 330 

When 𝐻𝐻 ≥ 𝑛𝑛 + 64, a per-bit entropy of at least 1 − 2−32𝑐𝑐 is obtained, where 0 < 𝑐𝑐 < 1 for all 331 
the values of 𝑛𝑛 of interest. Therefore, when 𝐻𝐻 ≥ 𝑛𝑛 + 64, the average per-bit min-entropy in the 𝑛𝑛-332 
bit conditioning function output is at least 1 − 2−32. 333 
  334 
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Appendix A. List of Symbols, Abbreviations, and Acronyms 351 

CDF 352 
Cumulative Distribution Function 353 

NIST 354 
National Institute of Standards and Technology 355 

RBG 356 
Random Bit Generator 357 

SP 358 
(NIST) Special Publication 359 

0x 360 
A string of x zeroes 361 

x 362 
The ceiling of x; the least integer number that is not less than the real number x. For example, 3 = 3, and 5.5 = 6. 363 

ε 364 
A positive constant that is assumed to be smaller than 2−32 365 

E(X) 366 
The expected value of the random variable X 367 

Log2(x) 368 
Base-2 logarithm of X 369 

Ln(x) 370 
Natural logarithm of X 371 

Var(x) 372 
Variance of random variable X 373 
  374 
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Appendix B. Glossary 375 

adversary 376 
A malicious entity whose goal is to determine, to guess, or to influence the output of an RBG. 377 

bitstring 378 
An ordered sequence (string) of 0s and 1s. The leftmost bit is the most significant bit. 379 

conditioning function  380 
A deterministic function used to reduce bias and/or improve the entropy per bit. 381 

cryptographic boundary 382 
An explicitly defined physical or conceptual perimeter that establishes the physical and/or logical 383 
bounds of a cryptographic module and contains all of the hardware, software, and/or firmware 384 
components of a cryptographic module. 385 

entropy 386 
A measure of the randomness or uncertainty of a random variable.  387 

entropy source 388 
The combination of a noise source, health tests, and optional conditioning component that produce 389 
bitstrings containing entropy. A distinction is made between entropy sources having physical noise 390 
sources and those having non-physical noise sources. 391 

full-entropy bitstring 392 
A bitstring with ideal randomness (i.e., the amount of entropy per bit is equal to 1). This 393 
Recommendation assumes that a bitstring has full entropy if the entropy rate is at least 1 − ε, where 394 
ε is at most 2−32. 395 

ideal randomness source 396 
The source of an ideal random sequence of bits. Each bit of an ideal random sequence is 397 
unpredictable and unbiased, with a value that is independent of the values of the other bits in the 398 
sequence. Prior to an observation of the sequence, the value of each bit is equally likely to be 0 or 399 
1, and the probability that a particular bit will have a particular value is unaffected by knowledge 400 
of the values of any or all of the other bits. An ideal random sequence of n bits contains n bits of 401 
entropy. 402 

likelihood ratio test 403 
A statistical test aimed at distinguishing between two competing models that could have produced 404 
an observed event based on a comparison of the likelihoods of the observed event, given the two 405 
models. 406 

min-entropy 407 
A lower bound on the entropy of a random variable. The precise formulation for min-entropy is 408 
(−log2 max pi) for a discrete distribution having probabilities p1, ..., pk. Min-entropy is often used 409 
as a measure of the unpredictability of a random variable. 410 
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