

Archived NIST Technical Series Publication

The attached publication has been archived (withdrawn), and is provided solely for historical purposes.
It may have been superseded by another publication (indicated below).

Archived Publication

Series/Number:

Title:

Publication Date(s):

Withdrawal Date:

Withdrawal Note:

Superseding Publication(s)

The attached publication has been superseded by the following publication(s):

Series/Number:

Title:

Author(s):

Publication Date(s):

URL/DOI:

Additional Information (if applicable)

Contact:

Latest revision of the

attached publication:

Related information:

Withdrawal
announcement (link):

Date updated: June 9, 2015

NIST Special Publication 800-8

Security Issues in the Database Language SQL

August 1993

Computer Security Division (Information Technology Lab)

http://csrc.nist.gov/

NIST Special Publication 800-8

U.S. DEPARTMENT OF
COMMERCE
Technology Administration

National Institute of Standards
and Technology

NATL INST OF STAND 4 TECH R.IC

NIST I
PUBLICATIONS |

Security Issues in

the Database
Language SQL

W. Timothy Polk and Lawrence E. Bassham III

COMPUTER ^g^FTTT R I T Y
1

1

FzEE
!

—Qe

—

100

.057 — ISHSF
#800-8

1995

7he National Institute of Standards and Technology was established in 1988 by Congress to "assist

industry in the development of technology . . . needed to improve product quality, to modernize

manufacturing processes, to ensure product reliability . . . and to facilitate rapid commercialization ... of

products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S.

industry's competitiveness; advance science and engineering; and improve public health, safety, and the

environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national

standards of measurement, and provide the means and methods for comparing standards used in science,

engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized

by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic

and applied research in the physical sciences and engineering and performs related services. The Institute

does generic and precompetitive work on new and advanced technologies. NIST's research facilities are

located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their

principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services
• Manufacturing Technology Centers Program

• Standards Services

• Technology Commercialization

• Measurement Services

• Technology Evaluation and Assessment
• Information Services

Electronics and Electrical Engineering
Laboratory
• Microelectronics

• Law Enforcement Standards

• Electricity

• Semiconductor Electronics

• Electromagnetic Fields'

• Electromagnetic Technology'

Chemical Science and Technology
Laboratory
• Biotechnology

• Chemical Engineering'

• Chemical Kinetics and Thermodynamics
• Inorganic Analytical Research

• Organic Analytical Research
• Process Measurements
• Surface and Microanalysis Science

• Thermophysics^

Physics Laboratory
• Electron and Optical Physics

• Atomic Physics

• Molecular Physics

• Radiometric Physics •

• Quantum Metrology
• Ionizing Radiation

• Time and Frequency'
• Quantum Physics'

Manufacturing Engineering Laboratory
• Precision Engineering

• Automated Production Technology
• Robot Systems

• Factory Automation
• Fabrication Technology

Materials Science and Engineering
Laboratory
• Intelligent Processing of Materials

• Ceramics
• Materials Reliability'

• Polymers

• Metallurgy

• Reactor Radiation

Building and Fire Research Laboratory
• Structures

• Building Materials

• Building Environment
• Fire Science and Engineering

• Fire Measurement and Research

Computer Systems Laboratory
• Information Systems Engineering

• Systems and Software Technology
• Computer Security

• Systems and Network Architecture

• Advanced Systems

Computing and Applied Mathematics
Laboratory
• Applied and Computational Mathematics^
• Statistical Engineering^

• Scientific Computing Environments^

• Computer Services^

• Computer Systems and Communications^
• Information Systems

'At Boulder, CO 80303.

^Some elements at Boulder, CO 80303.

NIST Special Publication 800-8 Security Issues in

the Database

Language SQL

W. Timothy Polk and Lawrence E. Bassham III

COMPUTER SECURITY

Computer Systems Laboratory

National Institute of Standards

and Technology

Gaithersburg, MD 20899

August 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

National Institute of Standards and Technology
Arati Prabhakar, Director

Reports on Computer Systems Technology

The National Institute of Standards and Technology (NIST) has a unique responsibility for computer

systems technology within the Federal Government. NIST's Computer Systems Laboratory (CSL) devel-

ops standards and guidelines, provides technical assistance, and conducts research for computers and

related telecommunications systems to achieve more effective utilization of Federal information technol-

ogy resources. CSL's responsibilities include development of technical, management, physical, and ad-

ministrative standards and guidelines for the cost-effective security and privacy of sensitive unclassified

information processed in Federal computers. CSL assists agencies in developing security plans and in

improving computer security awareness training. This Special Publication 800 series reports CSL re-

search and guidelines to Federal agencies as well as to organizations in industry, government, and
academia.

National Institute of Standards and Technology Special Publication 800-8
Natl. Inst. Stand. Technol. Spec. Publ. 800-8, 3 pages (Aug. 1993)

CODEN: NSPUE2

U.S. GOVERNIVIENT PRINTING OFFICE
WASHINGTON: 1993

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-9325

Abstract

The Database Language SQL (SQL) is a standard interface for accessing and ma-

nipulating relational databases. An SQL-compliant database management system

(DBMS) will include a minimum level of functionality in a variety of areas. However,

many additional areas are left unspecified by the SQL standard. In addition, there

are multiple versions of the SQL standard; the functionality will vary according to

the particular version.

This document examines the security functionality that might be required of rela-

tional DBMS's, and compares them with the requirements and options of the SQL
specifications. The comparison will show that the security functionality of an SQL-

compliant DBMS may vary greatly. A variety of security policies are considered which

can be supported by SQL. The document ends by showing which types of functions

are required by the examined security policies.

Contents

1 Introduction 1

1.1 Audience 1

1.2 The Standards 1

1.3 Using This Document 2

1.4 Security Considerations 3

2 SQL Architecture 5

2.1 SQL Functionality 5

2.2 SQL Implementation 6

2.3 Security Responsibilities: The SQL Component 7

2.4 Security Responsibilities: Non-SQL Components 8

2.4.1 Application Interface to SQL 8

2.4.2 SQL Interface to Physical Database 8

2.4.3 SQL Interface to Non-SQL DBMS 9

2.4.4 Interface to Remote Databases 9

3 Security Policy 11

3.1 Discretionary Access Control 11

3.1.1 Privileges 11

3.1.2 Authorization Identifier 13

3.1.3 Roles 14

3.2 Mandatory Access Control 14

3.2.1 Polyinstantiation 15

3.2.2 TCB Subset Architecture 17

3.2.3 Trusted Subject Architecture 18

3.2.4 Integrity Lock Architecture 18

3.3 Schema Manipulation 20

3.4 Integrity Constraints 20

3.4.1 Table Constraints 20

3.4.2 Column Constraints and Check Constraints 22

3.4.3 Assertions 23

3.4.4 Domains 23

3.4.5 The SQL'89 Security Bug 24

V

3.5 Object Reuse 24

3.6 Labels 24

3.7 Inference 25

3.8 Aggregation 26

4 Accountability 27

4.1 Identification & Authentication 27

4.2 Auditing 28

5 Assurance 29

5.1 Testing and Evaluation 29

5.1.1 FIPS Conformance 30

5.1.2 NCSC Evaluation 31

5.2 Reliability 31

5.2.1 Fault Tolerant Systems 31

5.2.2 Disk Array Technology 32

5.3 Transaction Management (Integrity) 33

5.4 Diagnostics Management 34

6 Summary/Recommendations 35

References 39

vi

1 Introduction

Federal agencies maintain an increasing amount of valuable and sensitive information

in relational database management systems (DBMS). These agencies are required

to utilize Federal Information Processing Standard (FIPS) 127-compliant database

management systems. FIPS 127 specifies the Database Language SQL (SQL)^ for

accessing and manipulating relational databases.

SQL requires certain levels of functionality in schema specification, retrieval and

modification of data, and transaction management. However, a number of security-

relevant areas are not addressed. As a result, SQL-compliant DBMS systems offer

varying levels of security functionality.

This document examines the various security aspects of SQL. Security-relevant fea-

tures are identified, in conjunction with the version of the SQL standard that sup-

ports them. Critical but unspecified security features are noted, as well as the types

of mechanisms that could be offered by vendors.

Finally, three broad security policies are examined. The level of support offered by

the various SQL versions is contrasted for each policy, and critical controls unspecified

by any version of SQL are identified.

1.1 Audience

This document is intended to assist information technology (IT) managers in the se-

lection of DBMS's with appropriate security functionality. IT managers with knowl-

edge of security policies and mechanisms, and familiarity with DBMS's will find it

most useful. However, the document does not assume that familiarity. Background

information regarding both security and databases is included to assist the reader.

1.2 The Standards

SQL is a widely used language for accessing and manipulating relational databases.

Several levels of SQL are defined; these levels are generally upwardly compatible.

Certain security-relevant features are required in an SQL-compliant DBMS. Other

security features are not specified by SQL, but may appear in particular products.

The exact functionality of an SQL-compliant DBMS varies according to the particular

^SQL is not an acronym, although it derives from "Structured Query Language." The complete

name is Database Language SQL.

1

1 INTRODUCTION

SQL specification and the set of unspecified enhancements which are also included.

The basic SQL definition is ANSI X3. 135-1989, Database Language - SQL with In-

tegrity Enhancement [ANS89a], and will be referred to as SQL'89. The functionality of

SQL'89 includes schema definition, data manipulation, and transaction management.

SQL'89 and ANSI X3.168-1989, Database Language - Embedded SQL [ANS89b], form

the basis for FIPS 127-1 [FIP90].

ANSI X3. 135-1992 [ANS92] describes an enhanced SQL, known as SQL'92. The en-

hancements include schema manipulation, dynamic creation and execution of SQL
statements, and network environment features for connection and session manage-

ment. FIPS 127-2 [FIP93] is based upon X3. 135-1992.

Finally, a third version of SQL is currently under development in ANSI and ISO.

This version will be referred to as SQL3 in the remainder of this document. SQL3
enhancements will include the ability to define, create, and manipulate user-defined

data types in addition to tables.

ISO/IEC Draft International Standard 9579-1 [ISO90a] and 9579-2 [ISO90b] define

the Remote Database Access (RDA) standard. RDA provides a method for intercon-

necting database management systems. 9579-1 describes the generic model; 9579-2

presents the SQL specialization information.

1.3 Using This Document

Section 2, SQL Architecture, provides an overview of the functionality and interaction

of the components of a system supporting an SQL-compliant DBMS. The section

includes a survey of the security responsibilities of each component in such a system.

Sections 3, 4, and 5 present required features and enhancemants of SQL-compliant

DBMS systems.^ These sections are structured to reflect the Security Requirements

described in [TCS85]. Section 3 presents mechanisms that can be used to enforce

Security Policy. Section 4 addresses Accountability mechanisms. Section 5 includes

Assurance measures. (The TCSEC security requirement Documentation is omitted.)

The content of these sections does not strictly adhere to the TCSEC security require-

ments. Items are added or omitted to reflect the requirements of non-DoD federal

agencies. Modifications include:

^"Enhancements" are features which are not specified in the SQL specifications, but are not

ruled out by the standard either. The vendor has the option of including such features for product

differentiation.

2

1.4 Security Considerations

• augmenting the integrity requirements in security policy;

• omission of covert channels;

• inclusion of fault tolerant hardware, such as Redundant Array of Inexpensive

Disks (RAID) storage units;

• discussion of assurance value of FIPS conformance testing; and

• discussion of inference and aggregation.

The final section of this paper presents a review of required and optional security

features. These features are examined in conjunction with general security choices

(e.g., mandatory vs. discretionary access control). The level of support offered by

the various SQL versions is contrasted for each of these choices, and critical controls

that are not specified by any version of SQL are identified.

1.4 Security Considerations

The basic security requirements are, as always, preservation of confidentiality and

integrity while maintaining availability. There are a number of specific threats within

these categories that merit special consideration here.

Inference and aggregation are usually considered threats to mandatory access control

policies. There are also a number of DBMS specific security issues, such as referential

integrity and polyinstantiation. Classic operating systems problems such as deadlock

and transaction completion problems must also be considered.

The following definitions will be used in this document:

• inference: Derivation of new information from known information. The infer-

ence problem refers to the fact that the derived information may be classified

at a level for which the user is not cleared. The inference problem is that of

users deducing unauthorized information from the legitimate information they

acquire. [Thu92]

• aggregation: The result of assembling or combining distinct units of data when

handling sensitive information. Aggregation of data at one sensitivity level may
result in the total data being designated at a higher sensitivity level. [Rob91]

• polyinstantiation: Polyinstantiation allows a relation to contain multiple rows

with the same primary key; the multiple instances are distinguished by their

security levels. [SFD92]

• referential integrity: A database has referential integrity if all foreign keys ref-

erence existing primary keys.[Cam90]

3

1 INTRODUCTION

• entity integrity: A tuple in a relation cannot have a null value for any of the

primary key attributes. [DJ92]

• granularity: The degree to which access to objects can be restricted. Granu-

larity can be applied to both the actions allowable on objects, as well as to the

users allowed to perform those actions on the object.

An example of polyinstantiation is included in section 3.2, Mandatory Access Control.

Examples of inference and aggregation may be found in sections 3.4 and 3.5, Inference

Controls and Aggregation respectively.

2 SQL Architecture

This section begins with a brief description of the functionality of SQL. Secondly, a

model of an SQL implementation is presented. Finally, the security problems associ-

ated with each component of the model are highlighted.

2.1 SQL Functionality

SQL defines standard components and facilities for relational database management
systems. The components of an SQL database are schemas, tables, and views. A
schema describes the structure of related tables and views. Tables hold the actual

data in the database; they consist of rows and columns. Each row is a set of columns;

each column is a single data element. Views are derived tables, and may be composed

of a subset of a table or the result of table operation (e.g., a join of different tables).

The SQL standard describes facilities to perform four specific functions:

• Schema Definition: Used to define the structure of the database, integrity con-

straints, and access privileges;

• Retrieval: Retrieve data from a database with a standard query interface;

• Data Manipulation: Populate and modify the contents of a database by adding,

modifying or deleting rows and columns;

• Schema Manipulation"^: Modify the structure, integrity constraints, and privi-

leges associated with the tables and views in the database; and

• Transaction Management: The ability to define and manage SQL transactions.

Each of these components is related to certain security threats. Schema definition

and manipulation relate to problems of inference and aggregation. Data retrieval

tasks must conform to confidentiality policies. Data manipulation must conform to

integrity policy. Transaction management contributes to maintaining the integrity of

the database.

^Schema manipulation is introduced in SQL'92. These facilities are unspecified in SQL'89.

5

2 SQL ARCHITECTURE

Application

SQL Processor

OS

SQL
Database

Figure 1: Standalone model.

2.2 SQL Implementation

To perform the security analysis, it is necessary to assume some architecture for an

SQL implementation. Figure 1 depicts a standalone model, which can be imple-

mented with any level of SQL. Figure 2 depicts a client/server model, which can be

implemented in a standard fashion with SQL'92 or SQL3 together with RDA (ISO

9579). Client/server implementations with SQL'89 will be proprietary and may not

be interoperable with other SQL products without the use of special gateways. The

first model shows an application interfacing with an SQL processor, which interfaces

with a physical database on a local system. This model can be implemented with any

version of SQL. The second model, a simplification of the model presented in [GS92]

requiring SQL'92 or SQL3, has the following features:

An application, written in the SQL query language or utilizing embedded SQL,

will communicate with an SQL server.

The SQL server may directly access an SQL-compliant database.

The SQL server may access a database that is not SQL-compliant through an

appropriate database processor.

The SQL server may act as a client and access a remote database.

The SQL server may access a remote database by utilizing implementation-

defined communications software and de facto standards.

6

2.3 Security Responsibilities: The SQL Component

Application

SQL Processor
RDA

non-SQL

processor

Remote

Database

Server

OS OS OS

SQL

data

non-SQL

data

remote

data

Figure 2: Client/server modeL

• The SQL server utilizes the OS services of the local host to access and store

data on the system.'*

2.3 Security Responsibilities: The SQL Component

There are valid security considerations for each of the four areas of SQL functionality:

• Database Schema: The database schema must be well designed to ensure that

aggregation and inference are not threats.

• Retrieval: The SQL server is responsible for maintaining access control for SQL
level objects.

• Modification: The SQL server is responsible for maintaining access control for

SQL level objects. The SQL server is responsible for enforcing type checking

and ranges; these are external consistency issues. The SQL server is responsible

"^In certain cases, such as database machines, the system may not have a general purpose operating

system. The system will still offer certain services to the SQL layer, though.

7

2 SQL ARCHITECTURE

for enforcing check constraints and uniqueness requirements; these are internal

consistency issues.

• Transaction Management: The SQL server must ensure orderly access to data

when concurrent transactions attempt to access and modify the same data.^

The SQL server must provide appropriate transaction management features:

incomplete transactions can result in loss of external consistency® - the tables

and elements are no longer "synchronized."

2.4 Security Responsibilities: Non-SQL Components

2.4.1 Application Interface to SQL

The interface between the SQL processor and an application may utilize the embedded

SQL language or the SQL language (interactively or invoked by a front-end processor).

The application must supply accurate information regarding the identity of the user

to the SQL processor. This places two requirements on the system: appropriate

selection and management of identification and authentication (I&A) controls and

control of this critical attribute's propagation.

If the I&A control is weak or poorly managed, there is little assurance of accuracy

for this attribute. Consider passwords where the account name and password are

identical (a.k.a., "joe accounts"). If an application accesses SQL for such an account,

there is an increased probability that the actual user is not the authorized account

user. Identity-based controls become severely weakened.

Some systems include programs or features that allow users to modify their identity.

The UNIX operating system, for instance, includes the file attributes setuid, which re-

sets the user id, and setgid, which re-sets the group id. Termination of the program

is intended to cause the old user and group id's to resume. However, flaws in the

implementation of these features may allow a user to continue to masquerade as the

other user, executing SQL programs with unauthorized privileges.

2.4.2 SQL Interface to Physical Database

The operating system provides the basic services that enable the SQL processor to

store, retrieve, and modify data on the system. The operating system is responsible

^Deadlock (and denial of service) is one possible result of such concurrent transactions; loss of

data integrity is another.

^as defined by Clark and Wilson in [CLARK87].

8

2.4 Security Responsibilities: Non-SQL Components

for guaranteeing the simple integrity^ of the data and preventing denial of service.

The operating system must also prevent data from being accessed outside the SQL
processor. Access to raw DBMS files, database export files, or journal files may violate

security policy. Such actions can result in loss of integrity (e.g., improper modification

of data) or confidentiality (e.g., by circumventing internal access controls of SQL).

2.4.3 SQL Interface to Non-SQL DBMS

The SQL interface to non-SQL DBMS's is unspecified in SQL'89. SQL'92 introduces

the concepts of an SQL client and an SQL server. By matching an SQL client with

a non-SQL server, SQL queries may be performed on non-conforming databases;

however, this requires that the non-SQL server provide an SQL-conformant view of

its services and data.

The interface between a client and server must be protected. Other processes on the

system could eavesdrop, insert incorrect information, or perhaps even delete informa-

tion. These actions would result in loss of integrity or confidentiality.

2.4.4 Interface to Remote Databases

The RDA standard is designed as a generic interface between local and remote

database servers. RDA also has an SQL Specialization for connecting SQL-compliant

databases. Currently, RDA is only defined for use in an OSI network environment.

Partially conformant products which use TCP/IP are also available.

Use of RDA on an open network may expose the system to many threats. Eaves-

dropping, packet replay, and host spoofing are likely threats. These threats can be

minimized by employing encryption techniques and strong authentication measures.

The RDA standard allows for exchange of authentication data. However, it is not

required. Encryption techniques may be employed at several different layers of the

OSI stack. RDA does not require or forbid such techniques; therefore, the security

achieved will be dependent upon the implementation.

Where proprietary protocols are used, the system will be exposed to all the same

threats as use of RDA. From a security standpoint, the same threats must be ad-

dressed. (From an open systems standpoint, there are also interoperability problems.)

In addition, if a translator gateway is required this may add a single point of failure

to a distributed database architecture.

^Simple integrity refers to the operating system reading and writing data in a predictable manner.

9

3 Security Policy

This section addresses mechanisms for enforcing security policy on computer sys-

tems. It concentrates on controlling the access to, and modification of, data. This

corresponds roughly to confidentiality and integrity policy although availability can

sometimes be affected.

The section begins by addressing access control mechanisms. Discretionary and

mandatory access controls are examined in turn. Next, the section reviews integrity

constraints. This is followed by the more traditional security features of object reuse

and labeling. The section closes by examining mechanisms for controlling inference

and aggregation.

3.1 Discretionary Access Control

Discretionary access control (DAC) is a means by which access to objects is restricted

to specific users or groups of users. The access control is discretionary in that access

privileges may be passed on to other users, either directly or indirectly, by the owner

of the object.

3.1.1 Privileges

Privileges are the means by which SQL enforces DAC. Privileges are granted with a

Grant statement and are used to specify an allowable action on a specific object, e.g.,

to UPDATE the rows in a specific table, to a grantee.

SQL'89

SQL'89 defines the following five privileges which establish the granularity of access

available to users of the database: INSERT, DELETE, SELECT, UPDATE, and

REFERENCES.

• The INSERT privilege grants a user the ability to create new rows in a base

table or a viewed table. If the new row is to be added to a base table, the

candidate row must include every column of the base table for which no default

value has been either implicitly or explicitly defined. If the candidate row is to

be added to a viewed table, the candidate row must include every column in

the base table from which the viewed table is derived. Additionally, the view

must be updatable.

11

3 SECURITY POLICY

• The DELETE privilege grants a user the ability to delete rows from a table.

In order to delete rows from a table or view, the delete privilege needs to have

been granted and the view must not be read-only.

• The SELECT privilege grants a user the ability to retrieve values from a table.

Essentially, the select privilege allows users to read tables.

• The UPDATE privilege grants users the ability to update, or change, the con-

tents of a row in a table. In addition, to perform updates on a view, the view

must not be read-only. Column constraints can be specified when granting this

privilege; that is, a user may be allowed to update certain columns within a

table or view.

• The REFERENCES privilege grants a user the ability to specify a foreign key

reference across schemas. Foreign keys are fields which coincide with a unique

field (e.g., primary key fields) in the grantor's table. A security implication

of the references privilege is that it can be used, possibly inadvertently, to

implement a denial of service attack. When table B references table A, records

from table A cannot be deleted or the primary key field cannot be changed

if a record from table B corresponds to that record from table A. Another

security implication of the references privilege is that a user could, based on

the constraint definition, determine all legal values for the referenced column.

A policy violation would occur if this information was used to infer knowledge

from which a user had been exluded.

Privileges can be granted to individuals or to everyone (if PUBLIC is specified).

Caution should be used when utilizing the PUBLIC specifier. Additionally, privileges

can be granted with the WITH GRANT OPTION. This gives the grantee of a privilege

the ability to subsequently grant that privilege to other users. As a result, the owner

may loose control over his own table. Finally, privileges can be granted one by one,

as a comma separated list, or with the ALL specifier. The ALL specifier, however,

refers only to those privileges grantable by that user.

A significant security flaw in SQL'89 is the fact that there is no standard way to

revoke privileges. As job requirements change, necessary access to the database could

also change. It should be noted that the standard does not exclude vendors from

incorporating a statement for revoking privileges into an implementation, and many
vendors do include such a statement.^ The standard simply does not require such a

statement, or specify the semantics of such a statement if included.

In fact, the authors do not know of any product which omits a mechanism for revoking privilege.

12

3.1 Discretionary Access Control

SQL'92

A new privilege has been defined for SQL'92. The USAGE privilege is used to allow or

restrict access to domains, collations, character sets, and translations. Additionally,

all privileges from SQL'89 hold with the following extensions:

• The INSERT privilege can be specified with a column constraint as well as on

whole tables. (SQL'89 specified column constraints only for the UPDATE and

REFERENCES privileges.)

• The REFERENCES privilege has several extensions. These extensions maintain

referential integrity on delete and update operations in the base table. Instead

of a delete or update operation in the base table being blocked because the

record is referenced in another table, the reference can be specified with one of

the following actions:

— The CASCADE specifier will propagate the change from the base table to

the referencing table. On update, the update will appear in the referenc-

ing table. On delete, matching rows in the referencing table will also be

deleted.

— The SET NULL specifier will set, for both update and delete, the refer-

encing column in all matching rows to the null value.

— The SET DEFAULT specifier will set, for both update and delete, the

referencing column in all matching rows to the default value, as specified

with the "<default clause>."

— The NO ACTION specifier performs no referential integrity function. It is

included for backward compatibility reasons. It results in the same func-

tionality as SQL'89. When no referential integrity constraint is specified,

the NO ACTION specifier is implicit.

SQL'92 adds the REVOKE statement. With this statement, all grantable access

privileges can be revoked. The revoke statement can also be used to revoke the grant

option from a user. As a result that user could no longer grant privileges to other

users.

3.1.2 Authorization Identifier

For both SQL'89 and SQL'92 < authorization identifiers>, the SQL non-terminal used

to specify users (e.g., <grantor> and <grantee>), are defined in an implementation-

dependent way. This means SQL does not define how operating system users are

mapped to SQL users. See Section 4.1, Identification and Authentication, for more

information.

13

3 SECURITY POLICY

3.1.3 Roles

With current versions of the SQL standard, maintenance of appropriate access control

restrictions is difficult. The Grant and Revoke statements are available to allocate

individual privileges, but this leaves much for an administrator to maintain. A change

in job requirements by one user can require many changes to database access for that

user. To complicate matters further, if the user whose job requirements changed has

granted privileges to other users, those privileges must be examined for correctness.

Another drawback of the current privilege system is that a user accumulates privileges

required for different job functions. For example, separate job functions for one

individual may include payroll clerk and purchasing agent. It may be desirable to

allow the user access to only payroll related objects while performing payroll clerk

functions and purchasing related objects while performing purchasing agent functions.

SQL3, the newest version of SQL being developed, has an enhanced facility for the

manipulation of access rights. In addition to the existing Grant and Revoke state-

ments, a new construct, called Roles, is being developed. This facility will allow

database administrators to create individual roles with corresponding database ac-

cess requirements. Then, for example, when a user's job requirements change to no

longer include payroll clerk activities, only one Role needs to be revoked instead of

revoking access privileges to all objects needed only for payroll clerk activities.

An additional benefit of Roles is that a user can have only one Role active at a time.

This would allow a user to access only payroll related objects when working under

the Payroll Role, and access procurement related objects when working under the

Purchasing Role.

3.2 Mandatory Access Control

Mandatory access control (MAC) is not supported directly in SQL. However, there are

several different methods for implementing a mandatory access control model. The

major architectures for trusted DBMS products [Cam90] are the Trusted Computing

Base (TCB) Subset Architecture (Figure 6), Trusted Subject Architecture (Figure 7),

and Integrity Lock Architecture (Figure 8). Each is intended for use with a Trusted

Operating System (OS), but requires different controls.

It should be noted that an SQL-based DBMS with mandatory access controls can be

designed without modification of the SQL syntax. However, certain modifications in

SQL semantics must be made if polyinstantiation is used to control inference.

14

3.2 Mandatory Access Control

3.2.1 Polyinstantiation

Polyinstantiation is frequently used with mandatory access control database systems

to control inference. This section is intended to explain polyinstantiation. Inference,

and the application of polyinstantiation for inference control, are described in Section

3.4, Inference.

In the following example, the database is a single relational table. The table contains

two columns: Patient name and Disease. The Patient name field is the key for this

table. There are two clearance levels, HIGH and LOW. Two sets of data exist; the

first set is HIGH data (Figure 3) and the second is the LOW data set (Figure 4).

Patient Disease

Name

Howard AIDS

Gordon Syphilis

Jackson Gunshot wounds

Figure 3: HIGH data.

The HIGH data include patients under police guard, such as Jackson, or patients with

confidential diseases. The LOW data include all other patients, and perhaps some of

the HIGH patients with different data.

Patient Disease

Name

Smith Lung Cancer

Howard Pneumonia

Jones 2nd degree bums

Hamp heart failure

Figure 4: LOW data.

When users with LOW security level browse the database, they are only permitted

to see the LOW data. If a user wishes to add a LOW record with primary key X, the

command is accepted even if a HIGH record exists with that key.

When a user with HIGH security level browses the database, he sees all of the HIGH
records, as well as the LOW records with a primary key that is not found in the HIGH

15

3 SECURITY POLICY

P;itipnt

Ncuiie Disease

Howard AIDS

Smith Lung Cancer

Gordon Syphilis

Jackson Gun Shot wound

Jones 2nd degree bums

Hamp heart failure

Figure 5: HIGH user's view.

data. The resulting table is shown in Figure 5. Note that the record for Howard does

not appear twice; only the HIGH level record appears.

This feature may be useful in a number of ways. LOW users cannot determine if a

HIGH record exists with key Gordon by attempting to create a record and checking

for an error message. Dual records could be used, as in the case of Howard, to prevent

LOW users from discovering the true nature of Howard's illness. This is intended to

prevent disclosure by inference.

In many situations, polyinstantiation may be implemented by a local database secu-

rity administrator using only standard features from SQL'89. The above example is

easily implemented with two base tables, known only to the security administrator,

and a single view available to all other users.

BaseTablel (Pat ientName .Disease , Level) with Primary Key (PatientName,Leve

BaseTable2 (UserName , SecurityLevel) with Primary Key (UserName)

CREATE VIEW PatientInfo(PatientName, Disease)

AS SELECT Pat ientName, Disease

FROM BaseTablel

WHERE BaseTablel .Level = (SELECT SecurityLevel FROM BaseTable2

WHERE UserName = CURRENT_USER

)

OR

(BaseTablel. Level = "LOW"

AND

NOT EXISTS (SELECT FROM BaseTablel AS X

WHERE X.Pat ientName = BaseTablel . PatientName

3.2 Mandatory Access Control

AND X. Level = "HIGH"

)

)

With view optimization techniques available in most SQL-conformant processors, user

access through the Patientlnfo view should suffer no significant performance penalty

over direct access to BaseTablel.

This view is always updateable, provided that a DEFAULT value exists for Level in

BaseTablel. In SQL'89 and SQL'92, the default clause does not allow a case expansion

to determine the default, so one cannot specify in the schema that insert values for

Level are HIGH for high level users and LOW for low level users. Instead, one would

specify a default and all new inserts would have that Level initially assigned.^

Ensuring that new inserts are all assigned the appropriate security level requires a

second view, to be used only by HIGH level users. The second view would assign

inserts a HIGH value for Level by default. The first view would have a default of

LOW for Level.

3.2.2 TCB Subset Architecture

The TCB Subset model implements MAC by maintaining the database in multiple,

single-level, files. The operating system enforces the access control policy, restricting

the DBMS process to appropriate information. This means that the DBMS does

not have to be trusted, so evaluation is simplified. The DBMS might still enforce

privilege based access controls, but would not enforce MAC policy. If no DAC policy

is required, all users would have all privileges for all tables.

The TCB Subset model implies polyinstantiation. If a record ri exists with keys K,

but is classified SYSTEM HIGH, a SYSTEM LOW user cannot see it. If a SYSTEM
LOW user attempts to add a record r2 with keys K, the system must do so. Now the

DBMS has two records with the same set of keys in the same table. SYSTEM LOW
users will see r2. SYSTEM HIGH users will see ri instead; r2 is considered incorrect.

This can reduce inference problems, but results in a variety of integrity problems.

The data in the two records may become out-of-date. Then if one record is changed,

but the other is not, the DBMS loses integrity.

Note that this is quite complicated if categories are being utilized. The TCSEC
suggests that MAC systems support a minimum of eight security levels and 256

^The emerging SQL3 specification includes facilities that easily get around this problem.

17

3 SECURITY POLICY

High User Low User

A

T

Low DBMS
Process

High DBMS
Process

Trusted Operating System

Figure 6: TCB Subset Architecture.

categories. Since the files must support combinations of categories for each level,

the number of files is unmanageable. To avoid this problem, the DBMS could have

to enforce the category aspect, but this defeats the purpose of the architecture: the

DBMS process must be a trusted process.

3.2.3 Trusted Subject Architecture

A Trusted Subject Architecture DBMS enforces both MAC and DAC. The database

is stored on the system as SYSTEM HIGH OS objects. Within those files, DBMS
objects are labeled according to security policy. Those labels are used as the basis

for MAC enforcement. DAC enforcement is based upon the usual SQL DAC specifi-

cations.

The Trusted Subject Architecture does not imply or rule out polyinstantiation. Sup-

port for polyinstantiation must be built in if it is required.

3.2.4 Integrity Lock Architecture

The Integrity Lock Architecture uses an untrusted DBMS in conjunction with a

trusted OS and trusted filter to enforce security policy. The DBMS could enforce

DAC policy, but MAC policy and labeling would be enforced by the trusted filter. En-

18

3.2 Mandatory Access Control

User Application

y

Trusted Subject DBMS

Trusted Operating System

Database

File

(High)

Figure 7: Trusted Subject Architecture.

Single-Level User

Front End

Single-Level User

Front End

Untrusted Front End

Trusted Filter

Trusted Operating System

Database

File

(High)

Figure 8: Integrity Lock Architecture.

19

3 SECURITY POLICY

cryption and cryptographic checksums are employed to protect the security label from

modification. The Integrity Lock Architecture implies support for polyinstantiation.

This architecture allows use of off-the-shelf DBMS software. It has disadvantages due

to high overhead.

These are the most common architectures for MAC DBMS's, but are not the only

ones. They can also be combined to some extent. For instance, the Integrity Lock

Architecture could be used to add category enforcement to the TCB Subset Archi-

tecture.

3.3 Schema Manipulation

SQL'92 allows manipulation of the schema itself, rather than just the data. Columns

and constraints on columns can be added or removed from tables. Additionally,

schema object, such as domains and constraints, can be altered or deleted. Also

new to SQL'92 are schema definition tables. These tables axe created by the SQL
processor and are treated as views, in that they can be accessed but not directly

changed in SQL.

3.4 Integrity Constraints

Data integrity is addressed by a variety of data constraints specified in the database

schema. These constraints describe relationships between tables, relationships be-

tween rows in a table, and permissible values for elements. Relationships between

tables, or between rows in a table, are known as table constraints. Range checks and

other specifications for data values are element constraints.

3.4.1 Table Constraints

SQL'89

SQL'89 defines three types of integrity constraints that may be placed upon tables.

These constraints are:

• unique constraints;

• referential constraints; and

• check constraints.

20

3.4 Integrity Constraints

T-1 T-2

a b c d a b c d

Ti 2 2 3 4 Ti 2 2 3 4

T2 2 2 4 4 T2 2 2 4 4

Ts 2 2 3 5 T3 2 2 3 5

T, 6 2 3 4 T4 2 6 3 4

Table 1: Uniqueness examples: contents of T-1 and T-2

SQL '89 also defines with CHECK option on views.

A unique constraint definition specifies a list of columns in the table T. T cannot

contain multiple rows where the values of each of the corresponding columns are

identical. Each of the listed columns must be defined as NOT NULL.

Example: Assume T has columns {a,b,c,d} and is constrained for uniqueness on

{a,c,d}. Row Tt has values {ai,6i,c,,c?i}. T meets the constraint if there are no rows

Tj and Tk such that {aj = ak, Cj = c^, and dj = dk}. In Table 1, T-1 meets the

constraints, but T-2 does not. Rows Ti and T4 are not unique for the specified

columns.

A referential constraint definition specifies columns in T which reference keys in an-

other table F. If all specified columns in a row of T are non-null, then a row in F must

exist such that all corresponding columns match. The table has referential integrity

if every row meets this criteria, or has a null value in the specified columns.

A check constraint definition specifies a condition which all rows in T must satisfy.

The condition may restrict a column, or may restrict relationships between columns.

(For example, within a row MAX-TEMP >^ MIN-TEMP.) The condition is ternary;

it may evaluate to "true," "false," or "unknown." The condition may specify illegal

values or legal value ranges. The table does not satisfy the check condition if and

only if there exists a row for which the condition evaluates to "false."

Views with check options are similar to check constraints upon tables. However, the

constraint is satisfied if and only if the condition evaluates to "true."

SQL'92

SQL'92 enhanced referential constraints with the MATCH FULL and MATCH PAR-

lOjf one or more specified columns in the row are null, correspondence can not be established.

21

3 SECURITY POLICY

TIAL specifications. If no match type is specified, the functionality is identical to

SQL'89. If MATCH FULL is specified, then for each row in T:

• all referencing columns must be null; OR
• all referencing columns must be non-null and there must be a row in F such

that all corresponding referencing columns are equal value.

If MATCH PARTIAL is specified, then for each row in T:

• there must be a row in F such that all corresponding referencing columns are

equal value, or a referencing column value in T is null.

3.4.2 Column Constraints and Check Constraints

SQL'89 defines six types of integrity constraints that may be placed upon columns.

These constraints are:

• data type;

• precision;

• references specification;

• default clause;

• CHECK constraint definition; and

• NOT NULL.

The defined data types for SQL'89 are character strings and numbers. The character

strings are specified with a fixed length. Numbers may be exact numeric values or

approximate numeric values.

Exact numeric values include integers and real numbers with a precision and scale.

A real number of exact numeric value is a string of decimal digits of length precision.

The exact numeric value is the integer value of the significant digits multiplied by
j^Q — scale

Approximate real numbers have an exponent and mantissa. The mantissa is a signed

numeric value; the exponent is a signed integer that specifies the magnitude of the

mantissa. Approximate real numbers have precision; precision is a positive integer

specifying the number of binary digits in the mantissa. Integers come in two sizes.

Real numbers can be defined in five different ways, allowing the database designer to

create fields tailored for the data.

22

,:0 .

3.4 Integrity Constraints

The references specification allows the specification of a referential integrity clause

for a single column (rather than a list of columns). Any non-null value entered into

that column must exist in the corresponding table and column.

Default clauses may be stated explicitly or implicitly. SQL'89 permits default values

of NULL, USER, or a literal (constant of appropriate data type). Additional default

options, such as <datetime value function>, are available in SQL'92.

A CHECK constraint definition specifies a condition which the column element must

satisfy in each row. This differs from the table check constraint; the condition can

only involve the specified column element. Again, the condition is ternary; it may
evaluate to "true," "false," or "unknown." The condition may specify illegal values

or legal value ranges. The table does not satisfy the check condition if and only if

there exists a row for which the condition evaluates to "false."

The NOT NULL constraint is an implicit check constraint. It corresponds to CHECK
<column name> IS NOT NULL.

SQL'92 adds two new data types, datetime and interval. The type datetime in-

cludes DATE, TIME, and TIMESTAMP. The type interval allows specification of a

year-month or day-time interval. Variable length character strings are also added in

SQL'92, and the character set for the character string may also be defined.

User-defined data types are under consideration for SQL3.

3.4.3 Assertions

In SQL'92, assertions enhance the SQL'89 check constraints. Assertions are named

constraints that "may relate to the content of individual rows of a table, the entire

contents of a table, or to a state required to exist between a number of tables."

[FIP93] This is a significant enhancement, since SQL'89 check constraints applied

to column(s) in a single row. (In SQL'92, check constraints are allowed to contain

sub queries.)

3.4.4 Domains

Domains were introduced in SQL'92. Domains are a significant enhancement for data

abstraction used to specify a set of permissible values. Domain definitions can also

be used to enforce a variety of format constraints, such as position of hyphens in a

date field.

23

3 SECURITY POLICY

3.4.5 The SQL'89 Security Bug

SQL'89 allowed a user with UPDATE or DELETE privileges to use WHERE clauses

even if they did not have SELECT privileges. This allowed users to "probe" the

system for data they were not privileged to have. They could confirm the existence

of a record with certain column values even though they could not directly read the

record. This bug was fixed in an SQL'89 Errata and is specified correctly in SQL'92.

Note that a workaround exists for older SQL'89 systems. By defining updatable

views, the columns users can access may be limited to the appropriate subset of the

data. In any case, a user with DELETE privileges will be able to determine values

of primary keys.

3.5 Object Reuse

Object reuse is defined in [Rob91] as:

The reassignment to some subject of a medium (e.g., page frame, disk

sector, magnetic tape) that contained one or more objects. To be securely

reassigned, such media must contain no residual data from the previously

contained object(s).

SQL'89 and SQL'92 have no specification regarding object reuse. In order to accom-

modate object reuse issues, both the SQL processor and the operating system will

need to address the issue jointly. The operating system is responsible for deallocating

system resources, such as files used to store whole tables, and the SQL processor is

responsible for deallocating SQL objects, such as individual rows of tables. To main-

tain confidentiality, data stored in these resources and objects must be zeroed out or

replaced with random data before reassignment.

3.6 Labels

Mandatory access controls require support for security labels. These labels are used

as the basis for access control decisions. In order to correctly label data, the system

must request and receive the security level of data. This can be accomplished in

several ways.

On a trusted system, the user may specify the security level of each session. (The

specified security level must be "less than" or equivalent to the user's clearance level.

24

3. 7 Inference

of course.) That information would be passed to the DBMS, and all input would be

labeled at that level by default. Alternatively, the DBMS could include a mechanism

to request and set the current level interactively.

If the DBMS is not trusted, as in the Integrity Lock Architecture, all mechanisms

regarding labeling will be placed in the trusted filter or operating system.

In addition, if the DBMS labels DBMS objects with greater granularity than OS
objects, the DBMS must maintain label integrity. For instance, if all DBMS objects

are stored in a single SYSTEM HIGH OS object, as in Figure 7, then the DBMS
must maintain labels for the DBMS objects. This is in contrast to Figure 6, where

the OS keeps track of all labeling information.

3.7 Inference

Consider a research hospital, which has a database of doctors and patients. Patient

information includes address, Social Security number, doctor name, known allergies,

current prescriptions, and scheduled appointments. Each patient's medical history

is kept on-line in a series of medical records. Scheduled hours, appointments, and

specialty are associated with each doctor.

This database is used for scheduling appointments, billing patients, and filling pre-

scriptions. The hospital wishes to protect the patients' anonymity, and prevent dis-

closure of their ailments to anyone other than a patient's individual doctor. For this

reason, the average user is not allowed to access the patient history/medical records.

However, the database may still be vulnerable to disclosure through inference.

• Doctors generally specialize in the treatment of particular diseases. It may be

possible for hospital staff to infer a patient's ailment from the identity of the

doctor. This could be determined by viewing the patient information or the

doctor's schedule.

• Drugs are generally associated with the treatment of particular diseases. It may
be possible for hospital staff to infer a patient's ailment from the prescription.

Polyinstantiation is the key method used in these situations for limiting inference in

multi-level secure systems.

25

3 SECURITY POLICY

3.8 Aggregation

Consider a database of parts for a missile. Each part's information includes sufficient

information for a manufacturer to fabricate the part. This information would include

materials, physical geometry, and finishing treatment(s). (A screw might be described

as follows: steel; 1x8 pan head with fine left-hand threads; rust-inhibiting paint). In

addition, the database includes assembly information and the quantity of each part

required to assemble one missile.

Each part is unclassified. The combined schematic and missile design are classified as

SECRET. If each manufacturer is limited to accessing a few part descriptions, he will

not learn anything about the missile itself. However, if the manufacturer can access

the entire database, they may be able to figure out how to build the missile.

To limit aggregation, one should limit access as tightly as possible. Inference is

a problem that is derived primarily from poor database design. There are several

methods for detecting and reducing the potential for disclosure by inference, including

those described in [Thu92]. These methods can be used in conjunction with SQL,

but could not be performed within the confines of SQL itself. These methods require

additional information regarding the relationships between the elements of different

relations.

The inference problem gets the most attention in MAC environments, but can occur

in DAC systems as well. Fortunately, the same tools should apply to DAC systems.

The aggregation problem occurs when two pieces of information A and B are classified

at level X individually, but level Y (Y higher than X) collectively. This problem may
in fact be insolvable. Denying access to A if User 1 with clearance X has already

viewed B would require an infinite history, and quickly leads to inference problems.

Aggregation is primarily a MAC problem.

^^It is a lot like assembling a bicycle on Christmas Eve without directions. You know what a

bicycle looks like and you have a pile of parts. You just try to use them all.

26

4 Accountability

Accountability is not addressed in the SQL specifications. Accountability is primarily

achieved with two classes of mechanisms: identification and authentication controls;

and auditing.

4.1 Identification Authentication

Identification and authentication (I&A) mechanisms are not specified in SQL. How-
ever, they are required implicitly. The DAC mechanisms all assume that such in-

formation is available. Such mechanisms are usually provided by the host system,

and the information is passed to the SQL processor. (In SQL'89 this is implementa-

tion defined; in SQL'92 it is performed via the CONNECT statement.) The quality

of this information will vary according to authentication technique and when that

authentication is performed.

In the simplest case, the user authenticates his identity to the system at logon. That

information is maintained throughout the session. The information is passed to the

DBMS when the DBMS is accessed. The strength of authentication varies with the

type, implementation, and management of the authentication mechanisms.

That information may be incorrect by the time the DBMS is accessed. The user may
have left the terminal or workstation unattended, and another person may actually

be at the keyboard. The information may be improved if the user re-authenticates

when the DBMS session begins.

A stronger method requires re-authentication with every transaction. This is too bur-

densome for systems relying on passwords, but smart card based systems can support

this requirement. This method provides high assurance that the user identification

was correct at the time the transaction was initiated.

If such mechanisms are not supplied by the host system, the SQL processor could

incorporate its own I&A mechanism. However, the lack of I&;A implies a lack of access

control by the host. In such a case, the processor would have to utilize encryption

to protect the data. That is, a host without access control requires a DBMS based

upon the Integrity Lock Architecture.

Selection of I&A mechanisms must be tempered with common sense, of course. If

passwords will be used to authenticate both system and DBMS session, the same

mechanism (and password) should be used. Requiring users to remember multiple

passwords is likely to result in misuse (e.g., they will write them down). Both pass-

27

4 ACCOUNTABILITY

words and biometrics are inappropriate for authenticating transactions; the burden

upon the user is too great.

4.2 Auditing

Auditing concerns for trusted database systems are described in [SFD92] as follows:

Auditing of security-related activities is required in [trusted] DBMS's.

Security-relevant events include logins, granting and revoking of access

permissions to relations, etc. The level at which auditing needs to be

done is variable. The performance effects of the optional auditing features

should be carefully examined, since their use may be a significant factor

in the performance of data management functions.

This statement is equally applicable to all database systems.

The SQL specification does not include auditing requirements, but SQL products

may include some auditing functionality. If the SQL processor includes auditing, the

OS must have sufficient access controls to prevent modification of, or access to, the

audit trail.

Warning mechanisms are closely related to auditing requirements. Such mechanisms

notify the system or DBMS administrator if critical events occur. (An example might

be an attempt to access tables without sufficient privilege.) Again, SQL has no

requirement for such mechanisms, but processors may include them.

28

5 Assurance

Assurance describes a broad range of mechanisms and procedures. These mechanisms

and procedures address the behavior of the system. A system with high assurance

is more likely to operate as expected than a system with low assurance. Unexpected

behavior is generally the result of hardware failure or software bugs. Hardware failure

may be subtle (such as data transmission errors) or catastrophic (such as a disk crash).

Software bugs may be in the OS, DBMS, or locally developed applications.

This section examines four areas of assurance:

• testing and evaluation;

• reliability of hardware;

• SQL transaction management; and

• SQL diagnostic reporting.

5.1 Testing and Evaluation

Two primary sources for assurance that software functions as expected are testing

and formal evaluation of software. Testing is performed by supplying inputs to the

DBMS while it is in various states, and analyzing the results. Formal evaluation

involves review of design specifications and code as well as testing.

Testing can be very informal, consisting of execution of a few test applications, or quite

rigorous. The features that are specified in the versions of the SQL standard can be

tested in a very structured fashion t'o demonstrate compliance to the standard. This

is known as conformance testing. FIPS conformance testing is a primary source of this

information. NIST maintains the NIST SQL Test Suite for validating conformance

to FIPS SQL.

Formal evaluation involves reviewing the architecture, source code, and documenta-

tion to detect any flaws in the system. This process may include formal verification

of design and program correctness. Formal evaluation by third parties currently con-

centrates upon security functionality in general, and confidentiality in particular, due

to the expense. However, the process could be performed against any standard or

standard set of criteria.

The primary source for formal evaluations by third parties has been the National

Computer Security Center (NCSC). The NCSC performs evaluations of systems and

29

5 ASSURANCE

subsystems against the Department of Defense Trusted Computer System Evaluation

Criteria (TCSEC), which is commonly known as the Orange Book. Other organiza-

tions providing formal evaluations are the European Community evaluations against

the Information Technology Security Evaluation Criteria (ITSEC) and the Canadian

Security Establishment evaluations against the TCSEC and Canadian security crite-

ria. In each case, the evaluations are limited to security-relevant features (as defined

by the particular criteria).

Conformance testing and security evaluation of SQL processors are complimentary

processes. For example, NCSC evaluations do not look at code that falls outside the

"trusted computing base" of security-relevant code. As a result, NCSC evaluation will

not review many areas of SQL functionality that are reviewed in PIPS conformance

testing. The TCSEC supplies criteria in many areas where the SQL standard is silent,

so NCSC evaluations will cover many areas that are outside the scope of conformance

testing.

5.1.1 FIPS Conformance

PIPS 127-1 specifies ANSI X3. 135-1989, Database Language - SQL with Integrity

Enhancement, and X3. 168-1989, Database Language - Embedded SQL}^ PIPS con-

formance testing provides assurance that the features specified in the SQL standard

function as expected. This testing addresses the entire range of SQL functionality,

not just security.

Conformance testing is performed by executing a suite of test programs and evaluating

the results.^"* Conformance testing does not review the code itself. Security flaws such

as trapdoors or bugs in the code may not be detected. The evaluation is platform

independent, so platform dependent security problems will probably go undetected.

Many security concerns, such as covert channels, are simply not an issue in this type

of testing.

Conformance testing is also "flat" with respect to MAC. The database is defined,

populated, and queried at a single security level. This makes sense, since SQL does

not define any functionality regarding MAC. However, polyinstantiation would vio-

late SQL's uniqueness clauses, but is not detected because of the single level testing

method.

SQL'92 has been approved as both ANSI and ISO standards. PIPS 127-2, which

adopts ANSI X3. 135- 1992, was approved in June 1993. Conformance tests have been

developed only for Entry Level SQL'92, because it represents a minor enhancement

^^FIPS 127-1 does not require all features of SQL'89: see the standard itself for details.

^^The conformance testing procedures are described in [GS92].

30

5.2 Reliability

over the SQL'89 tests. Conformance testing for Intermediate and Full SQL'92 repre-

sent a major development effort which has not yet begun.

5.1.2 NCSC Evaluation

The TCSEC and [TDI91] provide the basis for NCSC security evaluations of trusted

database management systems. These evaluations consider security policy^'*, account-

ability, audit, and assurance. NCSC evaluations are platform dependent, and result

in certification of a DBMS for use on a particular computer system, with a particular

operating system. A number of issues, such as covert channels, are addressed where

results are invalidated by changes in the platform.

Evaluations may consider a wide range of assurance levels. At higher levels, NCSC
evaluations include review of security relevant code (the TCB). At the highest levels,

NCSC evaluations require formal verification of all code in the TCB.

5.2 Reliability

The most valuable asset in a database system is often the data itself. Loss of access

to this data may be measured per minute in some cases. This loss, known as denial

of service, may arise from a number of situations. One of these is the physical failure

of hardware.

Insuring reliability of hardware is the primary technique to address hardware failure.

Fault tolerant systems address system failure; disk array technology can be used to

address storage media failure. Fault tolerance is not required by any SQL specifica-

tion, but is a feature of certain SQL implementations.

5.2.1 Fault Tolerant Systems

If the hardware platform itself is down, there will be no access to the system. Fault

tolerant systems are designed to continue correct operation in the event of failure

of any single component. They typically exhibit both redundancy physically and

conceptually (two or more CPU's, buses, disk controllers, etc.) and perform fault-

detection tests with error-detecting codes, disagreement detectors, and self-checking

logic circuits. They rely on disk array technology and WAFER storage technologies^^

^^The TCSEC security policy criteria is weak in the area of integrity policy.

^^WAFER storage are solid state storage subsystems. They are expensive, but have performance

advantages when compared to disk array peripherals.

31

5 ASSURANCE

for fault tolerance in their peripherals.

Many systems are not designed to be completely fault tolerant, but include redun-

dancy at common points of failure. These systems might be called fault resistant. For

example, a disk cabinet with four disk drives might include redundant power supplies.

A single power supply would be sufficient to run the disks; however, a power sup-

ply failure would take them all out of service. Redundant supplies mean two power

supply failures are required to halt the systems.

This feature does not make the disk drives in the cabinet fault tolerant; a single

drive failure will result in loss of that disk's data and storage. It does make failure

due to power supply less likely. Fault tolerance for disks requires use of disk array

technology.

5.2.2 Disk Array Technology

Disk array technology uses several disks in a single logical subsystem. Disk arrays were

introduced in [KGP89], which described six classifications for "Redundant Array of

Inexpensive Disks," or RAID systems. They were numbered RAID-0 through RAID-
5. RAID-1 through RAID-5 offer varying degrees of security functionality.-^^

Disk Shadowing

To reduce or eliminate downtime from disk failure, DBMS servers may employ disk

shadowing or data mirroring. A disk shadowing, or RAID-1, subsystem includes two

physical disks. User data is written to both disks at once. In this case, if one disk

fails, all of the data is immediately available from the other disk. Disk shadowing

incurs some performance overhead (during write operations) and increases the cost

of the disk subsystem since two disks are required. However, the major problem

with RAID-1 is the 50% disk overhead; for every 100 megabytes of disk space, 200

megabytes are required.

RAID-2 through RAID-4

RAID levels 2 through 4 are more complicated than RAID-1. Each involves storage

of data and error correction code (ECC) information, rather than a shadow copy.

Since the error correction data requires less space than the data, the subsystems have

lower disk overhead. Each level has its own performance implications.

^^RAID-0 provides only balanced performance. RAID-6 and RAID-7 have also been proposed

since that time.

32

5.3 Transaction Management (Integrity)

RAID-5

RAID level 5 involves storage of data and error correction information but does not

require a dedicated shadow or ECC disk. RAID-5 has good performance character-

istics, since it has the ability to read and write in parallel. Unfortunately, RAID-5
implementations work best with large numbers of physical disks (10 to 20+) which

rules out small to mid-sized disk subsystems.

5.3 Transaction Management (Integrity)

A database may be in a consistent or inconsistent state. A consistent state implies

that all tables (or rows) reflect some real-world change. An inconsistent state implies

that some tables (or rows) have been updated but others still reflect the old world.

Transaction management mechanisms are applied to ensure that a database remains

in a consistent state at all times. These mechanisms allow the database to return to

the previous consistent state if an error occurs. Statements available in SQL'89 for

transaction management include the rollback and commit statements. These state-

ments are used to terminate transactions. SQL3 adds the concept of savepoints.

• The rollback statement terminates a transaction and cancels all changes to the

database, including data or schema changes. This returns the database to the

previous consistent state.

• The commit statement terminates a transaction and commits all changes to the

database, including both data or schema changes. This makes the changes avail-

able to other applications. If a commit statement cannot complete successfully,

for example a constraint is not met, an exception is raised and an implicit roll-

back is performed. Note that both statement rejects and transaction rollbacks

are permitted by the SQL standard.

• The savepoint feature allows a user to mark points in a transaction, creating

subtrans actions. With this feature, a user can rollback portions of a transac-

tion without affecting other subtransactions. For examples of savepoints and

subtransaction management see [Gal91, pages 23-24].

33

5 ASSURANCE

5.4 Diagnostics Management

SQL'92

SQL'92 adds a new area of functionality: diagnostics management. This standardizes

the return codes and completion codes for SQL statements. This may have some

security functionality, especially when combined with external procedures.

34

6 Summary/Recommendations

SQL-compliant DBMS's can be applied to any scenario, no matter what security-

policy is required. However, not all SQL-compliant DBMS's will be appropriate

for every security policy. Many critical features are not specified by SQL; others

are specified in one version of SQL but omitted from earlier versions. The systems

acquisition phase must begin with a clear and concise statement of the security policy.

The exact features required will be a function of that policy.

This section provides a short review of security features that may be found in SQL-

compliant DBMS's. These features are classified as unspecified or required. Where
required, the version of SQL is specified and a brief summary of the functionality

is provided. For unspecified features, the feature is classified as an OS, hardware,

or DBMS feature. The remainder of this section discusses the various features and

provides guidance regarding their relative importance.

Table 2 summarizes the types of security-relevant controls that might be offered in

an SQL-compliant DBMS. Controls are grouped according to security requirements.

For each control, a variety of mechanisms is listed. Each control is either required

by a version of SQL, or represents unspecified functionality. If the control was a

new requirement, the Status field will state required. If functionality is added to that

requirement in later versions of SQL, the Status field will say enhanced. If the control

is probable for SQL3, the Status will be planned. Note that functionality denoted

unspecified or planned may exist in products today; however, implementations will

be no-standard.

SQL processors can support a variety of security policy mechanisms. In the area

of security policy, the most important decision regards the type of access controls

desired. If discretionary controls are desired, SQL'89 does include powerful controls.

SQL'92 significantly enhances these controls with the specification of the privilege

revocation mechanism. Roles will be a significant enhancement for SQL3. This

functionality may be available in SQL processors even before the SQL3 specification

becomes stable. Mandatory controls are not specified in any version of SQL but can

be supported by SQL implementations.

The SQL integrity constraints are powerful tools for enforcing and maintaining in-

tegrity. SQL'89 includes a powerful suite of integrity constraints. SQL'92 does include

enhancements such as assertions and domains. These constraints may be used to en-

force internal or external consistency constraints.

some cases, controls map to mechanisms on a one-to-one basis. For example, mandatory

access control is basically performed one way. In these cases, the mechanism field is omitted.

35

6 SUMMARY/RECOMMENDATIONS

Security

Requirements

Security Mechanisms Status

In SQL
Where It's

FoundClass Mechanism

Security Policy DAC Privileges Ton n 1 T^sH1 11X1 KzXJL

enhanced SQL'92

Roles n 1 a n nUlCLlLliCU. SOT,"?

Mandatory Access Control U 1i o LI c 1 i 1C U. nRMS and OS

Integrity

Constraints

Constraints

on Tables

1 cU lill cU.

p»Ti n ^ Ti ppnC: XL 11 Of1LC C. Vi. S0L'Q9

Constraints

on Columns

Tpmnrpn± vi-U LLIX C^VJ. SOL'SQ

pn n a n ppnCXXXXCLlXv-CU. SOT/Q9OW iJ

In!"erence U.XLO IJ Cl-X i IC VI DRMS add-nn tnnk1-J xJ XVX kj <ivXU. UXX u l_'\JXO

Aggregation im^sTipnTipHU. XXO IJC X X XCU. DBMS add-on tookxJ X-J XVX \J <L\X\X. \Ji.\. \j\J\JLZ3

Object Reuse imsnprifipd desiffn of OS and DBMS
Accountability

Identification

and

Authentication

authentication of

system session

unspecified OS dependent

authentication of

DBMS session

unspecified DBMS implementation

dependent

authentication of

each transaction

unspecified DBMS implementation

dependent

Auditing Journal generation unspecified design of DBMS
Journal protection unspecified design of OS

Assurance Software

Quality

SQL features unspecified FIPS conformance tests

Security features unspecified NCSC evaluation

Fault

Tolerance

processor unspecified hardware/OS
disk shadowing unspecified hardware/OS

data mirroring unspecified hardware/OS
Transaction Management required SQL'89

Table 2: Security features in SQL standards.

36

If the system will utilize MAC, design tools should be obtained to limit the threat

of aggregation. Whether MAC or DAC policies are envisioned, inference and object

reuse are threats to confidentiality. Inference is addressed through add-on tools;

object reuse must be addressed within both the DBMS and OS.

Accountability is unspecified in SQL, but the choices are of great importance. Most

important is the selection of appropriate authentication points. Should each trans-

action require re-authentication, or is the session information sufficient? The type of

authentication mechanism is also important, but falls outside the SQL specification

as well.

Auditing and warning mechanisms are similarly unspecified but required for any rea-

sonably secure system. These mechanisms, especially auditing mechanisms, depend

upon the identity previously authenticated. They are of limited value if authentica-

tion is weak.

Finally, consider assurance mechanisms. If the system will rely on SQL-specified DAC
functionality, SQL conformance testing may be sufficient. If the system will rely upon

MAC controls, evaluation may be more applicable.

Fault tolerance is an expensive option, but may be justified if the value of the data is

correspondingly high. Disk array technology provides fault tolerance for data storage.

Transaction management features can add assurance that applications are well-behaved,

and the database remains in a consistent state. These features add assurance only if

they are used consistently and appropriately. If the concept of consistent state is not

well understood for the database in question, it will be difficult to use these features

appropriately.

37

REFERENCES

References

[ANS89a] Database language - SQL with integrity enhancenrients. American National

Standard X3.135, American National Standards Institute, 1989.

[ANS89b] Database language - embedded SQL. American National Standard X3.168,

American National Standards Institute, 1989.

[ANS92] Database language SQL. American National Standard X3. 135-1992, Amer-

ican National Standards Institute, 1992.

[Bur89] Rae K. Burns. DBMS integrity and security controls. In Report of the

Invitational Workshop on Data Integrity. NIST Special Publication 500-

168, 1989.

[Cam90] John Campbell. A brief tutorial on trusted database management systems

(executive summary). In 13th National Computer Security Conference

Proceedings, 1990.

[C092] S.J. Cannan and G.A.M. Otten. SQL - The Standard Handbook. McGraw-
Hill Book Co., Berkshire SL6 2QL England, October 1992.

[DD92] C.J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-

Wesley Publishing, Readmg, MA 01867 USA, October 1992.

[DJ92] Vinti M. Doshi and Sushil Jajodia. Enforcing entity and referential in-

tegrity in multilevel secure databases. In 15th National Computer Security

Conference Proceedings, 1992.

[FIP90] Database language SQL. Federal Information Processing Standard 127-1,

National Institute of Standards and Technology, 1990.

[FIP93] Database language SQL. Federal Information Processing Standard 127-2,

National Institute of Standards and Technology, June 1993.

[Gal91] Leonard Gallagher. SQL3 support for CALS appHcations. NISTIR 4494,

National Institute of Standards and Technology, February 1991.

[GS92] Leonard Gallagher and Joan Sullivan. Database language SQL: Integrator

of CALS data repositories. NISTIR 4902, National Institute of Standards

and Technology, September 1992.

[ISO90a] Remote database access - part 1: Generic model. IS0/JTC1/SC21 N4282,

Information Processing Systems - Open Systems Interconnect, 1990.

39

REFERENCES

[ISOQOb] Remote database access - part 2: SQL specialization. IS0/JTC1/SC21

N4281, Information Processing Systems - Open Systems Interconnect,

1990.

[KGP89] Randy H. Katz, Garth A. Gibson, and David A. Patterson. Disk system

architecture for high performance computing. In Proceedings of the IEEE,

Vol. 77, No. 12. Institute of Electrical and Electronics Engineers, 1989.

[MS92] Jim Melton and Alan Simon. Understanding the New SQL: A Complete

Guide. Morgan Kaufman PubHshers, San Mateo, CA 94403 USA, October

1992.

[Rob91] Edward Roback. Glossary of computer security terminology. NISTIR 4659,

National Institute of Standards and Technology, September 1991.

[SFD92] Linda M. Schlipper, Jarrellann Filsinger, and Vinti M. Doshi. A multi-

level secure database management system benchmark. In 15th National

Computer Security Conference Proceedings^ 1992.

[TCS85] Trusted computer system evaluation criteria. DOD 5200.28-STD, National

Computer Security Center, December 1985.

[TDI91] Trusted database management system interpretation. NCSC-TG 021, Na-

tional Computer Security Center, April 1991.

[Thu92] Bhavani Thuraisingham. Knowledge-based inference control in a multilevel

secure database management system. In 15th National Computer Security

Conference Proceedings^ 1992.

[Wag89] Grant Wagner. System services - group 3 report. In Report of the Invi-

tational Workshop on Data Integrity. NIST Special Publication 500-168,

1989.

40 *U.S. G.P.O. :1993-3ai-832:82048

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SECURITY

Superintendent of Documents
Government Printing Office

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in

the series: National Institute of Standards and Technology Special Publication 800-.

Name

Company

Address

City State Zip Code

(Notification key N-503)

Ill J. LJ X Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology— Reports NIST
research and development in those disciplines of the physical and engineering sciences in which
the Institute is active. These include physics, chemistry, engineering, mathematics, and computer
sciences. Papers cover a broad range of subjects, with major emphasis on measurement
methodology and the basic technology underlying standardization. Also included from time to time
are survey articles on topics closely related to the Institute's technical and scientific programs.
Issued six times a year.

Nonperiodicals

Monographs — Major contributions to the technical literature on various subjects related to the

Institute's scientific and technical activities.

Handbooks — Recommended codes of engineering and industrial practice (including safety codes)
developed in cooperation with interested industries, professional organizations, and regulatory

bodies.

Special Publications — Include proceedings of conferences sponsored by NIST, NIST annual
reports, and other special publications appropriate to this grouping such as wall charts, pocket
cards, and bibliographies.

Applied Mathematics Series — Mathematical tables, manuals, and studies of special interest to

physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series — Provides quantitative data on the physical and chemical
properties of materials, compiled from the world's literature and critically evaluated. Developed
under a worldwide program coordinated by NIST under the authority of the National Standard
Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data
(JPCRD) is published bimonthly for NIST by the American Chemical Society (ACS) and the

American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from
ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series — Disseminates technical information developed at the Institute on building

materials, components, systems, and whole structures. The series presents research results, test

methods, and performance criteria related to the structural and environmental functions and the

durability and safety characteristics of building elements and systems.

Technical Notes — Studies or reports which are complete in themselves but restrictive in their

treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive

in treatment of the subject area. Often serve as a vehicle for final reports of work performed at

NIST under the sponsorship of other government agencies.

Voluntary Product Standards — Developed under procedures published by the Department of

Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all concerned interests with a basis

for common understanding of the characteristics of the products. NIST administers this program
in support of the efforts of private-sector standardizing organizations.

Consumer Information Series — Practical information, based on NIST research and experience,

covering areas of interest to the consumer. Easily understandable language and illustrations

provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NIST publications— FIPS and NISTIRs—from the National Technical Information

Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) -Publications in this series

collectively constitute the Federal Information Processing Standards Register. The Register serves

as the official source of information in the Federal Government regarding standards issued by
NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,

dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work
performed by NIST for outside sponsors (both government and non-government). In general,

mitial distribution is handled by the sponsor; public distribution is by the National Technical

Information Service, Springfield, VA 22161, in paper copy or microfiche form.

a,

E
B
o
U

o
"o
c
u
u

•o
c
C3

(9

s

S ^
3
X)

c w
. O ^ .2 ^^

"•i to « «3 5?

	SP800-8
	nistspecialpublication800-8

