o

e

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY/

S
e

-

i
=
e
R
SR A
PRt
e
i
e G
< e S

=

S

Gl
M R e e
G
P
e e

i
s

e
S
L g
e
Lo
e e
e e
R e
SR

S

.
e
:&«

a

o

S
.

,.{

o
s
i.éfnam,\'«

e

e
S
S

S
e
s

A

e G
el
e
Lo
A
e
S
e
s
e e
e
e
e
i
Al

e
R,
N

October 13-16, 1992
Baltimore Convention Center

Baltimore, MD

i

S
S
a2 ;
e

LRI
b

e

e

S

.

i

i
i
R
el

NaTionaL CompuTER SECURITY CENTER

15TH NATIONAL COMPUTER SECURITY CONFERENCE

i

e
T
W,
S

e,
S, o
G

o

e

i

R
L

e

i

S

S
o
R
S

e

ol

e
s

s

S

s

A

o

e

o

e
o

7

Welcome!

The National Computer Security Center (NCSC) and the Computer Systems
Laboratory (CSL) are pleased to welcome you to the Fifteenth Annual National
Computer Security Conference. We believe that the Conference will stimulate a vital
and dynamic exchange of information and foster an understanding of emerging
technologies.

The theme for this year’s con ferencé, “Information Systems Security: Building
Blocks to the Future,” reflects the continuing importance of the broader information -
systems security issues facing us. At the heart of these issues are two items which will
receive special emphasis this week--Information Systems Security Criteria (and how it
affects us), and the actions associated with organizational accreditation. These areas
will be highlighted by emphasizing how organizations are integrating information
security solutions. You will observe how Government, Industry, and Academe are
cooperating to extend the state-of-the-art technology to information systems
security. Presentations will provide you with some though_tful_insights as well as
innovative ideas in developing your own solutions. Additionally, panel members will
address how they develop their autdmated information security responsibilities.

This cooperative educational program will refresh us with the perspectives of the
past, and will project directions of the future.

We firmly believe that awareness and responsibility are the foundations of all
information security programs. For our collective success, we ask that you reflect on
the ideas and information presented this week, then share this information with
your peers, your management, your administration, and yoz)r customers. By sharing
this information, we will develop a stronger knowledge base for tomorrow’s
journey.

PATRICE%. JAMES H. BURROWS

, Director ‘ Director ,
National Computer Security Center Computer Systems Laboratory

Conference

Dr. Marshall Abrams | The MITRE Corporation
Roland Albert Department of Defense
James P. Anderson J.P.Anderson Company
Devolyn Arnold Department of Defense
James Arnold Department of Defense
V.A. Ashby The MITRE Corporation
David Balenson Trusted Information Systems, Inc.
Dr. D. Elliott Bell ' BBND
James W. Birch Secure Systems, Inc.
W.Earl Boebert Secure Computing Technology Corporation
Edward Borodkin ' National Computer Security Center
Dr. Martha Branstad Trusted Information Systems, Inc.
Dr.Blaine Burnham Department of Defense
Dr. John Campbell | | | Department of Defense
David Chizmadia _ Department of Defense
Dr. Deborah Cooper ’ Unisys
Donna Dodson National Institute of Standards and Technology
Dr. Deborah Downs , The AEROSPACE Corporation
David Ferraiolo National Institute of Standards and Technology
Ellen Flahavin National Institute of Standards and Technology
L. Dain Gary Carnegie Mellon University
William Geer AFCSC
Virgil Gibson Grumann Data Systems
Dennis Gilbert “National Institute of Standards and Technology
Irene Gilbert National Institute of Standards and Technology
Captain James Goldston, USAF AFCSC
Dr. Joshua Guttman The MITRE Corporation
Dr. Grace Hammonds AGCS, Inc.
Douglas Hardie ~ Unisys Corporation
Ronda Henning Harris Corporation
Dr. Harold Highland, FICS Compulit, Inc.
Jack Holleran National Computer Security Center
Hilary H. Hosmer Data Security, Inc.
Russell Housley XEROX Information Systems

Howard Israel AT&T Bell Laboratories

Referees

Professor Sushil Jajodia
John Keenan

Dr. Richard Kemmerer
Dr. Steven Kent
Richard Kuhn

Steven LaFountain
Paul A. Lambert

Dr. Carl Landwehr
RobertLau

Dr. Theodore M.P. Lee
Steven B. Lipner
TeresaLunt

Frank Mayer

Dr. Catherine Meadows
Sally Meglathery
William H. Murray
Noel Nazario |

Dr. Peter Neumann
Nick Pantiuk

Donn Parker

Dr. Charles Pfleeger
Professor Ravi Sandhu
Marvin Schaefer
Daniel Schnackenberg
Miles Smid

Brian Snow

Dr. Dennis Steinauer
Mario Tinto

Eugene Troy |
Kenneth vanWyk
Grant Wagner

Major Glenn Watt, USAF
Wayne Weingaertner
Howard Weiss ‘
Roy Wood

George Mason University

CISEC

University Of California, Santa Barbara
BBN

National Institute of Standards and Technology

Department of Defense

Motorola GEG

Naval Research Laboratory

Department of Defense

Trusted Information Systems, Inc.

The MITRE Corporation

SRl International

Aerospace Corporation

Naval Research Laboratory

New York Stock Exchange

Deloitte & Touche

National Institute of Standards and Technology
SRI International

Grumann Data Systems

SRl International

Institute for Defense Analyses

George Mason University

CTA, Inc.

Boeing Aerospace Corporation

National Institute of Standards and Technology
Department of Defense

National Institute of Standards and Technology
, Department of Defense

National Institute of Standards and Technology
‘ Carnegie Mellon University
Department of Defense

USAF Strategic Air Command

Department of Defense

| SPARTA

Department of Defense

ii

Awards Ceremony

6:00 p.m., Thursday, October 15
Convention Center, Terrace Level

A joint awards ceremony will be held at which the National Institute of Standards
and Technology (NIST) and the National Computer Security Center (NCSC) will honor
the vendors who have successfully developed products meeting the standards of the
respective organizations. '

The Computer Security Division at NIST provides validation services for vendors
to use in testing devices for conformance to security standards defined in three Federal
Information Processing Standards (FIPS): FIPS 46-1, The Data Encryption Standard
(DES); FIPS 113, Computer Data Authentication; and FIPS 171, Key Management
Using ANSI X9.17.

Conformance to FIPS 46-1 is tested using the Monte Carlo test described in NBS
Special Publication 500-20, Validating the Correctness of Hardware Implementations of
the NBS Data Encryption Standard which requ1res performing eight mllhon encryptions
and four million decryptions.

Conformance to FIPS 113 and its American Standards Institute counterpart
ANSI X9.9, Financial Institution Message Authentication (Wholesale) is tested using an
electronic bulletin board (EBB) test as specified in NBS Special Publication 500-156,
Message Authentication Code (MAC) Validation System: Requirements and Procedures.

- The test consists of a series of challenges and responses in which the vendor is requested
to either compute or verify an MAC using a specified randomly generated key.

Conformance to FIPS 171, which adopts ANSI X9.17, Financial Institution Key
Management (Wholesale), is also tested using an EBB as specified in a document
entitled NIST Key Management Validation System Point-to-Point (PTP) Requirements.

The NCSC recognizes vendors who contribute to the availability of trusted
products and thus expand the range of solutions from which customers may select to
secure their data. The products are placed on the Evaluated Products List (EPL)
following a successful evaluation against the Trusted Computer Systems Evaluation
Criteria including its interpretations: Trusted Database Interpretation, Trusted Network
Interpretation, and Trusted Subsystem Interpretation. Vendors who have completed the
evaluation process will receive a formal certificate of completion from the Director,
NCSC marking the addition to the EPL. In addition, vendors will receive honorable
mention for being in the final stages of an evaluation as evidenced by transition into the
Formal Evaluation phase or for placing a new release of a trusted product on the EPL by
participation in the Ratings Maintenance Program. The success of the Trusted Product
Evaluation Program is made possible by the commitment of the vendor community.

We congratulate all who have earned these awards.

iii

15th National Computer Security Conference
Table of Contents

Refereed Papers

1 Accreditation: Isita Security Requirement or a Good Management Practice?
Thomas E. Anderson, USATREX International Inc.

9 Application Layer Security Requirements of a Medical Information System
Deborah Hamilton, Hewlett-Packard Laboratories

18 An Approach for Multilevel Security (MLS) Acquisition
Bill Neugent, The MITRE Corporation

28 Architectural Implications of Covert Channels
Norman E. Proctor, Peter G. Neumann,
Computer Science Lab, SRI International

44 Assessing Modularity in Trusted Computing Bases
J.L.Arnold, R.J. Bottomly, National Security Agency
D.B.Baker,D.D. Downs, The Aerospace Corporation
F.Belvin, S. Chokhani, The MITRE Corporation.

57 Companion Document Series to the Trusted Database Management System
Interpretation
LouAnna N otargtacomo Victoria Ashby, Vinti Doshi, Jarellann Filsinger,
Sushil Jajodia, The MITRE Corporation

Lieutenant Colonel Ron Ross, USA, National Computer Security Center

66 Computer Security and Total Quality Management
Major Gregory B. White, USAF Academy
Mr. Lee Sutterfield, AFCSC/SRO
Mr. Chuck Arvin, CTA

76 Concept for a Smart Card Kerberos
Marjan Krajewski, Jr., The MITRE Corporation

84 Concept Paper--An Overview of the Proposed Trust Technology Assessment
Program
Ellen E. Flahavin, Patricia R. Toth, Computer Security Dwzswn National
Institute of S tandards and Technology :

93 Current Endorsed Tools List (ETL) Examples Research Lessons Learned
Cristi Garvey, Aaron Goldstein, Eric Anderson,
TRW Systems Integration Group

101 Data Security for Personal Computers
Paul Bicknell, The MITRE Corporation

111 Defense Against Computer Aids
Horace B. Peele, Air Force Intelligence Command

120 E-Mail Privacy and the Law ‘
Christine Axsmith, Esq., ManTech Strategic Associates

126 Electronic Measurement of Software Sharing for Computer Virus
Epidemiology
Larry de La Beaujardiere, Department of Computer Science, University of
California

iv

134

144
153

165

184

194

204
213

221

236

244

262

252

272

282

Enforcing Entlty and Referential Integrlty in Multilevel Secure Databases
Vinti M. Doshi, Sushil Jajodia, The MITRE Corporation

Evolving Criteria for Evaluation: The Challenge for the International
Integrator of the 90s
Virgil Gibson, Joan Fowler, Grumman Data Systems

An Example Complex Application for High-Assurance Systems
Frank L. Mayer, The Aerospace Corporation -
Steven J. Padilla, SPARTA, Inc.

Experience with a Penetration Analysis Method and Tool
Sarbari Gufta Virgil D. Gligor,
Electrical Engineering Department, U niversity of M aryland

Extending Our Hardware Base: A Worked Example
Noelle McAuliffe, Trusted Information Systems, Inc.

Finding Security Flaws in Concurrent and Sequential Designs Using
Planning Techniques

Deborah A. Frincke, Myla Archer, Karl Levitt,
Division ofComputer Science, UnwerSLty ofCalzfornza Davis

A Foundation for Covert Channel Analysis
Todd Fine, Secure Computing Corporation

General Issues to be Resolved in Achieving Multilevel Security (MLS)
 Bill Neugent, The MITRE Corporation

Implementation Considerations for the Typed Access Matrix Modelin a

Distributed Environment _
Ravi S. Sandhu, Gurprett S. Suri, Center for Secure Information Systems
& Department of Information and Software Systems Engineering, George
Mason University

Implications of Monoinstantiation in a Normally Polyinstantiated Multilevel
Secure Database
Frank E. Kramer, Steven M. Heffern, Digital Equipment Corporation

Information System Securlty Engineering: Cornerstone to the Future
Dr. Donald M. Howe, National Security Agency

Internetwork Security Monitor: An Intrusion-Detection System for Large-
Scale Networks
L. T. Heberlein, B Mukherjee, K. N. Levitt, Computer Security Laboratory,
Division of Computer Science, University of California

- Integrity and Assurance of Service Protection in a Large, Multipurpose,

Critical System
Howard L. Johnson, Information Intelligence Sciences, Inc.
Chuck Arvin, Earl Jenkinson. CTA Incorporated
‘Captain Bob Pierce, AF Cryptologic Support Center, Hq. AFIC, AFCSC/SR

Intrusion and Anomaly Detection: ISOA Update
J.R.Winkler,J.C. Landry, PRC, Inc.

Issues in the Specification of Secure Composite Systems
~ Judith Hemenway, Dan Gambel, Grumman Data Systems

292

300

310
319
329

340

350

359
369
379
389
399

409

423

~ Issues to Consider when using Evaluated Products to Implement Secure
 Mission Systems
Lieutenant Colonel William R. Prlce USAF,
Headquarters Air Force Space Command (LKXS)

The IT Security Evaluation Manual ITSEM)
; Klein, Service Central de la Sécurité des Systémes d’Information, Paris,
rance

E. Roche, Department of Trade and I ndustry, London, United K ingdom
F.Taal, Netherlands National Communications Securzty Agency, The
Hague, The Netherlands

M. Van Dulm, Ministry-of the Interior, The H ague, The Netherlands
U. Van Essen, German Information Securlty Agency, Bonn, Germany
P. Wolf, Centre DE lectronique de 'Armement, Bruz, France
J. Yates, Communications-Electronics Security Group, Cheltenham,
United Kingdom

The Kinetic Protection Device
Gregory Mayhew, Richard Frazee, Mark Bianco,
H ughes Aircraft Company Ground Systems Group

Knowledge-Based Inference Control in a Multilevel Secure Database
Management System
Bhavani Thurazsmgham The MITRE Corporatzon

A Lattice Interpretation of the Chmese Wall Policy
Ravi S. Sandhu, Center for Secure I nformation Systems & Department of
Information and Software Systems Engineering, George Mason University

A Local Area Network Security Architecture
Lisa J. Carnahan, National Institute of Standards and Technology

Mandatory Policy Issues of High Assurance Composite Systems
Jonathan Fellows, Grumman Data Systems

Mediation and Separation in Contemporary Informatlon Technology Systems
Marshall D. Abrams, Jody E. Heaney, Mlchael V. Joyce,
The MITRE Corporatzon

Metapolicies I
Hilary H. Hosmer, Data Security Inc.

A Model for the Measurement of Computer Securlty Posture
Lee Sutterfield, Todd Schell, Gregory White, Kent Doster, Don Cuiskelly,
United States Air Force

A Model of Risk Management in the Development Life Cycle
Captain Charles R. Pierce, USAF ., Air Force Cryptologic S upport Center

A Multilevel Secure Database Management System Benchmark
Linda M. Schlipper, Jarrellann Filsinger, Vinti M. Doshi,
The MITRE Corporation

The Multipolicy Paradigm
Hilary H. Hosmer, Data Security Inc.

The Need for a Multllevel Secure (MLS) Trusted User Interface
Greg Factor, Steve Heffern, Doug Nelson, Jim Studt Mary Yelton,
ngltal Equlpment Corporation v

vi

429

438

448

459

467

473

482

494

503

513

523

534

544

564

564

574

Network Security Via DNSIX, Integration of DNSIX and CMW Technology -
Howard A. Heller, Harris Corporatton

New Dimensions in Data Security
Karl Heinz Mundt, CE Infosys .

A Note on Compartmented Mode: To B2 or - not B2?
Theodore M. P. Lee, Trusted I nformatton Systems, Inc.

Operating System Support for Trusted Apphcatlons
Richard Graubart, The MITRE Corporation

Operational Support of Downgrading in a Multi-Level Secure System
Doug Nelson, Greg Factor, Jim Studt, Mary Yelton Steve Heffern Frank
Kramer, Digital Equlpment Corporatlon ‘

PM: a Unified Automated Deduction Tool for Verification o
George Fink, Lie Yang, Myla Archer, University of California, Davis

Potential Benefits from Implementing the Clark Wilson Integmty Model
Using an Object-Oriented Approach
Craig A. Schiller, Science Applications I nternatwnal Corporatton

Precise Identification of Computer Viruses
Lawrence E. Bassham III, W. Timothy Polk,
National Institute of Standards and Technology

1§r1or1t1es for LAN Security - A Case Study of a Federal Agency’s LAN
ecurity
Shu-jen H. Chang, National Institute of Standards and Technology

Protected Groups: An Approach to Integrity and Secrecy in an Object-
Oriented Database
James M. Slack, Computer and Information Sciences Department,
Mankato State U niversity
Elizabeth A. Unger, Department of Computing and I nformatton Sciences,
Kansas State University .

Provably Weak Cryptographic Systems
John Higgins, Brigham Young University, Computer Scwnce Department)
Cameron Mashayekt, WordPerfect Corporation :

Re-Use of Evaluation Results
Jonathan D. Smith, Admiral Management Servlces Ltd Commercial
Licensed Evaluation Facility, U.K.

Risk Management of Complex Networks
Richard Cox, Dr. Michael O’'Neill, CTA Incorporated
Lieutenant Colonel William Price, HQ AFSPACECOM/LKXS

Role-Based Access Controls
David Ferraiolo, Richard Kuhn,
National Institute of Standards and Technology

An SDNS Platform for Trusted Products
Ernie Borgoyne, Motorola Inc:
Ralph G. Puga, Trusted Informatwn Systems Inc

SDNS Security Management
Wayne A. Jansen, National Institute ofStandards and Technology

vii

584

593

620

631

641

651

661

670

680

697

707

717

728

Security Management: Using the Quality Approach)
Richard W. OQwen, Jr., Computer Security Official Mission Operatwns
Directorate, Johnson Space Center, NASA

A Security Reference Model for a Distributed Object System and its
Application
Vijay Varadharajan, Hewlett-Packard Labs

Security Within the DODIIS Reference Model = =
Brian W. McKenney, The MITRE Corporation -

Separation Machines
Jon Graff, Amdahl Corporation

Software Forensics: Can We Track Code to its Authors?
Eugene H. Spafford, Department of Computer Sciences, Purdue University
Stephen A. Weeber, Lawrence Livermore National Laboratory

Some More Thoughts on the Buzzword “Security Policy*
- David M. Chizmadia, National Security Agency

Standard Certification - Progression
Captain Charles R. Pierce, USAF, Air Force Cryptologic Support Center

A Tamper-Resistant Seal for Trusted D1str1but10n and Life- Cycle Integrity
Assurance
Mark Bianco, Hughes Aircraft Company

A TCB Subset for Integrity and Role-Based Access Control
Daniel F. Sterne, Trusted Information Systems, Inc.

A Tool for Covert Storage Channel Analysis of the UNIX Kernel
David A. Willcox, Steve R. Bunch, Motorola Microcomputer Group

Toward a Model of Security for a Network of Computers

William H. Murray, Deloitte & Touche
Patrick Farrell, Department of Computer Science, George Mason University

Towards a Policy-Free Protocol Supporting a Secure X Window System
Mark Smith, AT&T Bell Laboratories

Use of a CASE Tool to Define the Specifications of a Trusted Guard
Robert Lazar, The MITRE Corporation
James H. Gray, III, Computer Sciences Corporation

Tutorials [Track D, Room 301-303]

738

Tutorial Series on Trusted Systems

R.Kenneth Bauer, Joel Sachs, Dr. Gary Smtth

Dr. William WLlson
Arca Systems, Inc.

Dr. Charles Abzug, LtCdr Alan Ltddle Royal Navy,

Howard Looney,
Information Resources Management College N, attonal, ;
Defense U nwerSLty

viii

EXECUTIVE SUMMARIES

740

744

746

752

754

758

761

762

764

765

766

768

770

774

Panel: Addressing U. S. Government Security Requirements for OSI
Noel A. Nazario, Chair, National Institute of Standards and Technology
Ted Humphreys, XISEC Consultants Ltd., U.K.

Thomas C. Bartee, Institute for Defense Analysts
Dale Walters, Systems and Networks Architecture Division, Natlonal
Institute of Standards and Technology

Point of view: OSE Implementor’s Agreements
Dale Walters, National Institute of Standards and Technology

Point of view: Emerging OSI Security Protocols & Techniques
Ted Humphreys, XISEC Consultants Ltd., England

Point of view: Security Labels in OSI
T. C. Bartee, Institute for Defense Analyses

Panel: Challenges Facing Certification and Accreditation Efforts of the
Military Services
Lieutenant Colonel Ron Ross, Chair, USA
Larry Merritt, AFCSC
Robert Zomback, CECOM
John Mildner, NESSEC

Panel: Domestic Privacy: Roll of Honor and Hall of Shame
Wayne Madsen, Chair

Panel: Health Issues Program
Gerald S. Long, Chair, Harrison Avenue Corporation

Point of View: The Benefits of Smart Card Technology in the Health
Industry
Peter M. Fallon, Toshiba American Information Systems

Point of View: National Health Card
B. Bahramian, Beta Management Systems, Inc.

Point of View: The Optical Card as a Portable Medical Record
Stephen D. Price-Francis, Canon-Canada, Inc.

Point of View: Patient Data Confidentiality in the Health Care
Environment
Marc Schwartz, Summit Medical Services, Inc.

Panel: Information Technology Security Requirements
D. Gilbert, Chair, National Institute of Standards and Technology
N. Lynch, National Institute of Standards and Technology
Dr.W. Maconochy, National Security Agency
S. Pitcher, Department Of Commerce
M. Swanson National Institute of Standards and Technology

Panel: International Data Privacy: Roll of Honor and Hall of Shame
Wayne Madsen, Chair

Panel: Multilevel Security (MLS) Prototyping and Integration: Lessons
Learned and DoD Directions
C. West, Chair, Defense Information Systems

ix

775
777
784

792

795

799

800

801

802

Workshop: New Security Paradigm Workshop
Hilary Hosmer, Chair, Data Security, Inc.

Point of view: ManagingiCdmplexity in Secure Networks
Dr. David Bailey, Galaxy Computer Seruvices.

Point of view: A New Paradigm for Trusted Systems
Dr. Dorothy E. Denning, Georgetown University

Panel: Perspectives and Progress on International Criteria
Eugene Troy, Chair, National Institute of Standards and Technology
Lieutenant Colonel Ron Ross, USA
D. Ferraiolo, National Institute of Standards and Technology
Eugene Bacic, Canadian System Security Centre
Jonathan Wood, Department of Trade and Industry, U K.

Panel Perspectives on MLS System Solution Acquisition - A Debate by the
Critical Players Involved
Joel E. Sachs, Chair, Arca Systems, Inc.

Panel: Security Protocols for Open Systems
Paul A. Lambert, Motorola, Inc.
David Solo, BBN
Doug Maughan National Secuirty Agency
Russell Housley, Xerox
Dale Walters, National Institute of Standards and Technology
Mike White, Booz Allen & Hamilton

Panel: “TMach" A Symbol of International Harmonization
Ellen E. Flahavin, Chair, NIST
Brian Boesch, DARPA
Dr. Martha Branstad, Trusted Information Systems, Inc.
C.Ketley, U .K. Government
Klaus Keus, German Government

Panel: The Trusted Product Evaluations Program Process Action Team
S. Nardone, Chair, National Security Agency

Panel: Virus Attacks and Counterattacks Real-World Experlences
James P. Litchko, Chair, Trusted Information Systems, Inc.
Janet Keys, Headquarters NASA
Louise Mandeville, Miller, Balis & O’Neil, P.C.
George Wellham, MNC Financial, Inc.

Authors Cross Index

Abrams, M.D. 359
Abzug,C. 738
Archer, M. e 473
Ashby, V. 57
Anderson,E. 93
Anderson, T.E. 1
Archer, M., 194
Arnold,J. L. 44
Arvin,C. 66, 252
Axsmith,C.,Esq. 120
Bacic,E.coiiinL. L. 792
Bahramian,B. 764
Bailey,D. 777
Baker,D.B., 44
Bartee, T.C.c. ... 752 .
BasshamIIILL.E. 494
Bauver,R.K. 738
Belvin,F. 44
Bianco, M. 310,670
Bicknell,P. 101
Boesch,B. 800
Borgoyne, E., 564
Bottomly,RJ. e.. 44
Branstad, M. 800
Bunch,S.R.0 697
Carnahan,L.J. 340
Chang,S.SH. 503
Chizmadia, D M. 651
Chokhani,S. e 44
Cox,R. .. 544
Cuiskelly,D. 379
de La Beaujardiere, L. 126
Denning, D.E. 784
Doshi, V. 57,134,399
Doster, K. e 379
Downs,D.D. 44
Factor,G. 423,467
Fallon,P. M. 762
FarrellLP. 707
Fellows,d.c...cviiin.. 350
Ferraiolo,D. 554, 792
Filsinger,dJ. 57,399

. xi

Fine,T. i i i, 204
Fink, G. ..., 473
Flahavin,E.E. 84,800
Fowler,dJ. 144
Frazee,R., 310
Frinck, D.A.cccou.... . 194
Gambel,D., 282
Garvey,C. ..., - 93
Gibson,V. i, 144
Gilbert,D., 768
Gligor,V.D.iiiiat. 165
Goldstein, A. e 93
Graff,d.cciiiiiiiii. 631
Graubart,R. 459
Gray, ILLJ.H. 728
Gupta,S. ... i 165
Hamilton,D. 9
Heaney,J.E. 359
Heberlein,L.T. 262
Heffern,S. S 423,467
Heller, HA. 429
Hemenway,d. 282
Heffern,S. M. 236
Higgins,dJ.c.coiivi..... 523
Hosmer,H. 369, 409, 775
Housley,R. e PP 799
Howe,D.M. 244
Humphreys, T 746
Jajodia,S., 57,134
Jansen, W.A. 574
EarlJenkinson 252
Howard L. Johnson 252
Michael V.Joyce. 359
Ketley,C. ..., 800
Keus,K.o, 800
Keys,d. ...oiviiiiiiiiiii... 802
Klein, Y., 300
Krajewski,dr., M. 76
Kramer,F.E. 236, 467
Kuhn,R.coiiiiiiiiia... 554
Lambert, P.A. 799
Litchko, J.P.civi.... 802

Authors Cross Index

Long,G.S. .. .iiiiiiiiiiian., 761
Landry,J.C.o ..., 272
Lazar,R. R 728
Lee, T.M.P. e eeenena 448
Levitt, K.N. 194, 262
Liddle, A., LtCdr, Royal Navy 738
Looney, H.covvvvviinnnn. 738
Lynch,N. ... i, 768
Maconochy. W. V. 768
Madsen,W. 758,770
Mandeville, L. 802
Mashayeki, C. e 523
Maughan,D. 799
Mayer,F. L. e ... 153
Mayhew,G. 310
McAuliffe, N. 184
McKenney, BW. 620
Merritt, L. ... i 754
Mildner,dJ.oilll 754
Mukherjee,B. 262
Mundt, K.H. 438
Murray, W.H. 707
Nardone,S.c.... e 801
Nazario,N.A. ..., 740
Nelson,D. 423,467
Neugent, W. 18, 203
Neumann,P.G. 28
Notargiacomo,L. 57
ONeill, M.iviiiiiiiinen... 544
Owen,Jr, R.W. 584
Padilla,S.J. et 153
Peele, H.B.cvii.... 111
Pierce, R., Capt, USAF 252,389,661
Pitcher,S.ciiiiiiiinnn. . 768
Polk, W.T.viiia... 494
Price, W.R., Lt Col, CSAF 292,544
Price-Francis,S.D. 765
Proctor, N.E. 28
Puga,R.G. 564
E.Roche 300
Ross, R.,LTC,USA 57,754, 792

Sachs,d.oovviiiiiinn... 738, 795
Sandhu,R.S. 221, 329
Schell, T. ..., 379
Schiller,C.A. 482
Schlipper, LLM. 399
Schwartz, M. 766
Slack,J. M.cciiviun... 513
Smith,G.o, 738
Smith,J.D. 534
Smith, M.cccvvev.... 717
Solo,D. ...t 799
Spafford, EH. 641
~ Sterne,D.F. 680
Studt,d.c.ciii..... 423,467
Suri,G.S. 221
Sutterfield, L. 66,379
Swanson, M.ccuuuu.... 768
TaalLF.cooiiiiiiiinn, 300
Thuraisingham,B. 319
Toth, P.R. ..., 84
Troy,E. ..., 792
Unger,E.A. 513
VanDulm, M. 300
VanEssen,U. 300
Varadharajan,V. 593
Walters,D. 744, 799
Weeber,S. A, 641
Wellham,G.ccovn... 802
West,C. ... 774
White, G. B., Maj, USAF 66,379
White, M. 799
Willeox,D.A. ..., 697
“Wilson, W.o i, 738
Winkler,J.R. 272
Wolf,P. ... i 300
Wood,d. ... 792
Yang, L. ..., 473
Yates,d. ..o, 300
Yelton, M. 423,467
Zomback,R., 754

xii

A MULTILEVEL SECURE DATABASE MANAGEMENT SYSTEM BENCHMARK®

Linda M. Schlipper, Jarrellann Filsinger, and Vinti M. Doshi
The MITRE Corporation, 7525 Colshire Drive, McLean, Virginia 22102

ABSTRACT

With the availability of various commercial multilevel secure (MLS) database management systems (DBMSs),
performance evaluation tools will be necessary to assist users in understanding their performance characteristics.
Benchmarking is one such performance evaluation tool. A number of benchmarking tools and methodologies have
been developed for single-level databases, but these do not consider the effects of security-related factors like security
level distribution, polyinstantiation, etc., in MLS DBMSs. In this paper, we describe an MLS DBMS
benchmarking methodology that we have developed at MITRE, based on modifying the -popular Wisconsin
benchmarking methodology for single-level DBMSs. Currently the MLS DBMS methodology is limited to
examining performance in a single user context, but work is ongoing to enhance it for the multiuser environment.

1. INTRODUCTION
Now that commercial multilevel secure (MLS) database management systems (DBMSs) are beginning to appear,
. potential users of such systems are looking for tools to evaluate their capabilities and performance for use in
application environments. Performance, always an issue for DBMSs, becomes even more so for MLS DBMSs
because of potential overhead associated with multilevel processing and various security options. Performance
evaluation tools are needed to aid in assessing existing ML.S DBMS technology and help identify areas where

improvement is needed. Only some very preliminary work has been done in characterizing the performance aspects -
of MLS DBMSs [5, 7]. A good performance tool to evaluate MLS DBMSs still needs to be developed.

 Two types of performance tools being used for single-level (conventional) databases are algebraic models and bench-
marks. Algebraic models are a type of analytic model that can also be used as the basis for simulations. These
models can be used to evaluate the performance of a proposed DBMS architecture before the system is actually
prototyped, whereas benchmarks are experimental evaluation tools that can be used for performance evaluation after a
system has been built. The model suggested by Mukkamala and Jajodia is an example of an algebraic model of
MLS DBMS performance. It takes into account user behavior, system behavior and database characteristics to
develop a performance model. (This model, however, focuses on a-very limited aspect of performance: the effect of
decomposition of multilevel relations on performance of the SeaView architecture [2].)

With the availability of commercial MLS DBMSs, systematic benchmarking and experimental validation of perfor- -
mance models is feasible. Benchmarking provides empirical measurements for comparing performance of different
systems, developing real-world performance insights, or evaluating the accuracy of analytical performance evaluation
tools. A systematic benchmark can also be used as a tool to evaluate new algorithms and query optimizers.
Although there are several benchmark methodologies available to aid in the development and analysis of conven-
tional DBMSs, they are not adequate for use with MLS systems because the effects of such security-related features
as the number of security levels of data, polyinstantiation, or auditing options are not examined.

Thus far, benchmarking of ML.S DBMSs has been performed only on an ad-hoc basis; for example, see [5]. A good
benchmarking technique for MLS DBMSs is still needed to evaluate the effect on performance of security-unique
factors such as the security level distribution (i.e., the number of security levels and compartments and the
proportion of data associated with each) and user session level distribution. It is also important to determine the
sensitivity of different MLLS DBMS architectures to these and other security-related factors like polyinstantiation and

auditing. At MITRE, we are developing a benchmarking methodology which can be used to give a general measure
~ of the performance of various MLS DBMSs and can be further tailored to measure performance for specific
application environments.

In this paper, we present our initial results in developing a generalized benchmarking methodology for performance
analysis of MLS DBMSs in a single-user environment. The approach is to modify the Wisconsin benchmark [3],
one of the most widely accepted benchmarks for conventional DBMSs. This benchmark is of particular interest not
only because of its popularity, but also because of its use of a synthetic database. A major consideration in any

* This work has been done under MITRE core funding

399

benchmark experiment is the data used for testing. Although real data gives the most accurate results when eval-
uating a system for a known database application, it is often difficult to get, especially in the case of ML.S DBMSs,
which are designed for classified data. A synthetic database gives the opportunity to control security variables like
security level distribution to test the effect of access mediation on performance. A synthetic database is also easy to
tailor to mimic operational characteristics of a particular real-world database application, so that alternative products
can be considered for a specific application environment.

The remainder of this paper is organized as follows. Section 2 presents an overview of security-related performance
issues in MLS DBMSs. Section 3 describes the MLS benchmarking methodology and tools which have been
developed. Finally, section 4 summarizes our results to date and discusses continuing work, including testing the
methodology with currently available MLS DBMSs and enhancing it for the multiuser environment.

In this section we identify security-related characteristics that may affect the performance of an MLS DBMS,
Although specific DBMS implementations will vary, some general observations can be made about the influence of
these security-related characteristics on performance of various DBMS architectures. Before discussing the security-
related performance factors, we briefly review the different basic types of architectures used in trusted DBMSs.

21 __Secure DBMS Architectures ‘
The major architectures being used for trusted DBMS products [5, 6] are the Trusted Computing Base (TCB) Subset,

Trusted Subject, and Integrity Lock architectures. They differ in whether security responsibilities are allocated to the
operating system (OS), the DBMS, or an intermediary between the user and the DBMS.

’TCB Subset Archztecture - In the TCB Subset archltecture a multilevel database is decomposed into smgle-level
parts which are stored in separate OS objects. As shown in Figure 1, the MLS DBMS does not enforce the security
' pollcy, but relies on the MAC protections provided by the underlying trusted OS.

ngijser) Low User
High DBMS Low DBMS |
Process Process
Trusted Operating System

High
Database
File

Figure 1. TCB Subset Architecture

Trusted Subject Architecture - In the Trusted Subject architecture, a security kernel in the DBMS handles both man-
datory access control (MAC) and discretionary access control (DAC). The DBMS software runs on a trusted OS, and
the multilevel database as a whole is stored in OS objects. But the DBMS associates security labels with DBMS
objects and uses these labels as the basis for MAC. Figure 2 gives an overview of the trusted subject architecture.

400

User -
| Application

r

Trusted Subject DBMS

Trusted Operating System

Database
High File

Figure 2. Trusted Subject Architecture

Integrity Lock Architecture - As shown in Figure 3, the Integrity Lock architecture uses a trusted filter to control
access to data stored in an untrusted DBMS. The filter mediates all access between the users and the database. The
filter is responsible for labeling data and restricting access to the data based on the user's security level. The labels
are protected from modification while in the untrusted DBMS by a cryptographic checksum computed over the data
and the label, which is also encrypted. On insert, the trusted filter computes the checksum and stores it with the
data. On retrieval, the filter decrypts the security label and recomputes the checksum to confirm the data's associated
security level, then determines whether the user is cleared to view the data before passing it on to the user's process.

Single-level -Single-level
User o [J ® User
Front End o Front End

N

Un_trusted Front End

Trusted Filter

Trusted Operating Systemn -

]

Untrusted
" Data Manager

Figure 3. Integrity Lock Architecture

401

22 Securitvrelated F \ffecting Perf

In this section we discuss security-related factors and their possible effects on performance. These factors include
access mediation, security level distribution, concurrency control, session level distribution, polyinstantiation,
auditing, security constraints, and the Trusted Computer System Evaluation Criteria (TCSEC) [8] evaluation class.
‘As in any complex system, the various factors are interrelated, and a system's overall performance reflects their inter-
action. Some tentative observations can be made about the performance implications of various securrty-related
issues, but actual performance testmg of MLS DBMSs needs to be done before drawmg final conclusnons

Access Mediation - MLS DBMSs enforce two types of access control: MAC and DAC. To enforce MAC,
many labels (e.g., file, relation, and multiple tuple labels) may need to be checked to satisfy a database access
request. The TCB overhead associated with MAC checks for database access requests has obvious potential impact
on the retrieval or update performance of an MLS DBMS, depending on its architecture. Object granularity can also
affect the overhead of associated MAC checks to varying degrees depending on the architecture used.

Performance effects of DAC may depend upon the objects of DAC enforcement (e.g., relations vs. views). At lower
TCSEC classes, DAC is not fundamentally different than the type of access control implemented in conventional
DBMSs, and its performance effects are likely to be similar.. However, DAC requirements in MLS DBMSs at class
B2 and above (or future attempts to provide high assurance DAC) add to the complexity of the system and may have
an effect on performance.

Security Level Distribution - The distribution of the classification levels among the data, in combination
with the implementation architecture and the MAC object granularity, may have a significant impact on the
performance of the MLS DBMS. Some potential effects of classification level distribution on the performance of
various MLS DBMS architectures are as follows.

TCB Subset Architecture: In the TCB subset approach, the MLLS DBMS relies on the MAC policy enforced by the
trusted OS. To take advantage of the OS's MAC, the DBMS places data objects in OS data objects (e.g., files) with
the same security level. When information is retrieved from the database, all files dominated by the user’s session
level may need to be accessed. If multiple security levels are being accessed, at least that many data pages must be
read. Index entries may also be partitioned into multiple sub-indexes by security level. If a user is cleared to view
all the data in the relation, then all of the sub-indexes must be examined, increasing retrieval time. [5] has suggested
that with indexes partitioned by security level performance degrades roughly in proportion to the number of security
levels. However, with few security levels or with most users operating at the lower levels, the performance impact
of this approach would be less significant.

Trusted Subject Architecture: In the trusted subject architecture, the MLLS DBMS performs access mediation and
operates across different OS sensitivity levels. As a result, the database can be placed in one OS file. (Some trusted
subject architectures, however; may still partition data among single-level internal data structures [9].) ‘Although the
. trusted subject architecture may eliminate the need to separate data and indexes by security level, it increases the size
and complexity of the TCB. Implementation decisions may be made to balance the requirements for a small TCB
with performance features. Benchmarking on one prototype based on this architecture found performance rmpact
when the security levels of tuples were different from those of the containing relations [5].

Integrity Lock Architecture: In the integrity lock architecture, a trusted filter generates cryptographic checksums for
each tuple and its sensitivity label. Since the checksums must be recompated for each tuple upon retrieval or update;
performance is affected by the number of tuples returned to the trusted filter. The degree of impact depends on the
speed of the checksum algorithm. However, since the data is stored in one system-high object such as an OS file or
a backend DBMS server, all tuples that satisfy qualification criteria are returned to the trusted filter for access
mediation. Thus, the time to complete a query may be independent of the user's session level. 'On the other hand,
relative performance (the amount of time requiréd per tuple returned) can vary widely based on security level
distribution within a relation, since the number of tuples that must be examined and discarded depends on the
proportion of data in the relation that is marked within the user's range.

Concurrency Control - Isolating users at low security levels from the activity of users at higher security levels
is a problem that affects the mechanisms used for concurrency control and transaction management. For example, if
locking methods are used, high users cannot be allowed to ‘take locks that are detectable by low users. To avoid a
covert channel, if a conflict arises, high users' requests must be delayed or aborted and low users' locks honored.
Starvation is likely to occur, when low users frequently take write locks on low data and high users' read requests are

402

repeatedly aborted. Starvation can cause severe performance problems for high users, if there is contention for
frequently used data. The performance of an MLLS DBMS may be affected depending on the algorithm being sed for
concurrency control, the workload, the distribution of data, and the locking granularity.

Session Level Dlstnbutlon - In the same sense that the security level distribution of the stored data can have
an impact on performance, so can distribution of the session levels of the users accessing the data in a multiuser
--environment. With multiple users, session level distribution can be expected to affect performance through
concurrency control, polyinstantiation, etc. These issues have yet to be thoroughly explored, since our initial work
pertains only to the single-user case. With a single user, the performance effects of session level would be limited to
those involving its relationship with the security level distribution of data being accessed, as noted previously. -

Polyinstantiation - Polyinstantiation [2] allows a relation to contain multiple rows with the same primary key;
the multiple instances are distinguished by their different security levels. For example, if a user whose session level
is low attempts to insert a tuple with the same primary key as an existing high tuple, the low tuple is inserted
nevertheless, with potentially conflicting data. The performance for inserts, updates, and deletes could be impacted
by polyinstantiation. Retrievals might also incur additional overhead, since multiple instances of what would
otherwise be one tuple may need to be accessed. Also, databases frequently updated by users at different session
levels could grow larger, introducing performance considerations related to the size of the database. The security
level distribution, and the update workload distribution, will affect the degree to which polyinstantiation and its
attendant performance effects will occur in a particular environment.

Auditing - Auditing of security-related activities is required in MLS DBMSs. Security-relevant events include
" logins, granting and revoking of access permissions to relations, etc. The level at which auditing needs to be done is
variable. The performance effects of the optional auditing features should be carefully examined, since their use may
be a significant factor in the performance of data management functions. Audit queue management is another factor.
An audit queue is a buffer for holding audit records until they are written to the audit log. If the queue is too small,
-performance can degrade while records wait to get into the queue; if it is too large, memory resources are wasted.

Additional Security Constraints - Context-based access controls, association constraints, and aggregation
constraints are additional types of security constraints that may be addressed in future MLS DBMSs. Context-based
access control restricts access to data based on whether it is viewed together with relevant context information,
Association constraints classify the relationships between entities in the database. Finally, aggregation constraints
specify that some aggregates of data have a higher sensitivity level than the individual components. These additional
security constraints are outside the scope of current products (although TRUDATA [1] does have a mechanism to
statically label certain predefined joins between two relations). However, researchers in this area are looking at rule-
based (or knowledge-based) systems to implement these constraints. Overhead associated with this type of software
as well as the number of constraints may be expected to impact the performance of the associated DBMS.

National Computer Security Center (NCSC) Evaluation Class - At higher NCSC TCSEC evaluation
classes, not only are additional security mechanisms required but also the degree of assurance of the system's
trustworthiness increases. To achieve higher degrees of assurance in the security of a system, the size of the TCB
must be minimized, and the complexity of the security-relevant portions of a system’s design must be reduced. With
the introduction of higher assurance levels into an MLLS DBMS comes a series of trade-offs the DBMS vendor must
make with respect to performance and functionality.
‘3.__MLS DBMS BENCHMARKING METHODOLOGY

The methodology that we developed for MLS DBMSs is a modification of the Wisconsin benchmark [3, 4], one of
the most widely used benchmarks, and one which has been effective in uncovering performance and implementation
flaws in the original relational products. The Wisconsin benchmark was developed as an application-independent
benchmark, and consists of algorithms and a schema design for generating synthetic databases, a comprehensive set
of queries for testing relational functions, and a methodology for systematically conducting single-user benchmarks.
It does not yet include tests for concurrency control and recovery management. However, because of its use of a
synthetic database and easy-to-understand structure of relations and queries, the Wisconsin benchmark provided a good
starting point for development of an MLS DBMS benchmark. A synthetic database is of special importance for an
MLS DBMS benchmark, because multilevel classified data is neither easily available nor easy to operate with.
Also, a synthetic database permits systematxc benchmarkmg with update and retrieval queries with spemﬁc selecuvxty

factors and modeling of a variety of sensitivity level distributions, potentially a major performance issue in MLS
DBMSs Random generators can be used to obtain uniformly distributed attribute values for varying relation sizes.

403

This section describes the comt)onents of our MLS benchmarking methodology: the test database generator, which
produces test databases modeled on those used in the Wisconsin benchmark; a generic query suite, which addresses
relational functional coverage; and the query execution program, which provides the benchmark testing environment.

We have developed a multilevel relation generator to generate the synthetic MLLS DBMS benchmark databases. The
relation generator was developed by modifying the algorithm for generation of Wisconsin relations [4]. Data values
for each relation in an MLS database are generated using a C program that computes random integer values and

corresponding string values to populate an MLLS DBMS benchmark relation. The program is parameterized so that
the number of tuples, security label formats, and security label distributions can be specified.

The relation generator is used to generate a database consisting multiple relations with similar schemas, which
permits construction of join queries as well as other queries based on different selectivity factors. Relations with
different sizes are generated to study the effect of relation size on performance using single-relation queries. The
cardinality of the relations can be scaled relative to the computer platform's main memory capacity to reduce
buffering effects upon performance of DBMS functions. [4] recommends that the largest benchmark relation be at
least five times the size of the available main memory buffer space in bytes. Duplicate relations of the same
cardinality can be added to this basic design to minimize the effect of buffering between the queries sequentially
executed in a benchmark test. (But this may not always be desirable, since buffering and repeated execution of the
same query may be a realistic reflection of some apphcanon environments.) The basic design can be tailored for
specific application environments.

The output file of the relation generator is a flat, ASCII character file in a tab-delimited format that is suitable for

_loading with any DBMS bulk load utility. This approach supports development of database load and unload tests, a
feature of many DBMS assessments. More importantly, the use of a bulk load approach facilitates use of the
software with different MLS DBMSs, since the program does not interface directly with a DBMS. Our experience
with Bl-targeted MLS DBMSs indicates that bulk load utilities can be expected to be: available with these products.
Although ordinarily the security label for data entered under the control.of an MLS DBMS is equal to the session
Ievel of the process writing the data, the bulk load utilities of B1-targeted MLS DBMSs permit a security label field
to be included in the load file for multilevel loading of data. MLS DBMSs targeted at evaluation classes above Bl
may not provide this multilevel load capability. However, the mechanisms for specific features such as bulk loading
can only be speculated upon since no commercial B2-or-above MLS DBMSs are presently available. At least single-
level bulk load utilities, though, will almost certainly be provided, since customers must be able to move data from
existing DBMSs into the new systems.. Only minor changes would be needed to adapt the relation generator
program for use with a single-level load utility, It would simply need to write the generated data into multiple
ASCII files destined for different security levels rather than into a single multilevel file.

~Some of the features of the benchmark database design are as follows:

Relation Size - The benchmark database consists of a set of relations differing only in their cardinality (number of
tuples). The smallest and largest relations should differ in size by a factor of 10, although their specific sizes can be
scaled as we have noted previously. The example test database that we created for our initial benchmark consisted of
five relations ranging from 1000 to 10,000 tuples.

Attributes - We added a security label attribute, secLabel, to the basic Wisconsin relation schema [4], to allow
labeling of tuples within the test relations. In order to accommodate different label formats and different security
level distributions, the format and distribution of data values for the secLabel attribute are specified by the user at the
time a relation is generated. The other attributes contain 13 integer-valued attributes and three 52-byte string
attributes which are the same as those defined for the Wisconsin relation schema. The two attributes, uniquel and
unique2, contain values in the range 0 to MAXTUPLES-1 where MAXTUPLES is the cardinality of the relation.
One is random, while the other sequentially numbers the relation’s tuples. The two, four, ten, and- twenty attributes
repeat in a cyclic pattern, but the values are randomly distributed in the relation by computing the appropriate
modulus (mod) of unique2. The onePercent through fiftyPercent attributes simplify the scaling of queries according
tocertain selecnvny factors The stnng attrlbutes, strmgul and stringu2, are string analogs of uniquel and unique2.

Labels - The addmonal atmbute, secLabel, is used to store tuple-level labels and to implement various distributions
of security label values. Tuple-level labeling was selected because this is the MAC object granularity currently

404

supported by most MLS DBMS products. An allowable range of classification levels is associated with each
relation in the database, and a security label attribute is associated with data in each tuple in a relation. - The range
and distribution of security levels may be changed in order to model different operational scenarios. .

Storage Organizations - One of the key factors affecting the speed of a DBMS's retrieval operations is the storage
organization of the relation. Three types of storage structures are used in the multilevel database: sequential
organization, clustered index and nonclustered index. Although others exist, these were selected because they are
supported by most relational DBMSs. ‘In sequential organization, tuples are stored in the order they are entered. ‘The
time required to search a sequential file is long since all the records must be scanned. Retrieval time with a
sequential organization is simulated in our benchmark by using non-indexed fields in the query selection criteria.

In a clustered index, the index determines the physical placement of data within a file. Typically, tuples are stored in
sorted order based on the value domain of the clustering attribute or attributes. Although any index can allow quicker
data retrieval by eliminating the need to scan the entire relation (provided index attributes have a high selectivity),
clustered indexes provide one of the most efficient access methods for queries that access a range of key values.- This
is because the data resides on a smaller number of pages, requiring fewer physical page fetches by the DBMS to
retrieve the qualifying records. In an MLS DBMS, however, the efficiency of a clustered index may be affected if
tuples are partitioned by security level. For example, a tuple with a cluster key value of “10” may not follow one
with a value of “9” if the tuples have different security labels. For the multilevel benchmark database, a clustered
index is defined for each relation using the attribute unique which contains a unique value for each tuple and whose
values are generated in sort order for the load file. The security label attribute (secLabel) is also included as part of
the index key. This is necessary in order to support polyinstantiation since the same “apparent” primary key may
exist in tuples at different security levels. Since clustered indexes determine the physical storage location of tuples
in a relation, only one clustered index can be defined for each relation in a database.

In a nonclustered index, the index is used to locate a pointer to a tuple or tuples containing the index key. value.
Since most DBMSs do not restrict the number of nonclustered indexes that can be defined for each relation, this type
of file organization can be used for both secondary indexes and primary indexes. In the MLS database, nonclustered
indexes are defined on the attributes unique2, onePercent, tenPercent, and stringul .

32 MLS DBMS Benchmark Test Query Suite
We modified the test query suite of the Wisconsin benchmark to include queries that measure the effect of various
security-related factors on the performance of the MLS DBMS. For completeness, we added sort queries, which are

not included in the ongmal Wisconsin query suite. The resultmg test query suite contains selection queries,
projection queries, join queries, aggregation queries, sort queries, and update queries. A brief overview follows.

Selection Queries - The speed at which a DBMS can process a selection query depends on the size of the relation,
the storage organization of the relation, the selectivity of the selection criteria, the output mode of the query, the
hardware speed, and the quality of the software. For a single-level relation, selectivity of a selection operation, o, is
the proportion of tuples that participate in the result of that operation. For an ML.S DBMS, deﬁmng selectivity is
difficult. In a multilevel database, a relation, R, is conceptually fragmented as R, R2, ..., Ry according to the
distribution of classification levels of the tuples in the relation. From a user's perspective, R is restricted to the set
of tuples Ry a user is authorized to access with clearance ¢y and defined by

Ry={R;j€ RIcl(R;) < cy}, where cl(R;) is the highest classification level of data in R,

Since Ry, < R, the number of tuples returned by a selection operation may change with the class1ﬁcat10n level at
which the query is executed. Therefore, selectivity is dependent on the session level. Performance analysis should
examine both the case in which the number of tuples returned varies with the session level and the case-where the
number of tuples is held constant. Controlling selectivity is necessary to study the latter case.

Projection Queries - Although a projection may or may not contain dupllcates, a projection query specifies
elimination of duplicates. Most of the processing time for projection queries is incurred in eliminating duplicate
tuples, usually by sorting. For a multilevel relation, it is difficult to determine the projection factor precisely
because the correlation between projected attributes and their security levels may vary. Some MLS DBMSs will
consider the security level to be a part of the projected attributes, even if it is not explicitly requested. Thus, the

405

~cardinality of a multilevel projection may be larger than in a singie—level 'database because an attribute value of “1” in
an Unclassified tuple will not be considered a duplicate of an attribute value “1” in a Confidential tuple.

Join Queries - The join queries in the Wisconsin benchmark test how efficiently the system makes use of available
indices and how query complexity affects the relative performance of the DBMS. In the MLS version of the query
suite, the selectivity factor for join queries was reduced from 10 percent to one percent. For a 10,000 tuple relation,
10 percent selectivity generates a 1,000 tuple result, larger than would be desired by a user in an ad hoc environment.
The definition of selectivity for joins of multilevel relations is the same as for multilevel selections.

Aggregate Queries - The aggregate queries for the multilevel benchmark are the same as in the Wisconsin
benchmark. The queries use either a secondary index or no indexes. Indexed and non-indexed versions of an
aggregate query are included to determine whether the query optimizers use an index to reduce the execution time.

Sort Queries - The Wisconsin benchmark query suite does not include any sort queries, but for completeness we
included them in the MLS benchmark. They measure the ability of a DBMS to sort on alphanumeric or numeric
attribute values. We have two versions of queries: one in which an indexed field is used to define the sort order and
one which sorts on a non-indexed field. Although the second version more accurately reflects a DBMS’s sorting
capabilities, the versions using an indexed sort field are included for comparisons of index efficiency across MLS
DBMSs with dlfferent security level distributions.

Update Queries - Update queries evaluate the overhead involved in updating each type of index when inserting,
updating, or deleting a tuple. The update queries used in the Wisconsin benchmark address only single-tuple updates
and are sequenced so that the database is restored to its initial state when all the tests are completed. Because the
MLS update queries reflect the same limitations, they are probably the weakest part of the MLS benchmark. Not
enough updates are performed to cause a significant reorganization of data pages or index nodes (especially for B-trees
.that are already several levels deep). A more realistic evaluation of maintenance overhead requires a multiuser
environment, where the effects of concurrency control and deadlocks can also be measured. Additionally, the effect of
polyinstantiation probably cannot be detected at the granularity of single-tuple updates, especially in a single-user
test environment. Therefore, multiple-tuple update queries will be added when we develop a multiuser query suite.
3.3 Query Execution Tool
Benchmarking a database involves the use of a mechanism to submit queries to the target database and take timing
measurements. - The tool must perform this task reliably and consistently to get dependable results. There are two
techniques for executing a benchmark. One technique uses ASCII script files containing the benchmark workload
that are executed through an interactive SQL interface. The MLS DBMS Benchmark uses the second technique,
which involves the use of embedded host language interface program calls within a programming language. Both
techniques are valid; however, the second technique allows for more accurate timing measurements. We developed
the Job Script Execution tool using the C progmmmmg language to run a series of benchmark tests against DBMSs
over multiple platforms. A simple ASCII shell script might have been faster to develop, but not as flexible. The
timing of a query should be performed as close as possible to the DBMS kemel interface in order to get the most
accurate measurement. An ASCII script cannot capture the appropriate granularity of timing data from the DBMS.
For instance, a shell script is unable to capture the timing detail for the first record returned from the database (“time-
to-first”). A shell script running at the interactive SQL interface also takes additional resource overhead while
executing the queries. On the other hand, shell scripts are very good for initially testing the query suite for errors.
The tool we developed to execute the query script workload and analyze the timing output is described below.

Job Script Execution Program Description - The Job Script Execution tool serves two basic purposes: (1) to submit
the job script workload to the target DBMS and (2) to set the OS clock and record the timing data for each query
submitted to the DBMS. The program takes two input parameters: the query script file name and the name of the
file to be used for the query results. The program prompts the user for the session level (classification and
compartments) at which the benchmark test will be run. If the logon is successful, benchmark testing begins. Each
query defined in the job script is submitted to the DBMS. The time is recorded before the query is submitted, after
the first record is returned and after the last record is returned. When the last query in the query script is executed a
DBMS logoff occurs and control returns to the main unit.

The entire job scnpt is submitted.to the DBMS for a total of three times to obtain an average of the timing results.

With each successive run of the Job Script Executor program, a DBMS logon and subsequent logoff are performed.
The logon and logoff sequence permits each run of the query suite to find the DBMS in a consistent initial state.

406

The host machine is dedicated to running the benchmark with no other users active during testing, so that other
activity on the host machine is not a factor in the timing results.

4 ity-

In this section, we describe the experiments that should be run using the benchmark database, test query suite, and
query execution tool to examine the impact of security-related features on the performance of an MLS DBMS.
Specifically, these experiments are designed to address the issues of security level distribution within a database, user
session levels, and auditing. Not all of the security-related issues identified in section 2 have yet been at addressed.
Since the commercially available MLS DBMSs are targeted at the B1 level, the effect of the NCSC evaluation level
cannot be assessed. Similarly, neither high assurance DAC nor additional security constraints described earlier are
relevant with the B1 MLS DBMSs currently available. Finally, the current MLS DBMS benchmark is a single-user
test, hence performance impact of concurrency control, polyinstantiation, and session level mix cannot be measured
until a multiuser benchmark is developed. The experiments discussed below are those that can be carried out using
the initial version of the MLS DBMS benchmark tools.

Security Level Distribution Experiments - This portion of the benchmark methodology looks at the MAC mech-
anisms of an MLS DBMS by examining the effect of security level distribution on performance. By security level
distribution, we mean the number of security levels of data stored in the DBMS and the percentage of data stored at
each level. We approach this issue by holding the query workload constant and running a complete set of benchmark
experiments over different versions of the multilevel database, with differing security level distributions. The tests
are run with the MLS DBMS's security feature options, such as polyinstantiation or auditing optlons, either turned
off or set at their minimum level.

We plan to use three database configurations for the generic multilevel benchmark with B1-targeted MLS DBMSs.
The first configuration contains data at only one level. That is, all tuples in each relation are labeled at the DBMS’s
lowest security level, Level 1 (e.g., "Unclassified). The second version of the database has two levels of data in each
relation, with eighty percent of the tuples labeled at Level 2 (e.g., “Confidential”) and twenty percent labeled at Level
3 (or “Secret”). This distribution roughly models the operational environments for which B1 systems are
appropriate. The third version of the database adds categories, which represent non-hierarchical classification levels,
to model a compartmented-mode environment. Forty percent of the tuples in each relation are labeled at Level 4
(e.g., “Top Secret”); twenty percent at Level 4, Category A; twenty percent at Level 4, Category B; and twenty
percent at Level 4, Categories A and B. In each experiment, the session level is database high, the highest security
level of the data within the database (e.g., Level 4, Categories A and B, for the third version of the database).

This multi-database version approach increases the length of time to conduct benchmark experiments since databases
must be dropped and rebuilt each time experiments are run using a different security level distribution. The
alternative, though, is to have duplicate copies of each relation, with differing security level distributions. For
example, there might be three 1,000-tuple relations: one with all tuples at one level, another with an eighty percent/
twenty percent security label dislribution; and the third with the category distribution described above. Aside
requiring more storage space, it is not clear that the single database approach provides an equivalent environment.
For example, the metadata may be affected by the presence of additional security levels, as may be the actual storage
of data values Other side effects may also be present that could be difficult to detect or control.

User Sesszon Level Experiments - The second type of experiment looks at the effect of the session level at which
queries are run. Analysis of timing measurements will show how MLS DBMS performance differs for users ranning
at different security levels. Therefore, in addition to executing a complete set of the basic workload for each
multilevel version of the database, a modified workload is executed at different user session levels against each
version of the database. The selection criteria are modified, if necessary, so that each query is guaranteed to return the
same number of rows, regardless of the user’s session level. Our definition of multilevel selectivity does not require
this, but the total time required to complete a query also depends on the number of rows returned. Therefore,
meaningful comparisons of response times across multiple user session levels cannot be made unless the size
(cardinality) of the result rows is kept constant. The attribute unique?2 is used for the selection criteria because the
security label value is correlated with the value of unique2 when the test data is generated. For the databases
described above, the workload is run at seven different session levels against each version of the database: Level 1;
Level 2; Level 3; Level 4; Level 4, Category A; Level 4, Category B; and Level 4, Categories A and B

Auditing Experiments - The last type of experiment examines the effect of auditing. Overhead from auditing always
has a detrimental impact on a DBMS’s performance. In an MLS DBMS, foregoing the use of auditing will not be an

407

installation option. However, all systems will have a minimal set of audit operations that are required and another set
of audit events whose use is optional. The experiments described above are all conducted with minimal auditing; the
identification of the minimal set of audit events is included in the benchmark documentation. Specific testing to
determine the impact of additional optional audit parameters is conducted using only one version of the multilevel
database. Although experience. with using this benchmark may indicate otherwise, it is not felt that the security level
distribution of the data within the database is a factor in audit overhead. Therefore, audit experiments may be run
using any one of the three multilevel versions. User session levels, though, may have an impact, so each series of
tests using a specific set of audit parameters is run using at least two session levels: benchmark low (e.g., Level 1)
and benchmark high (e.g., Level 4, Categories A and B).

4. _CONCLUSIONS
This paper has presented the results of our initial work towards developing a methodology for benchmarking MLS
DBMSs. We have categorized a set of security-related features of MLS DBMSs that may impact their performance.
Benchmarking components, including the multilevel test database, the query suite, and a single-user test execution

program, have been defined and implemented. Finally, we have described a series of benchmark experiments to
assess the performance impact of MAC and audi_ling on Bl—targeted MLS DBMSs.

When the project began, this effort was perceived as only requiring relatively stranhtforward modifications to the
Wisconsin benchmark in order to adapt it to a MLS DBMS context. However, a number of unique issues associated
with the multilevel properties of relational databases, such as the meaning of selectivity across multiple
classification levels, have already been identified. There appears to be no clear consensus regarding the MLS
extensions to the relational data model, so variations among MLS DBMS implementations can be expected from
different vendors. Therefore, actual benchmarking experience using a variety of COTS MLS DBMSs will be
necessary before an ML.S DBMS benchmarking methodology can be completed.

At MITRE, we are working to extend the benchmark to support multiuser performance testing in order to assess the
impact of concurrency control algorithms, polyinstantiation, and session level mixes. Meanwhile, we plan to test
the single-user benchmark against some of the MLS DBMSs currently available. Advanced security constraints,
such as context-based access control, association constraints, aggregation constramts and enhanced DAC
mechanisms, when they appear, will become targets of additional investigation. ‘

REFERENCES

[1] TRUDATA Model 3BBL Trusted Facility Manual, Release 2.0 Revised 27 June 1990, Atlantic Research
Corporation, Hanover, MD.

2] 'Denning, D. E.;._Lunt, T. F., Schell, R. R., Heckman, M and Shockley, W. R., “A Multilevel Relational
Data Model,” Proceedings of the 1987 IEEE Symposium on Security and Privacy, IEEE Computer Society Press,
1987.

[31 DeWitt, D. J., Bitton, D., C. Turbyfill, 1983, “Benchmarking Database Systems: A Systematic
Approach,” Computer Sciences Department, University of Wisconsin, Madison, WI.

4] DeWitt, D. J., 1991, “The Wisconsin Benchmark: Past, Present, and Future,” The Benchmark Handbook,
edited by J. Gray, Morgan Kaufmann Publishers, Inc., San Mateo, CA.

[5] Graubart, R., “A Comparison of Three Secure DBMS Architectures,” Proceedings of the 3rd IFIP WG 11.3
Workshop on DaIabase Security, September 1989, Monterey, CA.

[6] Hinke, T., “DBMS Trusted Computing Base Taxonomy,” Proceedings of the 3rd IFIP WG 11.3 Workshop
on Database Secunty, September 1989, Monterey, CA.

7 Jajodia, S., Mukkamala, R, “Effects of SeaView Decomposition of Multilevel Relations on Database
Performance,” Proceedlngs of the 5th IFIP WG 11.3 Workshop on Database Security, Shepherdstown, WV.

' [8] Department of Defense (DOD), 1985, Trusted Computer System Evaluation Criteria, DOD 5200.28-STD.

g Varad_arajan, R., October 1991, “An Overview of Infonmenhne/Secure,” Proceedings of the 14th
National Computer Security Conference, Washington, D.C., pp. 701-703. -

408

THE MULTIPOLICY PARADIGM

Hilary H. Hosmer
Data Security Inc.
58 Wilson Road
Bedford, MA 01730

ABSTRACT

This paper identifies some shortcomings in the TCSEC/TNI/TDI paradigm for multilevel secure (MLS)
systems and summarizes requirements for an alternate paradigm. It describes the Multipolicy Paradigm,
suggests shifts in thinking about MLS systems, and raises important multipolicy issues: policy conflict
resolution, adding user security policies to commercial off-the-shelf (COTS) products, evaluating and
certifying multiple policy systems, and passing sensitive data across policy boundaries.

INTRODUCTION
OVERVIEW

This paper consolidates and extends the results of our research into mumpohcy systems! 22 4 Sperformed
over the last two years under. Air Force Electronic Systems Division sponsorship. The Muitipolicy
Paradigm permits a multilevel secure (MLS) system to.enforce -multiple, sometimes-contradictory;”
security policies: - Metapolicies, policies.about policies, coordinate the enforcement of the multiple
security policies. Policy domain codes on data indicate which security policies to enforce on the data,
and muitiple label segments supply the attributes needed for each policy.

The Multipolicy Paradigm permits natural modelling of the multipolicy real world. it permits possibly
inconsistent security policies, such as confidentiality and integrity, to operate together. it may provide a
vehicle for users to add their own security policies to a system without disrupting or invalidating existing
evaluated policies. It may ease policy integration problems by preserving the original classification of
data when data is passed across policy boundaries. Finally, if implemented in hugh-speed paraliel
processing architecture, it may improve trusted system performance.

Commercial applications include medical, financial, reservation, library, investigative and other systems
that cross policy domains. Military applications include multiservice logistics, the multiservice Strategic
Defense Initiative and Command, Control, and Communication (C3) systems in muitinational battle
theaters, like the Persian Gulf War. '

RATIONALE

Integrating security policies on today's multilevel secure (MLS) computer systems is a difficult,
sometimes impossible problem. When the security policies themselves cannot be integrated, the
systems built to implement these policies cannot be integrated either. ‘Sometimes the only way to solve
impossible problems is to transcend them. For example, when Copemicus developed a new modei of
the planetary system with the sun at the center, his paradigm simplified planetary astronomy and initiated
waves of discovery by others. Thomas Kuhn documents a number of these ground-breaking paradigm
shifts in his book, The Structure of Scientific Revolutions.® Hoping for similar breakthroughs, computer
security founder Dr. Willis Ware has called for a new MLS paradigm which will make networking and
integration of MLS systems easier.”

409
Copyright 1992 Data Security Inc.

Although the USA standards for trusted systems call for a unified system security policy, Data Security
Inc. proposes a new security paradigm based upon multiple, perhaps contradictory, security policies.
Multiple security policies may be necessary if:

1. There is more than one security goal, such as privacy, confidentiality and integrity;

2. The system serves diverse constituents with individual goals and plans, such as the United
Nations (U.N.), European Community (EC), and other federations;

3. The system is composed of separately evaluated pieces, such as an MLS Database
Management System (Trusted DBMS) and MLS Operating Systems (Trusted OS).

THE CURRENT PARADIGM

The current US paradigm is based upon three standards documents described below: the TCSEC, the
TNI, and the TDI. The current paradigm may evolve significantly because of the ITSEC, the
'‘harmonized’ European criteria, and the Federal Criteria, a standards document focused on commercial
system security, now under development at NIST with NCSC support.

The TCSEC. The Department of Defense Trusted Computer System Evaluation Criteria (TCSEC).8
embodies the United States' security paradigm. The TCSEC prescribes a unified "system security
policy" made up of subpolicies such as Mandatory Access Control (MAC) and Discretionary Access
Control (DAC) which all cohere together to form a single system security policy. The unified policy
drives the choice of security mechanisms and is the foundation of most assurance efforts.

The single-policy paradigm works well with stand-alone systems but causes problems when systems
must be networked or combined and security policy integration is required. For exampie, when MLS
products with slight variations in policies (such as Operating System (OS), Database Management
System (DBMS), and user applications) must work together, there are usually policy integration
difficulties as well as other interoperability issues [3]. The policy integration problems are even more
evident when systems enforcing different policies, such as U.S.A. Department of Defense (DOD), North
Atlantic Treaty Organization (NATO), and France, must interact and share classified data.

The TNI. The Trusted Network Interpretation (TNI)® of the TCSEC enlarges the single-policy paradigm
so that muitiple policies may coexist on computer networks. it permits each node on a network to have
its own nodal security policy, but stipulates that the network as a whole must have an overail global
network security policy which is the basis for evaluating the security of the network.

The TDI. The Trusted Database Interpretation (TDI)!? addresses the problem of composing systems out
of separately developed and evaluated trusted software products. The trusted computing base (TCB) of
each Separate component is called a TCB subset. Each TCB subset can enforce a different security
policy, such as MAC or DAC. The TDI assumes, however, that these subpolicies cohere into a single
consistent overali security policy.

The ITSEC. The draft Intemational Technology Security Evaluation Criteria (ITSEC)!! permits a user to
specify a security policy, select a system meeting site needs, then request a certified evaluation center to
do an evaljuation to provide the necessary assurance that the selected system is able, in fact, to camry out
the user's security policy. There is no restriction on what functionality could be in the user's policy. The
policy could include integrity, availability, non-repudiation, and confidentiality, for example. The ITSEC
follows the TCSEC lead in requiring users to integrate multiple separate policies into a single coherent
system security policy.

Problems With The Current Paradigm. The paradigm of a unified security policy has some major
shortcomings which are becoming apparent as multilevel secure systems are fielded. 1. /t's inflexible. If
a user wants to modify built-in aspects of the system security policy, the whole system must be
reevaluated. 2. Exchanging sensitive data with systems with other security policies is difficult or
impassible in real-time. Guards are needed at all interfaces, and mapping rarely can translate security

410

leveis from one policy to the other without upgrading. 3. It's tnrealistic. The real world has multiple
coexistent security policies. A computer security officer creating an automated security policy'2 must
often integrate diverse and contradictory security policies together into a single coherent policy to meet
TCSEC criteria. Canada's experience trying to integrate the national privacy policy with the national
disclosure policy into a single policy lattice illustrates the real difficulties users face 13. 4. Performance is
poor. Adding security to existing systems seriously slows down throughput.

The current paradigm must be enlarged or shifted to meet the needs of a more interrelated and
integrated world. With a few significant enhancements, the single-policy paradigm can be extended into
a more flexible, more interoperative, better-performing muitipolicy paradigm.

R IREMENTS FOR A P IGM

What must a larger and more inclusive paradigm do? It should:

Handle COTS system construction. Facilitate the integration and tailoring of commercial off-the-shelf
products to meet the end-user's system security policies.

Separate the policy from the enforcement mechanism.. The system security policy should not be such an
integral part of the system that it is impossible to change policies without reevaluation.

Ease sharing data with other policy systems. In multinational conflicts like the Persian Gulf, US
DOD users need to share classified data with allied oomputers that implement different service,
national or international security policies.

Enforce the originator's security policy. Current strategies for sharing data across security policy
boundaries (Guards, Man-in-the-loop) frequently must upgrade or downgrade data, thus iosing
the original classification. Even if the multinational situation is one of cooperation rather than
conflict (for example, divisions of a multinational corporation, or international electronic funds
transfer), it is desirable to guarantee enforcement of the originator's security policy while shanng
data across computer systems.

Permit contradictory policies to operate in parallel. For example, different states have passed
different laws about releasing AlIDS data. If an AIDS patient from Connecticut is in a New York
hospital, which state's disclosure laws should apply to the release of data? In the European
Community heaith system, the varying disclosure laws of 12 different countries must be
implemented and maintained.

Improve the performance of trusted systems. Adding security to a system usually degrades its
performance significantly, largely because of auditing and access control checks.

Other. The list above is not exhaustive. As more multilevel systems are implemented, we will become
aware of more difficulties and requirements. Solving these problems is essential to widespread user
acceptance of MLS systems.

RELATED WORK

Many researchers have addressed aspects of these problems. Biba'4 and Clark and Wilson'5
established the importance of integrity policies. DEC built a multipolicy operating system SEVMS that
enforces both confidentiality and (Biba) integrity, showing the commercial feasibility of multipie policy
systems'8. The European Computer Manufacturers Association (ECMA) developed a conceptual
framework for security across muitiple domains with mumple authorities'?, raising hopes for intemnational
standards.

Multiple policies frequently confiict. Dobson and McDermid discovered that integrated Programming
Environments (CASE tools) require three distinct security policies , and "it is critical to articulate and
resolve the policy conflicts."'® Dobson has been studying organizational security policies, the source of
many conflicts. Trusted Information Systems (TIS) documented that the Aegis Combat System requires
three sometimes conflicting policies (information disclosure, information modification, weapon release),

411

while the Nuclear Command, Control, and Communications system requires four policies (weapon
release, denial of service, information disclosure, and information modification)'® Secure Computing
Technology Corp. (SCTC) and Georgia Tech Research Corporation (GTRC) in their Assured Service
policy work identified ways that various availability mechanisms both compiement and conflict with
‘secrecy policies.?® Rae Bums raised the inherent secrecy/integrity conflict?! and Oracle Corp.
addressed methods for resolving it.22 Tradeoffs between competing policies are often required, and
often only the ultimate users can determine which policy to emphasize. in a muitipolicy environment, it
-is critical for users to be able to specify how policy conflicts shouid be resolved.

Multiple policies may be more compiex than single policies. To manage this complexity, researchers are
studying the fundamental properties of policies. Feiler and Dowson explored the relationships between
policies and processes, discovering that policies may conflict and that policies about policies may be
necessary.Z3 Moffet and Sloman explored management policies and the need for explicit control
authority in the commercial arena. They also explored how to represent and manipulate policies and
came to view policies as objects which can be created, destroyed, queried; and which can interact with
each other.24 The Policy Workbench project at George Mason University(GMU) studied intentions
implicit in policies, incompleteness in assumptions underlying security policy modeils, and ways to
represent security policies, including activity role charts, Petri nets, data flow diagrams, and structural
diagrams.2®

Several researchers aim for policy flexibility. Grenier, Hunk, and Funkenhauser differentiated policies
from mechanisms.2® The Planning Research Corporation (PRC) proposed rule-based policies as a way
to escape the inflexibility of built-in policies and demonstrated that assorted rule-bases can be plugged
into the same system.Z’ MITRE's General Framework for Access Control (GFAC) group asserted that all
policies can28 be expressed as rules specified in terms of attributes and other information controlied by
authorities.

Our earlier work introduced several concepts which are incorporated into this paper. {1] proposed a
Multipolicy Machine which enforces multiple, possibly contradictory security policies using Metapolicies,
a term introduced in {3] and expanded in [2]. [4] proposed shared labels to save space, and parallel
processing of policies and policies on ROM chips to improve performance and standardization.

THE MULTIPOLICY PARADIGM
COMPONENTS

Most security modeis built after Bell and LaPadula's classic modei2? include:
1) Subjects

2) Objects
~ 3) Security Policy
4) Sensitivity attributes for subjects and objects
§) Policy Enforcer to mediate subjects' operations
on objects in accordance with the policy.

Several additional.components are required to handle multlple policies:

1) Multiple security policies;

2) Muttiple security policy enforcers;

2) Multipie policy coordinators (metapolicies);

3) Assignments to specify which policies apply to which subjects and objects.
Two optional components are needed to provide flexibility and performance:

4) A means to control policy changes and updates;
5) A design to avoid policy-enforcement processing bottienecks.

412

http:system.21
http:mechanisms.26
http:other.24

Each component is described below. We describe abstract concepts, then suggest concrete ways to
implement those concepts.

MULTIPLE POLICIES

A policy is a set of constraints established by an accepted authority to facilitate group activity. A policy
may be explicit or implicit, broad or narrow in scope, mandated or optional. Security policies are those
policies whose goals are protecting the confidentiality, integrity, and/or availability of people, resources,
and information. Automated security policies [11] protect information within computer systems, and
require security policies that are much more explicit and formally specifiable than policies intended for
people. Automated security policies typically include: a) definitions of subjects and objects; b)
definitions of aliowable operations; c) policy rules, and d) data for implementing the policy, such as a
lattice for ordering sensitivity levels, integrity levels, compartments, etc. Automated secunty policies
must be tamperproof and are, by definition, part of the trusted computing base.

in the Multipolicy Paradlgm a computer system can enforce more than one policy. The Muitipolicy.
Paradigm permits multiple: -

1) Types of security pohcles (Eg. integrity, MAC, DAC, Chinese Wall30);

2) Variations of security policies (Eg. integrity by Biba and by Clark- Wilson);

3) Combinations of policies (Eg. hierarchical, independent, coordinated);

4) Sources of policy (Eg. user, administrator, government, standards body);

5). Means of changing policies (Eg. locally, remotely, at sysgen).

Unlike the current TCSEC paradigm, the Muttipolicy Paradigm does not require that a unified system
policy be developed, or even that the policies be consistent. Canada, for example, can impiement
separate privacy and confidentiality policies on one system[13], and the EC may keep several separate
health and financial information privacy policies.

Policies in current systems are usually impiemented as instructions in code, with instructions in the
kemel TCB for system security policies and instructions in applications programs for user policies. In the
Multipolicy Paradigm, complex data structures will:be needed to implernent each pelicy and its .
associated-metapolicies:This implementation method can provide both flexibility and assurance.
Examples are in the companion paper printed in this proceedings, "Metapolicies Ii”..

MULTY ENFORCERS

Security Policy Enforcers Security policy enforcers impiement the rules of a policy on the subjects
and objects within the policy domain. Each enforcer is trusted to protect and enforce the policies in its
domain correctly and must be tamperproof. Enforcers may be implemented in several ways. However,
{t-is critical that the_policy NOT be built into the enforcer, as it now is in most reference monitor
implementations. One enforcer may enforce muitiple independent policies, or multipie policy enforcers
may enforce multiple different policies, or multiple versions of the same policy, or multiple subsets of the
same policy.

Metapolicies Metapolicies are policies about policies. They provide a framework for clarifying policies,
explicitly stating the assumptions about policies and the organization's control process for policies. They
also coordinate the interaction between policies, explicitly specifying order, priority, and conflict-
resolution strategies. Metapolicies clarify underlying policy assumptions and relationships, facilitate
expression of the variety, richness, and muttiplicity of security policies, and permit the controlied
interaction of policies and subpolicies, making complex policy systems possibie {2]. :Metapolicies specify
who can set policy, who can change policy, and the procedures for changing policies: They also include
rules about developing, verifying, and protecting security policies and rules about the interaction of
multiple security policies, especially where they conflict. The Multipolicy Paradigm permits multipie
distinct security policy domains, administered by different organizational entities each with compiete

413

policy autonomy in its domain, to be modeled in a computer system. Metapolicies control the
interactions of the multiple policies.

MULTIPLE DOMAINS

A policy domain is a logical construct defining the area of responsibility of an authority. The U.S. federal
government, for example, takes responsibility for regulating interstate commerce (the federal domain),
while the states take responsibility for regulating intrastate commerce (the 50 state domains). NCSC,
OSl, 1ISO, ECMA, DOD, and NATO are a few of the well-known security domain authorities.

Each security domain may be autonomous, with its own authority, subjects, objects, policies, and policy
enforcement mechanisms. Others may be part of a hierarchical structure, like Air Force Base (AFB), Air
Force System Command(AFSC), Air Force (AF), and Dept. of Defense(DOD). In hierarchical structures,
the authority and policies of the top domains must be incorporated by the subordinate domains. Under
the unified-policy model, the base, system command, AF and DOD policies would be integrated and -
implemented as a single automated security policy. However, under the Multipolicy Paradigm, each of
the individual policies in the hierarchy - the DOD policy, the AF policy, the AFSC policy and the AFB
policy - would be separate policies, and a policy domain code would be required for each. This gives the
AFB security administrator the flexibility to change local base policy while leaving national DOD and AF
policies untouched.

Domains may overiap each other, so that subjects or objects may belong to more than one domain and
fall under more than one policy. Patients who fall under the confidentiality policies of multiple states, and
military information which comes under both national and international confidentiality policies are
members of overlapped domains.

Policies in different domains may conflict. However, there must be means to resolve the conflicts as
they occur. For example, if a national and an international policy are in conflict, which takes
precedence? A later section addresses conflict resolution techniques. Policies within the same domain
must not conflict, because logical inconsistencies may create exploitable holes. Research is needed to
see if policy conflicts are possible between subdomains.

 POLICY ASSIGNMENTS

There are several ways to assign policies to data. The European Computer Manufacturers Association
(ECMA) [17] has proposed security domain codes on security labels which indicate under which label
convention the label is formatted, eg. Intemationai Standards Organization (ISO). We propose security
policy domain codes as a mechanism to indicate which policy domains apply to this subject, object, or
policy. Whenever policy decisions are made, these policy domain codes would be checked first so that
the proper policy enforcers can be invoked. Figure 1 illustrates domain codes incorporated into security
labels.

Single Policy Label Format:
OBJECT / SECURITY ATTRIBUTES / POLICY DOMAIN CODE
Single Policy Example:
The string of bits representing patient Jones' data release perm:ssnons will be mterpreted
in accordance with the New York privacy policy.

Patient / John Jones / 100101 / Privacy-NY

Figure 1A. Single Policy Domain Code Example

414

Multiple Policy Label Format:

OBJECT / LABEL / POLICY / LABEL / POLICY / etc.
/ SEG / CODE / SEG / CODE /

Multiple Policy Example:
Patient Smith, who lives in Connecticut, is hospitalized in New York and then sent for
consultation to a teaching hospital in Massachusetts. The privacy policies for all three states
apply to him and his hospital record has three sets of privacy attributes.
Patient / Sam Smith / 01011 / Priv-MA / 01010 / Priv-CONN / 11010 / Priv-NY

Note that labels with muitiple policy attributes and multiple security domain codes may get very iong. A
paper published last year, "Shared Sensitivity Labeis"[4] describes an indirect addressing technique
which permits subjects and objects with the same sensitivity levels to share a single version of the iabel.

Figure 1B. Multiple Policy Domain Codes in Trusted Labels

MULTIPOLICY ISSUES
CONFLICT RESOLUTION
Strategies for resolving conflicts between policies include:

Resolve the conflicts manually and automate the integrated results. This is the strategy taken by most
vendors and most user organizations. The information security officer manually integrates muitiple,
possibly contradictory policies into a coherent system security policy. This is a difficult process, since
each policy has its own source or owner, its own enforcement authorities, and its own evolutionary time
frame. Developing consensus takes a long time, especially if policies reflect deeply held values.

Resolve by dominance. If the policies are hierarchically structured, then the policy higher in the
hierarchy predominates. if the policies are ranked by their importance, the most important
predominates. Or, if the policies reflect the ranking of the authorities who created them, then the policies
of the dominant authority predominate. This strategy is appropriate in the military and other
hierarchically-structured organizations.

Translate policies into a common form. Dr. Bell advocates this strategy using policy conversion logic on
a Universal Lattice Machine. He showed that multinational sharing, Clark and Wilson, dynamic
separation of duty and ORCON can all be implemented with the Universal Lattice Machine.3!

Run in separate policy domains. John Rushby's Separation Machine, as implemented by Amdahl's
Muitiple Domain Facility, aliows seven different policies on one machine but no communication between
domains.32 Parallel processing of policies is possible but resolving conflicts between policies must be
done outside the Separation Machine.

Use additional enforcement mechanisms to implement custom user policies in addition to DAC, MAC ,

etc. Type enforcement like that implemented in SCTC's Logical Coprocessor (LOCK)33 provides
considerable user flexibility. ’

415

http:Machine.31

Figure 2. Policy Conflict Resolution34

SUB. Request POLICY Operate

SUBJECT ENFORCER [~ — — — — — > OBJECT
On 72?7

Request Vote (Y/N)
POLICY
DECIDER
METAPOLICY
POLICY1 POLICY 2 Precedence Rules/Data

Vote 2: Rank 2

1) The 'Subject' wants to o

Enforcer'.

Vote 1: Rank 1

Policy Conflict Resolution in Figure 2

perate on the ‘Object’, but the request must be mediated by the Policy

2) The Policy Enforcer passes the request to the ‘Policy Decider' along with the subject and object policy
domain codes. The Decider consists of multiple ‘Policy Decision-Makers' operating in parallel, one for

each policy impiemented by the system.

3) Based upon ‘policy domain codes, the request is routed to thé proper Policy Decision-Makers.

4) Using rules and decision data to evaluate the request, each Policy Decision-Maker sends its Policy
Precedence Ranking and a Vote (eg. Yes', 'No', '‘Don't Care’, 'Undecided’ or a fuzzy logic number on a
oontinuum) to the Metapolicy. ’

5) The votes of all the individual

Metapolicy and weighed accordi
and Rank 2 in this example).

policies (Vote 1 and Vote 2 in this example) are combined by the

ng to its fules as well as the precedence ranking of each policy (Rank 1

68) The resulting ‘Yes' or 'No' vote is sent back to the Policy Enforcer which then permits or denies the

requested operation.

416

Use rule-based access control. John Page[27], Marshall Abrams{28], Leonard LaPadula3>, and others'
showed how rule bases (rules with one-to-one correspondence with the operations of the system) handie

many kinds of access control policies. LaPadula proposed a voting technique to resolve rule conflicts
which we adopt in Figure 2.

Adjudication. In case of conflict, develop a solution which reflects the tradeoffs and weights of the users
on the system. If there are muitiple applications which weigh things differently, accommodate the
various weights. The use of metapolicies, or 'policies about policies', to sort out precedence and to
identify and resolve policy confiicts is illustrated in Figure 2.

Outside mediation. When two security policies contradict each other, the decision about what to do may
be best left to a human who understands the content and the context, as in downgrade decisions.

A combination of these techniques can be powerful. Figure 2 shows that the conflict resolution process
can be simpie and elegant, no matter how many different policies are included. If parallel processors are
used to implement muitiple Policy Decision-Makers [1], the decision-making time could be kept close to
that of a single-policy machine.

E BLE USER SECURITY ICIES

One of the frustrations experienced by users is their limited ability to modify the security policies which
are built into COTS products. Most current systems allow changes to the policy data (eg. the contents of
the lattice), but not to the policy rules. The probiems are:

1. The rules are built in.
2. Assurance depends upon a stable policy.
3. Changes may introduce security flaws.

Although inconceivable with today's built-in policies, user authorities should be able to add or delete
policies from their systems at any time. Standardized policies and labels may be distributed on ROM
firmware [4] or protected software modules and would include metapolicies which describe the policies
and their interrelationships. Metapolicies which coordinate the policies must be customized to the user's
needs when each policy is installed.

There are several ways to provide policy flexibility. COTS vendors can offer customers a set of
evaluated policy options, clusters of commonly-desired combinations, to choose from when the product
is ordered. Trusted software can be used to tailor policies further. Modifiable aspects, such as label
size, number of compartments, and which policies are selected for enforcement, must be carefully
limited to maintain the integrity of the evaluated system. The vendor could tailor the system before
shipping, or the System Security Officer (SSO) could tailor it at system generation.

Currently, user policies are coded many times into applications programs. |t is desirable for integrity and
control to get the policy out of the application and into the system where the same policy can be invoked
by many programs. ldeally, an SSO shoulid be able to enter entire user policies via trusted software into
an isolated area of the TCB where their interactions with applications programs and other policies are
carefully mediated by the appropriate metapoticies. it is clear that this method works when the user
policies are a subset of the underlying system policy (TCSEC paradigm). It is unclear what shouid
happen when there is no underlying system poticy (Multipolicy paradigm).

Options which don't affect the security of the system, such as audit policy options and default options,
can be set by the SSO at any time. The vendor should ship any trusted system with conservative
defaults selected to err on the side of caution.

When policy change is required, domain administrators can imptement changes in policy in their
domains in a variety of ways. On automated systems, they can "securely download" new policy

417

modules, send new firmware chips for installation by each System Security Officer (SSO), or simply give
orders to the SSOs to make changes. Metapolicies will restrict policy changing to authorized personnel.

The capacity to absorb multiple user policies (representing muitiple nations, multiple divisions, or several
kinds of integrity policies) without reevaluating the whole system is an integral part of the Multipolicy
Model. However, evolution of policies raises the issues of reevaluation and recertification.

EVALUATION AND CERTIFICATION ISSU

How does one evaluate and certify a system with multiple flexible policies? If policies change, whether
at sysgen or on-the-fly, when must the system be reevaluated or recertified? There are many questions
and problems.

Today, evaluators determine whether or not a system comrectly implements a policy with what degree of
assurance. The Muttipolicy Paradigm requires a shift in thinking so that evaluators determine that the
system has mechanisms which will correctly implement whatever policy it is given. The evaluators will
examine the mechanisms for interpreting and enforcing a variety of policies rather than just one.

Evaluators cannot determine in advance that every possible policy which might come along will work
correctly in the system. Certifiers will study the instaliation of specific policies on a specific system.
Certifiers will also check the metapolicies which are set by the user, such as those that prioritize policies
in conflict, Certifiers will need to check the interaction of multiple security policies and to handle the
problem of too many possible combinations to test them all.

if evaluators evaluate systems separately from polices, who evaluates the policies? Since there are
likely to be so many different policies, commercial evaluation centers, like the ones doing evaiuations in
Europe, would be appropriate for policy evaluation. if policies have been developed in different places
by different authorities and evaluated in different places with different levels of assurance, common
standards need to be developed. For exampte, for any desired certification level, each policy must have
the minimum level of assurance for that certification level. Metapolicies which describe and controi the
policies must be evaluated as weli.

CROSSING POLICY BOUNDARIES

Crossing policy boundaries is one of the meost difficuit problems in trusted computing. When classified
data leaves one policy system, such as the US Military, to go to another, such as NATO, a trusted person
or process must sanitize and relabel the data and approve the transfer. in the civilian workl, privacy laws
require that the patient or the patient's guardian give written approval for the transfer of medical data to
another hospital. In both military and civilian life the data owner wants assurance that the data will be
treated in the new policy realm in sufficient accordance with the owner’s policies.

In a multipolicy system, it is possible for an object to go from one muitipolicy machine to another without
leaving its original policy domain. There are several important assumptions:

1. The Muttipolicy Machines follow standards for labelling objects which preserve the integrity of
labels and policy domain codes.

2. The Muitipolicy Machines follow standard policies about handling objects from different policy
systems. For example, if the label is checked and it doesn't match any policy in the system, the
object is inaccessible to any users on the system. However, the inaccessible object may be
passed on intact to another system which follows the standards for muitipolicy systems.

The sending and receiving systems may implement a homogeneous, an overlapping, or a heterogeneous

set of policies. As long as the receiving system is trusted to implement the policies indicated in the label
associated with the object, there is no boundary-crossing problem.

418

If the receiving system does not enforce the policy or policies marked on the object, it must either pass
the object on to another machine which enforces the appropriate security policy, hold on to the object
without permitting any access, or. as is done now, request human intervention. Which choice is made
could depend upon instructions which accompany the object, or on the metapolicy for the receiving
computer.

IMPLEMENTATION OPTIONS

Throughout this paper we have suggested several reasonable approaches to impiement a Multipolicy
Paradigm:
' Multiple sets of rule-based policies, as seen in Figure 2, [27] and {35};
Multiple co-processors, like SCTC's LOCK and Sidearm [33];
Distributed processors: each node has a local policy and a master node has
them alil; |1} ‘
Parallei processors or policies in ROM chips to improve performance [4];
Muitidomain machines, like Amdahl's Multidornain Facility [32];
" Hybrids of the above

ook N

Other approaches are possibie as well, but we do not wish to focus here on impiementation options.
More implementation option information appears on our "The Multipolicy Model; A Working Paper™ [5].

APPLICATIONS

The Multipolicy Paradigm is useful whenever muitipie security policies are invoived, especially when
normal security goals are extended beyond DOD confidentiality to include privacy, availability, integrity,
weapons release control or other policies and wherever users with different values and traditions must
share a common system.

Military multipolicy applications include: multinational battle management, multinational command and
control centers, logistics involving multiple services, and multinational communications systems. The
Strategic Defense Initiative is a classic case of muttiservice policy interaction, as was the Persian Gulf
War. An application common to ordinary military systems would be to define peacetime, threat alert,
and wartime security policies and shift from one to the other, rather than ‘loosening' the peacetime
policy[20} when war starts.

There is no single standard security policy, like that of the DOD, in the commercial worid, so a trusted
system, to be marketable, must be able to adapt to multiple policies. Although the TCSEC unified policy
paradigm can adapt to a wide range of needs [Bell, 31], the Multipolicy Paradigm will facilitate
expression of users diverse, unanticipated, and contradictory security policies.

Commercial applications for multipolicy machines are numerous. Multinational banks, multinational
corporations, international non-profit activities such as the Red Cross and CARE, merged corporations
with multiple corporate cultures, colleges and companies which cross state borders, intemational
telecornmunications systems, are all candidates for muitipolicy systems.

In non-military government sectors there is even more potential for the muitipolicy paradigm. Almost
every system developed by the European Community needs multipie policies to express the different
values and varying traditions of the nations involved. For example, a multipolicy international heaith
system that permits different riations to control security policies for their own citizens is more practical
than requiring twelve nations to come up with a unified confidentiality and privacy policy.

419

ONCLUSI

This paper identified shortcomings in the TCSEC/TNI/TDI paradigm for multilevel secure systems and
summarized some of the requirements for an alternate paradigm. It briefly described other researchers’
work in the area, then wove many contributions into a Muitipolicy Paradigm.

The Multipolicy Paradigm supports muitiple, perhaps contradictory security policies and has many
applications and uses. Multiple contradictory security policies may be necessary if:

1. There is more than one security goal, such as privacy, confidentiality and integrity;
2. The system serves diverse constituents with individual goals and plans, such as the EC;
3. The system is composed of separately evaluated pieces, such as MLS DBMS and OS.

Muttiple policy systems will be more flexible, but much more complicated in many ways than single
policy systems. The paper addressed strategies for solving many of the key muitipolicy issues. This
feasibility study showed that:

Policy conflicts can be resolved;

Changes in ways of thinking are needed to evaluate and certify flexible multipolicy systems.
There are many strategies for getting policy flexibility while preserving assurance.

Users can add user security policies to dommercial off-the-shelf products.

Multipolicy systems may ease the old problem of how to pass sensitive data across policy
boundaries.

The Muitipolicy Paradigm can be successfully implemented in many ways.

The Muitipolicy paradigm will provide greater flexibility for users who need to add their own security
policy specifics to the security policy of an existing system. It will make it easier to transfer data to
systems in other security policy domains. it will let users model complex real world security policies
more easily and permit contradictory policies to operate in parallel. Parallel processing may permit an
improvement in trusted system performance, as well.

The Multipolicy Paradigm is now just a concept with potential. Much more work needs to be done to
make it a realfity. ' :

ACKNOWLEDGEMENTS

This work was produced under a Small Business Innovative Research grant, contract number F19628-
91-C-0157, under the sponsorship of the Elettronic Systems Division of the Air Force Systems
Command, Hanscom Air Force Base, Bedford, MA.

Several oblleagues critiqued the muitipolicy ideas as they evoived and contributed helpful suggestions:

Marshall Abrams, Victoria Ashby, David Bell, Rae Bumns, Dorothy Denning, Jon Graff, Tom Haigh, Grace
Hammonds, Jody Heaney, Eric Leighninger, Bret Michael, and Bhavani Thuraisingham .

420

REFERENCES

1 Hosmer, Hilary H. "The Multipolicy Machine: A New Paradigm For Multilevel Secure Systems”,
Proceedings of Standard Security Label for GOSIP, an Invitational Workshop, April 1891, NISTIR 46814,
June 1991.

2 Hosmer, Hilary H., "Metapolicies ", ACM SIGSAC Data Management Workshop, San Antonio, TX,
December 1891, ACM SIGSAC Review 1992..

3 Hosmer, Hilary, "Integrating Security Policies”, Proceedings of the Third RADC MLS DBMS Workshop,
Castile, NY. June 1990, MITRE Technical Paper MTP 385.

4 Hosmer, Hilary H., "Shared Sensmvny Labels Database Security, Status and Pmspects North-
Holland, 1991.

5 Hosmer, Hilary H. "The Multipolicy Modet, A Working Paper”, Proceedings of the Fourth RADC
Workshop on Multilevel Secure Database Systems, Littie Compton, Rhode Island, June 1991,

6 Kuhn, Thomas, The Structure of Scientific Revolutions, 2nd Edition, University of Chicago
Press, Chicago, 1970.

7 ware, Dr. Willis, on Computer Security Panel, AFCEA Conference, Washington, D.C., Feb. 5-7,1991.

8 Department of Defense, Department of Defense Trusted Computer System Evaluation
Criteria (TCSEC), DOD 5200.28-STD, Decernber 1985.

9 National Computer Security Center, Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria (TNI), 31 July 1987.

10 National Computer Security Center, Trusted Database Interpretation of the Trusted
Computer System Evaluation Criteria (TDI), April 1991

11 information Technology Security Evaluation Criteria(ITSEC), draft of 2 May 1991.

12 Daniel Steme proposed the terms automated security policy and organizational security
policy in "On the Buzzword Security Policy”, Proceedings of the 1991 IEEE Computer
Security Symposium on Research in Securily and Privacy, May 1991, Oakland, CA..

13 Crawford, D.S. "Modelling Security Policy and Labelling Unclassified but Sensitive
Information - A Canadian Perspective*, Proceedings of Standard Security Label for GOSIP
An Invitational Workshop, NISTlR 4614, June 1991.

14 Biba, K.J., Integrity Considerations for Secure Computer Systems, MTR-3153, Rev. 1, Electronic
Systems Division, Air Force Systems Command, United States Air Force, Hanscom Air Force Base,
Bedford, MA, April 1977 (ESD-TR-76-372).

15 D.D. Clark and D.R. Wilson, "A Comparison of Commercial and Military Computer Security Policies”,
Proceedings of the 1987 IEEE Symposium on Security and Privacy, Oakland, CA, April 1987.

16 william Wilson of Arca reports (San Antonio, Dec. 1991) that the SEVMS integrity portion is not well-
utilized because of the absence of a standard integrity user clearance structure like the widely-
implemented DOD user clearances for confidentiality.

17 European Computer Manufacturers Association, Security in Open Systems, A Securily Framework,
ECMA TR/46, July 1988.

18 Dobson, John and McDermid, John, "A Framework for Expressing Models of Security Policy",
Proceedings of the 1989 IEEE Computer Society Symposium on Security and Privacy, May 1-3, 1989,
Oakland, CA.

421

19 steme, Daniel, Martha Branstad, Brian Hubbard, Barabara Meyer, Dawn Wolcott, "An Analysis of
Application-Specific Security Policies", Proceedings of the 14th National Computer Security Conference,
October 1-4, 1991, Washington, D.C.

20 Haigh, T., O'Brien, Fine, Endrizzi, Wood, and Yalamanchi, "Assured Service Concepts and Models”,
draft Final Technical Report, Contract Number F30602-90-C-0025, October 1991, CDRL A007, vol. 1
and 2.

21 gums, R.K., "Referential Secrecy", Proceedings of the IEEE Computer Security Symposium,
Oakland, CA, 1990.

22 paimone, B. and R. Allen "Methods for Resolving the Security vs. Integrity Conflict®, Proceedings of
the Fourth RADC Database Security Workshop, Little Compton, R.1. April 1991,

23 Feiler, P., "Experiences with Software Process Models, Session Summary: Policies”,
Proceedings 5th intermational Software Process Workshop, Kennebunkport, ME, October 10-13, 1989.

24 pMoffet, J. and Sloman S., "The Representation of Policies as System Objects”, Domino
Report:B1/1C/6.1, August 20 1991 "The Source of Authonty for Commerciat Access Control", IEEE
Computer, February 1988.

25 Sibley, E., Michael, J.B., and Richard Wexeiblat, "An Approach to Formalizing Policy Management”,
CECCOIA2-Proceedings of the 2nd Interational Conference on Economics and Artificial intelligence,
Pergamon Press, Oxford, England, 1992.

26 Grenier, Guy-L, Richard Holt, Mark Funkenhauser, "Policy VS Mechanism in the Secure Tunis
Operating System”, Proceedings of the 1989 IEEE Computer Society Symposium on Security and
Privacy, May 1-3, 1989, Oakland, California.

27 page, John, Jody Heaney, Marc Adkins, Gary Dolsen, "Evaluation of Security Model Rule Bases",
Proceedings of the 12th National Computer Securily Conference, Baltimore, Maryland, 1989.

28 ‘Abrams, Marshall, Leonard LaPadula, Kenneth Eggers, Ingrid Olson, "A Generalized Framework for
Access Control: An Informal Description”, Proceedings of the 13th National Computer Security
Conference, Washington, D.C., October 1990.

29 gell, D.E., and LaPadula, L.J., "Secure Computer System:Unified Exposition and Multics
Interpretation”, MTR-2997, the MITRE Corporation, July 1975.

30 Brewer, Dr. David F.C. and Dr. Michael J. Nash, “The Chinese Wall Security Policy", Proceedings of
the 1989 IEEE Computer Security Symposium on Security and Privacy, Qakland, CA, 1989.

31 Bell, D. Elliott Bell, "Putting Policy Commonalities to Work", Proceedings of the 14th National
Computer Security Conference, October 1-4, 1991.

32 Amdahi Corporation, Multiple Domain Feature, General Information Manual, Amdahi
MMO001501001[1:10)6-89.

33 Honeywell Inc. B-Level Design Specification for the LOCK Operatmg System, CDRL A008, Contract
MDA 904-87-C-6011, June 1987.

34 The diagram and description combine our visualization of metapolicies resolving policy conflicts{1}
with Dr. Marshall Abrams' diagram of a proposed ISO confiict resolution process for access control
policies (unpublished) using Dr. Leonard LaPadula's voting concept for rule-based systems. [35].

35 | aPadula, Leonard J. "A Rule-Base Approach to Formal Modeling of a Trusted Computer System",
M91-021, August 1991.

422

THE NEED FOR A MULTILEVEL SECURE (MLS) TRUSTED
USER INTERFACE

Greg Factor
Steve Heffern
Doug Nelson
Jim Studt
Mary Yelton

GDSS/MLS Program
Digital Equipment Corporation
721 Emerson Rd.

St. Louis, MO 63141

Keywords: User Interface, Multilevel Security, FIMS

Point of Contact: Greg Factor (314)991-6235

423

THE NEED FOR A MULTILEVEL SECURE (MLS) TRUSTED
USER INTERFACE

Abstract
Today the Department of Defense (DoD) relies upon software which would
cost many billions of dollars to replace, yet many commands require the
operational benefits of applied Multilevel Secure (MLS) technologies.
Traditional secure engineering practices would require that the majority of
these existing DoD systems be rewritten from scratch. The ideal approach
is to take advantage of emerging Commercial Off the Shelf (COTS) MLS
products (Operating Systems, Databases, Networks, Compartmented Mode
Workstations (CMWs), etc.) by securely integrating them into a certifiable . .
MLS System without requiring applications to be engineered in a trusted
fashion. When this goal is achieved, the DoD will receive the benefits of
applied MLS technology without having to incur the costs of developing and
maintaining custom MLS systems that are too large to be certified. A
critical missing MLS COTS product required to build a complete, certifiable
MLS system is a Trusted User Interface. This paper explores Trusted
User Interface requirements. :

MLS Program Overview
The United States Transportation Command (USTRANSCOM) in
conjunction with the Headquarters (HQ) Military Airlift Command (MAC)
has established a DoD MLS command center testbed.! Two objectives of this
program are to provide MAC with an MLS system which meets MAC's

operational requirements, and to-provide the DoD with a methodology of
implementing MLS technology in HQ MAC and other command centers.

The objectives of the MLS Testbed are to: -

. evaluate emergmg COTS MLS products for capabllltles both
present and missing

¢ integrate COTS MLS Products into a single MLS System with a
minimal amount of Trusted Computing Base (TCB) extensions

¢ utilize as many COTS products as possible, to reduce the amount of
trusted code which must be developed

T The work reported in this paper was performed by Digital Equipment Corporation for the
Military Airlift Command under contract F11623-89-D0007

424

e isolate COTS MLS products from the Trusted Computing Base, to
allow new and emerging COTS MLS products with higher levels of
trust to be incorporated into the system as they become available

¢ adhere to industry standards and the open systems philosophy
whenever possible to facilitate lifecycle maintenance and the ability to
swap out antiquated hardware and software for more modern
products inexpensively

¢ define the standard requirements in building a MLS system and
feed that information to both government organizations who are -
building MLS systems and product vendors who are bmldmg COTS
MLS products.

Evaluation of available and emerging Commercial Off the Shelf (COTS)
MLS products (Operating Systems, Databases, Networks, Compartmented
Mode Workstations (CMWs) has identified a key missing COTS MLS
product: a Trusted User Interface. The Trusted User Interface is the
display portion of the overall system which receives the MLS data which is
retrieved by way of the secure Operating System, trusted Database and
secure Network.

One operational requirement for the USTRANSCOM/MAC MLS system is
to be able to label different classifications of data on a single screen. The
end users, in performing their job, are required to pass information about a
particular missions or exercises over unclassified media (phones as an
example). The users therefore need to be able to distinguish between the
unclassified and the classified data, populating an individual screen, in a
trusted manner. Without a Trusted User Interface, there is no way to
display trusted security labels on the screen.

Since existing and emerging COTS MLS products are at the B1 security
level, and many areas within the DoD have established a need for B3 and A1l
systems, it becomes even more important to use standards that support
open systems. Standards like POSIX, ANSI SQL, TCP/IP and FIMS. With
the rigorous use of industry standards, emerging products with a higher
level of trust can easily replace less mature MLS products. This allows
MLS systems to migrate to a higher of level of trust without requiring
applications to be rewritten to incorporate new COTS products.

The Form Interface Management System (FIMS) is a proposed industry
standard for forms processing that has been under development since the
early 1980's and is being considered by the ANSI/ISO accreditation
standards committee.

425

One of the key benefits of this proposed standard is the separation of the
form processing from the specific application processing. The separation
encouraged by the FIMS standard would result in more maintainable code
and a less tightly coupling to display device peculiarities.

FIMS Components

In basic terms, the FIMS Standard is described consisting of three separate
components:

¢ Independent Form Description Language (IFDL)
* Forms Control System (FCS)

* FCS appIication interface

In nden rm D iption L

The Independent Form Description Language (IFDL) describes an entity
called a form.

Forms Control System (FCS)

The run-time component of FIMS is the Forms Control System (FCS),
which controls the form's interaction with both the user (through a variety
of input and display devices) and the application program.

FCS Applicati

The interface to the FCS from the application is typically written in a higher
level language (such as Ada or C). The interface performs all interaction
with the user through the form by calling the FCS. .

MLS User Interface Requirements
In defining the requirements that the typical user desires in the MLS
system, we have come across several that point to the need for a Trusted
User Interface to handle the security attributes of the form and the data.

These attributes are not addressed by the proposed FIMS standard but
should be incorporated into that standard.

Need for MLS Screens or Forms

One of the most basic needs is that the typical MLS system user would like
to see, on a single screen, the highest level of data for which he or she is
cleared. A TOP SECRET user, for example, wants forms or screens that
potentially display sets of data that are composed of TOP SECRET, SECRET
and UNCLASSIFIED data elements all on the same screen.

426

Need for Trusted Labels

In addition, the user requires that the data on the screen be labeled to
clearly mark the data fields at the appropriate level of security.
Furthermore, the labels need to be trusted labels and not advisory labels

r a Labelin ndar

These trusted labels need to be associatable with their corresponding labels
in the MLS operating system, MLS database and the MLS network products
at a minimum.

Need for Security Attribute P e Capabiliti

The Trusted User Interface should also be able to extract from the expanded
MLS data dictionary, associated with the MLS database, a variety of .
security attributes. These attributes should be handled by the Trusted User
Interface and not by the application.

Attributes, similar to data validation, like a field being always at system low
security level, i.e., always UNCLASSIFIED. When a user would try to
enter Class1ﬁed data into a field that is defined to be always Unclassified the
Trusted User Interface should prevent this.

Or a data element having a security range, for instance UNCLASSIFIED
through SECRET, but never TOP SECRET. If a user tries to enter data
outside the defined security range, the Trusted User Interface should also
prevent this.

Or relations bétween data elements, things like aggregation rules where
when a specific data element is classified, other related UNCLASSIFED
data elements immediately become classified and the database is updated to

reflect the classification change. This should also be a capability of the
Trusted User Interface.

Conclusion
* There is a need for a Trusted User Interface
¢ The Trusted User Interface should be F]MS compliant
¢ The additional security requirements are relatively easy to implement

* It should be possible to develop a B3 Trusted User Interface

427

References
Dan Frantz and Tom Poevey, The Forms Interface Management System
(FIMS): A Proposed Industry Standard, August 1987

428

NETWORK SECURITY VIA DNSIX

Integration of DNSIX and CMW Technology

Howard A. Heller
Harris Corporation
M.S. W2/7742
P.O. Box 98000

Introduction

With the proliferation of computer
networks in secure environments, it has
become apparent that the security of
network communications must be
addressed. Currently, most computer
security implementations are host based,
that is they concentrate on security within
a given workstation without regard for the
communications between these
workstations. This paper describes an
internal research and development (IR&D)
effort completed in early 1991 at Harris
Corporation, Information Systems
Division (ISD). The objective of the
program was the ‘integration of two
leading edge security technologies to form
a secure multilevel heterogeneous
networking environment.

The IR&D team was to integrate the
DODIIS Network Security for Information
eXchange (DNSIX) protocol into a
Compartmented Mode Workstation
(CMW). The results of the study show that
it is possible to integrate the two
technologies to produce a fully functional
Commercial Off-The-Shelf (COTS) DNSIX
CMW capable of supporting a network
operating in compartmented mode.

This paper will concentrate on three
unique aspects of the IR&D; integration
issues, design methodology, and
leveraging the DNSIX IR&D into new
business opportunities.

Network Security via DNSIX

429

Background

The Department of Defense (DOD)
Intelligence Information System (DODIIS)
is a community of sites that ‘exchange
intelligence information via the inter-
computing network known as the DODIIS
Internet. The security requirements for the
DODIIS Internet were formally defined by
the Defense Intelligence Agency (DIA) in
the 1986 publication entitled “DODIIS
Network Security Architecture and DNSIX

[1]”‘

What is DNSIX?

DNSIX is a protocol that satisfies the
technical requirements for
internetworking in DODIIS. This software
supplements, and works in conjunction
with, the standard DODIIS networking
suite known as TCP/IP (Transmission
Control Protocol [6]/Internet Protocol [7]).

DNSIX defines capabilities that manage
and audit network sessions, maintain user
security levels across the network, monitor
access control to protected resources in the
host systems, and enforce the network
mandatory access control policy. These
capabilities will be expanded on in the
following paragraphs: ’

User - Level
Untrusted appl.

User - Level
TCB

Kemel
(OS)
TCB

Co-Processor
Board
TCB

DNSIX Modules

DNSIX manages network sessions by
establishing a special DNSIX connection
with the remote host prior to any data
exchange. A “DNSIX handshake” is used
to pass information about the initiating
host to the associated host including: host
name, network level, application
identifier, user name, terminal identifier
and more. This information is sent to the
associated host in the form of a Session
Request message and is mediated upon by
the associated host. This means that the
information received by the associated
host, along with its security policy rules,
determine =~ whether the network
connection should continue or not. The
DNSIX module which makes this security
policy decision is called the Session
Request Control Module (SRCM). The
response is sent back to the initiating host
via the Session Request Response message.
The DNSIX module which handles this
session management is appropriately
called the Session Management Module
(SMM), and resides on the intelligent
ethernet board.

DNSIX audits network events such as new
connections and closed connections.
Security events are also audited. These
consist of various levels of access
exceptions. The DNSIX module which
performs the audit function is called the
Audit Trail Module (ATM), and the
module which detects access exceptions is
called the Host Access Control Module
(HACM).

Network Security via DNSIX

430

The definition of a DNSIX access exception
is not clearly defined in the DNSIX
specification (Our interpretation is
explained later in this paper). The result of
a DNSIX access exception is to abort the
network session.

DNSIX maintains the user's security level
across the network connection by passing
the label to the associated host as part of
the initial DNSIX handshake. If the session
is accepted by the associated DNSIX host,
the remote process started on behalf of the
user is set to the security level passed in the
DNSIX handshake.

The mandatory access control enforced by
the DNSIX specification dictates that the
security level on all incoming and
outgoing datagrams will be checked to
ensure the are within the allowable range
for the particular host. If a datagram is
created for transmission or received from
the network which is out of the allowable
range, the datagram is discarded. The
DNSIX module which performs this
function is called the Network Level
Module (NLM).

The Host Interface to DNSIX (HID)
module coordinates the passing of
messages between the various other
modules. All messages passed between the
SMM and the Kernel are routed through
the HID.

The figure above shows the various
modules of DNSIX. The unshaded boxes
are the modules implemented by Harris
during the study.

The DNSIX protocol is documented in
“DNSIX Detailed Design Specification [2]”
and the “DNSIX Interface Specification
[3]”. Communication Machinery Corp.
(CMC) was the vendor supplying the
DNSIX/TCP-IP software and hardware
support.

What is a CMW?

The Compartmented Mode Workstation
(CMW) is a computer workstation whose
operating system is designed to handle
classified information with differing
security compartments in a data fusion
environment. The CMW is designed to
meet the requirements specified by DIA/
MITRE “Security Requirements for System
High and Compartmented Mode
Workstations” [4].

A CMW handles security for non-
networked computers by labeling objects
with security labels and allowing only
authorized users the ability to manipulate
those objects. All objects possess a
classification and each wuser has a
clearance. For example, in order to
determine whether a person should be
allowed to read a document, the person's
clearance is compared to the document's
classification. -

Harris Corp. had previously developed a
CMW prototype based on AT&T’s System
V Unix release 3.2 and X Windows release
11.3. This prototype served as the platform
for our DNSIX integration activities.

Integration of Technologies

The DNSIX protocol works in conjunction
with the TCP/IP protocol and, in CMC's
implementation, executes on an intelligent
ethernet board. The -communication
between the board and the host computer
is accomplished using two distinct
interfaces.. The Berkeley Unix Socket
mechanism has had some strategically
placed kernel calls added to it to provide
the operating system with information
pertaining to the opening and closing of
DNSIX sessions. Also, a special trusted
mechanism was set up for passing DNSIX
specific information between the board-
side code and the kernel which could not
be integrated into the socket mechanism.

Network Security via DNSIX

431

The following events are communicated
between the host and the board:

* A TCP open request has been made.
¢ A TCP close request has been made.

¢ The information obtained from the
DNSIX handshake.

¢ Access exception messages.

¢ Acceptance / denial of session
requests. :

¢ Abort messages.

Socket Handling

The process of opening and closing a
connection is handled by the socket
mechanism. When an application opens a
socket, the socket code calls a new routine
in the kernel to retrieve all the relevant
security information. This information is
stored by the kernel in the process table.
When the application calls the connect
socket call, the socket code passes the
security information to the board. The
software on the board now begins the
DNSIX handshake. If the remote
workstation approves the session, the
socket code is informed to allow the TCP
connection to be initiated. If the session
was denied, the TCP connection is refused.
On successful connections, the DNSIX
session closes when the associated socket
is closed.

The other DNSIX events listed above also
need to be passed between operating
system and the board, but, unlike the
events above, there are no corresponding
socket calls for these DNSIX events (e.g. -
open socket call corresponds to an open
DNSIX message).

To provide the communications path
between the kernel and the DNSIX code, a
trusted application was created to act on
behalf of the kernel. This trusted
application is called the Host Interface to
DNSIX (HID). The HID communicates

with the DNSIX code residing on the board
by using a special trusted loopback mode
provided by CMC within the TCP/IP
software. The HID communicates with the
kernel by using two new system calls
(described later).

Upon startup, the HID opens two trusted
connections to the board. One is for
general DNSIX messages. The other is for
Access Exception messages only. The
board-side code will not go into
operational mode until these connections
have been established.

This provided a way for the HID to
communicate with the board, but a
mechanism was still needed to
communicate with the operating system.

We added two new system calls to the
kernel. One, called “dn6_read”, provides
the HID with a means to receive messages
from the operating system. The second,
called “dné_write”, provides a way of
sending messages to the operating system.
This provides a full path between the
operating system and the board. Messages
from the board are first sent to the HID via
the TCP connection, and then sent to the
operating system by means of the
“dn6_write” system call. Messages from
the operating system are sent to the HID
via the “dn6_read” system call and then
are routed to the board via the TCP
connection.

HID Processing

The HID is basically a message switch. It
receives messages from the board or the
operating system and determines where to
send them. Not all messages from the
board are sent to the operating system. In
particular, during the DNSIX handshake, a
“Session Request” message is sent to the
remote workstation. This is the message
which contains all of the relevant security
information about the initiator of. the
session. The DNSIX software on the board

Network Security via DNSIX

432

sends this message to the HID. The HID
does not send this message to the kernel.
Instead, it sends the message to a separate

program called the Session Request

Control Module (SRCM). The SRCM
receives the message and uses its contents
to determine whether to approve or deny
the session. In any case, the SRCM sends its
reply to the HID, which switches. the
message to the board. A discussion of the
various other functions of the HID are
beyond the scope of this document.

DNSIX Data Flow

Access Exceptions

Access exception messages are generated
by the operating system itself. A CMW
generates an internal access exception any
time a user or process attempts to access an
object to which it is not authorized. These
exceptions are usually not malicious. For
example, the files in a directory ona CMW
are not necessarily at the same sensitivity
levels. A user only sees those files which he
has access to, and will not see that any

other files exist. This is called directory
virtualization, and is a common CMW
feature. When the user looks at a listing of
a directory, the software (the 'ls'
command) attempts to access all of the files
in the directory. However, since the
command runs at the same security level
as the user, and the user's security level is
not equal to, or higher than all of the files,
an access exception occurs. This is a
normal occurrence and in most cases the
user is not even aware of the fact that it
happened.

The DNSIX protocol provides a means of
reporting access exceptions from the
operating system to the board-side DNSIX
software. It also specifies that any DNSIX
access exception will cause the DNSIX
session to be aborted. The specification
does not, however, specify which host
events should cause a DNSIX access
exception to be sent. We decided to make
this feature extremely flexible.

The kernel checks for access exceptions
within each system call routine. These
routines are used by programs to perform
specific system functions. Many of these
routines attempt to access an object on
behalf of a user program. If the program is
not authorized to access that object, an
access exception is flagged.

Since the CMW doesn't abort a local users'
session in the above scenario, we didn't
feel that this should cause a DNSIX access
exception. However, we decided to allow
access exception processing to be
configurable on a per-system call basis.
Each system call has a flag associated with
it which is used to determine if an
operating system access exception should
cause a DNSIX access exception. The
default configuration has them all turned
off. Any combination of system calls can be
used, for instance, any access exception
caused by opening a file could cause the
DNESIX session to be aborted.

The other means of supporting the access
exception mechanism is through another

Network Security via DNSIX

433

new system call, called “dn6_except”. This
was provided because of the uncertainty
about what type of events would cause an
access exception. With this system call, a
trusted application can cause an access
exception based on apphcatlon specific
security checks.

Access exception messages from the
operating system are sent to the board via
the HID as described above but with one
difference. The TCP connection used to
send access exception messages to the
board is a separate dedicated connection
so urgent security relevant messages will
have processing priority.

Kernel Additions

The DNSIX interface code consisted
mainly of additions and not many kernel
modifications. The major structure added
to the kernel was a table called the DNSIX
Session Table. Its function is to keep
DNSIX information about processes
engaged in some stage of a DNSIX session.

The table is needed .to create the link
between the DNSIX Session Identifiers,
which DNSIX uses to identify sessions,
and the socket which the kernel uses to
identify sessions. The table contains:

¢ Process Identifier
e Session Identifier
¢ Socket

® Device Number

¢ Session State

¢ Other Information

A table entry is:
¢ Created when a process calls the

“socket” system call.

¢ Deleted when a DNSIX session is
closed or aborted.

e Duplicated when a process calls the
“fork” system call.

A DNSIX session can be in any of the
following states:

e Idle: No session

® Initl: Socket created, no connectxon
yet.
» Init2: Session request sent, no reply.

* Active: Session is active.

‘e Active_NonDN6: Session is acti\}e
with a non-DNSIX host.

* Except: An access exception message
has been sent.

* Other states are beyond the scope of
this document.

All empty table entries have their state set
to Idle. When a process calls the “socket”
system call, the corresponding session
state entry in the table changes from Idle to
Initl. Within the “socket” system call, the
DNSIX software retrieves the security
information from the process table and
sends this information to the board. At that

point the session state changes to Init2.
Once a reply is received from the remote
system indicating that the DNSIX session
was approved, the session state changes to
active. The state remains active until either
the session is closed or the session is
aborted. When either of these events occur
the session state returns to Idle.

DNSIX provides connectivity to non-
DNSIX hosts as long as this is supported
by the local security policy. If a connection
is made to a non-DNSIX host, the session
state gets set to Active_NonDN6 rather
than Active.

If an access exception occurs while a
session is active, the state is set to Except.
This can only happen when the session is
currently in the active state. When set, the
state of the session is both Active and
Except. This state is necessary in order to
keep the process from continuing its
activities while the connectlon is being
aborted

The only other kernel changes necessary

Network Security via DNSIX

were minor modifications to some system
calls. In particular, in the fork system call,
we added a DNSIX call which would
duplicate the DNSIX session table entry of
the parent process for the new child
process. Unix performs this same
procedure for files, since child processes
inherit the resources of their parent
processes.

In the kernel's exit and close routines,
which are called when either a process is
terminated or the connection is closed, we
added a DNSIX call which would delete
the process entry from the DNSIX session
table. This keeps the table up-to-date when
a process is terminated before closing its
connection and when the connection is
closed in the normal way.

The kernel's reference monitor is the
routine which determines if there have
been any access exception violations. We
added a routine which determines if the
exception was caused by a DNSIX session,
and if so, if the DNSIX exception flag was
set. If the flag was set, then the exception is
reported to DNSIX which will abort the
session.

IR&D's are real work!

The key to the success of the project
resulted from creating a new design
paradigm for the IR&D. Whereas most
IR&D's are typically known for their lack
of documentation and design, we decided
to treat this one as a “real” program. This
concept Dbasically tailored the formal
documentation used by Harris on “real”
projects. Some of the documents not
created for this project include:

* Software development plan
* Software quality assurance plan

* Software configuration management
plan

* Software requirements specification
* Software test reports

434

We modified the standard software
engineering methodology to meet the
needs of the project. Our modified
methodology consisted of:

1. Preliminary Design
Design Review

2
3. Prototype software
4

Detailed Design
5. De31gn Review
6. Implementation
7. Test

The reason for following this methodology
was two-fold. First, we wanted to add
some structure to the typical ad-hoc IR&D
design process. Secondly, we wanted to
use this program as a training ground for
“real” program documentation. This was
especially important for us because of the
recent new hire assigned to this project.

The protocol software, which runs on an
intelligent ethernet board, was being
developed in parallel by CMC, a third-
party vendor. Because our design was
totally dependant on the interface to this
software, we needed to keep in close
contact with CMC so we could modify our
design based on their changes.

By providing a Preliminary Design
Document to the vendor, we were able to
solve some major incompatibilities before
any code was ever written. This worked
both ways. Our design brought out many
discrepancies in the vendor’s software as
well. The communication between the two
engineering teams including documents,
phone correspondence and electronic mail
was a major benefit to the project.

We found that the decision to build a
prototype before the detailed design was
appropriate. Since the design seemed to be
constantly changing we decided to freeze
the design and prototype what we had.

Network Security via DNSIX

435

Since we didn't have the hardware or
protocol software yet, we designed a
screen oriented test program which could
simulate the DNSIX messages passed back
and forth between the host and the board.
The test program would also receive the
messages created by our. prototype
software destined for the board. The
prototype software used extensive logging
of debug messages and the test program
would display these messages without
having to exit the tester.

The outcome of the prototype was very
significant. Many details were overlooked
because they were based on assumptions
about how Unix worked or because by
actually doing the coding we had to think
at a much more detailed level.

The prototype software ended up
producing approximately 90% of the host-
side software necessary and stabilized the
design for both CMC's interface and
board-side software and our host-side
interface software. Because of the success
of the prototype stage, we were able to
create a Detailed Design Document based
on the Preliminary design with
modifications from the lessons learned
during prototyping.

The implementation phase began when we
invited the CMC engineer to Harris. We
made plans for him to stay for 2 weeks, on
the assumption that there would be many
problems integrating the two pieces of
software.

The first day was spent setting up
equipment and installing software. The
second day surprised us all. After loading
the CMC code on the ethernet boards of
two machines containing our new
software, we attempted to open a DNSIX
connection. It worked! For the first time,

- DNSIX 2.0 had been integrated into a

CMW and a secure networking connection
was established. :

Of course everything ‘didn't work
perfectly. The rest of the two week visit

was spent trying different tests, debugging
problems and making design changes on
the fly. By the time the CMC engineer left,
- we had a very high level of operational
__integrity and were confident that our
- de51gn was a ‘good one.

We decided up front that we were not
" _going to do a formal test plan. This was
~ because the goal of the IR&D was to get as
" much experience as possible and to get as
© far along in the integration phase as time
permitted. The testing was done on a per-
feature basis, determining the correctness
as features were added. These features
‘were retested at the conclusion of the
program. The goal of the IR&D was to
make the final system have as much
\ functlonahty as possible in order to make a
convincing demonstration to potential
customers. We feel the extra time spent on
“adding more functionality at the expense
) of addltlonal testmg was well worth it.

We feel the project went smoothly because
..of the following factors:

» Upfront design, but not overly
detailed.

* Prototyping the deSIgn early in the
project.

¢ Constant communication with the
people that count (direct contact
between the CMC and Harris
engineers).

¢ Testing distinct modules separately
and thoroughly before integration.

¢ Integration of modules completed
with representatives from each team
to facilitate quick turnaround time on
code changes and quick answers on
integration issues.

Win-Win Partnership

The partnership between Harris and CMC
was a win-win situation. CMC, developing
the DNSIX protocol software, was very
limited in their testing because DNSIX was

Network Security via DNSIX

436

designed to be integrated into a secure
workstation. DNSIX is tightly coupled to
the operating system in order to extract the
user's security labels and be aware of
access violations. Because CMC lacked a
secure workstation they wrote command
line test programs which would simulate
the actions of the secure operating system.
This way of testing is awkward at best and
makes many assumptions as to how the
operating system may perform its tasks.

Harris, seeing the potential success of the
CMW, determined that the obvious next
step to secure computing was the addition
of secure networking. This would provide
a trusted communications mechanism
between a network of secure workstations.
The DNSIX IR&D was important to Harris
in that it provided us with the necessary
knowledge and experience to present
leading-edge solutions to our customers
security problems.

Teaming with Harris on the integration of
the two technologies provided CMC with

the opportunity to exercise their
technology in an operational environment.
This reduced their engineering time and
decreased the risk of software errors.

Leveraging DNSIX Technology

By being the first to integrate the DNSIX
protocol with a CMW, Harris has proven
its commitment to provide leading-edge
security technologies to its customers. The
engineers in our Computer Security Group
(Harris-ISD) used this activity to develop
network security expertise for ongoing
programs -that will eventually require
DNSIX-like capabilities.

We currently have a DNSIX/CMW
demonstration capability in our Computer
Security lab and have received an
enthusiastic response from customers who
have seen its capabilities. The ability to
demonstrate a genuine working system
produces much more excitement about a

technology than white papers or visual
presentations.

The knowledge gained from our DNSIX

‘efforts will be directly applicable to the
integration of other security protocols into
customer environments. In particular, the
SDNS SP3 and SP4 security protocols,
which provide security for levels 3 and 4
respectively of the OSI Reference Model
[5], are of interest to our customer
communities. We have also observed a
need for security at the application level

such as secure electronic mail and secure

multimedia. These are applications which
usually contain correspondence between
two or more individuals and are most
likely to contain sensitive material.

The DNSIX IR&D has given Harris many
benefits and no drawbacks. We feel this is
because the project focused on developing
a demonstratable system rather than a pile
of documentation describing the
technology. = Our tailored design
methodology and early = prototyping
played a major role in the success of the
project. By being able to show our
customers a technology at work, they no
longer wonder if the technology is
possible. Instead, the customer begins to
point out the potential the technology
could have in their environment and the
various uses they have in mind for it.

Network Security via DNSIX

437

[1]

[2]

[3]

[4]

[5]

(6]

[7]

References:

Defense Intelligence Agency, May
1986, DODIIS Network Security
Architecture and DNSIX, DRS-2600-
5466-86, DODIIS ‘System
Engineering Office, Arlington, VA.

Defense Intelligence Agency, April
1990, DNSIX Detailed Design
Specification, = DDS-2600-5985-90,
DODIIS System Engmeermg Office,
Arlington, VA '

Defense Intelligence Agency, April
1990, DNSIX Interface Specification,
DDS-2600-5984-90, DODIIS System
Engineering Office, Arlington, VA.

Defense Intelhgence Agency, Nov
1987, Security Requirements for
System High and Compartmented
Mode Workstations, DRS-2600-5502-
87, DODIIS System Engineering
Office, Arlington, VA.

ISO 7498 Basic Reference Model for
Open Systems Interconnection

MIL-STD-1778, August 1983,

Transmission Control Protocol

MIL-STD-1777,
“Internet Protocol”

August 1983,

NEW DIMENSIONS IN DATA TS"ECURITY

The innovative DES-chip called SuperCrypt allows for development of secure
computer systems without the current limitations inherent in most chips currently
available.

Karl Heinz Mundt
CE Infosys
512-A Herndon Parkway
Herndon, VA 22070
703-435-3800

Despite ever increasing importance,
achieving reasonable data security in the
fields of computer based information
processing and telecommunications, has
proven to be implemented only with the
greatest of efforts. One reason is the
rapid developments in information
systems, such as networks, which are
increasingly dependent on growing
interoperability. Also, the availability of
distributed computing power is steadily
increasing. The incredible growth of
data being archived on mass storage
devices, distributed in LANSs, and
telecommunicated over the public
telephone network has created a rising
percentage of security sensitive data.
Needless to say, it is in the best interest
of the system users to protect this data
from unauthorized tampering.

Providing absolute secure physical
access control of sensitive data,
especially in multi-user environments or
freely accessible channels such as the
telephone network is practically
impossible. Providing a logical access
control using data encryption has proven
to be far more effective. The science of
cryptography provides one of the most
effective solutions. _

438

ion I

Probably the best known and the first
standardized encryption method is the
Data Encryption Standard (DES), which
was standardized and published in 1977
by the U.S. National Bureau of
Standards. DES is a symmetrical block
cipher algorithm characterized by the
same key being used for en- and
decryption of a message. The coding
operation processes plain-text blocks of
a fixed length; in this case 64 bit. The
data encryption standard essentially
consists of 16 iterations of permutations
and substitutions being applied to the
plain text for the encoding, or in reverse
order to the ciphered text for the
decoding operation. After an initial
permutation (IP) the input datais
sequentially routed through 16 blocks of
XOR and specific DES substitutions, -
dependent on the bit pattern, with data
from a function table. Finally a reversed
input permutation IP-! is performed.

64-Bit Input

64-Bit Input

64-8% Output
DECRYPTION

64-Bit Output
ENCRYPTION

Picture 1: Structure of DES Algorithm

The most important initial parameter of
DES is a key code of 56-bits length,
from which 16 partial keys are
generated. Generating these 48-bit keys
is part of the DES-algorithm and is
achieved by permutation and a 16-level
shift-function. The difference between
encrypting information and decrypting is
the way in which keys are generated. To
decrypt the keys are presented in
inverted order. The number of possible
encryption results is limited only by the
length of the 56-bit key used and is
consequently 256 (about 7*%1016),

Various modes of operatibn are.
standardized for DES to drastically

decrease the chance of attacking the
encrypted data by statistical methods.
Long message streams; however, need
additional protection by transforming
identical plain text into non-identical
encrypted counterparts. Some of these
schemes are known as Cipher-Block-
Chaining (CBC), Output-Feedback-
Mode (OFB) and Cipher-Feedback-

‘Mode (CFB). DES not only protects

encrypted data against unauthorized
access, it also reveals any manipulation
to the encrypted data, i.e. due to
transmission errors. This application of
DES has been standardized in 1986 as
Message-Authentication-Code (MAC) at
ANSI. The application of MAC is a
valuable feature for example in the area
of electronic banking.

Ergblgm;ln herent in

lying Ci -Meth

A number of products using the above
mentioned cipher-methods are already
certified by American institutes and are

- predominantly used in banking

439

applications. A major drawback of
secure cipher-methods is that they
usually have a negative influence on the
computing speed of the systems in '
which they are used. The known
software and hardware implementations
of DES have not been able to keep up
with the requirements of current systems
in respect to their encrypting and
decrypting speed. This is especially true
for software implementations of DES
because of the problems inherent in
programming bit-permutations, and
results in time-consuming 64-bit
encryption operations (which even on
modern microprocessors need several
milliseconds). Previous hardware
implementations achieve maximum

encryption speeds of 40 Megabxts per
second.

 SuperCrypt CE99C003, a highly

integrated ASIC developed by CE
Infosys, has a number of advantages:

¢ high encryption speed (160 Megabit |

per seconds at 33 MHz chip clock),

e loadable algorithms, and
~ ¢ built in key management functions.

I A-Port l I Control Port I
4 input Buffer I Control Register
— l T
SBox Process Control
Unit

1T

] j Output Buﬁorl .
B Kéy : Key -
Selector Storage
' | :B-Port | . ,

Picture 2: Block Scheme of CE99C003
SuperCrypt Arghitg cture

SuperCrypt architecture realizes a

~ physical division of security relevant

functions such as the loading of keys and

~ algorithms and the use of the data paths.

For this purpose, SuperCrypt uses a data
port A and a control port C. The 8-Bit
control-port C is used when
downloading the S-box contents or the
keys, and when the access rights for data
port A are defined. The 32-bit wide A-

- port, which also supports 8- and 16-bit

accesses and automatically performs a
bus-conversion, is used for fast data

- transfer. Internal registers are used for

initializing SuperCrypt and_.can be

440

accessed both from the A-port and the.
C-port directly using address lines, and
indirectly usmg pointer-registers.
Data port, B, is used for transfemng 8-,
16- and 32-bit data and allows for direct-
buffer applications. In direct-buffer
mode, data is fed into SuperCrypt A-port
and read out to the B-port after en-or
decryption directly into a buffer (RAM).
Data can also be read from a buffer into
the B-port and then made available at
the A-port. This ensures optimal data-
throughput even if slow bus-systems are
used. ' _

ial Featur

SuperCrypt supports the DES-algorithm

and all operating modes discussed above

with maximum data-throughput because

of an internal feedback-path. Even more

complex variations of DES are

supported by:

o increasing the effective key Iength
to 112 bit v

e or by changing the contents of the
S-boxes.

SuperCrypt offers loadable
substitution boxes (S-boxes). The most
significant cryptographic component of-
DES is the S-boxes contents, The
methodology of the S-box construction
can have far reaching implications for
the security of the algorithm. The major
nonlinear component of DES is the
function f of the S-boxes. This
nonlinearity gives DES its significant
cryptographic strength. The function f
takes as input 32 bits of partially
enciphered data and 48 bits of key and
produces 32 bits of partially enciphered
data as output. SuperCrypt’s loadable S-
boxes provide the opportunity to create
proprietary algorithms or load newer
algorithms of greater strength.

The following features are unique to

SuperCrypt.

¢ the internal key-storage of up to
16 keys

e and the Master-Sessnon-Key
concept,

both of which greatly s1mp11ﬁes the

handling of external keys. Thisisa

potential point of attack in other systems

not supporting this feature. The Master-
Session-Key concept allows the often
necessary public transport of encrypted
keys, called Session Keys, which are
decrypted internally and consequently
stored with a Master-Session-key only
when loaded into SuperCrypt. The
Master-Session-Key feature is an
optional method to load keys into the
key storage. Normally the keys are
stored in its original pattern in the key
storage. This optional feature encrypts
or decrypts the key pattern you load and
then stores it. This means that while
loading a new key, a "session" key can
be generated by encrypting it with a
"master” key. The new "session" key is
then stored in the key storage. This
guarantees protection against tampering
since the "session" key is computed only
inside the chip. This feature allows
distributing keys in a non secure area. -

441

A-Port

Input Buffer

ft

Cipher Kerna!

Output Buffer

N
“ Control and
B-Port Status Lines
Picture 3. Standard key load procedure
KEY
[om] ~
J L
Input B Control Register
Ciphor Ke \L T
S8ox Process Control
Koy Unit
Output BuiMr]]
Key e_.l Key
Selactor Stwage
W
Control and

8-Port Status Lines

Picture 4. Generating a session key wnth a
spemﬁed master key ‘

Another mode is the Key-Stream-
Generator mode (KSG), a variation of -
the OFB-mode. Instead of using the
cipher text of the previous block, an
incrementing 64-bit counter generates

the initial vector of the cipher-function.
This mode makes the realization of a
pseudo-random generator possible and
additionally allows random access to
plain-text data within encrypted
messages generated by this stream- -
oriented mode.

v P V+#1 P2 Va(n-1) B

K—) DES K-— DES || eee k—3 DES |
N D

N 7 A

> 4

& N »

C1 Cz Cn

Picture 5: KSG Mode

A Triple-Cipher option is available
with all operating modes. Plain-text
data is DES-encrypted three times by
first encrypting, then decrypting and
encrypting once again with different
keys each time. The triple encryption is
automatically performed internally and
greatly enhances the cryptographic
strength of DES.

The encryption speed is linearly
dependent on the speed of SuperCrypt.
Encrypting a 64-bit block, excepting the
Triple-Cipher option, takes 12 cycles.
At the frequency rate of 33 MHz, this is
equivalent to 360 ns or 160 MBit/s.

Specific Advantages

The advantages of an internal key

storage are:

e ahigh degree of protection against
attacks . - o

» and the exceptionally high speed
with which keys are changed.

After loading the keys they are no longer

accessible from outside the chip. Using

the integrated key-cipher to realize a
Master-Session-Key concept makes it
possible to perform ciphering with keys
only decrypted after loading into »
SuperCrypt. This provides a protection
feature against cryptographic attacks.
Apart from selecting the required cipher
mode only the key to be used for cipher
must be addressed upon initializing.
Different write attributes can be attached
to each key, which can govern the usage
of the key on data or the use for en- or
decryption with a particular key. CMOS
technology manufacturing makes
buffering the key-storage or the S-Boxes
possible.

To allow easy integration into Bus- or
micro controller-systems, SuperCrypt
supports Interrupt- and DMA-functions.
Two DMA-channels are available. Two
data-request signals make it possible to
signal the readiness to accept or send
data to a DMA-controller.

Adjustment and control of the operating
modes is handled by programmable
internal registers. To minimize the
hardware address space, some of the
register sets are indirect, that is, they can
be accessed using a pointer-register.
Access on the remaining registers is
handled by setting an address pointer. A
pointer that automatically increments
after each register access, further
simplifies initializing the register set. A
programmer can load data for the
indirectly addressable registers in one
burst from a table. The C-port register
set is used to control the security
relevant functions such as loading keys
and S-box contents, and therefore can
only be accessed from the C-port. It
also uses directly and indirectly
addressable registers.

Initializing SuperCrypr mainly depends
on the operating mode and the
application requirements -- it may only
require a few programming statements.
If SuperCrypt is used in a battery-
buffered application, initializing the key-
storage and loading the S-boxes needs to
be performed only once. A key may be
loaded into any position of the key
memory addressable by itself. Any key
may be overwritten purposely later.
Each key can be given three attributes
upon loading and are stored with the
key. These attributes can prevent a key
from being used for a specific de- or
encryption operation and protect a key
from being overwritten. When loading a
key, the Master-Session-Key function
can be utilized. A key loaded encrypted
is decrypted with a Master-Key stored at
any address during the download, and is
then stored as a Session-key. The key

memory cannot be read. The individual

keys are made accessible after
downloading by initializing the Key-
Enable register KYE.

The S-boxes contain 512 Byte and are
loaded in one burst using the C-port data
path register. Immediately after loading
the S-box, memory may be verified.
Further attempts to read are prevented
by the chip logic and are only possible
after a completely new download. If
DES encryption is desired, the-
substitution data must conform to the
standard. Nevertheless, a customer may
load proprietary S-Box functions.

licati I

The widespread use of information
processing systems makes a number of
encryption apphcatlons possible where -
data security is required.

443

For the first time available anywhere,
SuperCrypt provides a hardware
platform usable in real-time encryption
without compromising the performance
of the host-system.

To ease the design of new developments
containing SuperCrypt, a design kit is
available from CE Infosys. A fully
functional 16-bit AT-adapter with
numerous test-points that support all
operating modes, detailed schematics,
PAL-equations, and demonstration
software in source and object code is
included.

New Dimensions
PC Dgta Security »

The overwhelming success of personal
computers over mini and mainframe
computers in the last decade can be
primarily contributed to the strategy of
providing an "open system" philosophy
for both the hard and software. Based
on the SuperCrypt chip CE Infosys
provides hard and software platforms
with an "open architecture" for
developing applications which requlre ‘
security functions.

Software developers at the OEM, VAD,
VAR, or End users level can create new
or modify existing applications to fit
virtually any security requirement
without having to worry about timely
and costly hardware and operating
system software development. Complex
security concepts and individual
customization for the application
environment can be implemented in just
a fraction of the normal development
time. . : ’

CE Infosys” application examples
includes numerous "off the shelf”
functions ranging from basic en- and
decryption to complete PC security
functions including access, resource
control and en- and decryption of files
and/or any mass storage device or
backup device.

"Off the Shelf"
Functionality

Three basic hardware platforms are
currently available all of which use the
SuperCrypt encryption chip for the
cryptographic functions.

The security controllers (SC8810,
SC8820) are available for AT-Bus (ISA-
Bus), Micro Channel Bus or PCMCIA
Bus for laptops. A special version for
ISA-Bus with an integrated chip card
reader is also available for laptops.

-

Picture 6: Security Platform Architecture

The security SCSI controllers (SC5430,
SC5440) are available for AT-Bus (ISA-
Bus) and Micro Channel Bus and
combine the functionality of the basic
security computer with full SCSI device
and operating system support. ' |

Application Example 1 - MiniCrypt

n encryvption r usin

SuperCrypt

The cryptographic adapter, MiniCrypt, is
available for AT-Bus (ISA-Bus) and
Micro Channel Bus. It is designed to
provide fast "file-by-file" encryption.
MiniCrypt provides an extremely
powerful platform by supporting most of
SuperCrypt's functions independent of
the operating system used. Most
importantly, it supports SuperCrypt's
high encryption speed capability. The
half-length ISA and MCA adapters are a
cost effective solution when existing
software applications need to be speeded
up by factors of 10-50 percent. Another
option, the 64KB buffer, together with
direct buffer mode operations, can
double the encryption throughput. The

» product, "off the shelf", includes the

adapter as well as DOS utilities for file
encryption or decryption using DES.
The sample application software is
designed to meet a wide end user
community and therefore, the loadable
S-boxes invoke the Data Encryption
Standard (DES). The API available for
MiniCrypt allows one to create
customized software that incorporate the
enhanced features of triple DES or
double length keys. For the end user
desiring a proprietary algorithm, non-
DES S-box contents and double length
keys can be integrated to provide for
very interesting cryptographic
algorithmic strength. Encryption speed
is limited only by the PC's internal bus
system (2-2.5 MByte/s on an § MHz
PC). MiniCrypt’s speed and its exciting
cryptological functions open up whole
new applications that take advantage of
encryption, where previous software
solutions either were. too slow or used

weak algorithms to provide the

necessary speed.
lication Example 2 - 1
ri r yusing Swu
roviding encryption ntrol

and audit trail functionality,

Whereas MiniCrypt provides for file-by-
file encryption, the SC88XX provides
for a total PC security solution. The
SC88XX hardware platform is available
for: -
AT-Bus (ISA-Bus)
Micro Channel Bus
PCMCIA Bus for laptops
A special version for ISA-Bus with
an integrated Chip card reader is also
available for laptops.
This high-end security platform provides
"off the shelf” functions including:
e access control with optional chip
card or smart card support,
e System resource control (floppy,
hard disk, interfaces),
Boot stop,
"On-the-fly" permanent encryption
of mass storage,
¢ User dependent encryption of floppy
disk drives, or
e Selective user dependent file
encryption.
As with MiniCrypt, one of the most
important features that SC8810
introduces is "transparent” encryption
for the end user. Security controllers
that detrimentally effect personal
computer performance are usually met
with disdain from end users and are
attempted to be circumvented. These
applications designed with SuperCrypt
avoid this serious end user concern. The
Master-Session-Key management logic
provides a standardized method of
distributing keys, supporting security
adapters in a corporate environment.

445

Previous version of SC8810 that used
other than SuperCrypt encryption chips,
required a metal cover to prevent
tampering. SuperCrypt's Master-Session
Key concept and internal storage of 16
keys make this not necessary.
Sophisticated user profiles governing
access to programs and system resources
are supported, as are time profiles for
regulating system access. Designed to
meet a wide end user community, the
loadable S-boxes invoke the Data
Encryption Standard (DES). Asin
MiniCrypt, SC8810 can be customized
to take advantage of triple DES or
double length keys. Once again, for the
end user desiring a proprietary
algorithm, non-DES S-box contents and
double length keys provide for very
interesting cryptographic algorithmic
strength. Both DOS and OS/2 operating
systems are supported.

lication Example 3 - 43
ntroll in

viding encrypti
SCSI devices.

The Security SCSI Controller Platforms
are available for AT-Bus (ISA-Bus) and
Micro Channel Bus. They combine the
security features of encryption and
access control with the functionality of a
high-end caching SCSI controller having

~full SCSI device and operating system

support. Currently supported under
DOS are:

Hard disks

Removal disks

Magneto-optical disks

Tape :

DAT

CD-ROM

and WORM devices

Novell and OS/2 drivers are under
development. Each device, SCSI ID

dependent, can be permanently
encrypted "on-the-fly" thus providing
secure storage of sensitive data or
programs. The processing speed of the
SC5430 is equivalent to other
commercially available SCSI controllers
without encryption. Up to seven
different peripherals can be attached,
operated and encrypted/decrypted with
different keys simultaneously at speeds
fully transparent to the user. Secure tape
backups on a network or "securing” data
or programs on removable media are just
two of the most common application
areas.

Access control is done on a SCSI ID
basis, utilizing chipcards. Each chip
card maintains a table of:

e SCSIIDs v
e whether the SCSI ID is encrypted or
non-encrypted

e Keys associated with each SCSI ID
Removable media support (ITomega
Bernoulli boxes, Syquest drives,
Magneto-optical drives, tape drives, etc.)
is handled with great sophistication.
Multiple keys can be used at one SCSI
ID. Each data cartridge, (tape, MO, etc.)
can have a key assigned uniquely to it.
The Master Session Key concept allows
keys to be encrypted on the chip cards.

In networks a combination of security
SCSI controllers for the server(s),
SC881Xs for the workstations, and
MiniCrypts for those workstations
requiring only cryptographic functions
but not access control can provide the
solution for a "secure"” network
environment.

A fully documented API (Application
Programming Interface) as well as the

446

development tool kits (C-Libraries, C-
Source, BIOS-Routines, etc.) are
available to provide numerous security
functions.

API Security Functions:

e Access Control

e Boot Stop

o Chipcard Services

¢ Resource Control

o - Cipher Engine (DES and other
Algorithms)
Cryptographic Tool Kit (one-way,
hash, signature, etc.)
Secure Key Storage
Key Management
Audit Trail (Logbook)
Independent Time and Date

The API can be enhanced further to
provide for future requirements or new
algorithms. Software Development Kits
(SDK(5), for the application programmer
and Product Development Kits (PDKs)
which include the actual hardware
design and manufacturing
documentation are available.

r lication

SuperCrypt’s flexibility combined with

CE Infosys” Security Platform Hard- and

Software open up whole new

applications that can take advantage of

encryption for security.

e At SuperCrypt’s speed makes
possible encryption in "real time" of
digital TV, one of the fundamental
requirements for easy
implementation of "Pay TV".

e Computers of the future can easilly
have their disk, LAN adapters,
HOST adapters or SCSI controllers
equipped with SuperCrypt to cipher
data "on-the-fly" as it streams
through the controller. Backup
tapes, disks, MOs and even CD-

ROM can store data in encrypted
form and if grouped in blocks, each
block can be ciphered with a
different key.

PC motherboards, Minicomputer and
mainframe processor boards

FDDI fiber optic networks for data
communications and
telecommunications

Customers purchasing data on disk
or CD-ROM would purchase those
keys required to unlock the blocks of
data actually purchased. This
concept may very well revolutionize
the methodology of software
distribution or updating.

447

A Note on Compartmented Mode:
- To B2 ornot B2?

Tlieodbre M.P. Lee

Trusted Information Systems, Inc.
’ P.O.Box 1718
Minnetonka, MN 55345

Abstract

~This paper calls into question current government computer security policy. That
policy, as seen in DCID 1/16 and DoDD 5200.28, permits a B1 automated information
system to be .used in compartmented mode. In compartmented mode some users of a
system. are not formally approved for access to all of the information in it —
even though all users have a uniformly high national security clearance — so as to
minimize the damage caused by espionage. This note compares the reasons why
compartmentation is used in the intelligence community with the ability of C2, BI,
and B2 systems to resist various kinds of threats. That comparison convincingly
demonstrates that at least a B2 system must be used in compartmented mode unless

- most of the benefits of having compartmentation are not to be sacrificed when an

*automated information system is used to handle and process compartmented information

Keywords

- compartmented mode, DCID 1/16, trusted systems, need-to-know, threats,
vulnerabilities, risks :

Introduction

. A system is running in compartmented mode if all users have national clearances at least to
the level of all information in the system, the system has information from one or more
compartments (that term is defined more sharply for our purposes later), and at least one user has
not been approved for access to all compartments on the system. For the purposes of this note we
are assuming everyone has at least a SCI (Sensitive Compartmented Information) clearance in accord
with DCID (Director of Central Intelligence Directive) 1/14 [2]. It would appear that a system
evaluated to at least the Bl level is necessary to support compartmented mode operation!, since Bl

1S,trictly speaking, Bl is not logically ‘‘necessary.”” In a C2 system compartmentation in a benign environment can be (and
is,-albeit at risk) enforced analogously to the way it is in a strictly paper world. Users bear the responsibility of ensuring
that each electronic document is marked with or in some fashion associated with its set of compartments. When an access list is
created for a document (or some other form of access control that meets C2 requirements is employed) the user who sets or changes
the access list has the responsibility to ensure that only people who are authorized access to all of the compartments in a
document are placed on its access list or otherwise granted access fo it (e.g., by giving only them a password for the document on
systems that employ such means of access control.) The primary difficulties with this scheme (apart from its penetrability) are
that a-person has to keep track of the access approvals of, in principle, all other users and that it makes it difficult to use
group accesses (if, say, all users in office A do not have approval for compartment B, I can’t put ““office-A’’ on a group access
list for -document marked with compartment B). Level Bl is the first level that can keep track of user access approvals and the

448

is the first level that supports the security markings needed to enforce compartmentation. DCID
1/16 [1] says that Bl is sufficient, mentions B2, but gives little guidance on when B2 might be
necessary. DCID 1/16 is not alone in permitting B1 to be used in what amounts to compartmented
mode: the NCSC ““yellow books’” [3], DoDD 5200.28 [5], and the DIS Industrial Security Manual
(ISM) [6] all also permit B1 to be used when not all users have formal access approval for all
information in the system, even though they all have a national clearance at least as high as the
most highly classified information in the system. Anderson’s paper [4] is one of the first
public attempts to correlate trust levels with risk environments; unfortunately it is ambiguous in
its treatment of compartmented mode: although it has ‘“SCI’” as an element in its
clearance/classification matrix, it never uses the term ‘‘compartmented mode’’ and explicitly says
for threat/risk category 1 (for which Bl is applicable) ‘“there is no threat or risk since all
users are cleared/approved for all material.”’ (emphasis added) Each of these references attempts
to define when a level of trust higher than B1 might be needed, but, especially in the case of the
ISM, are not consistent with each other. In any case, [3], [4] (‘‘with more than one category of
SCI present, raise the threat/risk category by 1°”), [5], and [6] condition the transition from B1
to B2 or B3 by the number of compartments for which not all users have access approvals; why the
number of compartments is used rather than some notion of sensitivity of the actual compartments
involved has always eluded me?. The remainder of this note is an attempt based on first principles
to analyze further which level should really be used. ' ’ o

Whatisa Compartment?

First, we need to make clear what is meant here by “‘formal compartmentation”’ or ‘‘formal
compartment’’, as that term is used in the intelligence community. For someone to have access to
a formal compartment at least four events must happen: the person must have a ‘“favorable’” DCID
1/14 background investigation (BI)?, there must be at least an administrative decision that the
access is necessary and appropriate, the person must be given some kind of briefing on why the
compartment needs (special?) protection, and he must sign a non-disclosure agreement specific to
that compartment. The key point is that enforcement of compartment access is just as mandatory as
enforcement of the national classifications: a person who has been granted access to information
in a compartment does not have the right to bypass the administrative process and determine that
someone else should see that information who has not been given formal access approval®. We

compartment markings on a document and use that as a basis for granting or denying access. (In a Bl system I could put
“‘office-A”” on the access list for the above B-compartment document and still be ostensibly assured that those-in office A who
did not have B access approval could not have direct access to it.) R

2Roger Schell’s’ explanation that “‘in most cases that gives you the right answer” is not intellectually satisfying, although
I do understand how when one is thinking in the context of the common national control systems his reasoning makes some kind of
sense. ’ ' R) ' ‘ '

3Since it appears that almost everyone in the intelligence community has at least that, the issue of national clearance is
often ignored in discussions regarding compartments within the community. Also, since it is the case that the ‘‘national
classification’’ of SCI information is in some sense .a meaningless concept, the fact that SCI documents may bear different
national classifications can usually be ignored in determining whether a system is running in compartmented mode or not. - Even
though adocument might be marked SECRET WHIZBANG, where WHIZBANG is an SCI compartment, neitheta SECRET nor routine TOP
SECRET clearance is ¢nough to permit access: one must have an SCI clearance which in itself gives one a TS clearance; the marking
of SECRET says something about the sensitivity of the document (although I’m not clear what) but says nothing about what level of
personal trust is needed to permit access to it 'since that is superseded by the (implied) SCI marking. .o '

*We are here deliberately not addressing. the fact that some, perhaps even:a \largé number, of intelligence community officers

and’' employees are authorized to- ‘‘declassify’” compartmented information (decide that for some -reason it no longer needs
protection) ‘or-to release it in whole or in part (usually in sanitized form) on a case-by-case-basis to peopie who do not have

449

could fine-tune that definition by saying something about who can establish compartments and what
minimum kinds of administrative procedures (bookkeeping at least) must be ‘involved, but this is
close enough. In any case, different organizations, departments, and offices have slightly
different procedures for creating compartments (as we define them here, whatever else they may
call them), for deciding exactly what a person granted access is to be told and agrees to, who has
to- approve the creation of the compartment and what other administrative information and rules go
along with it. ' - :

The question of whether C2 or Bl is ““good enough’’ to enforce compartmentation then hinges
on what the purpose of having compartments is and whether a C2 or Bl system sufficiently ensures
that that purpose will not be thwarted. o -

Why is Compartmentation Used?
(or, Why Create a New Compartment?)

““Need-to-Know’’

 The first reason for having compartmentation is the ‘‘traditional’’ reason for
need-to-know: to reduce the number of people routinely exposed to a given body of information.
Three related purposes for this cautious approach come to mind:

Damage Limitation: to reduce the damage done by the bad guy who has slipped through the
personnel security net, either as a mole or as someone who has been turned or duped>.

Temptation: to reduce the chances that an ordinary cleared person (loyal, average, subject
to the vicissitudes of normal life) will be tempted to abuse (inadvertently release,
consciously try to sell or trade for gain, advantage, or to make a point) sensitive
information which he just happens to have access to — the more classified
information one sees, the greater the likelihood of running across something that
proves just too tempting. '

Attractiveness: to reduce the attractiveness of any single individual as an intelligence
target — the less information a person has ready access to, the less worthwhile
it is to take the risk of attempting to turn or exploit that person. =~

Other Purposos of Compartmentation

_ The above three reasons seem the same for ordinary need-to-know (‘‘Can I see it?”’ ““Yes, I
like the color of your eyes and you seem to know something about this problem, so, go ahead’’) and
compartmentation. (Remember that in most organizational security policies ‘need-to-know’’ is

formal access approval for it. To an outsider this may make the ‘““mandatoriness’’ of a compartment label seem less ‘‘mandatory,’’
but it isn’t: the President can release any secret he likes to anyone he wants. The general rule still is that if I have
possession of compartmented information I can' only give it to someone else who is approved for all of its compartments; the rule
in practice is just more complicated: in the national interest there are some people who are authorized to ignore the general
rule on a case-by-case basis.

SSince we are for the most part not talking about field or tactical situations we are mostly ignoring the physical capture
or over-run problem. Situations where those risks are present provide especially strong reasons for wanting damage limitation
through compartmentation: capturing an agent can’t roll-up the entire network. Note that over-run does have a direct relation
to computers (wWhat information can a person at a captured site be induced to continue to access) as well as a ‘good indirect
analogy (if the person is metaphorically over-run by a malicious program, what can it access using his authority?)

450

supposed to be exercised over ordinary non-compartmented classified information: a possessor of
classified information is supposed to release it to someone else, no matter what clearance they
have, only after deciding on some rational basis that the recipient has a legitimate need to
access the information.. The difficulty is in deciding what needs are legitimate and which aren’t.
The three reasons given above seem to be why this is done.) Compartmentation, in addition to
perhaps making some of the above easier to accomplish, appears to be employed for the following
further reasons: (note that deciding to create a new compartment or even declaring that a given
piece of information falls within an existing compartment are not actions to be taken lightly:
both entail considerable work and impose a burden on potential users of the information. That
work and burden are presumably only incurred because the act of compartmenting a piece of
information has some significant benefit above and beyond the mere fact of classifying it.)

Damage Assessment: to make it easier to make a damage assessment. Assuming all the
controls are sufficiently effective, once someone has turned traitor it is in
principle easier to limit the scope of the investigation to only those compartments
that he had access to. This is in far contrast to having to determine exactly which
of all, say, SECRET information one actually accessed — the effectiveness of an
investigation of the latter assumes the manual and electronic audit trails work and
give meaningful information, which is probably not a realistic assumption. (Most
TCSEC audit trails are useless: suppose I browsed a SECRET classified forum on a
Multics system with “‘pr -text /SDI/’® — the audit trail would, I think, show
that I looked at the whole forum, and not just those entries dealing with SDL.)

Awareness: to lesson inadvertent, inappropriate, or unwise disclosure by making the
individual more aware of the consequences of that disclosure through the
indoctrination briefing7. It is not clear, however, that this offsets the risk
posed by exposing information in the briefing that might not otherwise need to be
known, including that which identifies why the information is important (and thus
tempting.) That balance has to be tough for the policy-setters to make.

True Segregation: to make it easier to implement what has been called ‘‘anti-aggregation.”’
I am told there are cases where information of type A or of type B by itself is of
““ordinary’’ sensitivity (e.g, SCI) but that the combination of the two ‘is so much

- more sensitive that the number and kind of people who have access to both must be
specially controlled, even though the number and kinds who have access to either one
by itself isn’t particularly sensitive (in the normal course of events). I
understand there are cases where the aggregate is not labelled AB but in fact is
placed in an entirely new compartment, say, C (that might even be the normal way of
dealing with the situation). Formal compartmentation makes it possible to bookkeep
what combinations of accesses like this any given person has and thus prevent this
particular kind of aggregation problem. :

Neutrality: to lessen the risk in granting access to classified information by taking into
. consideration more factors than a generic clearance or background investigation
would, in particular, factors specific to the particular kind of information
involved, (‘Do or don’t give Jews access to information about/from Israel;’’
““Only. give scientific information to someone with an advanced degree in a relevant

6.

print all entries whose text contains the string SDI.”’
7The briefing may include much more than that strictly necessary for security awareness; it is only the secﬁrity awareness

part .we are talking about here.. It may even be that the security implications are self-evident, especially in the context of a
sub-compartment of some umbrella compartment, so that there really is no security awareness briefing per se. '

451

subject.”’) This is subject to the ‘‘jury of one’s peers’’ phenomenon: is it better
to have expert or interested parties involved or not? Would you rather have a Jew
(of what kind?) on the Israeli or Arabian desk or not (assuming he were convinced
our interests and Israel’s were not in conflict?) In any case, compartmentation
gives the knowledgeable, concerned, and responsible parties (e.g, an Office of
Primary Interest) the option of establlshlng additional conditions, either ahead of
time or ad hoc, for the granting of access, such conditions reﬂectmg the nature of
the information involved as well as any other relevant information. Ordinary
““need-to-know’’ cannot do so since there is no readily enforceable mechanism' for
ensuring that the person responsible for granting or denying access knows what
considerations other than those included with or implied by the information itself
ought to be examined. Note that the purpose here is not to institute extensive
further background investigation procedures to ensure that the candidate for access
approval is not in fact an agent of a hostile intelligence service, but merely to
make prudent judgments to avoid humanly irresistible temptations and biases that
might surface in themselves or be exploitable by a hostile intelligence service.

Judgement to make it clearer to the people involved what improper access would be, i.e.,
who really has or should have ‘‘need-to-know’’. Anyone handling compartmented
information knows that it is at least improper to glve such information to someone
who does not have formal access approval for it; someone handling ordinary
non-compartmented information has only his own experience, training, and

instructions to rely upon — there is no independent, external, authoritative
source he can rely upon to help h1m decide who, once they have the necessary
national clearance, should "have nccd-to-know Given proper initial

indoctrination, crossing compartment boundaries could show up on a polygraph (and
this potential consequence would be made known as part of the indoctrination) but no
‘such impediment could be made to stick with ordinary need-to-know, even with the

polygraph.

Human Error: to lessen the chances that someone will inadvertently not follow proper
security discipline; this is not strictly a property of compartmentation per se,
although the presence of formal labels helps, but is,” in this discussion, more
related to what a computer system does to help the honest person be honest.

Management it appears that in some (perhaps many) cases the concept of compartment, as
used here, is nearly equivalent to that of a ‘‘project,’” where the latter is used
here (lnformally) to refer simply to some kind of formally identified and managed
activity, either a sensitive design effort, collection effort, analysis effort, or
covert operation. (‘‘Program,”’ ‘‘study,’”” ‘‘operation,’”” etc. are other similar
terms.) . In such cases the concept of compartmentation is sometimes used in a
variety of ways as a means of management control only indirectly related to the
problem of controlling information about or from the project. Funding actions,
management records, chains of authority (who can release information; who can
authorize particular activities) may all be tied to the “project” in a manner
that has security implications (especially when “‘security’” is used in its broad
meaning as encompassmg confidentiality, integrity, and availability).

Threat Model and Vulnerability Assumptions

In a compartmented mode system -there are two potential threat sources: all authorized users
of the system and external agents of a hostile intelligence service (HIS). The authorized users
would in most agencies and departments of the intelligence community in fact uniformly have a
clearance that is even higher than the minimum required by DCID 1/14.

452

An authorized user can become an actual threat either by acc1dentally releasing information
or performing some insecure action or by deliberately having become the witting or unwitting agent
of an HIS. Although the likelihood of the deliberate threat by an authorized user is rendered
extremely low by the personnel security practices of the intelligence communlty, it is non-zero,
and increases as the number of users on a system increases. An authorized user who becomes a
threat can either compromise security directly by releasing information he has access to or
indirectly by finding and exploiting a security vulnerability in the system. In a C2 or Bl system
it is essentially certain that there is at least one easily-found and exploited vulnc:rablhty8
that would permit a malicious authorized user to have undetected access to all information in the
system®, regardless of what compartments it is in and what access approvals he has; it is for this
reason that a C2 or Bl system does not help achieve many of the goals of compartmentation since
any boundaries between compartments supposedly put in place by such a system are easily
circumvented. .

An external agent of a HIS can become a direct technical threat to a system ‘by introducing
malicious software or even hardware into the system. Such hostile system components could be
inserted at several points of an information system. These components could then. adversely
affect the correct usage of the system without the knowledge of the authorized user. ~ On any
large system it must be assumed that a well-intentioned HIS would be successful in introducing
such a malicious capability, although it might take time and patience. This is because large
portions of a system, whether they be the operating system itself, commercially-available
application packages (such as a data management system), or convenient utilities are written,
maintained, and delivered by uncleared people through insecure channels. Any such malicious
software operates with all the privileges of its user(s) and hence on a C2 or Bl system would also
be able to access any information in the system (exploiting the vulnerabilities mentioned above.)
The only additional facility such an attack would require is some means of getting the information
the malicious software has accessed out of the system (since we are assuming in discussing
external threats that all users continue to be trustworthy.) Since most intelligence community
systems have some connection to the outside world (direct or via other systems), if only through
nominally secure ‘‘message’” systems handling unclassified traffic, or produce some nominally
unclassified output, there is almost certain to be some means by which a malicious program can
signal classified information out of the system hidden in what appears to be unclassified output
or communications.

Although a B2 system is not assured to be completely without an exp101table flaw, including
exploitable covert channels, the likelihood of them, and of being able to successfully introduce a
malicious program that exp101ts them, is much less than in a C2 or B1 system. It is also the case
that in order to compromise all of the information in a B2 system the HIS would either have to
introduce malicious code into the operating system itself or into enough programs, or popular
enough programs, that the code is run by at least one user cleared for each compartment; this is
likely much harder to accomplish than the task on a C2 or Bl system where all that has to be done
is to get the malicious code somewhere that at least one user, any user, executes it. A corollary
of this is that if the HIS is targetmg a specific compartment (e.g, project) on a given B2

8All such systems are vulnerable to Trojan Horses: programs, or possibly even malicious hardware, run by authorized users
that unknown to their user attempt to bypass security controls, either by giving improper access (on a C2 system) or by
exploiting covert channels (on a Bl system.) In addition, since C2 and Bl systems have little rigorous attention paid to design
and implementation correctness, they are almost certain to simply have protection flaws that can be directly or indirectly used
to permit unauthorized access to information by a techmcally knowledgeable person (or one acting under the direction of one, ot
running a malicious program written by one.)

9See the Appendix for a justification of this characterization of the B1 level of trust.

453

system it must insert malicious software in such a place that someone having access to that
compartment will ‘execute it -— not any user will do, in contrast to a C2 or Bl system.

C2 vs. B1 vs. B2

Given the abovc ten goals of compartmentatlon Table I below indicates which of the
evaluation classes C2 through B2 help s1gmﬁcantly to accomplish that goal in the face of the
postulated threats. In the table ‘“yes” indicates that the given level of system significantly
helps accomplish the goal, ‘‘no’’, that it does not. = N/A (‘‘not applicable’’) means that that
particular purpose of compartmentation is not something that a computer protection system can
help much with. Notes on some of the table entries follow it.

TABLE 1
Ability of ‘‘Trusted Systems’’ to Accomplish Compartmentation Goals

C2 B1 B2
Damage Limitation - no no yes
Temptation yes yes yes
Attractiveness (1) no no yes
Damage Assessment v no no © yes
Awareness (2) N/A N/A N/A
True Segregation (3) no no yes
Neutrality (4) N/A N/A N/A
Judgement : N/A N/A N/A
Human Error (5) no yes yes
Management (6) no no yes

(1) A technically 50phiéticated hostile intelligence service would realize that anyone, or any
program they ran, on either a C2 or Bl system could have access to all information on the
system, perhaps given some technical help.

(2) The presence of systém-enforoed labels (occurring only on B1 or higher systems) does not
seem to make a lot of difference here, although its perceived intrusion into previously
routine operations would constantly remind someone of his responsibilities.

(3) The assumption here is that one is not especially concerned about temptation but whether a
. person, or a program he has run, has in fact been improperly granted access to the
aggregate; a B2 system would be much better than a Bl system in ensuring that someone
granted access to part of an aggregate (compartment ‘“A’”), or any programs he ran, did not

have access to the rest (compartment ‘“B’’).

(4) On the assumption that we are not attempting to weed out a priori malicious people, but
rather simply to eliminate those who might be subject to unbearable pressures by virtue of
the kind of information involved.

(5) A common occurrence, unfortunately, in a computer system, especially one tied to an

~ electronic mail system, is accidentally sending information or a message to the wrong

person. A Bl or B2 system at least prevents information from accidentally gomg to someone
without formal access approval for it; a C2 system does not.

454

(6) Unless the B2 system implemented some form of rigorous (mandatory) integrity controls, the
primary reason a B2 system would help with this goal and a B1 or C2 would not is that the
core of a B2 system must be built to be more robust than that of a Bl or C2 and hence
would be less vulnerable to malicious attempts inspired by a HIS to subvert management
wishes. In short, if one believes routine data processing helps with project management
and control, no additional benefit is gained by having a C2 or Bl system, rather than an
unrated system, but having a B2 system does bring additional help in defending against
deliberate attempts to thwart that management (either by authorized but malicious users or
by software introduced from outside). A B2 system with rigorous integrity controls would
in addition directly provide strong assurance that data (information in a data base,
historical records, management directives and commands) could not be created or altered by
unauthorized people or programs. A particularly insidious threat would be a malicious
program that slowly and gradually ‘‘eroded’’ information over time, at a slow enough
“‘rate’’ that it would not be routinely noticed; a B2 system would impose serious barriers
to the extent of damage such a malicious program could cause by limiting its scope of
activity to only those projects its users were authorized to change information in.

Conclusions

Where angels fear Of all the reasons for compartmentation for which the level of
evaluation seems to matter, a C2 system helps with only one, a2 B1 with two, and a B2 with seven.
If one were to live with only a Bl system one would have the following vulnerabilities to
unauthorized disclosure not found if one were on a B2 or higher system:

. all users could be assumed by a hostile intelligence service to have reasonably easy
access to all information on the system, perhaps given some guidance, regardless of
what security level or compartment the information had, and thus all would be equal
(and attractive) targets, either directly or by virtue of the programs they used.

. once a user were turned, either as a walk-in, target, or mole, he would have
reasonably easy access to all information on the system, regardless of what security
level or compartment the information had and thus any turned user could be assumed
to be able to extract anything of interest. Any malicious programs introduced into
the system must be assumed to be able to access all information in the system.

. sets of information which were supposed to be kept separated because their
aggregation, conjunction, or juxtaposition would lead to grave consequences could
not be assumed to be so separated once someone having access to any one of the
sets turned sour, or once any such person had executed a malicious program.

. once a user is suspected or known to have turned bad, especially under the tutelage
of a technically competent hostile intelligence service, it cannot be assumed that
the only information he had access to and compromised is that which he had been
given tickets for. Similarly, if a malicious program were discovered, .even if it
were known (or reasonably assumed) which users were likely to have run the program
one could not assume that the only information it could have compromised was that
for which the user had legitimate access.

Note that in most of the above the term ‘‘user’” or ‘‘person’ can almost always be
replaced by the term ‘‘system’ in a networking context. It must generally be assumed that in a
C2 or B1 system anything any one of its users (or programs they run) can do, can be done by any
other user (or program he runs), and this includes any actions that might be taken on behalf of
that user (or programs he runs) on some other system it is connected to. This means that the

455

potential threats to a system include not only all its authorized users, or means by which
malicious software might be introduced to it that they could be induced to run, but also qll
users (and their programs) in any C2 or Bl systems to which it is connected®®.

It’s not for us mere mortals not privy to various higher matters of state to make policy,
but it sure seems based on the above that running a compartmented mode system on only a Bl base is
on pretty shaky ground: the only thing you gain over a C2 system, which in itself only serves to
limit the scope of innocent or ambitious browsing, is preventing human errors. If there is any
reason to believe that one is the target of a hostile intelligence service, or that any of one’s
technically competent users have any reason to believe they have something financial, moral, or
political to gain by dealing with such a service, or other entity operating at cross-purposes to
the interest of the U.S. Intelligence Community, one has to insist on B2 as soon as possible.

Acknowledgements

This note has been in various stages of preparation since late 1989. Before being
submitted to this conference it was informally reviewed by a number of colleagues, all of whom
shall remain anonymous since some requested to be. They, as well as the conference referees, made
many useful suggestions, including the final version of the title, that have been incorporated and
for which T am grateful. One of the conference referees urged that the scope of the paper be
broadened to include a similar analysis of why B1 should not even be used in limited multi-level
mode either, even though that is permitted for a risk range of CONFIDENTIAL to SECRET. I agree
with the sentiment but have to reject the suggestion, both because of the lack of time and because
on first glance I don’t believe the argument, one way or the other, can be made as clearly as it
can here.

References

[1] DCI Security Committee, ‘‘Security Manual for Uniform Protection of Intelligence Processed
in Automated Information Systems and Networks’’ (U), supplement to Director of Central
Intelligence Directive 1/16, 19 July 1988. (SECRET REL SEL FORN GOV) — all portions
quoted, referenced, alluded to, or paraphrased in this paper are of course to sections,
paragraphs, or tables explicitly marked as UNCLASSIFIED.

[2] DCI Security Committee, ‘‘Minimum Personnel Security Standards and Procedures Goverhing
Eligibility for Access to Sensitive Compartmented Information,”” Director of Central
Intelligence Directive 1/14, 13 May 1976 (UNCLASSIFIED)

[3] DoD Cbmputer Security Center, ‘‘Computer Security Requirements — Guidelines for Applying
the Department of Defense Trusted Computer System Evaluation Criteria in Specific
Environments,”” CSC-STD-003-85, 25 June 1985.

[4] James P. Anderson, ‘‘An Approach to Identification of Minimum TCB Requirements for Various
Threat/Risk Environments,’’ Proceedings of the 1983 Symposium on Security and Privacy,
Oakland, Cal., IEEE Computer Society, April 25-27, 1983, pp. 102-104.

[S] Department of Defense, ‘‘Security Requirements for Automated Information Systems’’, DoD
Directive 5200.28, March 21, 1988.

107mhis note is already getting too long to émplify on this tbpic; suffice it to say that networking, even to a ‘‘small”
extent, greatly expands the threat sources and means of exploitation of vulnerabilities.

456

[6] Department of Defense, ‘‘Automated Information Systems,’’ Industrial Security = Manual
Jor Safeguarding Classified Information, Chapter 8, DoD 5220.22-M, January 1991.

[71 G.H. Nibaldi, ‘““Proposed Technical Evaluation Criteria for Trusted Computer Systems,”’
M79-225, Mitre Corporation, Bedford, Mass., 25 October 1979.

[8] = A.-M. Discepolo, ‘‘Proposed Technical Evaluation Criteria for Trusted Computer Systems”
Mitre Corporation, Bedford, Mass., MTR-8481, 30 September 1981.

[91 DoD Computer Security Center, ‘“Trusted Computer System Evaluation Criteria,”’ (DRAFT), 24
May 1982.

[10] DoD Computer Security Center, ‘“Trusted Computer System Evaluation Criteria,”” (DRAFT), 15
November 1982.

[11] R. R. Schell, ““Evaluating Security Properties of Computer Systems,’’ Proceedings of the
1983 Symposium on Security and Privacy, IEEE, April 25-27, Oakland, Cal., pp. 89 - 95.

[12] D.J. Edwards, ‘“Trusted Computer System Criteria: Classes Bl Through B3,”’ Proceedings of
the Sixth Seminar on the DoD Computer Security Initiative, National Bureau of Standards,
Gaithersburg, Md., November 15-17, 1983, pp. 24-26.

Appendix
In Defense of the B1 Characterization Given Here

It is with some trepidation that I have included in this note a specific subjective
characterization of ‘““how good’’ a C2 or Bl system is since it can, not unreasonably, be taken as
denigrating the hard work of all those who have produced B1 systems, including the several vendors
involved in the DIA CMW project. Although I believe very strongly that the notion that a Bl
system is not much more than ‘“‘C2 with training wheels’’ has been generally accepted within the
computer security community for a long time, try as I might I have (perhaps not surprisingly) been
unable to find any professional or official writing that has stepped out and said so. Neither
Schell [11] nor Edwards [12], the earliest formally published descriptions of the evaluation
~classes and levels, subjectively characterizes them in terms of ease of penetration, although
Edwards’ description of B1 contains a hint of the difference between C2 and B1 in a summary: ‘“The
big change at level Bl is the introduction of a mandatory security policy and supporting
information sensitivity labels ... we are secking a computing cultural revolution by making
sensitivity labels an important, user visible part of the computer system.’”’ [12, p. 25] The
closest to an authoritative reference I have been able to find is in the 1979, 1981, and 1982
precursors to the TCSEC:

‘‘Although extensively tested, a level 2 system [the precursor of B1] is still subject to
design and coding errors. Testing should detect any obvious flaws; yet subtle ones might
linger, to the advantage of untrusted users who are in a position to exploit them.”” [7, p.
25]

“A level 2 system, like a Level 1 system, is intended for a generally benign
environment... [it] would be suitable for DoD system high mode of operation.’” [8, p. 32]

‘‘A class <B1> system provides nominal mandatory ... access limitations”” [9]

457

““A class (B1) system provides ostensible mandatory ... access limitations>” [10]

In trying to track down the origin of the ‘‘training wheels’’ characterization I have
received anecdotal evidence that Dan Edwards first used the term in that context in the summer of
1983, but no-one has been able to find it in writing. There is considerable additional private
and semi-private evidence, some in the form of contemporaneous messages and letters, some as later
recollections, attesting to the fact that the *-property was included in Bl (at the same time as
what is known as the ‘‘simple security property’’) primarily to get applications programmers and
system developers used to the constraints that would be imposed on them were they to move to a
system that had credible assurances, but that too never showed up in any formal publication.

Finally, a fairly long attempt to characterize Bl in terms of what could and could not
reasonably be expected of it was entered in the ““Criteria”” forum on the NCSC DOCKMASTER system
in Apnl 1987. Following is an abridgement of that entry:

““..a Bl system is not expected to be able to enforce access controls in the face
of any conscious competent technical effort to defeat them. ... A Bl system also cannot
be expected to defend against all Trojan Horse attacks since it almost certainly
will have covert storage channels and may even have direct channels through system objects
not controlled by the TCB. .. It has not been subject to protracted penetration
testing and based on past experience would succumb to a moderate (less than six
man-months) attack by someone who has the opportunity and background to study the source
code of the system. Although all known design or implementation flaws have been
corrected, there has been no systematic effort to search for others (e.g.,
time-of-check-to-time-of-use on system calls.) There is no effective assurance that
bugs, patches, or trapdoors have not been or cannot be implanted in the system during
its manufacture or distribution.”

Some 175 people eventually are recorded as having read that entry. A follow-up entry a
few weeks later, which also was reécorded as having been read by roughly the same number of people,
drew the readers’ attention to the fact that there had been no response to the characterization.
As of this writing, there still has been no objection, which is part of the reason that I believe
the characterlzatlon is accepted as fairly expressmg the opinion of the computer security
commumty

U After this paper had been submitted for the conference an entry was posted in the NCSC DOCKMASTER ““Trusted Product
Evaluation Program Process Improvement’” forum specifically addressing the issue of how good C2 and Bl systems are.
(TPEP_Process_Improvement forum entry [0023], 5/18/92.) I do not know if the author wants his remarks attributed publicly, and
forgot to ask before the revision deadline, so here they are without attribution:

“As to C2 and B1, they are far too costly to develop/evaluate. = We add process and meaningless steps such as design
documentation to systems that are fundamentally bug-prone monoliths. Because that’s what the systems are, the added
effort results in no added security; C2 systems and Bl’s are about as secure as anticipated 8-9 years ago, but vastly

more costly to develop.... Bl is no worse than. C2 but no better. B1, by the way, was intended as "training wheels"
for application developets who would develop to live with the *-property then transparently port their applications to B2
and above.”

98 people, including several builders of Bl and C2 products, have read the entry and there have been no objections.

458

OPERATING SYSTEM SUPPORT FOR TRUSTED A'PPLICATI()NS

Richard Graubart®

The MITRE Corporation
Burlington Road
Bedford, MA
01730

ABSTRACT

Trusted operating systems are finally becoming commercially available. But it is the user
applications executing on trusted operating systems that actually address users’ operational needs.
To provide effective security, these applications often must be able to draw on the security features
of the trusted operating systems, and the trusted operating systems must be able to provide certain
security capabilities to the applications. In general, very little work has been done in the area of
determining what security capabilities are required of a trusted operating system to support trusted
applications. This paper provides some suggestions regarding how trusted operating systems
could better support trusted applications.

INTRODUCTION

Trusted systems, in particular those that can operate in multilevel or compartmented mode, have
recently started to become commercially available. Trusted applications, such as trusted mailers,
trusted editors, and trusted Database Management Systems (DBMSs), are also being developed.
Trusted application technology lags somewhat behind trusted operating system technology, if only
because trusted operating systems are required to serve as a base for the trusted applications.

The design and implementation of trusted applications does not merely entail selecting arbitrary
applications, placing them on a trusted operating system, and watching them operate correctly.
The applications must be carefully integrated into the trusted environment provided by the
operating system. For its part, the operating system must provide certain security capabilities to
support the trusted applications. In general, very little work has been done in the area of
determining what security capabilities are required of trusted operating systems to support trusted
applications. Documents such as the Trusted Computer Security Evaluation Criteria (TCSEC)
[DOD85] do mandate certain minimum requirements on trusted operating systems. However,
these are requirements for ensuring that the trusted operating system is secure. Trusted operating
systems can be built that are in compliance with the TCSEC, but still do not necessarily provide the
necessary security capabilities needed by a trusted application.

The purpose of this paper is to provide some insight and suggestions as to what security
capabilities could be incorporated into trusted operating systems that would make them a better
base for trusted applications.

* This paper represents the views of the author, not necessarily those of the MITRE Corporation.

459

IRUSTED APPLICATIONS: WHAT ARE THEY AND WHY ARE THEY?

Before discussing the operating system needs of trusted applications, we need to discuss exactly
what we mean when we refer to trusted applications. By an application we mean a set of software
that performs some specific set of functions (e.g., a DBMS, a mailer, etc.) for the purposes of
addressing some specific problem (the need to interrelate data, the need to pass information
between users, etc.). A trusted application is one that performs some specific security task while
satisfying a needed operational function. We do not consider an application trusted if its security
functionality is performed entirely by the underlying operating system. For our purposes an
application is considered trusted only if the application itself performs some security related
function. The nature of the security functionality performed by the trusted application can vary; it
can be access control, it can be labeling information, it can provide some supplemental
authentication capability, etc.

Trusted applications are required when the operational needs of the application cannot be
accomplished (at all) or cannot be accomplished securely even with the support of the trusted
operating system. As an example, a DBMS may require labeling and mandatory access control
(MAC) at a level of granularity not provided by the underlying operating system. To satisfy this
need, a trusted DBMS may be required which will enforce labeling and MAC at a granularity finer
than that of the operating system.

For trusted applications to perform their tasks it may be necessary for the application to override
some policy of the underlying operating system. As an example, a trusted DBMS may need to
support its own MAC and labeling policies on the objects under its control. The labeling or access
control decisions performed by the trusted DBMS would be independent of the access mediation
provided by the trusted operating system. In order for the application to perform, such actions
require some privilege or set of privileges from the underlying operating system that allow it to
operate independently of some of the policies enforced by the operating system. Continuing with
the example, a trusted DBMS may require a Violate-MAC-Policy privilege, or a Relabel-Data
privilege in order to label data records and perform access control on the records.

Not all trusted applications require privileges, only those whose task requires them to override the
policy of the underlying operating system. Some applications may enforce a policy that is
orthogonal to that of the underlying operating system. For example, a trusted DBMS could exist
that does not enforce any MAC or labeling, but does enforce some entity integrity policy.! Such a
policy is independent of the policies enforced by the underlying operating system.

Thus, trusted applications are required when a particular problem needs to be addressed in a secure
manner, and for some reason the application cannot rely on the underlying operating system to
provide the necessary security support. As noted above, there are different types of trusted
applications. Some trusted applications need to override the policy of the underlying operating
system, others enforce policies that are completely independent of those of the operating system.
Some trusted applications both override some policy of the underlying operating system, and also
enforce some policy that is orthogonal to those policies enforced by the underlying operating
system. In the next section we discuss features that, if incorporated into the underlying operating
system, would make the implementation of trusted applications easier. Most of the proposals are
directed at supporting applications which override the policy of the underlying operating system.

1 Sucha policy would allow the DBMS to enforce constraints on what data values could be
inserted in a given field. As an example, it would ensure that in a salary field no negative
salaries may be inserted.

460

This is because we believe these types of trusted applications to be the most common type of
trusted applications, and the ones for which operating system support is the most needed.
However, some of the suggestions can lend themselves to both types of trusted applications.

D: PERATI SYSTE PPORT FOR TRUSTED APPLICATIONS

There are a variety of ways for a trusted operating system to provide support for trusted
applications. One possible way is for the operating system to provide some security capability that
the trusted application depends upon to successfully carry out its mission.

Another way is for the operating system to provide support that will help limit the possible
complexity of the trusted application. If the trusted operating system provides a needed trusted
capability, and does so in a manner that is highly flexible, then this may eliminate the need for the
trusted application to provide the trusted capability on its own. This would limit the complexity of
the trusted application, and in so doing likely lessen the cost of the application and speed up its
development time.

Finally, it must be noted that those trusted applications which implement policies that are not
independent of the underlying operating system have the potential of interfering with the operations
of the underlying operating system. Not only must such trusted applications be scrutinized, but
because of the possibility that the applications may interfere with the underlying trusted operating
system, the operating system itself may need to be reevaluated. Such reevaluation is time
consuming. In addition, it undercuts the utility of employing evaluated trusted operating systems,
as the already evaluated operating system may require reevaluation even when no changes have
been made to the operating system itself. If the operating system could be designed in"‘some way
that would lessen or eliminate the need to reevaluate it when used in conjunction with a trusted
application, this would further support trusted applications.

In the remainder of this section we describe some possible enhancements to trusted operating
systems, all of which we believe in one way or another provide support for the use of trusted
applications.

SUPPORT FOR TRUSTED PATH

Many trusted applications need to be able to communicate with a user in a manner that clearly and

- unambiguously indicates that the user is interacting with the trusted application and not some
untrusted software. The traditional means of establishing such communications is via a trusted
path. Itis not desirable for the trusted application to provide the trusted path on its own. Trusted
paths often require some control of the hardware, and only the underlying trusted operating system
should have access to the hardware. Therefore, what is needed is for the underlying operating
system to make its trusted path mechanism? available to the trusted application. This would allow
the trusted application to connect its trusted path mechanism with that of the underlying operating
system, thus ensuring an unbroken, unspoofable trusted path from the user to the TCB.

This trusted path should be bidirectional, that is, either the user or the trusted application should be
able to invoke it. A primary reason why the trusted path needs to be bidirectional is to
accommodate the highly interactive, real-time operations of many trusted applications. As an
example, it is possible to have a DBMS environment where a user issues a query, then performs
some other action while waiting for the TDBMS to respond to the query. When the TDBMS does
respond, it is important for the user to know that the response has come from the TDBMS, not

2 The TCSEC requires a trusted path for systems at B2 or higher.

461

some untrusted code that is attempting to spoof the user. Having the TDBMS be able to invoke the
trusted path provides a means of ensuring the user that the communication did indeed come from
the trusted DBMS.

The operating system trusted path could be made available to the trusted application via system
calls or library routines. For additional control, only appropriately privileged trusted applications
would be allowed to utilize these system calls or library routines. Note that none of these
proposals (use of library routine or systems calls, use of privileges, bidirectional trusted paths) is
beyond the current state-of-the-art. Nor do any of these proposals conflict with the requirements
of the various security metrics (e.g., the TCSEC). However, because these capabilities are -
generally not called for in the various security metrics, most trusted operating systems do not
include these capabilities.

ROVED PRIVILEGE SUPPORT

As noted earlier, in order to perform their functions, many trusted applications require some
privilege from the underlying operating system. We propose that the privileges provided by the
operating system should be at as fine a granularity as possible. The use of fine granularity of
privilege is consistent with the TCSEC concept of least privilege.# In addition, we believe that the
use of fine-grained privilege may help minimize the reevaluation of the underlying operating
system. For example, if a system only supports a single ‘super-user’ privilege that overrides all of
the underlying operating system policies, then an application that only requires the ability to write
to the operating system audit trail will be given the ability to override the underlying MAC, and
Discretionary Access Control (DAC) policies, as well as the ability to override the system audit
policy. Such action clearly violates the concept of least privilege. In addition, the entire operating
system must be reexamined to ensure that it works properly in conjunction with the trusted
application. But, if the underlying operating system supports a Generate Audit Data Privilege, then
only that part of the operating system responsible for enforcement of audit policy would need to be
reexamined.

It is very difficult to define what is the appropriate minimum set of privileges that an operating
system should enforce without adversely impacting the ingenuity and flexibility of the operating
system vendor. However, wherever possible, the operating system should enforce as fine a
granularity of privilege as possible (many trusted operating systems already provide a very fine
granularity of privilege). The set of privileges provided by a trusted operating system should take
into account likely requirements of trusted applications. The choice of privileges should also take
into account the requirements against which the operating system will be evaluated. Ata
minimum, privileges should not cross policy boundaries. In addition, within a given policy,
vendors should attempt to ensure that capabilities that map to different requirements should not
couple together in a single privilege [CMWEC]. We believe that such actions, if implemented,
would not only ensure that privileges conform to the concept of least privilege, but in so doing
would help minimize the amount of reevaluation required of a trusted operating system.

3 The Compartmented Mode Workstation Evaluation Criteria, DDS-2600-6243-91 | CMWEC],
does require the operating system provide a bidirectional trusted path that can be made available
to trusted applications.

4 Atthe B2 level the TCSEC requires the use of least privilege but does not elaborate on the
concept. :

462

In addition to supporting fine-grained privileges, operating system support for privilege bracketing
would also aid trusted applications. Without privilege bracketing, an entire process is granted the
capabilities associated with a privilege. The use of privilege bracketing constrains where in a
process a privilege may be employed. As a result, only the code that exists between where a
privilege is activated and deactivated can employ the privilege. In no other locations within the
process can the privilege be invoked. Having the operating system provide this capability further
encapsulates the actions of a trusted application, presumably limiting the amount of the trusted
application’ that needs to be scrutinized for correct operations and use of privilege.

ATI F TRUSTED APPLICATIONS

One of the issues with incorporating a trusted application with an already evaluated trusted
operating system is that the trusted application has the potential to interfere with the operations of
the trusted operating system by applying the privileges it was granted to resources under the
control of the operating system. For this reason, the addition of a trusted application to an already
evaluated operating system requires that some portion of the underlying operating system must be
reevaluated. The use of fine-grained privileges provides some limits on the amount of the
operating system that needs to be reevaluated. To further limit, and possibly eliminate, such
reevaluation requires some means of encapsulating the actions of the trusted application so that it
cannot interfere with the trusted operating system.

One means of encapsulation is for the trusted operating system to enforce some typing policy and
associated mechanism. Under such a system the operating system would ensure that all
applications trusted and untrusted (indeed all subjects and objects) would have some type
associated with them. Thus, a DBMS (and associated subjects and objects) might have a DBMS
type associated with it, a Mailer would have a Mail type associated with it, etc. The object typing
policy would ensure that an application of one type could only access subjects and objects of some
specified type. Some systems already support such capabilities (LOCK [SAYD87],

XTS-200 [HFSI92]). The most restrictive variation of this policy would be to ensure that an
application could only access subjects and objects of the same type. By imposing such
restrictions, one could ensure that a trusted application could not interfere with the actions of the
trusted operating system or some other trusted application.

An encapsulation mechanism as proposed above would constrain which subjects and objects a
trusted application could access, and, hence, would ensure that trusted applications could not
interfere with the workings of trusted operating system's trusted applications. This satisfies the
security concerns but can cause some operational difficulties. Operationally, there will usually be
some entities of one type that need to be accessed by entities of another type. For example, it is
likely that most trusted applications will require access to the operating system clock. But, if the
encapsulation policy is such that an application can only access entities of the same type, then
trusted applications will be prevented from accessing the clock which would be of a different type.
An alternative is to enforce a less rigid policy which would allow certain objects to be accessed by
subjects of specified types or permit specified subjects to access objects of multiple types. The
difficulty with these alternatives is that they weaken the encapsulation policy, and, therefore, one
can no longer be ensured that the actions of a trusted application are constrained to only entities of
its own type. Thus, these more permissive encapsulation policies while allowing greater
operational flexibility, and greatly reducing how much of an application would need to be re-
evaluated, would not completely eliminate the need for reevaluation of trusted applications.

5 Privilege bracketing is only effective if certain other constraints are taken into account, such as -
prohibition of GOTOs, or self-modifying code in the application.

463

ABELING AND MA NSISTENCY

One of the primary reasons for the development of trusted applications is the need to enforce fine
grained labeling and MAC at a level of granularity finer than that enforced by the operating system.
Trusted DBMSS often need to label at the tuple or record level, trusted editors may need to label at
the paragraph level, etc. The granularity provided by the operating systems (e.g., file level) is
generally not sufficiently fine to satisfy the needs of these trusted applications. Some architectures
have attempted to address this problem by aligning the objects of the trusted application with that of
the operating system [DENN87]. Thus, in the case of a DBMS, all of the Secret tuples of a
relation would be in a Secret file, all of the Top Secret tuples would be in a Top Secret file, etc.
For many environments this is an acceptable solution. However, for systems which require an
extremely fine level of granularity and a large number of different security levels, this architectural
approach may not be optimum. This architectural approach requires the physical partitioning of the
application objects into multiple operating system objects with the result that logically related
application objects (e.g., data tuples of the same relation, but of different security levels) are no
longer in physical proximity. As noted in [GRAU89, GARVE9], this may result in performance
dropping logarithmically as the number of security levels increases.

For the performance reasons cited above, many trusted applications often perform their own MAC
and provide their own label manipulation and label conversion. For some systems these label and
MAC checks are quite simple and the amount of code involved is relatively small. However, in
other systems these label checks can be quite complicated. For applications running on these
systems, duplication of such label and MAC checking code in the application could prove to be .
expensive. In such environments it is quite beneficial if the labeling and MAC checking code is
made available to the trusted application. This could be accomplished by placing such code in
library routines or providing appropriate system calls to such code. In either event, the code would
only be accessible to the appropriately privileged trusted application. Making such code available
to the trusted application reduces part of the burden on.the trusted application, making the
applications somewhat less complicated and, hence, less expensive to build and evaluate. In
addition, such an approach also ensures that the applications and the operating system are using
labels consistently, thus eliminating the need to convert labels when data is passed between the
operating system and the trusted applications.

Still, another way that a trusted operating system can relieve some of the labeling and MAC burden
from a trusted application is for the trusted operating system to provide an arbitrarily fine level of
labeling granularity (e.g., down to byte).® By having an operating system provide such fine
labeling granularity, then the trusted application no longer needs to provide its own labeling, but -
can instead rely on that of the operating system. Because the security granularity could be -
dynamically selected by the trusted application, application objects (e.g., database records, mail
messages) would not'need to be physically partitioned into separate operating system files as
described earlier. This lack of physical partitioning would mean that system performance would
not be impacted by the number of required security levels, as is the case when operating system
granularity is more coarse. Because the trusted application would not need to enforce its own
labeling or MAC, the cost and complexity of the application would likely be less, and the
evaluation/certification of the application would be easier than if it had to enforce its own labeling
an MAC.

- 6 MITRE has enhanced a prototype CMW to prov1de Just such a (,dpdbxllty See [PICC91| for
further details.

464-

b LUSION

As discussed above, one can categorize trusted applications into two broad categories: those
whose actions are independent of the operating system and those whose actions are not
independent of the operating system. We believe that the vast majority of trusted applications fall
into the latter category. As we have also noted, there are three possible ways to categorize
operating system support for a trusted application. There are those enhancements which allow the
trusted application to perform some action it would not otherwise be possible to occur. There are
those enhancements which limit the amount of reevaluation that is required of the operating system.
Finally, there are those enhancements which limit the complexity of the trusted application. The
enhancements described in this paper cover all of the categories.

The support for an extendible trusted path is necessary for any trusted application which requires
an unspoofable connection between it and the user. Note that this enhancement is necessary
regardless of whether the application is dependent or mdependent of the policies of the underlying
trusted operating system.

As noted above, improved privilege support in the operating system can limit the needed
reevaluation of the trusted operating system. In addition, the ability to use finer grained privileges,
and privilege bracketing helps limit the size and complexity of the trusted application by providing
for clearly designated areas of the application which need privileges and those that do not. Such
enhancements are clearly intended for those applications which are not independent of the operating
system, and, hence, can override the security policy of the operating system.

The use of object typing to encapsulate the actions of the trusted application is intended to limit
reevaluation of a trusted operating system. The encapsulation enhancements are directed toward
those applications whose actions are generally not independent of those of the trusted operating
system.

The enhancements directed at ensuring labeling and MAC consistency are primarily targeted at
simplifying the functionality of the trusted application by removing a burden from the application.”
Such enhancements are clearly directed at applications that are not independent of the actions of the
trusted operating system.

It is important to note that there are operating systems currently available that provide many of the
already mentioned capabilities. Also, the enhancements discussed in this paper, trusted path,
improved privilege support, the ability to encapsulate the action of trusted applications, providing a
means to ensure labeling, and MAC consistency between applications and the operating system,
are enhancements that we believe to be useful for supporting the applications we have studied.
Other enhancements to the trusted operating system that could support trusted applications are
likely. The nature of these enhancements will become clearer as we gain greater experience with
trusted applications.

7 The enhancements may also limit the need to reevaluate a trusted operating system since there is
no longer any application MAC that can interfere with the operating system MAC:

465

[CMWEC]
[DENNS7]
[DODS5]
[GARVS9]
[GRAUS9]
[HFSI92)

[PICCI91]

[SAYDg7]

ST OF REFERENCES

Compartmented Mode Workstation Evaluanon Criteria Version 1, DDS-2600-6243-
91, Defense Intelligence Agency, 1991.

Denning, D., E,, et. al., A Multilevel Relational Data Model, 1987 IEEE
Symposium on Security and Privacy, Oakland, CA, 1987.

Department of Defense Trusted Computer System Evaluation Criteria,
December 1985, DOD 5200.28-STD.

Garvey, C., et. al., 1989, A Layered TCB Implementation vs the Hinke-Schaefer
Approach, 1989 IFIP Workshop on Database Security, Monterey, CA. ,

Graubart, R. D., 1989, A Comparison of Three Secure DBMS Architectures, 1989
IFIP Workshop on Database Security, Monterey, CA.

HFSI, 1992, XTS-200 Trusted Facility Manual.

Picciotto, J., and D. F., Vukelich, 1991, Fine Grained Labeling, Volume 1:
Operating System Support MTP 387, Volume 1 The MITRE Corporation,
Bedford, MA.

Saydjari, O. S, et. al., September 1987, Locking Computers Securely,
Proceedings, 10th National Computer Seeurlty Conference, Bdltlmore MD.

466

Operational Support of Downgrading in a
, Multi-Levei Secure System

Doug Nelson
Greg Factor
Jim Studt
Mary Yelton
Steve Heffern
Frank Kramer

MLS GDSS Program
Digital Equipment Corporation
721 Emerson Rd.

St. Louis, MO 63141

KeyWords: Downgrade, Multi-level Security, Relational Database

Point of Contact: Doug Nelson (314)991-6232

Abstract

Downgrading is a complex and time-consuming process that is absolutely necessary to operate
a Multi-Level Secure (MLS) system. This paper describes the requirements and design of a
Downgrader Utility planned for use in the United States Transportation Command/ Air Mobil-
ity Command’s (USTRANSCOM/AMC) MLS Global Decision Support System (MLS GDSS).
The Downgrader Utility provides operational support to permit efficient and timely
downgrading of classified information during execution of AMC missions.

467

Introduction

USTRANSCOM/AMC operates the GDSS command and control system to manage its airfleet.
Currently, AMC operates an unclassified system and a separate classified system, both execut-
ing the same software. As part of its MLS testbed activity and with the support of NSA, DISA
and several other Federal agencies, AMC is developing an operational B1-certifiable MLS sys-
tem to replace the existing single level GDSS system [1]. The system is targeted for an envi-
ronment that is hosted on a DEC VAX/Security Enhanced VMS (SE/VMS) system. A Bl-
targeted relational database managements system (RDBMS) is integrated into the system archi-
tecture to provide database management services.

As part of this development effort, requirements for downgrading operations were identified
and a prototype design developed and implemented. The paper describes these requirements
and some of the more important design aspects.

Key Requirements

Of the numerous functional requirements that must be satisfied by the prototype, several man-
agement and presentation requirements had a significant affect on the design and implementa-
tion of the downgrade utility. These four requirements are:

¢ Range of downgrading granularity
¢ Transaction integrity

e Support for polyinstantiation

e Operational simplicity

¢ Audit capabilities

Scheduling and execution of missions by the MLS GDSS must be performed in a manner that
provides uncleared individuals with sufficient data to operate, while protecting the mission’s
classified data and preventing inferences about that data. The system accomplishes this, in part,
by supporting cover stories. In order to limit the understanding of the mission and limit infer-
ence, fictitious or bogus information that is indistinguishable from real data is entered into the
system at the unclassified level for uncleared users. Classified information representing the real
plans of the mission are entered into the system for the secret users, along with some real un-
classified data necessary to initially schedule the mission. The bogus unclassified data is called
a cover story and hides the existence and values of secret data while limiting inferences about
the classified aspects of the mission.

During the execution phase of the mission, secret data must be downgraded and made available
to uncleared users in a timely fashion. This downgrading process does not include all classified
aspects of the mission, but only those portions that are necessary for the uncleared individual to
perform his/her duties. Through limited downgrading and the use of cover stories, the remain-
ing secret data is protected from viewing and inference. For example, consider an aircraft fly-

468

ing a classified mission consisting of several stops at various airbases. The uncleared ground
crews that service the plane after its landing must be made aware that the plane is arriving in
advance in order to make preparations to service the plane. However, this information need not
be made known to them until only a short period of time before the aircraft arrives. All other
aspects of the planes mission, such its cargo or passengers, destination, and departure time re-
main classified and protected through the use of cover stories. Only when it is absolutely nec-
essary is secret data downgraded to allow the execution of duties by the uncleared individuals.

In other cases, it is necessary to be able to downgrade nearly simultaneously a large number of
classified details about several mission and aircraft operating those missions. This might occur
during a large exercise or contingency when multiple missions operate together at the same
time. Thus, the downgrading utility must be capable of downgrading a varying granularity of
classified data, ranging from a single data element such as arrival time of a mission at a speci-
fied location through all classified schedule information associated with hundreds of aircraft
executing a contingency plan. Since the downgrading of classified information is time critical
during execution, the downgrading utility must be able to operate in a timely fashion to ensure
that uncleared individuals are made aware of duties they must perform.

The MLS GDSS makes deliberate use of polyinstantiation to support cover stories to limit in-
ference[2,3]. In a polyinstantiated database that uses cover stories, the actual process of
downgrading information involves overwriting of cover story data at the unclassified level with
data that was stored at the secret level prior to the downgrade. The downgrader utility must
understand the use of polyinstantiation and cover stories to provide a mechanism to accomplish
this action in a relational database.

The MLS GDS System also enforces, through its trusted computing base code extensions, ag-
gregation rules. These rules control the classification of data elements in relation to the classifi-
cation level of other associated data elements. The downgrade utility must also support and fol-
low these same aggregation rules.

An important requirement for the downgrader utility is the preservation of data integrity within
the database during the downgrade operation. Since the MLS GDSS system is used by hun-
dreds of flight controllers and planners simultaneously around the world, it is important that the
downgrading operation not disrupt the availability of the database, or corrupt the integrity of
data associated with a particular mission. The actual downgrading of information stored in
multiple table within the database should occur as a single complete transaction, making the
new unclassified data set available in a single process. Operationally, it is very important that
all of the chosen set of secret data to be downgraded become unclassified. Partial downgrading
could inadvertently disrupt operations and open inference channels to uncleared individuals.

Design Overview

The solutions to the requirements identified in the prior section are reviewed and discussed in
the following paragraphs. The downgrader utility uses trusted computing base extensions of the
MLS GDSS to access and communicate with the database and to manage and protect sensitive
data structure and associated labels [3]. In the system, cover stories and data element level la-
beling are provided through the deliberate use of polyinstantiation. Aggregation rules and clas-

469

sification determination are provided by the system and these rules are available to other trusted
components, including the downgrader utility. Solutions to the downgrade requirements are
implemented with trusted application software.

Range of Downgrading Granularity

The MLS GDSS database is a relational database that has been normalized to handle the over
1500 data elements that comprise the system. Entity relationship analysis defined the major ob-
jects stored within the database, along with the clusters of tables that hold the attributes associ-
ated with the objects. These objects consist of items such as MISSIONS, AIRCRAFT, AIR-
CREWS, and CARGO. Data structures within the downgrade utility store meta data about the
tables that hold information about an object and how these tables are interrelated. ‘This meta
data is used by the downgrader utility to access all data attributes of an object for presentation
to the user and during the downgrade operation. After viewing the contents of an object or mul-
tiple collections of related objects, such as all missions associated with an exercise, the user can
select data elements for downgrading. This selection may entail all downgradeable elements
associated with an object, such as a mission, or one single element, such as the landing time at a
specific site for a particular mission. Using meta data, the downgrader utility accesses the data-
base tables holding the chosen information and downgrades those data elements

Transaction and Access Integrity

One of the major drawbacks of existing downgrade capabilities supplied with COTS relational
database products is the lack of transaction integrity and denial of access to the database objects
‘being downgraded. Downgrading in some database products requires the creation by the user
of additional temporary tables and the movement of classified data from the original tables to
the the temporary tables. The temporary tables are then downgraded and the unclassified data
moved back to the original table. During such a process, database integrity and accessibility
may be compromised. The MLS GDSS downgrader utility performs downgrading operations
in a manner that resembles other application transactions. The selecting and updating that takes
place during the operation is done within the context of a single transaction and does not require
the creation of intermediate tables.

Polyinstantiation Support

Downgrading support that exists in most COTS RDBMS products consists of rewriting of the
security label of the tuple holding the classified data to be downgraded. In a polyinstantiated
database that uses cover stories like MLS GDSS, this support is insufficient and provides little
advantage. Downgrading in these products consists of updating the security label column with
the value that the data is being downgraded to, e.g., UNCLASSIFIED. Unfortunately, this ap-
proach does not work in a database that makes deliberate use of polyinstantiation as the MLS
GDSS does. Since the security label column is part of the unique key of the relations in the
database[2], attempts to rewrite the security label of a polyinstantiated tuple could violate the
uniqueness of tuples within the table. ‘Instead of modifying the security label column, the
downgrader utility performs the downgrade operation by updating data elements stored in the
UNCLASSIFIED tuple with the values stored at the secret level in the SECRET tuple. The se-

470

cret values stored in the SECRET tuple are then removed (nulled) or the entire secret tuple is
deleted. This operation requires the user of the utility to have the downgrade privilege.

Operational Simplicity

The primary reason for developing a downgrader utility is to provide the users with downgrade
privileges with a tool that simplifies their duties and improves the efficiency of using and man-
aging a system that supports multi-level data. Downgrading information stored in over 1500
data elements and over 200 tables is a complex task. Without the support of such a utility, the
downgrader must be intimately familiar with the database schema, as well as the transactions
that are performed by the application. In many cases, data fields stored within the database are
not directly visible to the user through application screens. These fields may be used for inter-
nal controls and specialized functions performed by the application to interrelate data and main-
tain integrity. Without an understanding of the transactions, the downgrader might inadver-
tently overlook downgrading these fields, resulting in potential corruption of the database
integrity. The downgrader utility through its meta data extensions is capable of finding and
downgrading the appropriate data elements during an operation.

RDBMS Independence

The downgrader utility makes use of trusted computing base extensions present in the MLS
GDSS. Because of this, the utility is relatively independent of the underlying RDBMS product.
It was a design goal of the system to allow adaptation of the utility to future MLS applications
that may form part of the MLS GDSS. Because the rules describing how to access all the com-
ponents that make up an object are stored in meta data, extending the utility or modifying the
utility is a simplified process. This design also reduces the amount of trusted code in the utility.

Auditing Extensions

The downgrader utility also provides auditing capabilities that extend beyond those provided by
most RDBMS products that include downgrading features. One example is the lack of histori-
cal information captured during a downgrade operation. Most databases are capable of auditing
the read and write operations that occurred during a downgrade and the tuples that were af-
fected. However, once data is overwritten or deleted, it is impossible to reconstruct precisely
what occurred. One of the requirements of the system that the downgrader utility provides is a
historical view of the downgrade operations. Before and after snapshots of updated and deleted
data are captured and recorded to an audit file. This permits a auditor to accurately reconstruct
the data set before and after a downgrade, pcrhaps a1d1ng analysis of inadvertent downgrades or
deliberate attempts at disclosure.

Summary

This paper has described the requirements and design of a downgrading utility to support an
operational MLS C2 system. The utility operates in conjunction with a polyinstantiated data-

471

base system that provides data element level labeling and cover stories. Key amongst the re-
quirements was the ability to provide operational simplicity to aid in downgrading data ranging
from a single data element to a large collection of related data stored in multiple database tables
while maintaining data integrity and database access. The utility is designed to take advantage
of meta data extensions that describe the major database objects and to be independent of any
particular RDBMS product. The utility also is designed to extend the auditing capabilities of
existing RDBMS products to aid analysis of downgrade activity. Finally, the paper points out
some of the needs identified in an operational MLS C2 system to permit efficient and simplified
downgrading to occur.

References

[1] S. Doncaster, M. Endsley, and G. Factor, "Rehosting Existing C2 Systems Into An MLS
Environment", Proceedings from the Sixth Annual Computer Security Applications Confer-
ence, Tucson, Arizona, 1990.

[2] T. Lunt, "Polyinstantiation: An Inevitable Part of the Multilevel World", Proceedings of
the Fourth Workshop on Foundations of Computer Security, Franconia, New Hampshire, 1991.

[3] D. Nelson and C. Paradise, "Using Polyinstantiation to Develop an MLS Application,” Pro-
ceedings from the Seventh Annual Computer Security Applications Conference, San Antonio,
Texas, 1991. '

472

PM: a Unified Automated Deduction Tool for Ver‘iﬁcation1

George Fink (gﬁnk@cs ucdavis.edu)
Lie Yang (yangl@cs.ucdavis.edu)
Myla Archer (archer@cs.ucdavis.edu); (916)752-7583

University of California, Davis
February, 1992

Abstract We are developmg a tool called PM (for Proof Manager) that provides flexible support for the use
of automated deduction in verification by providing a common interface to a variety of existing theorem
provers. PM works to blend the strengths of these different provers into a proof system more powerful than
its compenent parts individually. The assertion language of our PM prototype is that of the HOL theorem
proving system [Gordon87], chosen because it provides a verifier with a very expressive higher-order asser-
tion language that is especially suited to expressing specifications of complex systems (such as secure distri-
buted systems) and high level reasoning, but—being essentially a proof checker—is tedious to use for lower
level assertions -that are simple for automatic first-order provers.. PM is intended to supplement HOL in a
sound manner with access to various ex1stmg, polished automatic provers. Simultaneously, PM provxdes a .
verifier with a convenient means of managing and summarizing proofs.

Keywords: verification, system verification, automated deduction systems
1. Introduction

For large verification projects, automated support is essential. In particular, automated support for
reasoning about the many complex (if not usually deep) formulae generated as verification conditions in
the process of formal verification is almost a necessity. Being involved in several ongoing hardwarc and
software verification projects, we are interested in making this automated reasoning support as general
and convenient to use as possible. This paper reports on the current status of and future plans for PM
(Proof Manager), a tool we are developing to achieve this goal. The working prototype of PM is now
being used in some of our current verification projects.

One feature provided by PM is an improved interface to an existing theorem proving tool that has
proven to be appropriate for hardware verification, namely, the HOL (higher-order-logic) system
developed by Michacl Gordon and others at Cambridge University [Gordon87]. The HOL system has
proved useful in both hardware verification [Cohn88, Joyce88, Win90] and other security applications
such as the proof of the security kemcl of an operating system [A-FL91].

The usefulness of HOL for large verification projects is the result of its provision for expressing and
directly reasoning about higher-order assertions—that is, assertions that are general statements about
functions. This capability makes the factoring of proofs natural in HOL, and thus can reduce the work
involved both in individual top-down verification projects and in whole families of similar verification
efforts. On a lower level, higher-order assertions are a natural way to encode properties of designs whose
specifications involve the concept of time: e.g., hardware designs that express the relationship between
values carried on various wires as a function of time. The strength of this temporal abstraction can be
seen in the following specification of an ALU from [Joyce88]. (Note that in the definition, => and |
correspond to if-then and else respectively, and the juxtaposition of expressions indicates function appli-
cation, and finally that the result of function application—e.g., add rep—can itself be a function.)

Alu = | -V rep f1 £2 inp1 inp2 out. Alu rep f inp1 inp2 out =
V t:time. outt = (0 t,f1 ©) = (T, T)) => ((inc rep) (inp2 1)) |

'This research is supported in part by the Department of Defense under contract grant DOD-MDA 904-91-C-7052.

473

mailto:archet@cs.ucdavis.edu
mailto:yangl@cs.ucdavis.edu
mailto:gfink@cs.ucdavis.edu

{(fO,f1 t) = (T, F)) => ((add rep) (inp1 t,inp2 t)) |
((fOt,f1 t) = (F, T)) => ((sub rep) (inp1 t,inp2 t)) |
((wordn rep) 0))

While the theorem-proving capabilities (in the sense of the appropriateness of the logic) of the HOL
system are satisfactory, the standard interface puts a real burden on the system user, limiting access to
subgoals and leaving details of the creation of a large proof from smaller steps up to the user. The HOL
interface of PM relieves much of this burden by, for example, making it possible to keep track of steps of
a proof by associating them with nodes in a proof tree, and in supporting various ways of combining short
steps into a larger proof while compacting the tree, relieving HOL users of considerable work that would
otherwise need to be done by hand.

There are trade-offs to consider in choosing the most appropriate form of support for automated rea-
soning in large verification efforts. As we have indicated, powerful theorem-proving systems such as
HOL or Nuprl [Con86] that support higher-order reasoning lend themselves to a particularly straightfor-
ward formulation of many specifications, and reasoning about these formulations directly, as well as gen-
eralizing proofs. On the other hand, proofs in such systems as HOL and Nuprl must be guided in detail
by the user; reusable tactics can be used to some extent, but even so, these tools more resemble proof-
checkers than automated theorem provers. The tools become particularly frustrating to use when one
reaches the level of simple lemmas whose proofs would be straightforward and largely automatic if one
only had on hand, say, a simple resolution prover, an automatic induction capability, or a linear arithmetic
decision procedure. To a varying degree, these capabilities can be approximated by special tactics (or by
auto-tactics in Nuprl), but the approximations are generally either incomplete or less efficient than those
provided by polished specialized systems.

Theorem provers with less powerful inference mechanisms, such as resolution provers or the
Boyer-Moore prover [BM88] are closer to being automatic provers. Given an appropriately formulatcd
valid first-order assertion as input, the Boyer-Moore prover will generally terminate with success or
failure in finding a proof, and a full resolution prover will either terminate with success or will fail due to
space considerations. In the following example, taken from [Joyce88], a lemma requiring a complex HOL
tactic proves in a fraction of a second in the Boyer-Moore prover. In addition to the time taken in gen-
erating this tactic, HOL takes several seconds to produce a result.

Original:
Vmnpq (m<p)Aa(n<q)=((m+n)<(p+q))
HOL Tactic:
let th1 = SPECL ["m";"p";"n"] LESS_MONO_ADD_EQ in
let th2 = SPECL ["'n"™;" " " "] LESS_MONO_ADD_EQ in
let sublist = [SPECL [" ""p"] ADD_SYM;SPECL ["q";"p"] ADD_SYM] in

REPEAT STRIP_TAC THEN IMP_RES_TAC (snd (EQ_IMP_RULE th1)) THEN
IMP_RES_TAC (SUBS sublist (snd (EQ_IMP_RULE th2))) THEN
IMP_RES_TAC (SPECL ["m+n";"p+n";"p+q"] LESS_TRANS)

THEN ASM_REWRITE_TAC []

Translation:
(implies (and (lessp m p) (lessp n q)) (lessp (plus m n) (plusp Q)))

However, translating specifications appropriately for such systems can be difficult, often leading to an
excess of axioms that can slow down the provers to the point where fully automatic proofs beccome
impossible in practice.

We fe¢l that what is needed is some kind of compromise between the two types of tools. To
achieve such a compromise, we are developing PM as not simply an improved HOL interface, but as a
general proof management interface that allows the user a choice of provers, and even allows different

474

provers to be used during the course a single proof. We note that although the experience of some human
verifiers (e.g., [Win89]) leads us to believe that a choice of theorem provers will be very useful, there is a
potential alternative benefit to a unified tool such as PM: it could provide for a standard theorem prover
interface language that could allow designers of development and verification systems that incorporate a
theorem proving capability support to factor out the question of which actual theorem prover to incor-
porate.

PM is based on the tree editor Tree-mode [Kamin90] [HKC85], an extension to GNU emacs, and is
designed to maintain proofs in a tree structure in such a manner that the assertions in the children of a
validated node are always guaranteed to imply the assertion in the parent. Nodes in a tree maintained by
PM are validated via calls to a theorem-prover. It is this device which makes it possible to use diffcrent
provers at different stages of a large proof. Once sound translation schemes from a common assertion
language to different provers are in place, the validity of proofs obtained using PM depends only on the
soundness of the theorem provers used to validate nodes.

Our initial PM prototype uses, as indicated above, the HOL assertion language as the common
assertion language, and has first-order translation capabilities to provide interfaces to provers whose
assertion languages are first-order. These include the Greenbaum resolution prover [Green86] and, thanks
to Kaufmann’s Skolemizer [Kau89], the Boyer-Moore prover. In its current form, one can assure that

- proofs obtained using this prototype simply as a HOL interface are valid. We cannot yet provide this
assurance for proofs using additional provers: in the interest of testing the feasibility and utility of a
multiple-prover interface, we are concentrating initially on implementing plausible translation schemes.
Ultimately, we will justify their soundness in detail.

We do not underestimate the problems involved in the PM project. Most prominently, therc are
many questions to be answered about the translations to be provided between provers, and proofs (as
opposed to plausible arguments) of translation soundness must be provided. In addition, we must deter-
mine the best way to maintain parallel versions of theories, and how to handle type information, abstract
type definitions, recursive function definitions, and so on.

* We do not have answers to all of these questions yet, but we have made a beginning. After discuss-
ing related efforts in section 2, we describe some of the problems inherent in the development of PM in
section 3, and in section 4 report on what we have so far accomplished and on where we are concentrating
our current efforts. In section 5, we discuss our future plans for PM. An appendix includes an example
of what PM looks like.

2. Related work

Tree-mode, the tree editor underlying PM, comes from a line of tree-oriented editors and tree-bascd
theorem-proving interfaces [HKC8S, Ham88, Kamin90, Swarup88] developed at the University of Illi-
nois, including interfaces to Nupil [Swarup88] and the Greenbaum prover [HKC85]. None of these pro-
vided a true multiple-prover interface.

The current command-line interface to HOL [Kal91] is is an improvement over previous
command-line interfaces in that HOL keeps track of the tree structure of the proof, and a user can attack
the proof at any point in the tree. This provides a lot of flexibility in proof management. However, PM
provides a HOL user with the additional advantages of direct and visual control of the proof. The process
of moving the cursor in the tree to prove or edit components of the proof in a random access manner gives
PM a great deal of extra flexibility. The ability to display the proof tree in many different formats also
gives the user quick access to information about the proof not available in any other way.

Adding external theorem provers to a HOL environment is not the unique way to add heuristic proof
‘to HOL. There are concurrent efforts to integrate such proof into HOL directly. There are attempts to
implement features in HOL similar to the tactic AUTO-TAC in the Nuprl system which solves simple
- goals automatically. More sophisticated specification tools [Win90] can, by providing constructs such as
abstract theories, create domain-specific auto-tactics. However, such auto-tactics are seldom as general or

475

efficient when applied to the same problems as automatic provers specialized to the same purpose.

Simplifying the process of proving essentially-first-order assertions by supplementing HOL has
been done by the indirect use of FAUST [SKK91], a prover that is implemented in ML, and thus easy to
integrate into the HOL environment. FAUST is a full first-order automatic prover based on natural
deduction using a sequent calculus whose inference rules can be tranlated into HOL inference rules; thus,
a FAUST proof essentially can be translated into a HOL tactic. The problem of equivalence of formulae
and inference rules in FAUST and HOL is currently avoided by using FAUST to find a HOL tactic, and
then running that tactic in HOL. Thus, the proof security provided by HOL is retained, although full
advantage of the speed-up in the proof process is not yet being taken. It should not be difficult to include
an interface to FAUST in PM.

3. The development of PM

In this section, we discuss in more detail some of the problems that arise in connection with the
development of a combined theorem prover interface, and how we are handling or planning to handle
them. :

As will be elaborated in the next section, PM maintains proof trees containing the lemma structure
that supports the proofs of the assertions at their roots. PM is currently primarily a HOL interface, and as
such, maintains a theory node that contains the currently saved axioms, definitions and theorems available
at each call to the HOL prover in the current proof trees. This information needs to be made available, so
far as possible, to any other provers supported by PM that may be invoked in the course of a proof. In the
cases we have examined so far, when this information is not higher-order, there exist translations suitable
for the Boyer-Moore and Greenbaum provers which is of varying degree of directness. For example,
recursive function definitions (e.g. [Ploegaarts91, Andersen91]) typically (modulo type information)
translate easily into Boyer-Moore input, but require a-(usually straightforward) formulation as a set of
axioms for the Greenbaum resolution prover. First order formulae, on the other hand, can (again, modulo
type information) be passed easily to the Greenbaum prover, but would need to use Kaufmann'’s Skolem-
izer or some similar device to be formulated for the Boyer-Moore prover. In at least some cases, second-
order formulae can be expressed as first-order; this is discussed in more detail in the next section. The
simple abstract and recursive type definitions we have examined so far also appear to have relatively
easily obtained translations. Developing actual translation algorithms and discovering their limitations
will be our next step. As discussed in the next section, we have a preliminary algorithm that handles a
subset of HOL formulae.

So far in this section, in discussing translation, we have ignored the problem of type information. In
typeless logics such as that of the Boyer-Moore and Greenbaum provers, this can be handled by using
appropriate predicates. By the use of predicates, one can even express information about function types
and polymorphic types. It is known that, in resolution proving, a more efficient way to handle types is to
tag expressions of a given type with the type name, to prevent terms of different type from unifying. This
device becomes much more difficult to use in the presence of function types and polymorphic types; it
remains to be settled which scheme to implement for resolution proving, or whether to provide the user
with a choice. Preliminary experiments have shown that a type tag scheme could be useful even in the
presence of polymorphism and quantification of functions. [Archer92]

Other details to be worked out involve proof tree management simultaneously for provers that favor
forward and backward proof, and how to handle sequents (the standard form for assertions in HOL) in
provers that do not use them. However, there seem to be very natural solutions to these problems; for
example, sequents could be handled by the creation of temporary children of a node, with a call to a non-
sequent-style prover to show that the node assertion follows from the child assertions introduced as tem-
porary axioms. ‘ ‘

476

4, The current status of PM

As an interface to HOL, PM is well-developed. Facilities exist for moving around in the tree,
adding and removing nodes, copying subtrees to new locations, calling the HOL system with a given tac-
tic to be applied to the goal stored at a node, and compacting contiguous sets of validated nodes and their
tactics into a single node and tactic. The result of applying a tactic to a goal is a (possibly empty) set of
subgoals which are guaranteed by the tactic to imply the original goal; for valid tactics, the corresponding
subgoal nodes are automatically added to the goal node as its children; some of these operations cause the
status of a node (which indicates whether or not it is valid and how it is known to be so) to be updated
appropriately. There is also a capability of maintaining function and tactic definition and type informa-
tion in conjunction with the whole tree.

When a valid tactic is applied to a node, that tactic is saved as part of the information at that node
(displayed only by request), so that the information maintained in a tree, all of whose nodes have been
completely validated, will be sufficient to construct a proof of the root. Maintaining such information
also allows one to use information stored at a node to re-prove the node from its children; this can, for
instance, permit one user to confirm the validity of a proof constructed by another. Until the soundness of
all tree-editing operations is formally proved, this ability to re-prove is the guarantee of soundness of
HOL proofs as documented by PM (although a result proved using HOL from PM is guaranteed to be as
valid as one proved using HOL directly). PM proofs using only HOL can also be checked by taking
advantage of the compaction feature of PM; applied to a complete HOL-PM proof tree for an initial goal,
compaction will produce a pure HOL proof which can be confirmed using HOL directly. Currently, this
is the method provided for assuring HOL proofs in PM to be solid. When soundness proofs for PM are
completed, such extra assurance will not be necessary.

In a proof tree maintained by PM as a multiple theorem prover interface, nodes are ‘‘validated’’ by
calls to an external prover. The information at a validated node (in the case of HOL, a tactic and type
information) includes a record of how to reproduce the proof that the goal at the node follows from the
subgoals at the node’s children.

HOL proof construction in PM typically proceeds in a backwards fashion, by applying tactics and
tacticals to the goal, attempting to reduce the goal to simple axioms and theorems already proved.
Theorem provers such as the Boyer-Moore prover and the Greenbaum prover support a lemma-driven,
forward proof style in which one first derives (or proposes) lemmas from which the theorem prover can
derive the goal. Using forward proof in connection with the maintenance of a proof tree involves permit-
ting the ad hoc—rather than automatic—addition of child nodes to a node. The details of how best to
manage combined support for both styles remain to be settied.

As we have indicated, a rudimentary capability for passing a subset of HOL formulae to the Green-
baum prover is now in place. With simple adjustments for syntax, this will permit us to extend this capa-
bility to the Boyer-Moore prover, thanks to Kaufmann'’s Skolemizer.

The subset of HOL formulae that can be appropriately translated includes all that are manifestly
first-order. However, additional formulae can sometimes be handled in a natural way by translating
quantified variables of function type as undefined function symbols, or in some cases of boolean-valued
functions, undefined predicate symbols. Other apparently higher-order assertions, for example, ones -
involving equality of quantified formulae, can be handled by translating equality as the logical operator
iff. Currently, our algorithm works as a filter, first determining whether it is able to produce a translation.

An interesting feature of our first-order extraction algorithm is its analysis technique for determin-
ing when to translate potential logical operators as meta-level logical operators, and when to translate
them as low-level operations in some theory. of booleans. There is sometimes a choice, but for some
provers, including resolution provers, it is usually more efficient to use meta-level operators when possi-
ble (unless their use requires extra axioms to connect them semantically to the low-level operators).

Here are some example translations that our algorithm provides. The first example illustrates the
mixture of meta-level and low-level boolean operators. ‘‘And”’, ‘‘Or”’, *‘D”’, and are four HOL

477

definitions used in the goal. These definitions are used as rewrites in HOL to produce the rewritten goal,
which is then translated into input for the Greenbaum resolution prover. The translated assertion and
definitions shown below have a lisp-like format, in which ‘“A’’ and *‘E’’ stand for ‘‘for all’’ and ‘‘there
exists’’ respectively.

Original: '
And=|-Vabc.Andabc=(c=aAb)
Or=|-Vabc.Orabc=(c=avb)
D=|-Vabcdout Dabcdout=(out=aAbvcad)
D_imp=|-Vabcdout. D_impabcdout=(3pq. Andabp A Andcdqa Orpqout)
goal=Vabcdout. D_impabcdout=Dabcdout

Rewritten Original:
Vabcdout. @pqg(p=anb)a(g=cad)a(out=pvg)=(ut=anbvcad

Translation:
(A(abcdout)
(IFF (E (p q) (AND (= p (and a b))
(=q(and c d))
(=out (orpq))))
(= out (or (and a b) (and ¢ d)))))

The second illustrates the introduction of undefined predicate symbols for quantified booleans. Note that
“a’” and ‘“‘b”’ below become undefined 0-ary predicates, and “‘f*’ a unary predicate.
Original:
Vafnaanfn)viin)aAb=fn)A(avb)

Translation:
(A (n) (IFF (OR (AND (a) (fn)) (AND (f n) (b)))
(AND (f n) (OR (a) (b)))))

Both examples prove faster with the Greenbaum prover than with HOL, and do not require construction
of a tactic.

One can go even farther than this in translating for first-order provers. For example, one can handle
additional higher-order formulae by introducing an APPLY operation that becomes a new undefined func-
tion symbol, accompanied by appropriate axioms to translate the definition of function equality, function
construction, and type information. The question here is how far it is worth going. As soon as one has to
add axioms, one increases the size of the search space of an automatic prover. The translation can start to
become cumbersome and unnatural. Nevertheless, our inclination is to provide, eventually, as extensive a
translation capability as possible, and then leave it up to the user of the system whether it is worth

employing it in a particular case.

5. Ongoing and future work

&

We see PM as not only a tool for creating proofs, but a tool for documenting proofs. For the latter
purpose, the appropriate use of squashing contiguous subsets of nodes can produce a tree with the
appropriate conceptual proof structure. While we provide for the simultaneous compaction of tactics, the
soundness of this compaction in all cases remains to be formally proved. Currently, to be totally
confident of the correctness of individual compacted HOL tactics, one can rerun them in HOL. However,
since only groups of validated nodes can be squashed, it is never in question that a parent assertion fol-
lows from its child assertions.

In general, we expect to store proof trees in such a form that, assuming all their nodes have been
validated, the entire proof (or specific complex sub-proofs) can be automatically rerun on request. That

478

is, a completely validated tree will effectively constitute a proof script.

As we have indicated in the introduction, our initial aim is to investigate the feasibility of combin-
ing existing provers in a multiple-prover tool and the application of several provers in the course of a sin-
gle proof. In addition to work on translation schemes, this effort will include applying the prototype
extensively to real verification examples.

Detailed proofs of soundness will eventually be undertaken, both for translation schemes and for
proof compaction schemes and other tree-editing operations.

We are beginning with just three provers: HOL, the Boyer-Moore prover, and the Greenbaum reso-
lution prover. Each additional prover incorporated into PM will require some effort in developing a
corresponding translation scheme and translation soundness proof, although the general first-order trans-
lation algorithm will help to factor this effort. It should not be especially difficult to incorporate FAUST,
for example. In addition, we plan to add an interface to a BDD tool that handles binary decision
diagrams, and develop other translation schemes to interface with various useful decision procedures.

Beyond creating fixed translation algorithms, other translation possibilities arise. We note that there
can sometimes be a choice of how to translate a given formula; for example, in the decision of which
boolean operators should be treated as low-level or meta-level. There are other cases in which generaliza-
tion, e.g., in the form of ignoring type information, may be useful. In such cases, we may provide the
user multiple options besides the default. A further ambition for the future is to take advantage of the
availability of altemate provers by developing techniques for recognizing when sequents and formulae or
sub-formulae are most suitable for handling by a particular prover.

References

[A-FL91] James Alves-Foss and Karl Levitt, Verification of secure distributed systems in higher
order logic: a modular approach using -generic components, Proceedings of the 1991
IEEE Symposium on Security and Privacy, May 1991.

[Andersen91] F. Andersen and K.D. Petersen, Recursive Boolean Functions in HOL to appear in
Proceedings of the 1991 International Tutorial and Workshop on the HOL Theorem Prov-
ing System and its Applications, August, 1991.

[Archer91] Myla Archer, George Fink, and Yang Lie, Linking theorem provers to HOL using PM:
Proof Manager, submitted to the 1992 International Workshop on the HOL Theorem
Proving System and its Applications.

[BMS8] Robert S. Boyer and J Strother Moore, A Computational Logic Handbook, Academic Press
(1988).

[Cohn88] A. Cohn, Correctness properties of the Viper block model: the second level, Technical
Report 134, Computation Laboratory, University of Cambrigde, 1988.

[Gordon87] Mike Gordon, HOL: A proof generating system for higher-order logic, in: VLSI
' Specification, Verification and Synthesis (G. Birtwistle and P. A. Subrahmanyam, eds.),
Kluwer (1987).

[Green86] Steven Greenbaum, Input Transformations and Resolution Implementation Techniques for
Theorem Proving in First Order Logic, Doctoral Dissertation, University of Illinois at
Urbana-Champaign, 1986 (also TR UIUCDCS-R-86-1298, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign). :

[HKC85] David Hammerslag, Samuel N. Kamin, and Roy H. Campbell, Tree-oriented interactive

processing with an application to theorem-proving, Proc. of the ACM/IEEE Conf. .on
Software Development, Tools, Techniques, and Alternatives (SoftFair II) (December,

1985). 479

[Ham88]

[Joyce88]

[Kal91]

[Kamin90]

[Kau89]

David Hammerslag, Treemacs Manual, TR UTUCDCS-R-88-1427, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, 1988.

J. Joyce, Formal verification and implementation of a microprocessor, in: G. Birtwistle
and P. Subrahmanyam, eds., VLSI Specification, Verification and Synthesis, Kluwer
Academic Publishers, 1988.

Sara Kalvala, Building Interfaces to HOL, to appear in Proceedings of the 1991 Interna-
tional Tutorial and Workshop on the HOL Theorem Proving System and its Applications,
August, 1991.

S. Kamin, Differences between Treemacs and Tree-mode, University of Illinois at
Urbana-Champaign, 1990.

Mait Kaufmann, An Extension to the Boyer-Moore Theorem Prover to Support First-

Order Quantification, t0 appear in Jounal of Automated Reasoning, also, CLI Technical
Report 43, May 1989, Computational Logic, Inc., Austin, Texas.

[Ploegaarts91] W. Ploegaarts, L. Claesen, and H. De Man, Defining Recursive Functions in HOL, to

[SKK91]

[SLI1]

[Swarup88]

[Win89]
[Win90]

[Win91]

appear in Proceedings of the 1991 Intemnational Tutorial and Workshop on the HOL
Theorem Proving System and its Applications, August, 1991.

Klaus Schneider, Ramayya Kumar, and Thomas Kropf, Integrating a First-Order
Automatic Prover in the HOL Environment, to appear in Proceedings of the 1991 Intcrna-
tional Tutorial and Workshop on the HOL Theorem Proving System and its Applications,
August, 1991.

E. Thomas Schubert and Karl N. Levitt, Verification of Memory Management Units, 2nd
IFIP Working Conference on Dependable Computing for Critical Applications, February
1991.

Vipin Swarup, The UIPRL Proof Development System Master’s Thesis, University of Illi-
nois at Urbana (1988).

Philip J. Windley, Private communication, 1989.

Philip J. Windley, The Formal Verification of Generic Interpreters, Ph.D. thesis, Univer-
sity of Califomia, Davis, 1990.

Phillip Windley, Abstract Hardware, Proceedings of the 1991 International Workshop on
Formal Methods in VLSI Design, January, 1991.

Appendix - PM Example

To give a flavor of the use of PM, a sample screen of PM is shown at the end of the paper. This
displays a proof in progress; the root node of the tree contains the definitions of the theory, and the only
child of the root (labeled "/1*") is the node containing the assertion to be proved. As in the HOL nota-
tion, "!" stands for V and "?" for 3. Two subgoals of the proof have been translated to the TED and
Boyer-Moore provers.

PM can be obtained by contacting the corresponding author or on anonymous ftp at
ted.cs.uidaho.edu in the file /pub/hol/pm.tar.Z.

480

http:ted.cs.uidaho.edu

X emacs @ ent §

/* Theory trial
Definitions : inverter,even,ninv, invspec
/1* Proved Fri aApr 3 21:54:20 1992
Method : INDUCT_TAC THEN REPEAT STRIP_TAC
Assertion : ! n in out. ninv n ‘in out = invspec n in out
/1,1* Proved Fri Apr 3 22:16:16 1992
Method : REHRITE_TAC[ninv; invspec;even; inverter]
Assertion : ninv 0 in out = invspec 0 in out
71,1,1* Proved Fri Apr 3 23:20:44 1992
Prover : HOL '
Hethod : Translation to TED
Assertion : (out = in) = ((?f. 0 = 2 * f) => (out
(out

in) |
~in))

/1,1,1,1 Proved Fri Apr 3 23:24:04 1992
Prover : TED
Method : TED prover: pvl
Assertion : (IMP (E (f) (= 0 (times 2 £f)))
(IFF (= out in)
(OR (BHD (E (f) (= 0 (times 2 £)}) (= out in))
(AND (NOT (E (f) (= 0 (times 2 £f))))
(= out (not in }))))))
71,1,1,2* Proved Fri Apr 3 23:51:12 1992
Prover : HOL
HMethod : Translation to lm
Assertion : (?f. 0 = 2 * f)y:hool
A1,1,1,2,1 unproven
Prover : bhm
Assertion : (exists f (equal O (times 2 f)))
/1,2 unproven ,
Assertion : ninv(SUC n)in out = invspec(SUC n}in out
- Assumptions : "“!in out. ninv n in out = invspec n in out™

-**——tree-mode: app.pm

(Tree Basic)-———————--- :j

481

by
‘Craig A. Schiller
Science Applications International Corporatlon
30 June 1992

Prépare-_d for the 1992
National Computer Security Conference

ABSTRACT

In 1987, Dr. David Clark and Dr. David Wilson introduced the
Clark-Wilson Integrity model to the world. Their landmark paper
[CLARKS87] points out that commercial systems require integrity
more than they need confidentiality. The paper goes on to
describe a model for achieving and preserving integrity.

For the past 20 years or soO, a paradigm for creating systems
based on objects instead of processes, has evolved. The
"object-oriented"” paradigm claims that systems created in this
manner result in better models of the real world entities that they
represent.

This paper describes potential benefits from a system
development approach that uses object-oriented concepts while
implementing the Clark-Wilson Integrity model. The paper
documenting this approach, "An Object-Oriented Strategy for
Implementing the Clark-Wilson Integrity Model"”, was presented
at the 1992 Information Systems Security Association (ISSA)
conference in Houston, Texas (Coples will be made avaﬂable at
the session)... . , ‘

482

POTENTIAL BENEFITS FROM IMPLEMENTING
THE CLARK-WILSON INTEGRITY MODEL

USING AN OBJECT-ORIENTED APPROACH

by
o Craig A. Schiller
' Science Applications International Corporation
600 Gemini MS# R11A
Houston, TX 77058

1. Introduction

This paper describes the potential benefits from a system development ap-
proach that uses the Clark-Wilson Integrity model and Object-Oriented meth-
ods and concepts. The benefits described are a result of the software engineer-
ing practices, the use of Ada, the Object-Oriented methods and concepts, and
the Clark-Wilson Integrity model presented in [12]. The intended audience in-
cludes individuals interested in high integrity systems, concepts for addressing
integrity issues, object oriented technology, or the Clark-Wilson Integrity model,
and vendors of security products and services. Due to space limitations, the
reader is assumed to have a basic understanding of both the Clark-Wilson

- Integrity Model and the Object-Oriented Paradigm.

The purpose of this paper is to:

° Stimulate discussion

° Explore cross-fertilization benefits resulting from the combination
of software engineering and security engineering

° Present findings from a proposed implementation of the Clark-
Wilson Integrity model o

° Share insights gained as a result of researching the application of
object-oriented concepts to the Clark-Wilson Integrity model.

1.1 Observations

By themselves, traditional security controls (e.g. access.controls) cannot en-
sure integrity. As you would expect, many of the controls, to achieve and pre-
serve integrity, operate at the application software level. Integrity is, primarily,
an application developer and user responsibility. Traditional security controls
can preserve integrity, once acheived, but to meet a desired int?rity-state, or
change integrity-values requires the user/developers data specific knowledge.
To achieve and preserve integrity a developer will determine the integrity re-
quirements, then design and develop a system to meet these requirements.
Controls must exist throu%h’out definition, design, development, testing, opera-
tions, and maintenance of a system. The Clark-Wilson model assists develop-.
ers by identifying strategic and application essential functions, relations, and
processes affecting integrity. The approach, described in the companion paper
“An Object-Oriented Strategy for Implementing the Clark-Wilson Integrity
Model” [12], discusses an implementation of the Clark-Wilson model using
existing technology.

- Integrity is a complicated subject. Every new insight is accompanied by a myr-

483

iad of new questions. A single, simple answer for integrity issues does not exist.
Instead, a process is needed that will assist the developer, maintainer, and user
in adequately covering integrity concerns. There are indications that the object-
oriented paradigm and the Clark-Wilson Integrity model may produce synergistic
benefits from their combined use. '

This paper will describe the potential benefits from a hypothetical set of integrated
application and system controls intended to achieve and preserve high levels of in-
tegrity. Note that not all objects in a system merit these levels of integrity controls.
One of the early steps in the development process is to determine which objects
require extended Integrity/Availability measures.

First the Clark-Wilson model will be described in terms of objects. A summary of
the implementation steps of the object-oriented strategy will be provided. The
benefits from an object-oriented implementation of the Clark-Wilson model will be
followed by recommendations for vendor support of this approach. A few final com-
ments wﬂI conclude the paper. o

2. Applying Obiects to the Clark-Wilson Model

Figure 1 illustrates the Clark-Wilson Integrity model from an object oriented per-
spective. As stated earlier, the intent of this paper is to show how an object-ori-
ented approach might be used in an implementation of the Clark-Wilson Integrity
model. Clark-Wilson and object-oriented concepts mutually benefit from an im-
plementation approach based on both perspectives. In other words, the result of
the jdoin:lng of these two concepts is greater than each would have achieved inde-
pendently. : :

E2: Users are authorized for object

|C4: Operations write to LOGs
[t}

.'E3: Users are authenticated N .
C3: System levei suitable separation of duty o D E4: A'ppllcatlon Authorization
E4: System Authorization Lists changed Lists <_=hanqed only by
only by security officer security officer
L ‘ PLICAT | AUTHORIZATIONS
C1: Verily operations ey) . Cu 3
Validate CDIl state - == ES: Users are authorized CCol
CS: Promote operations ' for Object Operations m
validate UDIs VERIFY R e -
E1: CDis changed only by L ===] . |Es: Application level suitable
. .au,thor!zed Transform | transrorm separation of duty TRANSFORM
operations RECORD - RECORD
C2: Transform operations G -
preserve valid state Ca4: Operations write C4: Operations write
to LOGs [LOG to LOGs
uDe ‘ - '
ot .
VERIFY
PROMOTE
TRANSFORM gl
Figure 1

484

When the Clark-Wilson model is described in Object-Oriented terms four major
objects emerge. They are: o , . -

A USER object | ' .

An AUTHORIZATIONS object - to support the Access Control Triple and
the Separation of Duty concept. Appli-
cation objects request authorization to
honor an operation request. The Au-
thorizations object uses authorization
data, state data, and knowledge of rela-
tionships to grant authorization.

A LOG object - To support the Well-Formed-Transac-
v tion : ' ,
Application objects - One or more

Each object can contain both unconstrained and constrained forms of data.

- The unconstrained forms are used when data is input (e.g. translated from
ASCII to a typed variable), received from a lower integrity system, or received
from an external source. The constrained forms are used for modeling the real
world or logical entity. These are the strongly typed variables that are used for
calculations and object values. ‘ T _

Each object will contain four types of operations:

° Verify - The equivalent of the automated portion of the
Clark-Wilson Integrity Verification Process (IVP), -
translated into a verb. In the object-oriented
paradigm, operations are given verb names.

° Promote - A special case of the Clark-Wilson Transforma-
- tion Process (TP). Used in transitioning data
from external sources or from systems of lower

- integrity.

° Transform - The equivalent of the Clark-Wilson TP. Only the
allowed object operations are visible to other
objects. o '

o Record- - The equivalent of the Clark-Wilson LOG. This

includes the different types of logs as identified
in the follow-on NIST workshops [4], [8], [9]

In an actual implementation, the concepts presented are to be applied in vary-
ing degrees depending on the integrity and availability requirements of each
object. Ideallfy, the objects will be grouped into processing domains according to
the nature of integrity controls required. More than likely, each object’s integ-
rity requirements will vary. The degree of this variation will probably dictate
that objects of similar integrity controls and limits will be grouped into do-
mains. In writing this paper an assumption is made that each domain will exist
on different processing nodes in a distributed system, each node running oper-
ating systems with only TCSEC (Trusted Computer System Evaluation Criteria
or Orange book)[13] C2 level capabilities. However, as operating systems con-
tinue to evolve, it may be possible to have the different domains coexist in a
single, affordable platform. : :

485

f Prd ed Implem n n Ste
Due to space limitations, Tables 1 and 2 summarize the proposed implemen-

tation strategy. The detailed implementation steps can be found in [12]. These

steps identify tasks for developing a system incorporating the Clark-Wilson
Integrity model and the Object-Oriented concepts. |

486

4 Potential Benefits and Concerns From the Research

The potential benefits listed below are benefits of the approach described
in [12]. As such, some of the benefits described are a product of aspects
of the approach other than object-oriented concepts and the Clark-Wilson
model. These other aspects include the use of good software engineering
practices; the use of digital signature for quality assurance, version con-
trol, and authentication; etc.

4.1 Potential Benefits

a. Objects can provide a close correlation to their real-world
counterparts

The closer correlation makes it easier to communicate with users of
the sXstem. Developers can discuss issues or concerns in real-

world terms vice programming terms, resulting in a better model. It
should also be easier to confirm that the logical state (the state of
the real-world entity reported by the object) reflects the real-world
state (the actual state of the real-world entity). This is turn makes it
easier to verify the integrity-state of the objects. This close correla-
tion between the real-world and the object-world provides a smooth
transition from real-world concerns to high level logical concerns.
The smooth transition through each layer of abstraction, down to
the lowest layer of detail, is a primary benefit of the object-oriented
approach. This characteristic of the object-oriented paradigm en-
hances the ability of the Clark-Wilson model to veri.fg correspon-
dence with the real-world.

b. Strong typing, related error detection, and error handling con-
tributes to better real-world modeling and support for the Well-
Formed-Transaction.

The strong typing, error detection, and error handling features of
some structured, object-based languages support better real-world
models by fproviding; the mechanism for describing the logical object
in terms of real-world limits. In doing so, these languages relieve
the programmer of having to explicitly code many limit checks and
reduces the overall complexity of the programming task.

The error detection and error handling features of some object-
based languages trap errors when they occur but allow them to be

handled at a developer specified level. The developer can develop a
strategic error handling hierarchy that will be enforced by the ap-
plication.
For example, the system designer may categorize data into the fol-
lowing groups:
° Data whose errors are to be handled on a field by field
basis as they occur
. Data whose errors are to be collected and handled on
~an object basis
° Data whose errors are to be collected and handled at
the application level.

In addition, non-data errors can also be grouped according to a hi-

487

488

erarchical error handling scheme. Errors might be handled at the
module, object or application level.

Managing the handling of errors also assists the developer in imple-
menting Well-Formed-Transactions. When an error is handled the
developer can: o '

Flag the error

Accept the error

Accumulate error statistics

Correct the error with an estimate (e.g. previous value

or trend extrapolation)

Correct the error with a reconstructed value

Correct the error with a default value

Correct the error with a request for replacement from

the source

Reject the data and restore the data (from the log) to

{_)he or%ginal value that existed before the transaction
egan). , |

9. Reject the data and continue processing.

The developer makes a choice based on the nature of the system
and data. The choice also depends on the robustness of the design
of components that use this data. . -

The encapsulation of data and processes into objects enables
the formation of the Clark-Wilson access control triple.

Objects automatically encapsulate the data and related operations.
By binding the user to an object (authorizing a user to use an ob-
ject) and a set of it’s operations, the access control triple is
achieved. Concerns about the implementation of the access control
triple are addressed in the following sections. :

Information hiding reduces the complexity of the system for
developers : ‘

The object developer reduces the complexity (for other developers) of
the object by making visible only those operations which are in-
tended for external use. Hiding those processes that are not in-
tended for external use will reduce the chance that a developer will
use an internal process by mistake. There is less chance thata

- developer will incorrectly sequence processes if the visible process
controls the sequencing of internal steps. Information hiding re-
duces the number of procedures to be learned to invoke a proc-
esses. Information hiding also supports the concept of the access

. control triple by reducing the number of procedures that have to be
controlled with an access control triple. ’

'The Authorizations Object is a key component of the implem-
entation approach.

The Authorizations Object provides enforcement of a strict integrity
policy, even if the concept is not supported by the native operating
system. The Authorizations Object is called each time an operation
on an object is requested. The Authorizations Object verifies that
the requesting object is of equal or lower integrity than the source
object. When this is not true, either rejection or promotion must
_occur.- ‘ L o) , ,

® OO ~WN-

489

The Authorizations Object provides a mechanism for enforcing role
and user based authorizations. This mechanism forms the basis for
an automated enforcement of separation of duty restrictions. Sepa-

~ ration of duty restrictions reduce the risk of fraud via privilege

abuse and increase integrity via n-person control of critical opera-
tions. This mechanism also forms the basis for the Access Control
Triple enforcement mechanism. The Authorizations Object restricts
access to and operations on constrained data items. Only developer
supplied (or identified) operations are authorized for use on objects.
These restrictions will reduce the risk of error by extending the
concept of information hiding to a finer level of granularity.

The Authorizations Object automatically enforces integrity, availa-
bility, confidentiality and related state restrictions. It allows the de-
veloper to specify object and operation specific responses to integ-
rity/availability fault or failure. The Authorization Object can be
used to automate the invocation of the Integrity Verification Proce-

- dure (IVP).

Objects and object instantiation can provide support for the
formation of integrity and isolation domains?.

The Authorizations Object can be used to automate the promotion
process required between domains of different integrity. This will
reduce the possibility of corruption caused by the blind exchange of
data with unknown integrity. In the approach, an object is instanti-
ated in the isolation domain to allow the promotion to take place
without endangering critical objects. -

Appl risk management techniques on objects to assure
Clark-Wilson integrity/availability concerns contributes to the
certification of transformation processes.

The Clark-Wilson model states that the Transformation Process
must be certified but does not describe the nature of the certifica-
tion required. In the proposed approach, risk management is used
at an object level to provide visibility into the integriai , availability,
and confidentiality design decisions. This improves the chances
that design errors will be detected and trade-off decisions will be re-
viewed. The accepted residual risk is documented and is then re-
viewable as a result of this approach. Certification testing is used to
confirm the success of the above assurances. The system should be
bonded with a non-repudible authentication technique to guaran-
tee the certification survives the transition from development to op-
erations. This form of bonding ensures that the use of certified and
accredited processes can be confirmed. In addition, bonding can be
extended to ensure that only the correct version of software or data
modules may be executed. ' ‘

An integrity domain is a grouping of objects with similar integrity requirements that are protected
from influence by objects outside of the domain. An isolation domain is a domain that may be
isolated when performing operationis on data of uncertain integrity. A domain (in this paper) is a
protected or bounded processing environment. For this approach, it has been specified that each
domain exists on a separate platform or processing node, recognizing that more capable operating
systems are able to maintain multiple domains within one platform. : :

490

4.2 Concerns

The Authorizations Object is central to the success of this ap-
proach. The approach can only be successful if the privilege grants
are designed and implemented well by both the developer/main-
tainer and the administrator.

®

The Developer/ Maintainer is responsible for:

Researching the affect of states on each operation.

Identifying the capabilities required to support desired roles
Identifying those capabilities that are needed by all (unrestricted)
Identifying non-role specific restricted capabilities

Identifying separation of duty required restrictions

Determining the desired level of granularity of operations control
Determining which objects should be CDIs.

The Administrator is responsible for:

Honoring access requests form authorized owners, custodians, and

stewards. o '
Responding in a timely manner to requests '
Documentin% and reporting needed modifications to authorizations
object logic or data. , ,

b. The Clark-Wilson model can be subverted if DBMS or flat file edit-
ing is able to modify data without using the certified object opera-
 tions.

c. Finally, and most important,

Management must be certain that

eno is known about the aip‘plication

to provide for every need before apply-

ing the Clark-Wilson Integrity model to
an object. ’

If the Clark-Wilson model is implemented on data that is not well
understood, then the user may not be able to perform vital func-
tions using the developer supplied operations. Unfortunately, the
user will also not be able to get to the data using other, less restric-
tive means. For this reason, even if the data is very well under-
stood, a plan should be developed to accommodate emergency
access to the data should it be required. Just as a facility prepares

~ contingency plans in case of accident, so should the developer
prepare contingencies for unanticipated emergencies.

491

5. Conclusions

5.1 Recommendations for vendor Software support

Five product enhancements by vendors supplying operating systems, se-
curity software, and data base management systems will make this im-
plementation easier.

a. Provide an Authorizations Ol:gect service that applications
may use to augment system discretionary access control with
application specific access controls such as operations level
access control and application level separation of duty en-
forcement.

b. Provide a Log Object service that applications may use to im-
plement the Well-Formed-Transaction concept.

C. Provide an easy mechanism for application developers to bind
object operations to DBMS data and to preclude all other ac-
cess to designated data.

Provide a digital signature engine as a system service.

e. Provide linkage that employs the digital signature technology
as an executive management function. As part of the system
build and executable load process this would be useful to
configuration management and quality assurance.

5.2 Summary

In conclusion, some of the issues raised by this research are more compli-
cated than the original query (Levels of integrity, promotion, etc.). Some of
the side issues have far reaching impact (binary/analog nature of integ-
rity, guarantees of valid certification, etc.). Clearly, there is no simple
answer. A process is needed for providing integrity. I believe that the
Clark-Wilson Integrity Model and the Object-Oriented paradigm are two
components of that process.

The Clark-Wilson Integrity model has provided focus and attention on the
need for integrity. The Object-Oriented paradigm has much to offer to-
ward that end. As in the companion paper, I hope that this paper encour-
ages others to find ways to marry these two promisin,F technologies with
new and innovative ideas to improve the integrity and availability of our

critical systems. There is much work to be done in the area of integrity
engineering, and the future appears promising.

492

[

10.

11.

12.

13.

BIBLIOGRAPHY

Mission Operations Directorate AIS Security Engineering Team (MOD

ASET) AIS Security Reference Structure JSC-25285 Projected publica-
tion date September 1992

Grady Booch. Software Components with Ada. The Benjamin/Cummings
Publishing Company, Inc. 1987

Grady Booch. Software Engineering with Ada. The Benjamin/Cummings
Publishing Company, Inc. 1987 (Second edition)

David D. Clark and David R. Wilson. “A Comparison of Commercial and
Military Secunty Policies”. In IEEE Symposium on Security and Privacy,
pages 184-194, April 1987.

David D. Clark and David R. Wilson. “Evolution of a Model for Computer

Integrity”. In Proceedings of the 11th National computer Security Confer-
ence, October 1988

Bryan Flamig. Turbo C++ — A Self Teaching Guide. John Wiley and Sons,
1991

Harmon and Sawyer, Object Craft. Addison-Wesley Publications, 1991.
Stuart W. Katzke and Zella G. Ruthberg, Editors, Report of the Invita-
tional Workshop on Integn% Policy in Computer Information Systems
(WIPCIS]), NIST Special Publication 500-168, January 1989.

Zella G. Ruthberg and William T. Polk, Editors, Report of the Invitational

Workshop on Data Integrity, NIST Special Publication 500-168, Septem-
ber 1989

Thomas R. Malarkey, Integrity in Automated Informatlon Systems, NCSC
C Technical Report 79-91, September 1991.

D. T. Ross, J. B. Goodenough, C. A. Irvine. “Software Engmeenng Proc-
ess, Principles, and Goals™, Computer, May 1975.

Craig A. Schiller, “An Object-Oriented Strategy for Implementing the
Clark-Wilson Integrity model.”, Proceedings of the 9th Annual Conference
for Information Security Professionals, sponsored by ISSA, 22-27 March
1992.

DoD Computer Secunty Center, DoD Trusted Comp_uter sttem Evalu-
ation Criteria, CSC-STD-001-83, 15 August 1983. ‘

493

Precise Identification of
Computer Viruses

Lawrence E. Ba,ssha.m 111
W. Timothy Polk

, virus-lab@csmes.ncsl.niét.gov
National Institute of Standards and Technology
Computer Security Division

Abstract

The number of personal computer viruses continues to grow at an alarming
rate. Many of these viruses are variants (i.e., close relatives) of “old” viruses.
This often results in less than accurate identification of viruses. The conse-
quences of this can be distressing: virus removal software fails, systems exhibit
unexpected side effects, and researchers waste valuable time separating new
copies of “old” viruses from new viruses. As a result, a public domain tech-
nique for precise identification of viruses is needed. This paper explores various
alternatives. o

Intro duction

Why Precise Identification is Needed

The large number of variants of computer viruses complicate the processes of iden-
tification and eradication of viruses. Traditional virus identification methods may
result in an incorrect, or at least imprecise, identification. This is a problem for users
and researchers alike. Precise identification of computer viruses is required to obtain
accurate information about the side effects of a virus, since such side effects can vary
widely between variants. Accurate removal of viruses from infected executables also
requires precise identification of the computer virus. Finally, researchers need precise
identification techniques to separate new variants from known viruses efficiently to
assist in the reduction of workload.

494

mailto:virus-lab@csmes.ncsl.nist.gov

What is Meant by “The Same”

The first question to be addressed is the degree of precision required in this pro-
cess. This may seem obvious but the relationship between samples is not always
clear. Viruses which are self-encrypting or self-modifying may appear very different
in different samples. Even simple viruses can include data areas that are variable.

There are many virus samples which are functionally equivalent. They may differ
in the textual messages found in unused portions of the virus (e.g., various Stoned
variants). Others may differ by replacing assembly language statements by their
functional equivalents. Such a replacement might be the substitution of “Store zero in
AX (MOV AX,0)” with “Exclusive Or registers AX and AX, storing the result in AX
(XOR AX,AX).” These virus samples may also be removed by identical procedures.
It is fair to ask if these viruses are the same or not.

Virus researchers do not agree whether these functionally equivalent viruses constitute
“different” viruses. As a result, such basic questions as “How many viruses are there?”
produce a bewildering range of answers. In late 1991, virus researchers and product
developers were answering this question with estimates ranging from 350 to 1200.

In a heuristic sense, virus samples represent the “same” virus if both are descended
from the same “base” virus without human modification. A more precise definition
is desirable. First, a suitable definition of “virus” is required, though.

For the purposes of this document, the following definition of a computer virus will
be used:

A computer virus is executable code V which creates a functionally
equivalent duplicate V' and binds the new copy to existing code P, cre-
ating P’, in such a way that future execution of P’ may cause execution

of V.

Note that V and V' must be functionally equivalent, but may differ as a bit-stream.
This difference may be due to modification of data or addressing information, variable
encryption, or other self-modifying techniques. In this case, P and P’ are clearly
infected with the same virus. More generally: '

P’ and P" are infected with the same virus V iff P/ and P” could
have both evolved from some P infected by V without occurrence of a
hardware error. :

This definition has certain consequences. By this definition, the functionally equiv-

alent virus samples described above are all different viruses. However, the self-
modifying viruses may be very different samples, but are the same virus.

495

Theoretical Precise Identification

Theoretically, precise identification is achieved by performing a byte-for-byte com-
parison of the constant portions of a virus in an infected executable. In the case of
self-garbling viruses, de-garbling must be accomplished before the comparison is per-
formed. In practice, byte-for-byte comparison is impractical and undesirable. Byte-
for-byte comparison would require the undesirable transmission of virus code in order
to perform comparisons.

What is Actually Needed

An approximation of a byte-for-byte comparison process is required, allowing a user
or researcher to determine the exact virus with an extremely high degree of accuracy
without a library of virus samples. This can be accomplished with an accurate profile,
or map representation of viruses. The profile should contain enough information to
- confirm the identity of the virus, but not enough information to reverse engineering
the virus (i.e., obtain usable virus code from the profile representation). To be of the
most use to users and researchers, the method used to represent viruses as well as a
populated database of virus maps must be placed in the public domain.

The Content of the Map/Profile

In the simple case, the code profile representation describes constant sections of the
virus. The section description includes the length, location, and a one-way crypto-
graphic checksum. A description is provided for each contiguous, constant sections of
code (i.e., code or constant data) in the virus. If all sections match, the executable
is infected with the virus in question.

Self-garbling viruses may impose additional requirements. Encrypted viruses will
require decryption before the constant sections can be checksummed. The map must
include a description of the decryption technique and specify the sections to which it
must be applied. Self-modifying viruses may require additional work to restore the
virus to the “base case.” Again, this must be performed before checksum calculation.
This information must also be provided in the profile.

Precise Identification Tool Usage

A precise identification tool would have two primary uses. The first usage would be in
assisting virus researchers in determining if a sample is one of a known and analyzed
virus. The second usage is for users, who have detected a virus infection, to perform
~ an accurate cleanup procedure. In either case the infected file would be compared
against one or more profiles to see if the sample can be identified precisely. To make
the tool most useful, no prior manipulation of the infected file should be necessary.

496

This implies the profile should contain information for locating the virus code inside
of an infected file and information necessary to degarble self-garbling viruses.

Survey of Techniques ,

While there is no standard technique for the precise identification of computer viruses
as of yet, there are a variety of techniques which have been used to achieve this objec-
tive. These techniques have been developed at University of Warsaw, the Bulgarian
Academy of Sciences, University of Karlsruhe, and IBM’s Virus Research Center. The
trade-offs between these techniques are d1scussed as well as an analysis of what is
missing from the current techmques '

University of Warsaw

Members of the University of Warsaw, including Andrzej Kadlof, Editor-in-Chief
of PCvirus Bulletin, developed the Virus Map Format. Maps of this format are
distributed as part of the “Virus Identification Card” which is a regular feature of the
'PCvirus Bulletin. (The technique has been in use for over a year.) The virus map
divides virus code into four types of fields. The four categories are:

e V - virus code

o W - working area
e C - constants ‘
o G - garbage

Block sizes are limited to 256 bytes. If a block is larger, it is subdivided into smaller
blocks of the same kind. Checksums are computed for blocks of type V, C, and G.
Decimal dumps of blocks of type C or G are sometimes included.

‘offset block type length | control sums
0000 (0) | virus code 8 | AEOC
0008 (8) | working area 13
0015 (21) | virus code 373 | 907F 82ED
018A (394) | constants - . 46 | E34B

dump: 59 6F 75 72 20 50 43 20 69"73 20 6E 6F 77 20 53 Your PC is now S

49 53 45 20 4D 41 52 49 4A 55 41 4E 41 21 ISE MARIJUANA!
e e e 0001C178:0002A4C3 —= ===

Checksums are computed with the algorithm used by the Polish Section of Virus
Information Bank. The map contains records for each block. Each record contains

497

fields specifying offset from the beginning of the virus (in both hex and decimal),
the block type, the length of the block, and a checksum value for the block when
appropriate.

This tool is the precursor to some of the other tools discussed in this paper. As such,
this tool may appear to be the least ambitious. However, this technique is sufficient
to precisely describe the vast majority of PC viruses.

There are certain limitations, though. This tool, as it currently exists, cannot be used
in an automated fashion. As an example of this, encrypted viruses must be decrypted
before mapping can occur; decrypting information is not included in the Virus Map.
The strength of the checksum technique is unclear. The 256-byte blocksize is an
unnecessary constraint, but does not seem to pose any particular problem.

Bulgarian Academy of Sciences

Members of the Laboratory of Computer Virology in Sofia, Bulgaria developed the
Virus Identification Program, or VIP. VIP was designed by Vesselin Bontchev, using
the concepts in Kadlof’s Virus Map. VIP was primarily intended for identifying and
documenting simple viruses.

VIP has several modes; the most important are the verification mode and the map
building mode. In the verification mode, VIP will compare an executable to a par-
ticular virus map to verify (or refute) that the executable is infected by that virus.
In the mapping mode, VIP compares several executables which are infected by the
same virus. The end result is a complete virus map.

The automated mapping is not fool-proof. It must work on a set of assumptions, and
when these assumptions are incorrect the mapping process will produce an incorrect
map. The assumptions are:

o that the executables are all infected by the same virus; and
o that all variable portions of the virus will be different in the different samples.

The first assumption is simply a matter of good laboratory procedures. The second
assumption cannot be guaranteed, though. The assumption is probably correct if the
executables supplied to VIP are different in nature (size, infection environment) and
large in number. In any event, the map should be used to guide d1sa.ssembly and
verify the result of the a,utoma.ted mapping process.

498

The VIP map format includes some additional information in the header. This infor-
mation includes the virus name, length, and a description of the relative position of
the viral code in an infected executable.

Name <any._text>

Length <number>

From <base> <number>

<offset> <block type> <length> [<chksum>]

- {<offset> <block_type> <length> [<chksum>]}
[end]

<number> is [$][+]-]<digits>
<base> is Entry, Eof, Bof
<block_type> isCode, Const, Text, Var, Junk

VIP provides certain enhancements to the Kadlof Virus Map. Its greatest contribution
is in the mapping process, though. As the number of new variants continues to
‘explode, demands on the time of the research community will continue to grow.
Realizing the full potential of precise identification will require maintenance of an
up-to-date database of maps.

VIP addresses a narrow class of viruses (non-encrypted, non-garbled), but this class
includes the majority of known variants. This is basically the same segment of viruses
that are addressed by the PCvirus Virus Map (minus encrypted viruses). One en-
hancement under discussion for VIP is the handling of encrypted viruses. A decryp-
tion record would be added to the map. A meta-language describing decryption is
envisioned; the record would include the decryption parameters and parameters. VIP
may require separate maps for COM and EXE infections by the same virus.

University of Karlsruhe

Members of the Micro-BIT Virus Center are developing a very ambitious tool that
has application in the precise identification field. This tool decomposes the virus
code into a tree representation. At the leaves are assembly language instructions. As
the decomposition progresses from the root, sections of code are determined, such
" as: replicator, payload, encryptor, etc. Replicator decomposes into trigger, target
selector, etc. This tool requires extensive analysis to build the initial tree. This tool
is also useful for determining genealogy of viruses. Heuristic analysis can be invoked
to determine the similarity of sections of code.

This tool can be used to pinpoint code shared between variants of a single virus
family, as well as performing precise identification with high assurance. Currently,
the time required to create the tree representation is prohibitively high.

499

This tool is not suitable for public domain release, do to the fact that it stores the
actual virus code. It has many uses in a strictly research environment, including
detailed code analysis and comparison. :

IBM

Members of IBM’s High Integrity Computing Laboratory have developed a tool called
VERV. VERV contains a high level virus description language. The tool currently
supports only virus verification. Additional features for virus removal are being de-
signed. Records specifying decryptors are included for self-garbling viruses. VERV
also provides hooks for when the virus requires actions that cannot be described in
“the high-level language.

The file from which VERV reads virus descriptions consists of a number of virus-
description blocks. Each block has the following structure:

One or more VIRUS records

A NAME record

One or more LOAD records

Zero or more DEGARBLE and related records
Zero or more ZERO records

One or more check records

Zero or more REPAIR blocks
For instance, the block for the Slow-1721 virus currently looks like this:

VIRUS slow slow-1721

NAME the Slow-1721 virus

LOAD P-COM 06B4

LOAD S-EXE 06B4

DEXOR1 001E 06AD 0012 0000 ; Degarble the code
DEXOR1 00EB 0159 0061 0001 ; and the data area

ZERO 00121 ; Zero the one-byte code-garble key
ZERO 00611 ; and the data-garble key
CODE 0000 00EA 38d5dc08 ; Code up to first data area
CONST 0144 014E 0ff22ad9 ; COMMAND.COM

CODE 015A 063C 74e00962 ; Code between data areas
CODE 0657 06AD ad3bOb41 ; After the second data area

500

http:COMMAND.COM

The VIRUS records simply give a list of one-word aliases for the virus that are used
on the command line to tell VERV which virus to look for. These aliases are not the
full primary name of the virus (that is given on the NAME record); they are just short
abbreviations that the user can use on the command line. LOAD records tell what
offset within the suspect file to load and how much of the file to load. DEGARBLE
records tell how to decrypt or degarble when necessary. ZERO records tell where
to blank out data in the virus before checksumming occurs. CODE, CONST, and
TEXT records specify sections of constant code where checksumming is performed.

VERYV covers most, if not all, of the major aspects of what a precise identification
tool should do. It operates on suspect files with no prior manipulation of the file.
Additionally, VERV will process encrypted or garbled files. In a secure research
environment, VERV can also be run in a byte-for-byte comparison mode, as opposed
to a mode utilizing checksums.

Such features as REPAIR blocks are not needed for the identification task, but show
the sort of functionality a commercial product based on this technology might have.
The major drawback to this technique appears to be the degarbling technique. The
map itself does not specify how the degarbling should proceed, but refers to hard-
coded routines in the VERV program. The remainder of the map is straightforward,
providing a concise description of the virus. |

Future Work

These projects provide a sound basis for the next step(s) in precise identification.
Map-based identification is a better choice for virus identification. Tree-based so-
lutions hold more promise for virus analysis. In the authors’ opinion, an eventual
solution will require items drawn from each of the Map-based projects.

Kadlof’s Map-based identification concept, as enhanced in VIP and VERV, can pro-
vide the basis for precise identification of all viruses. The VIP concept of automated
map building is essential if researchers are to keep up with the flood of new viruses.
The ZERO command in VERV is not strictly necessary. The result is a more com-
plicated map, with additional blocks and checksums. However, a MASK command,
zeroing variable bits in a partially constant string may prove useful.

Degarbling may be a remaining hurdle. The meta-language based degarbling tech-
nique envisioned for VIP would be a more powerful solution than hard-coded routines;
however, the hard-coded routines are clearly simpler in the short run. One interesting
concept in the degarbling area is to use the virus’s own degarbler for the task. This
is an interesting concept, but poses a variety of implementation problems and risks
due to the use of the virus’s own code.

501

Work in precise identification field should result in the following items:

a standard, published, map format;

a public domain set of maps for all viruses found in the wild;
automated map building tools; and

map verification tools.

If a hard-coded degarbling technique is used, a public domain set of degarblers may
also be required.

‘References
Chess, David M., “Virus Verification and Removal”, Virus Bulletin, November 1991.

Triffonof, Ivan and Ivaylo Hadjiatanassov, “Welcome to VIP!”, Virus Identification
Program documentation.

Fischer, Cristoph, “Research Activities of the Micro-BIT Virus Center: A Virus Pre-
processor”, Proceedings: Fifth International Computer Virus & Security Conference,
1992.

Kadlof, Andrzej, “Virus Verification and Removal”, in Virus-1 Vol. 4, No. 226

502

PRIORITIES FOR LAN SECURITY -
A CASE STUDY OF A FEDERAL AGENCY’S LAN SECURITY

Shu-jen H. Chang
Room A216, Technology Building
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

1 INTRODUCTION
This paper takes the reader inside a federal agency Local Area Network (the agency LAN) for a risk assessment. Based on the
methodology outlined in "A Local Area Network Security Architecture” [1], the agency LAN is assessed for potential security
threats and vulnerabilities. Security services and mechanisms are recommended for countering the vulnerabilities and threats that
are found. A preliminary cost estimate for implementing these services and mechanisms is made, and a prioritized list of security
mechanisms referred to as "Priorities for LAN Security" is proposed for the agency LAN. It is believed that the risk based
approach described in this paper can be applied to other LANs to derive other LAN specific priorities for security.

1.1 Research Approach

A number of federal agencies and contractors have developed risk assessment methodologies [2] and guidelines [3], some of these
have been automated [4]. However, publication of actual assessment is few, especially for assessment carried out for a specific
LAN. To develop the agency specific Priorities for LAN Security, the following steps are taken:
Step 1 - Define the Agency LAN Configuration
In this step, the agency LAN configuration including the LAN devices. services, and other LAN resources is presented.
- The objectives for this step are to classify LAN resources, determine assets, and decide what the LAN will be used for
and what needs protection.

Step 2 - Assess Risks for the agency LAN

This step assesses the agency LAN for potential threats and vulnerabilities found in most computer networks. A risk
factor is computed for each threat and vulnerability found based on the probability of the threat occurring and the cost
or loss due to this threat.

Step 3 - Select Security Services and Mechanisms for the Agency LAN

This step recommends appropriate security services and mechanisms for the specific threats found in the agency LAN.
The implementation cost of each suggested mechanism is also estimated.

Step 4 - Develop Agency Specific Priorities for LAN Security
This step takes the threats found in step 2, the security mechanisms recommended in step 3, along with the cost
estimates, and determines a cost-effective way of enhancing security in the agency LAN. The final product of this step
is a prioritized list of proposed security mechanisms for the agency LAN.
These steps are described in the following sections.
2 THE AGENCY LAN CONFIGURATION & CAPABILITIES
2.1 The Agency LAN Configuration and Management

The agency LAN is a multi-server Banyan” network consisting of 17 servers and roughly 450 PCs. Each server runs a Virtual

"Mention of specific products names is for description purposes only and does not constitute a NIST endorsement.

503

Networking System (VINES), has one or more hard disk(s), a tape backup unit, an internal uninterruptable power supply (UPS)
unit, LAN card(s), serial communication card(s), and network printer(s). The servers are spread over five agency centers, and
connected via 9.6 or 19.2 kb leased lines between the centers. One of the centers hosts an HP3000 minicomputer, while another
center hosts an IBM 3084/4381 mainframe for daily operations. The agency LAN operates over twisted pairs and fiber optic
cables. :

A division in the agency manages the LAN. The division is respoasible for the physical LAN, its configuration, and providing
LAN-wide services such as electronic mail, mainframe access. and modem pool services. Local system administrators take care
of administrative functions such as user administration, local file services, and backup of the group’s file services. The information
on the layout, configuration, and network services of the agency LAN is provided by the LAN managers, much of the information
is also supplemented by documents.

2.2 The Agency LAN Capabilities

In the discussion that follows the LAN services provided for agency users are described along with the aspects of each service
that need protection. Though not explicitly stated, it should be noted that the identification and authentication (I&A) of a user
is a prerequisite before any of the services can be rendered to the user.

LAN File Services

This service provides LAN users the capability to store their own DOS files on the LAN server disk. The files can be stored in
the users’ private file area or a shared LAN file area. Since the server disk is shared by many users, access control is needed to
protect the privacy and integrity of the information stored on the server disk.

LAN Print Services

This service allows LAN users to print documents on a network printer physically connected to a LAN server or a dedicated
network printer connected to-a user’s PC. Output that contains sensitive information-should be directed to printers that are
physically protected from unauthorized users. ' -

LAN Application Software

This service provides LAN users the capability to access applications software stored on a LAN server. Storing frequently used
software on a LAN server frees up disk spaces on users’ PCs, however, these shared programs should be protected against
unauthorized modification. In other words, the integrity of the software must be protected.

LAN Connections to Other Hosts

This service permits LAN users to connect to other hosts for which they are authorized users. As computers are linked together
to form LANs and WANs (Wide Area Networks), it has become more and more difficult to control and monitor what system
one is connected to. This can pose a threat to LAN security.

Electronic Mail

One of the most frequently used network services is the capability of exchanging electronic mail; however, electronic mail is not
necessarily secure. Unless protected by encryption, electronic mail is transmitted in the clear from network node to node. In
addition, while the message is routed through the network, it is quite possible for someone with system privileges to access the
message and modify its contents. The privacy and/or the integrity of the messages containing sensitive information must be
provided.

LAN Access Through PC Dial-in

This service allows users to access the LAN from a standalone PC that is equipped with a modem and the necessary VINES
software. The service is convenient for users who may be away from their offices but need to access the LAN from a PC not
physically linked to the LAN. This service can raise a security issue, since an unauthorized user with the proper software may

try to access the LAN by randomly guessing a legitimate user’s login id and password.

Electronic Calendaring

504

Electronic calendaring provides an integrated scheduling tool for a workgroup. Users can mark events on the calendar and
coordinate meeting schedules with fellow workers. Proper access control is essential so that only legitimale users in the workgroup
~can modify the events and schedules, while others may look at the events and schedules but can not modify them.

LAN FAX Capability

This service allows LAN users to send a copy of a document stored cither on the user’s PC or on the server disk to any standard
FAX machine. If the document contains sensitive information it should not be faxed without protection.

3 RISK ASSESSMENT OF THE AGENCY LAN

The security in a VINES network is provided by two VINES services: the SwreetTalk naming service, and the VANGuard security
service [5]. StreetTalk is a distributed directory service that maintains the naumes and attributes of all critical network resources.
It enables other network services to enforce user access control and provides dynamic numing consistency over the network.
VANGuard is a security service that enforces network security and authenticates all requests to access, add, or modify
information.

3.1 Vulnerability/Threat Assessment of the Agency LAN

In this section, eight major threats to a computer network are reviewed for possible presence in the agency LAN. The primary
vulnerabilities related to each threat, the likelihood of the threat occurring at the agency LAN, and the potential damage due to
this threat are addressed. If VINES provides some protection for such a threat, the provided security features are presented. It
should be noted that when a security feature is provided, the threat assessment should contain the assessment of the vendor’s
implementation, and the evaluation of the usage by the agency LAN users. A threat assessment is not complete without looking
at both aspects; however, since the implementation contains much vendor proprictary information, this study will focus on the
evaluation of the usage of the security features at the agency. The vulnerability/threat assessment is carried out mostly by the
author by interviewing the agency system administrators and users and analyzing the information gathered, while the agency LAN
managers are consulted from time to time. This is especially true in assessing the likelihood of threats oceurring at the agency
and the potential damage, which are each rated as: low (1). moderate(2). or high(3). The results of the assessment are summarized
in Table 1.

3.1.1 Threat of Unauthorized LAN Access

This threat is usually caused by a weak or non-existent identification and authentication (1&A) process. The primary system
vulnerabilities related to this threat are:

A. Lack of or insufficient I&A scheme

VINES implements its I&A scheme through the StreetTulk and VANGuard services. When a user attempts to log in to the LAN,
the user types in his/her StreetTalk name and password at the keyboard. The password is encrypted before it is transmitted over
the LAN to the VANGuard service for authentication. The VINES password encryption algorithm is based on an one-way hash
algorithm proposed by Purdy [6]. The rationale behind using this algorithm is that it is very difficult to determine the plaintext
password even if the encrypted password is known. Therefore. I&A is not considered a system vulnerability.

B. Poor password choices or management

By default, VINES does not require the use of a password, however, system administrators have the option of requiring a
minimum length password. At the agency, a six-character password is required. Users are allowed to change their own passwords,
and when a password expires in 60 days, the user is forced to change that password. One deficiency, however, is that VINES
does not check for easily guessed passwords. It is up to the users to choose adequately random passwords. The likelihood of
unauthorized LAN access due to poor password choice is considered high, and the potential damage of this threat is also high.
C. Known system holes

This is not evaluated for the agency LAN since no proprictary implementation information is available.

D. Misplaced trust in other hosts

505

In some operating systems, certain networking software require a-trusted remote host. To simplify operations for users, some
system -administrators may configure the server to trust all the PCs on the LAN, thus allow network access without user
authentication. This is not a vulnerability in the VINES network, since all network access and service requests must be
authenticated in real-time.

E. Poor physical control of LAN devices

Although the agency is in guarded buildings this does not imply that security is always tight. The servers are placed in rooms
that are locked at night, but not locked at all times because users desire easy accessibility to the network printers connected to
the server. Unauthorized server access can cause potentially high damage; however, all server consoles at the agency are password
protected. The LAN activity is also monitored during working hours; hence the likelihood of unauthorized server access is
considered "moderate”.

Many user PCs at the agency are not password protected at boot time. When users are away from their PCs, they tend to leave
them unlocked, even though they may still be logged in to the LAN. Therefore, the likelihood of unauthorized LAN access due
to this vulnerability is high, as is the potential damage.

In order for a user to dial in to the agency LAN, the user must have access o a PC, a modem, the VINES software, and a
legitimate user account and a password. For a hacker, a PC with a modem, and the VINES software are easy to obtain. The
difficult part is guessing a legitimate user’s id and password, provided that no default identifications such as "system”, "sysadmin",
"maint”...etc. are used in the LAN. The system administrators can make this guessing more difficult by setting up a user dial-in
access list and restricting dial-in access to only the users who have the need. Such a list is not presently set up at the agency.

F. LAN access passwords stored in batch files on ’Cs

To log in to VINES, a user has to type in histher StreetTalk name and password interictively. However, a batch file can be set
up to contain the user’s identification and password. When the user tries to login to the LAN, the batch file is supplied to the
"login" command using the DOS standard input redirection feature. The "login” program will then receive its input from the batch
file instead of the standard input device. This practice should be prohibited since it bypasses the system’s only security check.
The redirection of standard input and output is a DOS feature, not a VINES feature. Few users at the agency store their passwords
in batch files, however, it is a vulnerability that can casily be exploited and result in unauthorized LAN access. The likelihood
of this threat is rated "moderate”.

G. Login attempts not recorded

Login attempts to VINES are recorded, and the system logs are examined periodically by the agency LAN managers. However,
with 17 servers currently in operation, it is difficult to examine all the logs closely without the help of some automated tools.
Thus the threat of unauthorized LAN access due to infrequent log scanning is rated "moderate”.

3.1.2 Threat of Unauthorized Access to LAN Resources

Although one of the advantages of using a LAN is that many LAN resources can be shared among users, not all resources need
to be made available to every user. Unauthorized access to LAN resources usually results from the fact that the access rights are
not properly assigned, or the access control mechanism lacks granularity.

VINES controls access to network resources through two mechanisms: adminlist, and access righis list (ARL). An adminlist is
set up for each group to identify the users who have administrative privileges in that group. Each server on the network also has
a corresponding adminlist. With VINES, there is no "super user” who can override security throughout the entire network.

VINES uses ARLs to protect directories on the server disk. network printers, and other network resources from unauthorized
access. Each ARL consists of StreetTalk names that describe who can use a resource. For printers and host connections, a user
either has access to the resource or not. For directories on the server disk, the ARL not only specifies who can access information
in the directory, but also the access level permitted.

In general, the responsibility of guarding against unauthorized access to LAN resources falls heavily upon the system
administrators who are responsible for setting proper ARLs for LAN resources in their jurisdictions. Currently there are no ARLs
set up in the agency for connecting to the IBM/IIP hosts, however, users who wish to access the hosts still need to pass the
security imposed by these hosts. The likelihood of unauthorized host access is considered moderate. For file service, most system

506

administrators have set up proper ARLs, thus the possibility of unauthorized access to other users’ files is low. File sharing
between groups is possible but rare at the agency, since it requires the system administrator’s permission. File sharing between
users in different agency centers is not practical due to (serial) line speed considerations.

3.1.3 Threat of Compromise of LAN Data and Software

This threat usually stems from the lack of encryption capability and placing sensitive information in high traffic areas. The agency
LAN is vulnerable in this area, since no encryption capability is currently provided by VINES other than password encryption.
Though the agency does not process any classified information, certain information is considered sensitive and should be
protected. The threat of compromising LAN data and soflware is considered moderate.

3.1.4 Threat of Unauthorized Modification to LAN Data and Software

Since ARLs are normally set up for the agency file services, the likelihood of unauthorized modification is considered low.
However, the threat can not be ruled out completely. If the threat does occur, early detection is crucial so that unauthorized
modification can not travel throughout the LAN. A cryptographic checksum mechanism can be used for this purpose [7].
Currently no such a mechanism is used for protecting the integrity of LAN data and software. The likelihood of unauthorized
modification without detection is considered "moderate”.

The agency has a policy regarding virus detection. All microcomputers are required to have commercial virus detection software
installed and resident at all times. The threat of unauthorized modification due to virus infection on the LAN can be greatly
reduced if the software that users upload to the servers is free of known viruses. The likelihood of this threat occurring at the
agency LAN is considered moderate.

3.1.5 Threat of Compromise of LAN Traffic

Confidentiality of LAN traffic can be provided in two ways. One is physically sccuring the communications media and
equipments; the other is encrypting sensitive LAN traffic. At the agency. the likelihood of compromising LAN traffic is
considered moderate. Though communications hardware is generally secured, network traffic can still be intercepted with the right
equipment. Furthermore, no encryption capability is currently provided for the network traffic.

3.1.6 Threat of Unauthorized Modification to LAN Traffic

Unauthorized modification to LAN traffic is less likely not only because network traffic is checksummed in compliance with the
specifications of the IEEE-802.3 Standard, but also. because it is difficult to modify LAN wraffic in. real time without being
detected.

3.1.7 Threat of Spoofing of LAN Traffic

Spoofing the LAN traffic involves (1) the ability to receive a message by masquerading as the legitimate receiving destination,
or (2) masquerading as the sending machine and sending a message to a destination [1]. To masquerade as a receiving machine,
the LAN must be made to believe that the address of the machine matches the destination address on the message being sent.
However, LAN traffic can be intercepted by connecting a network monitoring device to a node on the LAN.

Due to the real-time authentication required by VANGuard for any service request. it is difficult to masquerade as a message
sender and attempt to retransmit a message, especially when each session is timestamped.

3.1.8 Threat of Disruption of LAN Services

Network disruption can be physical or logical. Physical disruption is related to system shutdown or hardware problems; logical
disruption is caused by heavy network load or contaminated service software.

Many natural and environmental threats can disrupt a computer network, for example, fire, hurricane, tornado, flood, earthquake,
and thunder storms. These threats are considered small for the agency LAN. Nevertheless, it is essential to keep the LAN cable
map and other configuration information up to date, and have a comprehensive contingency plan in case an unexpected disaster
does occur. At the agency, such information may not always be up to date, possibly because the likelihood of this threat to the
agency LAN is low. Hardware problems and unintentional human accidents are more likely to bring down the agency LAN.
Fortunately, the Ethernet hardware at the agency is monitored so that early detection of hardware problems is possible. To prevent

507

Table 1. Risks of the agency LAN

Potential Vulnerability Likelihood of Potential Risk
Threat Threat Damage
Unauthorized LAN Poor password choice High (3) High (3) High (9)
access
Unauthorized LAN Insufficient physical control on Moderate (2) High (3) High (6)
access, Disruption of - | servers and easy accessibility of
LAN services server key
Unauthorized LAN Lack of physical control on PCs, High (3) High (3) High (9)
access or unattended PCs logged in to
LAN
Unauthorized LAN User dial-in list not properly set up | Low (1) Moderate (2) Low (2)
access on servers
Unauthorized LAN LAN access passwords stored in Moderate (2) High (3) High (6)
access batch files on unprotected PCs
Unauthorized LAN Login attempts not logged or log Moderate (2) High (3) High (6)
access files not closely examined
Unauthorized host ARL not properly set up for host Moderate (2) High (3) High (6)
access connections
Unauthorized file ARL not properly set up for file Low (1) High (3) Moderate (3)
access service
Compromise of LAN Lack of encryption capability Moderate (2) High (3) High (6)
data, software, & .
traffic
Compromise of LAN Easy accessibility to information Moderate (2) High (3) High (6)

data & software

‘resources

Unauthorized Lack of control on uploading user Low (1) High (3) Moderate (3)
modification to files software to shared arca on sérver

disks
Unauthorized Lack of modification detection Moderate (2) High (3) High (6)
modification to LAN mechanism
data & software
Virus attack in the Virus detection software not Moderate (2) High (3) High (6)

LAN

diligently used

Disruption of LAN LAN traffic not closely monitored Low (1) High (3) Moderate (3)
services
Difficult/slow disaster | LAN cable map and configuration Low (1) High (3) Moderate (3)

recovery

information not kept up to date

508

unintentional human errors or accidents, physical access to servers and crucial communications components should be controlled.
At the agency, the wiring closets are key locked and only authorized personnel have access. However, some servers are easily
accessible to general users. An obvious vulnerability is the easy accessibility of the server key, which contains the server’s serial
number and other crucial information for server authentication and operation. Any person who can access a server can pull its
server key and bring down the server instantaneously. If the key is stolen, the server can not function until a new key is replaced

by Banyan. It is recommended that a sign be posted near the server’s power cable warning users not to touch or move the power
cable.

Network services can be disrupted even if the LAN is physically connected. Such logical disruption can occur due to a virus on
the LAN, software erasure, heavy network usage, or service béing accidentally stopped. Because of the agency’s policy on virus
detection, hopefully a virus outbreak is less likely. Network service disruption due to the erasure of the service software is
unlikely since this requires system administrator privilege. Heavy LAN usage is another factor that can degrade the LAN
performance to an unacceptable level. The LAN traffic should be closely monitored so that an unusual traffic pattern can be
detected early and proper action taken. Network management tools are installed in all agency servers and used for monitoring
the LAN. The likelihood of disruption of LAN services is considered low due to network monitoring by LAN managers.

3.2 Risk Analysis of the Agency LAN

Table 1 summarizes the threat assessment of the agency LAN. In this scction, a risk is calculated for cach threat and vulnerability
found in the agency ILAN. The risk is determined by the likelikood of the threat occurring and the expected loss incurred given
that the threat occurred as follows:

risk = likelihood of threat occurring x loss incurred

The likelihood of the threat occurring and the loss incurred are both quantified and each assigned a rating of low, moderate, or
high corresponding to the number 1, 2 and 3. For example, if the likelihood of users choosing easy passwords is high (assigned
value 3), and the potential damage caused by unauthorized LAN access due to this vulnerability is high (again assigned value
3), the risk is determined to be:

‘risk=3x3=09,

With this assignment, a risk can have these values: 1. 2, 3. 4. 6, and 9. 'The risk is normalized as.follows: a risk in the range of
1 to 2 is considered a low risk, in the range of 3 to 5 a moderate risk, and in the range of 6 to 9 high risk. The risks to the
agency LAN are computed and included in Table 1.

4. SECURITY SERVICES AND MECHANISMS FOR THE ACENCY LAN

Based on the risk analysis performed in section 3, security services and mechanisms that are appropriate for reducing risks from
the agency LAN are recommended, and implementation costs are estimated. Table 2 shows the services and mechanisms that are
recommended for the agency LAN. It is quite possible that several mechanisms can be used to-counter a single threat; in that
case, multiple mechanisms are listed. It should be noted that a clearly stated securily policy, a well defined set of security
procedures, together with adequate user training are essential for achieving and maintaining a secure LAN environment. These
mechanisms can be applied to practically every threat listed in Table 2.

Also shown in the table is the cost estimate of implementing a particular mechanism in the agency LAN. Frequently, the decision
on whether to use a certain mechanism is largely influenced by the cost of implementing such a mechanism. The cost is estimated
based on the amount needed to purchase/develop and implement cach mechunism in the agency LAN. Simijlar to the computation
of risks, implementation cost is normalized; a 1 indicates a mechanism with a low cost, a 2 indicates a moderate cost, and a 3
indicates a high cost. '

5. PRIORITIES FOR AGENCY SPECIFIC LAN SECURITY

Given the cost estimates of the security services and mechanisms, this section determines the priorities of implementing these
services and mechanisms that are most cost effective for the agency LAN.

The priority of implementing a specific mechanism can be determined by examining the risks involved and the implementation
cost as follows:

priority = risk/cost
The higher the ratio, the higher is the priority for implementing the particular mechanism. Deciding the implementation sequence

of security mechanisms is a subjective process, especially when several mechanisms are prioritized roughly the same.
Implementation cost may be a dominant consideration factor, however, there may be other concerns, requirements, or policies

509

that may mandate that a specific mechanism be implemented prior to others: For this reason, the implementation sequence may
vary depending on the situations. : ‘

Table 2 shows the pnormzed hst of recommendcd mu,hanmns in dc,cuasmg oxdu It can be secen hom the table that the threat
of unauthorized LAN access due to poor password choice registers the highest priority. This is because the risk of unauthorized
LAN access is high and the cost to prevent it is low. The ploposod Priorities for LAN Security have been delivered to the agency
for consideration for future 1mplementat10n

Table 2. Priorities for LAN Security |

Vulnerability Mechanism Priority
Unauthorized " Poor password choice High9) | I1& A Use software to Low (1) 9
LAN access ‘ check for easily
guessed passwords
Unauthorized Poor password choice High (9) I1& A Use random Low (1) 9
LAN access . password generator
Unauthorized Lack of physical control | High (9) | 1 & A Use PC/keyboard Low (1) |9
LAN access on PCs, or unattended focking mechanism
PCs logged in to LAN
Unauthorized LAN access passwords High (6) I1& A Set policy & Low (1) 6
-LAN access stored in batch files on prohibit such
) unprotected PCs practice
Unauthorized Insufficient physical High (6) & A Physical control Low (1) 6
LAN access control on servers and close server
monitoring
Unauthorized Login attelhpts not High (0) Logging & | Use automated Low (1) 6
LAN access logged or log files not Monitoring | software tool to
closely examined scan log files
Unauthorized ARL not properly set up | High (6) | Access Set up ARLs based | Low (1) 6
host access for host connections control on need
Compromise of | Easy accessibility to High (0) Access Physical control Low (1) 6
LAN data & information resources & control
software lack of éncryption
capability
Disruption of _ Insufficient phyéical High (6) | I\’Ioniioring Physical control Low (1) 6
LAN services control on servers and and close server
easy accessibility of moniloring
server key
[Unauthorized Poor password choice High(9) | T& A Set policy & Moderate | 4.5
LAN access provide user (2)
training
Unauthorized Lack of physical control High (9) | 1& A Set policy & Moderate | 4.5
LAN access on PCs, or unattended provide user (2)
PCs logged in to LAN training
Unauthorized Poor password choice High (9) & A Use token-based High (3) 3
LAN access access control
system

510

Vulnerability

Service

Mechanism

Priority

Unauthorized Poor password choice High (9) I1& A Use biometric High (3) 3
LAN access system
Unauthorized Virus detection software High (6) { Data Set policy & Moderate | 3
modification to | not diligently used o | Integrity provide user (2)
data & training
software
Compromise of [LAN traffic transmitted High (6) | LAN Secure LAN Moderate | 3
LAN traffic in plaintext message medium & (2)

confidenti- | equipments

ality
Unauthorized ARL not properly set up Moderate | Access Set up ARLs based | Low (1) 3
file access for file service 3) control on need
Unauthorized Lack of control on Moderate | Access Set up ARLs Low (1) 3
modification to | uploading user software 3) control properly
data & to shared area on server
software disks
Disruption of LAN traffic not closely Moderate | Monitoring | Frequent Low (1) 3
LAN services monitored 3) monitoring
Difficult/slow LAN cable map and Moderate | Logging & | Keep LAN Low (1) 3
disaster configuration information | (3) Monitoring | configuration
recovery not: kept up to date information up to

date

Compromise of | Lack of encryption High (6) | Data Provide encryption High 3) | 2
LAN data & capability confidenti- | capability
software ality
Compromise of | LAN traffic not High (6) | LAN Encrypt sensitive High 3) | 2
LAN traffic encrypted message LLAN traffic

confidenti-

ality
Unauthorized User dial-in list not Low (2) Access Sct up ARLs based Low (1) 2
LAN access properly set up on control on need

servers

Unauthorized Lack of control on Moderate | Duta Use Message High (3) 1
modification to | uploading user software (3) Integrity Authentication

data &
software

to shared area on server
disks

Code on sensitive
data/files

511

(1]
[2]

(3]

[4]
(51
(6]

(7

REFERENCES

Carnahan, Lisa, A Local Area Network Security Archiu'cmre. Jan. 1992.

U.S. Depantment of Energy Risk Assessment Methodology, u,puntc,d as NISTIR 4325, May 1990 Available from: NTIS,
Springfield, VA, 22161, telephone: (703) 487-4650.

U.S. Department of Justice Simplified Risk Analysis Guidelines, reprinted as NISTIR 4387, Aug. 1990. Available from:
NTIS, Springfield, VA, 22161, telephone: (703) 487-4650.

Proceedings of the 4th International Computer Security Risk Management, Model Builders Workshop, Aug. 1991,
Banyan Systems Incorporated, VINES Architecture Definition, pp. 4-3 w0 4-8, Au};. 1988.

Purdy, George B., A High Security Log-in Procedure, Communications of the ACM, Volume 17, No. 8, pp. 442-445,
Aug: 1974.

Computer Data Authentication, National Burcau of Standards, Federal Information Processing Standards Publication
(FIPS 113), National Technical Information Service, Springficld, VA. 1985.

512

PROTECTED GROUPS: AN APPROACH TO INTEGRITY
AND SECRECY IN AN OBJECT-ORIENTED DATABASE

James M. Slack :
Computer and Information Sciences Department
Mankato State University
Mankato, Minnesota 56002

Elizabeth A. Unger
Department of Computing and Information Sciences
Kansas State University
Manhattan, Kansas 66506

Abstract

In this paper, we propose an approach to integrity and secrecy in object-oriented database systems
based on protected groups. A protected group is a set of objects which will only accept messages
from one or more interface objects. We show how discretionary access control, data integrity, access
integrity, and the Clark-Wilson integrity model can be implemented with this approach.

Keywords: Object-oriented database, security, integrity, access control, inference control.

1 Introduction

Object-oriented databases are becoming increasingly important for many applications. Recently, there has
been interest in security for these applications as well. The subject of security consists of the areas of secrecy
(or confidentiality), integrity, and availability. Much of the research in object-oriented security follows the
familiar lines of discretionary access control, mandatory access control, and multilevel secure database
systems. Researchers are still exploring various access control mechanisms. Some possible approaches
include restricting access to classes, instances, attributes, or methods. This can be done within the object-
oriented database itself or with a separate authorization structure.

In this paper, we propose an approach to integrity and security in object-oriented database systems
based on protected groups. A one-way protected group is a set of objects which will only accept messages
from one or more interface objects. A two-way protected group is a refinement of a one-way protected
group. We deal with one-way protected groups in this paper; see [24] for treatment of two-way protected
groups.

Military security is typically concerned with control of disclosure, while commercial security is con-
cerned with control of modification.[12, 21, 14, 15] We are interested in both kinds of security here.

The National Computer Security Center has recently defined two types of integrity in [23]:

1. Data integrity: concerned with preserving the meaning of information, preserving the
completeness and consistency of its representations within the system, and with its cor-
respondence to its representations external to the system. It involves successful and
correct operation of both computer hardware and software with respect to data and,
where applicable, the correct operations of the users in the computing system.

2. Systems integrity: concerned with successful and correct operation of computing re-
sources.

Smith has identified three types of integrity:[28]
1. Access integrity: concerned with making sure only authorized users modify objects.

2. Object integrity: concerned with making sure that the value of objects are not corrupted, e.g., that
an electronic funds transfer is correct.

513

teachingAssistant - joe

[student, employee, Percent:real] teachingA ssistant

{GetPercent, SetPercent} {

Figure 1: The object class teachingAssistant and the object instance joe.

3. Data integrity: concerned with making sure that the value of each object satisfies a set of validity
assertions.

Each of Smith’s integrity types is part of data integrity in' the NCSC’s definition. We are concerned
with the Smith’s definition of access integrity and data integrity; therefore we will use his definitions of
integrity in this paper.

Several authors have suggested that the object-oriented approach may yield- simpler solutions to ex-
isting security problems than the relational approach because security constraints can be incorporated
within methods (e.g., [4, 21]). On the other hand, the object-oriented approach may complicate rather
than simplify- matters because of the increase in the number of operations and higher complexity of the
structures.[19; 20, 29] In either case, it appears that the object-oriented data model will become the
dominant data model in the future.[30, 17]

2 Formal Model of an Object-Oriented Database

The object-oriented data model in [25] incorporates objects, classes, methods, multiple inheritance, and
encapsulation. Each class and attribute is an object in its own right, but methods are not objects. Classes
are defined at the same “level” as other objects and use a simple multiple inheritance scheme. In this
model, objects cannot change their structure (e.g., object instances cannot change classes). Also, the only
way to access an attribute in an object is through a method of that object. Since attributes are themselves
objects, they must be accessed using their own methods. The model assumes that if two methods inherited
from an object’s parent(s) have the same name, then they represent the same method (i.e., they are derived
from the same object).

The primitive set D consists of the union of Z, the set of integer numerals; R, the set of real numerals
(computer reals); S, the set of strings; B, the set {true, false}; the set of domain names: {nil, integer,
real, string, boolean}; and the empty domain name base. We also assume the existence of A, the
countably infinite set of symbols for attributes and Z, the countably infinite set of identifiers.

‘An object s; is a triple (i,¢,m), where i is an identifier, t is the type of the object, and m is a set
of methods. We illustrate an object as a rectangular box with three compartments (see Figure 1). The
topmost compartment contains the object identifier; the middle compartment contains the type; the bottom
box contains the set of methods for the object.

A class is an object s; = (i, t, m) where t is a set-structure, a tuple-structure, or the empty domain name
base. Attributes of a'set-structured type are unnamed. Attributes of a tuple-structured type may be named
or unnamed. Unnamed attributes are parent class identifiers. Named attributes are instance identifiers;
they are used to store values. An instance of a class is an object (%, ¢, m) where ¢ is an object class identifier
and m is the empty set. A cycle cannot exist in the identifiers in object instances or in unnamed attributes
in tuple-structured and set-structured o-terms. In Figure 1, the object teachingA ssistant is a class because
[student, employee, Percent:real] is an o-term. The object joe is an instance because teachingAssistant is
an identifier. ‘

Methods are the operations that access and manipulate attributes within objects. The set of methods
encapsulated in an object defines the behavior of that object. A method is a function which takes the
state of the database, an object identifier, and a list of parameters as input, and returns a new state for
the database along with a return message. A different kind of return message results when a method is
invoked on a class object. A method invoked on a class object s; results in a “set” of return messages: the

return message of each instance of s; is in this set. .)
The state of the database consists of the set of states of all instances in the database. The state of an
tuple-structured instance consists of a sequence of object identifiers for the attributes of the tuple. The

514

state of a set-structured instance consists of a set of object identifiers. For illustrative purposes, we will
sometimes include the state of an instance in the bottom box of an instance instead of the empty set
of methods: 'We will also include the value of the object identifier rather than the identifier itself. For
example, an instance of a class employee with a string and a real attribute would look like this:

empy

employee

[‘John Smith’,30000.0]

A subject in our model is an object instance which has the ability to start a message spontaneously. A
message is an instance of the class message where the type of the message is:

[FromObj : object, ToObj : object, ACI : AClinfo, MessageName : string, Parameters : parameterlist, . .]

and the messages include SendMessage, ReceiveMessage, SetACI, and GetACI. The attribute ACI con-
tains access control information for the originating subject. The particular access control information
used depends on the security and integrity model, e.g., the user identifier for discretionary access control
or Clark-Wilson integrity, security level for mandatory access control. Methods SetACI and GetACI are
privileged operations; only certain objects that are registered with the system may invoke them. A spon-
taneous message (i.e., sent by a subject) will not contain access control information. Any other message
will contain the access control information of the incoming message which started the associated method.

The class parameterlist defines a sequence’ of parameters, where each parameter is an object identifier.
Any object may invoke the SendMessage and ReceiveMessage methods directly, i.e., without sending a
message to the message class. (This is necessary because otherwise, an object would need to send a
message to SendMessage, but this requires sending a message to SendMessage, etc.) SendMessage and
ReceiveMessage are the only methods which can access the attributes in a message.

For example, suppose subject ssye wishes to find out the petcenta,ge time Joe works as a teaching
assistant. Subject ssye invokes SendMessage to send the message. (ssue,sjoe, null, GetPercent, ()). In this
example, the message is from subject ssue to object Sjoe, Tequesting Sjoe to invoke method GetPercent
with no parameters. The value null represents the default access control.

A return message is a message which contains a return value (i.e., an object identifier) as a parameter.
The parameter list may also contain other values which identify the message as a return message. It is up
to the method language to distinguish return messages from other messages, based on the parameter list.

3 One-way Protected Groups

Our secrecy/integrity mechanism is based on the idea that objects are partitioned into protected groups.
{For the remainder of this paper, we will use the term protected group to mean one-way protected group.)
A protected group can support need-to-know and any hierarchically structured set of access rights. Each
protected group has one or more interface objects which accept messages from any source. All other objects
in a protected group are implementation objects. An implementation object is hidden from external view
and only accepts messages from an interface object of the same group.

There are several possible implementations of protected groups; we will outline one approach which
requires some enhancements to the data model. This approach assumes that the system guarantees the
integrity and secrecy of messages.

Each object is augmented with the identifier of the interface object from which the object will accept
messages. This information is inherited by subclasses and instances. Therefore, the inheritance mechanism
is protected: an object may not have parents in another protected group.

Definition 1 A protected object s; is a 4-tuple (1,1, m,g), where i is an identifier, ¢ is an o-term or an
object class identifier (defined shortly) which defines the type of the object, i.e., it restricts the object’s
domain, m is a set of methods, and g is either an object identifier from which s; will accept messages or
the reserved identifier null, which means s; will accept messages from any source.

ia sequence is an ordered, heterogeneous multiset. We can define a sequence in the model as a set of tuples in which
each tuple contains a value (i.e., and object identifier) and a unique integer. The integers define the order of the elements
For clarity, we will wnte a sequence as a list of values between parentheses, e.g., (‘Smith’, 12.34, ‘Smith’).

515

An implementation object s; = (i,¢,m,g) is an object which only accepts messages from some other
object sg. An interface object is an object s, from which some other object s, will accept messages. Note
that an object s may be both an implementation and an interface object. This feature would be useful in
a “layered” protection scheme, in which one or more protected groups are enclosed in a larger protected
group (e.g., see [24]). v

The protected object definition could be generalized to include a set of interface object identifiers, but
we will keep the approach as simple as possible for now. This protected group implementation can handle
more than one class object in the same group: the interface object can manage messages for each class
in the group. Name conflicts among messages of the different classes can be resolved by extra parameters
in the messages. Instances of primitive classes (e.g., integer, real) can be protected by making protected
versions of these classes within the protected group.

4 Secrecy/Integrity Mechanism

In this section, we explain how a combined secrecy/integrity mechanism can be constructed, based on the
notion of protected groups. We first define a chain of messages as a sequence of messages starting at a
subject and ending at some object. '

We require the following additional operational characteristics:

1. The system identifies and authenticates subjects.

2. The system can hide the existence of any object (e.g., classes, instances, subjects, messages) from
any other object. .

3. A method can return a value that is indistinguishable from the “object not found” return value from
the system.

The secrecy and integrity of a prbtected group of objects is based in.the interface object for that group.
The interface object is the only object in the group which is allowed to invoke the methods GetACI and
SetACI in method message, i.e., it is registered with the system for this privilege.

4.1 Secrecy

Let us consider secrecy first. When the interface object receives a message from some other object, that
message is of one of these forms: '

1. The message contains the access control information of the originating subject, or

2. The message contains no access control information, but does contain the object identifier of the
source of the message.

In the first case, the access control information is known. In the second case, the interface object can obtain
the access control information based on the object identifier of the source of the message. The interface
object can then set all further messages in this message chain to contain. the access control information of
the originating subject. If the source of the message is not a valid subject, the interface object can reject
the message.

The interface object also has access to the access control information of the target object of the message.
This access control information may be stored in the object as additional attributes or in a separate object
within the protected group. Using the access control information of the subject and the target object, the
interface object can use the following general outline for each of its methods:

METHOD MethodName (TargetObject, OtherParameters)
BEGIN :
IF GetACI _is null THEN
SetACI (access control information of source object)
ENDIF
IF GetACl compares.favorably_with TargetObject. ACI THEN
Invoke TargetObject. MethodName (OtherParameters)

516 .

ELSE’

RETURN (‘Object not found’)
ENDIF
END

In this approach, secrecy is a precondition that must be satisfied before access is allowed. The implementa-
tion of the comparison operator compamsJavorably_wtth depends on the secrecy mechanism and the type
of access ‘control information.

4.1.1 Discretionary Access Control

The implementation of traditional discretionary access control is straightforward in this setting. Let us
consider an example based on access control lists where access is determined by the subject (user)identifier.
The class interface is defined as follows:

interface

base

{MakeClass} | J X

null

where X is the set of methods from all other classes in this protection gronp. Class interface works together
with class auth to restrict access to other objects in the protection group. Class auth is responsxble for
checkmg whethet a subject s; is authorized to invoke a method m. It is defined as follows:

auth
[Object:objId,Meth:string,Users: userSet]
{OkToUse,Grant,Revoke}

interface

Both auth and interface are permitted to access and change the access control information in messages.
Method MakeClass in interface creates new classes in this protection group. For each new class, MakeClass
includes an Init method which creates instances of that class. This approach ensures that each new object

in the protection group is never in an unprotected state.
Let us now add a class of subjects and a class of employees to the protection group. We use MakeClass
to create the following two classes: ‘

subject

[ID:integer,Password:string]
{Add,Delete}

interface

emplpyec
[D:integer,Salary: real
{GetID,SetID,GetSalary,SetSalary} -

interface

Some secure database systems have both grant and give-grant? capability, e.g., SeaView [16). In these
systems, user A can grant access to a method to another user if A has grant authority for the method. If
A has give-grant authority for a method, then A can authorize another user to grant access to the method.

The grant/give-grant approach can be implemented by incorporating more information into auth in-
stances:

2Grant and give-grant are called control and control with pa#sing ability, respectively in [22].

517

asth

[Object:objId Meth:string,Users: userSet,
Grantors:userSet,GiveGrantors: userSed

{OkToUse,Grant,GiveGrant,Revoke}

interface

This approach allows grant and give-grant privileges to apply to each method of a class. Finer grained
control is also available by having grant and give-grant privileges associated with methods of instances.
Other approaches are also possible, e.g., using rules in the Grant and GiveGrant methods of the interface
class.

There are two common types of authorization revocations: ‘simple and cascaded.[16, 7] A simple re-
vocation of access for subject s, removes authorization for subject s,. A cascaded revocation of access
for subject s, removes authorization for subject s, and every subject sy, to which s, granted the same
access, and every subject ss; to which ss, granted the same access, and so forth. A cascaded revocation of
a particular access permission of subject s, can get complicated if subject sy was granted that permission
by ss and another subject. There are several possible policies which could determine what to do in such
a situation. We will assume that the appropriate policy is encoded in the CascadingRevoke method..

One way to design class auth to support both simple and cascading revocations is as follows:

auth

[Object:objId,Meth:string,Users: userSet,
Grantors: GuserSet,GiveGrantors: GuserSet]

{OkToUse,Grant,GiveGrant,
SimpleRevoke,CascadingRevoke}

interface

The Grantors attribute stores the set of subjects which are allowed to grant access to this method to other
subjects.. The GiveGrantors attribute stores the set of subjects which are allowed to pass the granting
authority for this method to other subjects. Each of these attributes also stores, for each subject s, with
grant or give-grant authority, respectively, the subject s, which gave s that authority. (The domain of
class GuserSet is P(subject x subject), where P(a) denotes the power set of a.)

The access control information of the access control information of the target object is a set of valid
subject identifiers; the comparison operator is set membership.

4.2 Integrity

In an object-oriented database model, access integrity is simply a special case of secrecy where the controlled
method is state-changing. With access integrity, the subject’s access control information must compare
favorably with the target object’s access control information before the method is invoked.

An object-oriented data model based on protected groups can enforce data integrity by using rules
in methods of an interface object. In [27], we propose an integrity model for object-oriented databases.
Each integrity constraint is a first order predicate logic expression. The model constrains the results of
functional methods. All comparison and. other operators in constraint expressions are methods from the
object set. The following constraint restricts the result of the method GetAge of each instance of employee
to an integer greater than 0 and less than 120:

Ve(employee(e) — Va(GetAge(e, a) — (Less(e, 0,a) A Less(e, a, 120)))) (1)

The constraint model is based on first-order predicate calculus, which unfortunately makes constraints
rather unwieldy. Figure 2 gives a few examples of notational conveniences from [27] which make constraints
far more palatable. Using these, constraint 1 can be rewritten as follows:

Ve € employee(e.GetAge > 0 A e.GetAge < 120) ‘ : 2)

518

1. ¢! = €2 is equivalent to - == (€1, €2).

2. 3z € employee(z.GetSalary > 100000) is equivalent to 3z(employee(z) A Ja(GetSalary(z,a) A
Less(integer, 100000, a})).

3. Vz,y € employee(z.Get]lD == y.GetID — z == y) is equivalent to VzVy(employee(z) A
employee(y) — Va(GetID(z,a) — Yb(GetlD(y, b) === (s, b) —== (z,¥)))).

4. Vz € employeeGe,sQ,a,yﬂoooo(e.GetTax = 0) is equivalent to Vz(employed(z) — Va(GetSalary(z,a)A
Less(integer, a, 10000) — Vb(GetTax(z,b) — Equal(integer, b, 0)))).

Figure 2: Examples of notational abbreviations in integrity constraint expressions. -

In constraints 1 and 2, GetAge is a predicate which is true if the method e.GetAge a returns a, where
e.GetAge is the GetAge method accessible to object e. The predicate Less is also associated with a method
in e; Less(e,0,a) is true if e.Less(0,a) = true. This is the most general way to write a constraint: all
operations must use methods of the objects..

The primitive symbols in the language of constraint expressions include variables, constants, functions,
predicates, logical connectives (A, V, —,), quantifiers (V, 3), and parenthesis. A term is either a constant
or f(a1,@2,...,an) where f is an n-ary function and a;,e2,...,an are terms. A formula is P(t1,t2,...,1s)
where P is an n-ary predicate symbol and t;,12,...,t, are terms. If A and B are formulas, then AAB, AV
B,A— B,~A,VzA,Iz A are formulas. A closed formula is one for which each variable is quantified.

Integnty constraint expressions are restricted to be closed formulas as well as safe formulas. Intuitively,
a safe formula is one in which the variables range over the extension of the database. Constraints may
only use functional methods, and may ignore the possibility that a method may fail. A failing method in
a constraint is a run-time error.

Integrity constraint expressions can enforce common state integrity comstraints, including domain,
key, and structural constraints.[26] It can enforce value-based functional dependencies from the relational
model, both within an object and across object classes.

The discretionary access control technique based on protected groups presented in section 4.1.1 can be
used to enforce Clark-Wilson {6] style integrity. Methods in the interface object are the TPs and objects in
the protected group are the CDIs. Access triples are stored in class auth. Another approach to enforcement
of Clark-Wilson style integrity is the Generalized Framework for Access Control;[3, 1, 2, 13] this can be
applied to the object-oriented data model based on protected groups.

4.2.1 Inference Control

Kaushik has developed a simple technique for foiling tracker attacks on statistical databases® [11] Vem-
ulapalli has expanded the approach to provide a wider range of actions but uses the same underlying
principles.[32, 31] For each query, the database system finds the query set before computing the aggregate
value. The system then duplicates a tuple-in the query set, deletes a tuple in the query set, or does nothing
to the query set. A requirement of this approach is that if two queries ¢; and ¢, result in the same query
set, the same perturbation action must be taken for both queries.

Kaushik’s approach can be adapted to the object-oriented data model based on protected groups. Let
Aggregate be a method in interface object interface which returns an aggregate value from the protected
group, and suppose subject 3, invokes-Aggregate. An outline of this method is as follows:

1. Determine if subject s, is authorized to access Aggregate (e.g., by sending a message to auth). I
not, then stop.

134

Find the query set.

3. Use a function of the query set (e.g., the size of the query set) to take one of Kaushik’s three actions
to perturb the data:

3Kaushik developed his approach in the relational model; however, the results carry over to the object-oriented database
model.

519

o Duplicate an object in the query set. Make this dummy object visible only to sa.

o Delete an object in.the query set. This can be accomplished by temporarily removing s,’s
, authonty to access the object. : .

¢ Do nothing to the query set.
4. Compute the aggregate value from the query set.

5. Reverse any action taken in step 3.

5 Related Work

This work is similar to work by Faatz and Spooner [8] and Jajodia and Kogan.[10] In [8], Faatz and
Spooner suggest an approach to discretionary access.control for object-oriented engineering databases.
Each component of a project has a.set of implementation objects and an interface object. To activate
a method in an implementation object, a user must send a message to the mt.erfa.ce object which then
forwards the messa.ge to the implementation object. »

This work is simpler than [8] in that the entire database can be enclosed in one protected group.
Discretionary access, data integrity, and access integrity can be controlled from a single interface object.

Jajodia and Kogan propose a mandatory access control mechanism for object-oriented databases which
is based on.message filtering.[10] Each object is assigned a classification, and each subject a clearance as
with the traditional Bell-LaPadula model. Messages are not allowed to flow from object to object directly;
instead, they must pass through a message filter. The message filter lets the message go through only if
the information would not:flow from a high level to a low level object ‘or subject. QOur approach is more
flexible because message filtering is explicitly part of the object-oriented data model rather than a built-in
system function.

McDermid and Hockmg have devised an access control mechamsm for software development environ-
ments in [21]. In their model, the set of access modes for an object consists of the ability to invoke each
‘method of that object. The.database designer can choose the relative precedence of mandatory access
control and discretionary access control. The model allows more than one policy for the same database
(e.g., for guests and ‘regular users), and one of the policies can override if there are conflicts.. Apparently
this is dependent on the application. McDermid and Hocking claim that this system can be generalized to
an access control matrix between subjects and objects, which unifies mandatory and discretionary policies.
Separation of duty rules can be enforced by specxfymg a pohcy which requlres a set of users to access a
method. -

6. Conclusion

We have described an approach to integrity and secrecy in object-oriented database systems based on
protected groups. A one-way protected group is a set of obJects which will only accept messages from one
or more interface objects.

We have shown how discretionary access control, data integrity, access integrity, Kaushik’s inference
control techmque, and the Clark-Wilson integrity model can be implemented with this approach. The
object-oriented data model applies to distributed object-oriented systems if the integrity and security of
messages can be guaranteed between nodes.

Future work includes handling the inference problem, the aggregation problem and designing a mech-
anism for mandatory access control. The aggregation problem occurs when an individual can surmise a
sensitive data value by combining several nonsensitive data values from the database.[9, 5, 18]

There are several possible approaches to mandatory access control.- One approach is to follow the
Generalized Framework for Access Control 3, 1, 2, 13, using a single protected group and rules to determine
whether access is allowed. This approach is similar to the discretionary access control mechanism described
earlier. We present a different approach in [24] using two-way protected groups. A two-way protected group
is. a one-way protected group in which each object may only communicate with an interface object of the
same group, and each interface object may only communicate with other objects in the same group. An
interface object of one group may be an implementation object in another group. A database is composed
_of several protected groups, where each protected group consists of objects from a single security level.

520

Acknowledgments

+. The work of both authors was partially supported by Department of Defense grant #5-30296. The authors
wish to thank John Campbell and Howard Stainer for their support and encouragement. This work is our
own, however, and does not necessarily reflect the views of these other people.

References

(1]
(2]

(3]

[10]

(11]
[12]
(13]
| [14]
23]

[16]

Marshall D. Abrams, Kenneth W. Eggers, Leonard J. LaPadula, and Ihgred M. Olson. A gener-
alized framework for access control: An informal description.. In 13th Natwnal Computer Securnty
Conference, October 1990,

Marshall D. Abrams, Jody Heaney, Osborne King, Leonard J. LaPadula, Manette Lazear, and In-
gred M. Olson. Generalized framework for access control: ‘Towards prototyping the ORGCON pohcy
In 714th National Computer Security Conference, October 1991.

k’VI D. Abrams, A.B. Jeng, and I.M. Olson. Umﬁed access control: An mforma.l descrlptnon Techmca.l

Report MTR-89W00230, MITRE Corporatior, September 1989.
Philip Bernstein and et al. The Laguna Beach report. SIGMOD Record, 18(1):17—-26, March 1989.

John R. Campbell. From tuples to trusted subjects to TDI: A brief tutorial on trusted database
management systems. In 14th National Computer Security Conference, 1991.

D.D. Clark and D.R. Wilson. A comparison of commercial and mlhtary/computer secunty policies.
In IEEE Proceedings of 1987 Symposium on Security and Privacy, April 1987.

Dorothy Denning. Cryptography and Data Security. Addison-Wesleyt 1982. .

Donald B. Faatz and David L. Spooner. Discretionary access control in ob_)ect—onented engmeenng

database systems. In Database Security IV: Status and Prospects, pages 73-84, 1991

‘D K. Hsiao. Database security course module. In Carl E. Landwehr, editor, Database Security: Status
_and Prospects, pages 269-302. North- Holland 1988. -

Sushil Jajodia and Boris Kogan. Integrating and ob_]ect-orientyed data model with mﬁltilevel security.
In Proceedings of IEEE Symposium on Research in Security and Privacy, Oakland, CA, May 1990.
IEEE.

Nanda Kaushik. A new deterrent to compromise of confidential information from stafistical databases.
Master’s thesis, Kansas State University, 1988.

Carl E. Landwehr. Database security: Where are we? In Carl E. Landwehr, editor, Dalabaae Secur:ty
Status and Prospects. North-Holland, 1988.

Leonard J. LaPadula. Formal modeling in a generalized framework for access control In The Computer
Security Foundations Worlcshop, II1, June 1990.

T.M.P. Lee. Using mandatory integrity to enforce commercial security. In JEEE Proceedmgs of 1988
Symposium on Security and Privacy, pages 114-146. IEEE, 1988.

S.B. Lipner. Non-discretionary controls for commerCJal apphcat:ons." In IEEE Proceodings of 1982
Symposium. on Security and Privacy, pages 2-10. IEEE, 1982. : S .

Teresa Lunt Dorothy Denring, Roger Schell, and William Shockley. The. SeaView secumy model.
IEEE Tmnsactwns on Software Engineering, 16(6), June 1990. .

[17) Teresa Lunt and Jonathon Millen. Secure knowledge-based systems Technical Report SRI- CSL-90—04

[18]

SRI International, Menlo Park, CA August 1989.

Teresa F. Lunt. Aggregation and inference: Facts and fallacies. In]EEE Symposmm on Research'in
Securily and Privacy, May 1989.

521

(19]
[20]

[21]

[22]
(23]
[24]

25}
(26]

[27]
(28]

5]
[30]

[31]

[52]

Teresa F. Lunt. Discretionary security for object-oriented database systems. Technical Report SRI
Project 7543, SRI International, September 1990.

Frank A. Manola. A personal view of DBMS security. In Carl E. Landwehr, editor, Database Security:'
Status and Prospects. North-Holland, 1988.

John A. McDermid and Ernest S. Hocking. Security policies for integrated project support environ-
ments. In D.L. Spooner and C.E. Landwehr, editors, Database Security, IlI: Status and Prospects,
pages 41-74. North-Holland, 1990.

National Computer Security Center. A Guide to Understanding Discretionary Access Control in
Trusted Systemns. Washington, D.C., September 1987. NCSC-TG-003 Version-1.

National Computer Security Center. Integrity in Automated Information Systems. Washington, D.C.,
September 1991. C Technical Report 79-91.

James M. Slack and Elizabeth A. Unger. Mandatory access ‘control in an object-oriented database
using protected groups. Submitted for publication.

James M. Slack and Elizabeth A. Unger; ‘A formal model of object structure and inheritance for object-
oriented database systems. In Proceedings of Great Lakes Computer Science Conference, Kalamazoo,
Michigan, October 1991.

James M. Slack and Elizabeth A. Unger. A model of integrity for object-oriented database systems.
Technical Report TR-CS-91-13, Kansas State University Department of Computer and Information
Sciences, 1991.

James M. Slack and Elizabeth A. Unger. A model of integrity for object-oriented database systems.
In 1992 Symposium on Applied Computing, Kansas City, March 1992.

Gary W. Smith. The Modeling and Representation of Security Semantics for Database Applications.
PhD thesis, George Mason University, Spring 1990.

David L. Spooner. The impact of inheritance on security in object-oriented databa.#e systems. ‘In
Carl E. Landwehr, editor, Database Security: Status and Prospects, II, pages 141-150. North-Holland,
1989.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press,
1988.

Kasinath C. Vemulapalli and Elizabeth A. Unger. Investigation of output perturbation techniques.
Technical Report TR-CS-91-10, Kansas State University Department of Computing and Information
Sciences, 1991.

Kasinath C. Vemulapalli and Elizabeth A. Unger. Output perturbation techniques for the security of
statistical databases. In 14th National Computer Security Conference, October 1991.

522

PROVABLY WEAK CRYPTOGRAPHIC SYSTEMS

John Higgins
Brigham Young University
Computer Science Dept., 3374 TMCB
Provo, UT 84602

and

Cameron Mashayekhi
WordPerfect Corporation, MS-M210
1555 N. Technology Way
Orem, UT 84057

Abstract

The quest for absolute verification of uncompromisable software security has led to the development of a variety
of crypto-systems. Publicized over-simplification of cryptanalysis with disregard to impracticality of most of the
theoretical methods proposed, has caused a wide-spread paranoia among software users. Consequently, the quest
for secure crypto-systems may in some respects have been too successful. There is evidence that most of the current
standard crypto-systems have complexity beyond the nominal capacity of even the most well equipped and skillful
cryptanalysis including agencies of government. The wide dissemination of computationally secure crypto-systems
is of great concern to some agencies of government. Export restrictions on the sale of software with cryptographic
features, is a serious impediment to U.S. based software companies. What is needed is the development of crypto-
systems that provide adequate security -for the purpose of the user and yet not so sophisticated as to lead to
government prohibition of worldwide dissemination. This paper suggests methods to modify a current system so
as to meet this need.

Introduction

Research into modern crypto-systems has been directed towards obtaining systems that have
mathematically demonstrable levels of total security[9][19]. These systems have proven to be
computationally secure in relation to the idealized methods of massive computational
cryptanalysis. However, continuous publication of theoretical papers on computational
cryptanalysis of these crypto-systems has driven the software users to constantly demand higher
levels of security[11]. This observation presents a serious problem for commercial developers
of software. There is currently widespread consumer demand that even the most innocuous of
commercial software systems, should include some cryptographic features{24]. In addition, the
systems should have levels of security that are predictable and certifiable[4].

_Five years ago the average user of a personal computer (PC), where the usual application is for
word processing or spread sheet functions, would have been shocked at the notion that her
efforts demanded a cryptographic system in order to maintain privacy. This is not surprising.
There is a very natural human tendency to ascribe to any new system the effective attributes of
the old. The early methodology of automobile traffic control was based on experience with

523

ships at sea and wagon teams. Both of these familiar models quickly proved dangerously
inadequate. In the same fashion, the average PC user equated electronic files with folders within
a locked filing cabinet. A prospectus generated by a spread sheet and stored on a PC was the
same as one done with pencil and slide rule and filed in a locked attache case. But the analogy,
relative to privacy and security, were dangerously inexact. Most PC users are now aware of
this and it is this fact that impels the attempted marriage of innocuous and widely used popular
software and very sophisticated cryptographic systems[24].

The distinction relative to security between electronic file and filing cabinet is now widely
appreciated in the business community. The fact that obtaining access to material stored in a
computer system can be much easier than obtaining the same access to hard documents stored
in a locked physical system is common knowledge. Indeed, the level of publicity relative to data
security, or more precisely the lack of data security in large institutions has generated an attitude
ot concern on the part of software users. This attitude in turn has caused expressed demands on
the developers of software to add security features to many popular and widely used software
devices.[21]

It 1s pointless to argue that much of this concern is not well founded. Data security experts
know that most data security problems can be solved by the application of a relatively few and
rather simple rules involving the physical surroundings of the systems and proper training of
system users[21]. - This fact notwithstanding, it would be economic suicide for any software
company to suggest such an approach as an excuse for not including security features in their
products. This is the reason why this is so rooted in the nature of competitive, consumer
directed markets. In a consumer economy, businesses survive by meeting the needs of the
customer. Customer needs are based in large measure not on actual physical demands but on
states of mind. All knowledgeable commentators admit that an important aspect of American
business genius was the recognition that vague feelings could be translated into a concrete need
and this need into sales. Current software consumers have been convinced that they need the
protection of add on cryptographic systems. Given this fact, no software manufacturer will
prosper by trying to convince buyers that they do not need such feature when the competitors
are willing to provide them[13].

Development of Cryptographic Systems

Public demand for security features as outlined in the Introduction presents the software
developer with a very difficult problem. Cryptographic systems are very difficult to successfully
develop. This fact is well documented[2][4][18][19][20][22]. A developer generating a popular
word processor has many issues which are absolutely essential to the success of the software.
It is on these essential issues that the bulk of the development effort must concentrate. In
addition to these essential tools, some cryptographic features must be added since that is what
the current market demands. How should the developer proceed? What system should be
included? Clearly the easiest approach would be to buy an off the shelf system and incorporate
that system into the software. However, all current off the shelf systems are under export
control. The manufacturer can not afford to forgo the export market. Similarly the manufacturer
cannot afford to generate his own cryptographic system and cannot spend the time required to

524

have his own modifications of current systems certified by agencies of government. These facts
present the software company with a serious dilemma.

The problem of the export market probably needs some clarification. Since the vast bulk of the
U.S. software industry sales are domestic it would seem reasonable for the manufacturer to use
systems such as DES which are acceptable for domestic software and abandon the export market.
Unfortunately the solution is not that simple. The problem of marginal return is crucial in the
software industry. For software, the vast majority of the cost of manufacturing is in the
development of the product. The production of the physical object conveying the software and
its manual(s) are relatively insignificant. The marginal return on any sales above those that meet
development costs are huge. In order to succeed, it is imperative to obtain those returns that
entrepreneur risk funds in the development of software. It is not now possible for a responsible
software company in today’s market to limit its product distribution to the domestic market. The
reason for this is that the relative cost of software development is now very large. Modemn
popular software demands very complex and capable programs that require large expenditure
in their development. The offshore market is becoming more important in providing the vital
marginal return that means the difference between success or failure. This reliance on out of
country sales will become more pronounced in the future. This means that there is an urgent
need for the development of cryptographic systems sufficiently strong so as to meet the needs
of consumers and sufficiently weak so as to meet the certification standards for export[5].

On the issue of development it must be noted that for the manufacturer, time is absolutely of the
essence. To a government agency, a six month process of certification may seem like blinding
speed. For the software developer, a six week delay in the introduction of a given product may
spell the difference between riches and bankruptcy. - The dissonance on this issue should not be
trivialized. It is very unlikely that the governmental agencies will be able to alter their behavior
in order to accommodate the software companies. The realities of the current domestic market
and the rise of foreign software developers suggest that competition in software manufacturing
will only get worse. There is a real need for the development of standardized cryptographic
systems which meet three criteria:

(1) These systems must be available to the software manufacturer at reasonable cost,

(i) ~ They must have the same relative level of accepted computational security as
current systems such as DES,

(ili) ~ The specific application must be capable of an expedited approval by government
agencies.

The first attribute is absolutely essential. The cost of development of new systems is an
unnecessary expense not really germane to the general purpose of most software. The second
property will be a consumer demand. Anyone who needs a security system should know what
level of security the system provides. The third requirement is the sole reason for their being
a problem in the first place.

For the purposes of this paper the ban on export of capable cryptographic systems is an axiom.

The argument that government ought to change its view of this matter will need to be addressed
elsewhere. For the software companies the issue of which cryptographic system to use is an

525

immediate one. The alteration of fixed government policy is based on historic experience, a
matter of years if not decades. Software companies must survive in the short run or there is no
long run. For them the problem is now and the attitude of the government must be taken as in
some sense fixed. While some negotiation on the margins of this matter may be possible, it
seems very unlikely that there will be any near term reversal of the export ban on high level
cryptographic systems.

Uses of DES

Let us first examine the issue -of why an established cryptographic system is important. As
noted above, software development companies are not in the cryptography business. It is an
area of development strewn with hazards that most commercial ventures are not well equipped
to treat [3]. The most daunting problem is that of creating a credible system. The literature of
modern cryptography is full of plausible and initially promising systems that were not capable
of extensive development. As the survey by Brickell and Odlyzko rather poignantly
demonstrates, knowledgeable investigators have invested large amounts of time and creative
energy in the invention of systems that proved to be totally unreliable[22]. It1is rather shocking
how frequently these capable and well intended intellectual efforts have failed. This fact is not
lost on the software developer. Developing a proprietary cryptographic system is almost sure
to result in disaster. The paper by Kochanski is most instructive in this regard [17]. In this
effort, the author. was able to do a successful cryptanalysis of five cryptographic systems
appended to popular software. The analysis demanded nothing more in the way of hardware
than a PC. The type of failure outlined in this article is unacceptable for a well run commercial
enterprise since it casts doubt on the capability and accuracy of the entire software package. The
manufacturer is not going to waste time and resources trying to develop a new cryptographic
system when the experience of the last decade has proven this to be a virtually impossible task.

A related problem is that of customer acceptance. Knowledgeable customers are at least vaguely
aware of the hazards inherent in the development of cryptographic systems. Even if a given
company were able to develop a system whose level of security was predictable, convincing the

‘potential customer of this fact would be difficult if not impossible. The area of cryptographic

validity is another of those aspects of modern civilization where it is virtually impossible for the
consumer of a product to usefully investigate the claims of the product. The fact that a given
crypto-system may be difficult for the customer to break means nothing. Some external
certification of quality is essential. It is for this reason that a reasonable modification of an
existing accepted system such as DES is absolutely essential for the manufacturers.

This leads to the examination of some provably weakened form of DES as the basis for a
relatively low level cryptographic system appropriate for incorporation in widely distributed
software. The reasons for selecting DES are as follows.

1. DES has a very high level of experimental security.[3] The standard algorithm
has been publicly available for some time. It has been extensively analyzed and
no elementary method of cryptanalysis has been discovered[3]. Indeed, with the
exception of a claimed chosen plain text statistical anomaly recently announced
in the media[25], the only valid general method of cryptanalysis known to the

526

authors remains the brute force key matching method first suggested by Diffie and
Hellman[14][10]. Even for somewhat smaller key spaces than the standard 56
bits, brute force cryptanalysis of DES should be well beyond the capability of all
but the wealthiest and most determined of private individuals.

2. There are software implementations of DES that are relatively fast[8]. Well
designed implementations when appended to most popular products should be
almost invisible to the user. This is very important since while consumers want
to be able to use encryption in a variety of ways with existing software, they are
not willing to pay much if anything in software performance cost to obtain this
feature. -

3. DES is cheap. The algorithm is public[23]. There are many off the shelf and
public domain implementations of DES which software manufacturers of all sizes
could quickly modify and install, if an appropriate weakened format could be
designed.

4. DES should be relatively easy to weaken. By reducing the key size and perhaps
the number of iterations of the fundamental transformation seems plausible that
precisely quantifiable reductions in security relative to the assumed level of
security of the original algorithm can be obtained[6].

5. DES ought to be relatively non threatening. Since the algorithm has been around
for some time and was originally proposed by the federal government it seems
plausible that agencies of government have learned to accommodate themselves
to its existence. If governmental concern on the amount of time needed to break
full DES is an issue, as it seems to be, then a weaker form of DES should be
more acceptable than any new proprietary system that is not trivial.

The last point demands further discussion. When DES was first proposed as a standard for
encryption it was widely assumed that it was inherently compromised so as to allow security
agency cryptanalysis. This may or may not be the case. What is the case is that governmental
agencies involved in national security seem reluctant to certify applications of DES for export.
Devices such as home satellite television decoders are still export restricted when they include
any of the systems that are based on the DES standard. This type of ban may just be an example
of bureaucratic overkill relative to a system whose cryptanalysis is elementary given the right
equipment and the right algorithms. But another interpretation of these facts does need to be
addressed. As noted previously, the academic cryptanalysis community has been beating on
DES for several years now. Not all members of this community can be plausibly described as
being co-opted by agencies of the government of the United States. This certainly has at least
the appearance of a good faith effort to discover weaknesses in the algorithm and none have been
found[3]. Tt is arguable that the situation is just as it seems. That is, the DES algorithm is quite
robust and there is no elementary trap door. If this were the case then it is not unreasonable to
. ‘expect some degree of concern on the part of security agencies relative to widespread foreign
- sales of software using DES. ’

527

If it is in fact the case that the standard implementation of DES is a relatively secure system of
encryption then for-export applications of DES will demand a provably weakened form in order
to obtain export approval. Which leads to the question of demand for a demonstrably weak
cryptographic system. In this regard much of the public research in cryptography is of little
practical significance and leads to clearly erroneous conclusions. Someone who buys a
combination lock for a tool shed does not expect to get a time-delayed bank vault door. That
would be silly. The quality of the lock should be in some sense appropriate to the value of the
material being protected and the construction of the general containment structure. No one can
reasonably expect the encryption features of a popular software package to be resistant to all
methods of cryptanalysis. The user can reasonably expect that the security features will protect
against common threats. It does not take ultimate cryptographic sophistication to protect against
the types of intrusions normal in security breaches. Indeed, cryptanalysis is much more difficult
than it seems. Dedicated amateurs with access to reasonably powerful computer systems
wrestled unsuccessfully with the Beal ciphers[14]. Less well educated amateurs with no greater
computational capacity and far less time will not quickly and easily decrypt even -weak forms
of DES. '

Short Key DES

A discussion of a modified or weakened DES requires a benchmark of analysis to which the
relative weakening can be compared. This paper uses the exhaustive search methodology first
outlined by Diffie and Hellman in 1977[10). It does say something for the sturdiness of the DES
algorithm that the intervening years have produced no methods significantly superior to the key
search method proposed fifteen years ago. The following analysis is conducted relative to the
following assumptions:

(1) the exhaustive search must be executed on available hardware of a type that is
likely to be in the possession of adversaries. The ability to spend thousands of
dollars on dedicated hardware is clearly beyond the capacity of all but a
vanishingly small set of security adversaries[26]. A record of computer criminals
exists[1]. There are virtually no entries for large criminal organizations or other
such well funded and highly organized entities.

(i) A reasonable number of known plain text characters would be available to the
cryptanalysis. However, there is no capacity for a chosen plain text attack. In
most low level applications, chosen plain text attack is well beyond the capacity
of the typical adversary.

(ili) A single search cycle can be completed in one micro-second. While it does seem
plausible that widely available hardware can be programmed to perform one
algorithm iteration and comparison in time that is of the order of one micro-
second, order of magnitude improvements on this standard do not seem to be
easily obtained[10][17]. Something like 100 mips are currently available in
standard hardware. Even if 1000 mips were to be achieved in a decade, there
should be no appreciable degradation in the one microsecond standard since a

528

programmed DES iteration and comparison in 100 machine instructions seems
difficult to achieve.

(iv) There is an elementary DES key reduction transformation that does not reduce the
relative difficulty of DES cryptanalysis. This is the most tenuous assumption of
the discussion. It is not at all clear that there is a method for extending a
randomly selected k-bit key(k<56) to a 56 bit key so that cryptanalysis of DES
still requires exhaustive key search over the 2* element key space. A discussion
of this question is beyond the scope of this paper.

Garon and Outerbridge[12] have produced a complete an exhaustive analysis of the statistics and
cost of cryptanalysis of DES by hardware and software. Again, in their case the assumption is
made that the adversary has the limitless capabilties to support the cost and effort in this matter.
The following table gives the time to obtain one solution, relative to the restricted key space.

Speed of Processor Time required to exhaust the reduced keyspace of
DES(40/56)

Key-test per second Years ‘Months Weeks Days

I Million 1,640 19,680 85,280 596,960
2 Million 820 9,480 42,640 298,480
4 Million 410 4,740 21,320 149,240
32 Million (by 1995) 51 2,370 10,660 74,620
256 Million (by 2000) 6 1,185 5,330 37,310

Given that the problem of reduced key extension could be safely resolved, the software
manufacturer and the related government agencies may be able to agree upon a standard which
1s mutually acceptable to all parties. If the manufacturer consented to accept a standard that was
pre-defined as being acceptable for export the relevant export license could be granted in a
matter of days as opposed to months. The manufacturer would then have the obligation of
informing purchasers of the relative strength or weakness if you prefer, of the protection system
included. The disclaimer would indicate that the purchaser was buying a product that would
give adequate protection against the type of threat most commonly found in security problems.
It would by implication if not directly indicate that this security feature is not proof against
intrusion by the technology available to the security agencies of nation states nor perhaps to the
capabilities of massively wealthy and highly organized criminal conspiracies. In any event all
parties to the compact would be as well informed as current public information allows.: Given
current legal realities, that is about as much as can reasonably be expected[16].

Conclusion
The problem of export restrictions on popular software is a real one. This problem will become

worse as the demand for encryption protection increases and the export market becomes
relatively more important to the manufacturers. The mutterings of academics not withstanding,

529

a software company must live in the world that exists. In this world, the export of software that
includes the standard implementation of DES is not permitted by government fiat. The
resolution of edicts such as this may well lie far in the future. What does seem clear is that for
the foreseeable future there will continue to be governmental restrictions on the export of any
cryptographic system that is too capable. In this environment, a suitably weak form of a
familiar and well tested system for full document encryption such as DES does seem like a
plausible short term solution.

530

{4

(5]

[6]

(7]

[8]
(9]

{10}

(1]

(2]

[13]

f14]

[15]

(16]

(171

[18]

[19]

; References L
Anne W. Branscom, "Rogue computer programs. and computer rogues: Tailoring the punishment to fit the

crime,” Rutgers Computer and Technology Law Journal, vol. 16, no. 1, 1990.

G. Brassard, "A note on the complexity of cryptography,” IEEE Trans. Informat. Theory, vol. IT-25, pp.
232-233, 1979.

Erest F. Brickell, Andrew M. Odlyzko, "Cryptanalysis: A survey of recent resultg," in Proceedings of
the IEEE, vol. 76, no. 5, pp. 578-593 May 1988.

Carl M. Campbell, "Design and specification of cryptographic capabilities," IEEE Commun. Mag.,, pp.
15-19, Nov. 1978.

Eric K. Clemons, "Evaluation of strategic investments in information technology," Communications of the
ACM, vol. 34, no. 1, Jan. 1991,

D. Chaum, J. Evertse, "Cryptanalysis of DES with a reduced number of rounds,” in Advances in
Cryptology-Crypto 85. New York, NY: Springer Verlag, pp. 192-211.

C. A. Deavours, L. Kruth, Machine Cryptography and Modern Cryptanalysis. Norwood, MA: Addison-
Wesley, 1983.

D. E. R. Denning, Cryprography and Data Securiry. Reading, MA: Addison-Wesley, 1983.

W. Diffie, E. Hellman, "New directions in cryptography," IEEE Trans. Informat. Theory, vol. IT-22, pp.
644-654, 1976.

W. Diffie, E. Hellman, "Exhaustive cryptanalysis of the NBS Data Encryption Standard," Computer, vol.
10, pp. 74-84, 1977.

W. Diffie, "The first ten years of Public-Key cryptography,™ in Proceedings of the IEEE, vol. 76, no.
5, pp. 560-577 May 1988. _

Gilles Garon, Richard Outerbridge, "DES watch: An examination of the sufficiency of Data Encryption
Standard for financial institution information security in the 1990’s," ACM Press., vol. 9, no. 4, pp. 29-45,
1991.

T. Haight, "Tales From Decrypt," Network Computing Magazine, vol. 2, no. 7, pp. 75-83, July 1991.
C. Hammer, "Beale Ciphers," Cryprologia, vol. 3, no. 1, pp. 9-15, Jan. 1979.

M. E. Hellman et al., "Results on an initial attempt to cryptanalyze the NBS Data Encryption Standard,”
Tech. Rep. SEL 76-042, Stanford University, 1976.

Russell Kay, "Infosecurity in the 1990s." ISPNews, vol. 2, no. 6, pp. 1, Nov. 1991.

M. Kochanski, "A survey of data insecurity packages,” Cryprologia, vol. 11, no. 1 pp. 1-15, Jan. 1987.
H. W. Lenstra, Jr. "On the Chor-Rivest Knapsack cryptosystem,” Journal of Cryptology, vol. 3, no. 3,
pp- 149, 1991.

Micheal Merritt, "Theory of Cryptographic Systems: A critique of Crypto Complexity", in Distributed
Computing and Cryptography. Providence, Rhode Island: American Mathematical Society, and Baltimore,

MD: Association for Computing Machinery,1989.

531

{20} S. Murphy, "The cryptanalysis of FEAL-4 with 20 chosen plaintexts, " Journal of Cryptology, vol. 2, no.
3, pp- 145, 1990.

121] National Research Council, Corhputer-.s at Risk, Safe Computing in the Information Age. Washington, DC:

: National Academy Press, 1991.

(22] A. M. Odlyzko, "The rise and fall of Knapsack cryptosystems”, in Cryptology and Computational Number
Theory. Providence, Rhode Island: American Mathematical Society, 1989.

[23} William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling, Numerical Recipes in C,
The Art of Scientific Compuring. New York, NY: Cambridge University Press, 1988.

[24] Corey H. Schou, "Hard times: Information security in a changing world,” ISPNews, vol. 2, no. 5, Sep.
1991. |

[25] A. Shamir, "On the security of DES," in Advances in Cryptology-Crypto 85. New York, NY: Springer-

- Verlag, pp.’280—281.

[26] - Clifford Stoll, The Cuckoo’s egg, Tracking a spy through the maze of computer espionage, New York, NY:

Pocket Books, 1989.

. ‘Additional Readings
E. F. Brickell, J. H. Moore, M. R. Purtill, "Structure in the S-Boxes of the DES (extended abstract), in Advances
in Cryptology-Crypto 86. New York, NY: Springer Verlag, pp. 3-8.

R. A. Demillo, G. I. Davida, D. P. Dobkin, M. A. Harrison, R. J. Lipton, Applied Cryptology, Cryptographic
Protocols, and Computer Security Models. Providence, Rhode Island: American Mathematical Society, 1981.

"W. F. Ehrsam, S. M. Matayas, C. H. Meyer, W. L. Tuchman, "A cryptographic key management scheme for
implementing the Data Encryption Standard," IBM System Journal, vol. 17, no. 2, pp. 106-125, 1978.

Peter Fagan; "Experience of Commercial Security Evaluation," in Proceedings of the 14th National Computer
Security Conference, vol. 1, Oct. 1991.

'R. Forre, "Methods and Instruments for Designing S-Boxes, " Journal of Cryptology, vol. 2, no. 3, pp. 115, 1990.
Zvi Galil, Stuart Haber, Moti Yung, "Security against Chosen-Ciphertext Attack", in Distributed Computing and
Cryprography. Providence, Rhode Island: American Mathematical Society, and Baltimore, MD: Association for
Computing Machinery, 1989.

W. Mark Goode, "Crypto standards: A thousand points of connection?," ISPNews, vol. 2, no. 5, pp. 43, Sep. 1991.

B. S. Kaliski, R. L. Rivest, A. T. Sherman, "Is the Data Encryption Standard a group (result of cycling
experiments on DES)," J. Cryptology, vol. 1, no. 1, pp. 3-36, 1988.

Neal Koblitz, 4 Course in Number Theory and Cryptography. New York, NY: Springer-Verlag, 1987.
A. G. Konheim, Cryptography, A Primer. New York, NY: Wiley, 1981.

Stephen M. Lipton, Stephen M. Matyas, "Making the Digital Signature legal and safeguarded,” Data
Communications Magazine, pp. 41-52, Feb. 1978.

532

James L. Massey, "An introduction to contemporary Cryptolooy, in Proceedmgs of the IEEE, vol. 76, no. 5, pp.
533-549 May 1988.

Terry Mayfield, Stephen.R. Welke, John M. Boone, Catherine W. McDonald, "A framework for advancing
integrity standardization,” in Proceedings of the 14th National Computer Security Conference, vol. 1, Oct. 1991.

C. H. Meyer, S. M. Matyas, Cryptography: A New Dimension in Computer Data Security. New York, NY: Wiley,
1982.

1. H. Moore, G. J. Simmons, "Cycle structure of the DES with weak and semiweak keys," in Advances in
Cryptology-Crypto 86. New York, NY: Springer-Verlag, pp. 9-32.

Robert Morris, N. J. A. Sloane, A. D. Wyner, "Assessment of the National Bureau of Standards proposed Federal
Data Encryption Standard,” Cryptologia, vol. 1, no. 3, pp. 281-291, 1990.

D. B. Newman, Jr., R. L. Pickholtz, "Cryptography in the private sector," IEEE Commun. Mag., vol. 24, pp. 7-
10, Aug. 1986.

K. Nishimura, M. Sibuya, "Probability to meet-in the middle, "Journal of Cryptology, vol. 2, no. 1, pp. 13, 1990.

NIST, "Data Encryption Standard (DES)," in FIPS publication 46, National Technical Information Service,
Springfield, VA, Apr. 1977.

NIST, "Guidelines for implementing and using the NBS Data Encryption Standard,” in FIPS publication 74 ,
National Technical Intormation Service, Springfield, VA, Apr. 1981.

NIST, "DES modes of operation,” in FIPS publication 81, National Technical Information Service, Springfield, VA,
Dec. 1981. . : :

Donn Parker, "Restating the Foundation of Inf()rmatlon Security," in Proceedings of the I4th National Computer
Security Conference, vol. 2; Oct. 1991,

Charles R. Pierce, "Standardized Certification," in Proceedings of the 14th National Computer Security Conference,
vol. 2, Oct. 1991.

Charles R. Pierce, "Toward certification, a survey of three methodologies," in Proceedmgs of the l4th National
Compurer Security Conference, vol. 2, Oct. 1991.

Arto Salomaa, Public-Key Cryprography. Berlin, Heidelberg, New York, NY: Springer—Verlag,-‘l990.

Miles E. Smid, Dennis K. Branstand, "The Data Encryption Standard: Past and future," in Proceedmgs of the IEEE,
vol. 76, no. 5, pp. 550-559, May 1988.

533

RE-USE OF EVALUATION RESULTS

Jonathan D. Smith

. Admiral Management Services Ltd.
Commercial Licensed Evaluation Facility
Kings Court, 91-93 High Street ‘
Camberley, Surrey, GU1S 3RN
ENGLAND

ABSTRACT

As ‘evaluated products become more widely available and better focused at purchaser’s requirements, re-use of
previous evaluation results becomes an increasing priority. This is particularly true if “monolithic’ evaluations are
to be avoided for systems that incorporate previously evaluated products. For systems that incorporate previously
evaluated products, evaluation becomes more cost effective if it is possible to benefit from the results of the previous
product evaluations. This discussion paper addresses this issue through a discussion of the Information Technology
Security Evaluation Criteria [ITSEC] and the process of composition of components. It then proposes a possible
way forward for the re-use of evaluation results. The paper assumes a working knowledge of the ITSEC.

INTRODUCTION
A key issue in the development and evaluation of secure systems and products (referred to by ITSEC as Targets
Of Evaluation - "TOEs") is: how can the results of previous evaluations (in terms of evaluation level, functionality
and strength of mechanisms) be re-used in another development/evaluation? This issue is difficult to resolve and,
in Europe to date, has been left to the discretion of the certifiers and accreditors of TOEs.
This paper introduces a number of aspects of ITSEC that are relevant to re-use of evaluation results, including:
- Flexibility of approach: Evaluation is made more flexible by splitting the functionality of a TOE from the
confidence held in a TOE to meet its security target (for instance limited functionality can now be evaluated to
a high degree of confidence). However, the cost of this approach is that a diverse range of functionality and

confidence has to be taken into account when evaluation results are re-used

- The difference between effectiveness and correctness: The ITSEC identifies these two pfoperties of a TOE as a
starting point for the evaluation criteria, thereby forcing them to be considered explicitly during any treatment of
the re-use issue ;

- The assumption that sysiems and products can always be considered in the same way: The veracity of this
assumption cannot be guaranteed when the re-use problem is addressed.

The paper then discusses composition of components. A number of optibhs to address the re-use issue are proposed.
The implications of each option are examined with reference to a simple example. Those options considered are:

- Assurance profiles, as permitted by the ITSEC
- Mi.xing rules, for generating a single functionality statement/evaluation level from assurance proﬁlés)
- Expanding each relevant criterion of the ITSEC.

Finally, conclusions are drawn on combining the above options to enable a way forward for the re-use of evaluation
results.

534

THE ITSEC FRAMEWORK .

Introduction

This section introduces the relevant aspects of the ITSEC in order to provide a foundation for the discussion of
composition of components. This paper assumes a working knowledge of the terminology and concepts used in
[ITSEC] beyond the following paragraphs.

Development Model ’

The assumed ITSEC development model is given in Figure 1.

CORPORATE SECURITY POLICY

* SECURITY TARGET
SECURITY ENFORCING FUNCTIONS
STRENGTH OF MECHANISMS
TARGET EVALUATION LEVEL
' v cc
» 00
ARCHITECTURAL DESIGN N R
F R
1 E
DETAILED DESIGN o<
N N
: C E
IMPLEMENTATION E S
: s
OPERATIONAL ENVIRONMENT
TOB

Figure 1

Notice that the figure ﬁssumes a single layer of Detailed Design. The ITSEC, however, identifies a design hierarchy
within the Detailed Des1gn The assumption has been made for the sake of smpllfymg the figure and the discussion
that follows. ‘

Security enforcing functionality is first identified in a security target (for instance as a set of security enforcing
functions). A security enforcing function is identified in order either to counter a specific threat (more likely for
a system) or to meet a specific security objective (more likely for a product).

A TOE is made up of components which may themselves be made up of components. Thé ITSEC defines a
component as an identifiable and self-contained portion of a TOE, and identifies a ‘basic component’ at the lowest
level of design. A TOE’s security target can therefore be refined into a number of security enforcing, security
relevant and other components. It should be noted that a security enforcing component may be refined further into
security enforcing and security relevant components.

The Architectural Design identifies the first allocation of functions to components. The Architectural Design
therefore identifies the separation between security enforcing and other functionality.

535

The Detailed Design (hierarchy) identifies further components. " Security irrelevant components can be identified
by ensuring that, at any design phase, whatever functionality they implement, and whatever behaviour they exhibit
at their interfaces, providing that the security enforcing and security relevant components operate correctly, the TOE
continues to operate securely.

Security relevant components can be identified as those components that are not security irrelevant components but
whose abstraction is not defined in the security target (as one or more security enforcing functions).

Security enforcing components are components that are not security irrelevant components and whose abstraction
is identified in the security target.

Flexibility of Approach

Traditionally, a key component of a secure product or a system has been the reference monitor. This component
“provides the foundation for the Trusted Computing Base as defined in {TCSEC]. The reference monitor concept

has been ‘loosened’ in the ITSEC to allow secure products (and systems) to encompass more than just confidentiality

(and mediation between subjects and objects). However, in order to compensate for this more flexible approach,

separation requirements on the Architectural Design are made explicitly by the ITSEC. Therefore, for TOEs to
" implement a correct access control policy at higher evaluation levels the requirements of the reference monitor
concept still hold; i.e. architectural separation of the component that implements the access control requirements
is still required.

‘However, if access control requireménts are not addressed through the use of a component that mediates accesses
to objects by subjects, which is both tamper resistant and small enough to be subject to analysis and (complete) tests,
then the effectiveness of the developer’s proposed solution has to be considered.

Effectiveness'and Correctness

Correctness is concerned with correct refinement of security enforcing functions through the representations of a
TOE. Effectiveness is concerned with the ability of a TOE to meet its security objectives or counter threats when
the TOE is considered as a whole.

Effectiveness and correctness are complementary in the ITSEC framework; sometimes covert channels are an aspect
of correctness (if requirements about them are specified in the security target) and sometimes effectiveness.

Systems and Products

Broadly, systems and products can be treated in similar wayé for evaluation purposes, and therefore criteria can be
written for TOEs as either systems or products. However, there are fundamental differences between systems and
products:

- A system in its broadest IT context is part of an organisation which performs particular functions and which
inchides both a TOE and its environment (users etc.) working together

- A system, in TOE terms, therefore includes an operational environment (for instance secure operating
procedures), and the threats to the system can be countered through the use of physical, procedural or personnel
measures, as well as through electronic countérmeasures (the first description of which forms the set of security

_enforcing functions specified in the security target)

- A product, by definition, has no specific system or organisation of which it is a part. In other words, the

environment for a product is not as well defined as for a system -assumptions about threats (and even assets) will
have to be made ina product rationale’ (probably through the use of secnnty ob_]ectlves) .

536

To summarise, a system is a component of an organisation, itself made up of components made up of components
etc. A product may be made up of components. A product, when re-used in a TOE (at the Architectural or

‘ Detaded Design representations) will be incorporated into that TOE as a component.

When a product is purchased for use within a system the purchaser ‘accredits’ the product. For Sy‘stems, a system
is usually accredited by a third party to ensure that the information that the system processes will remain secure.

COMPOSITION
Introduction
In order to discuss re-use of a component a description of both a component and composition is required. A

component is an identifiable and self-contained portion of a TOE. Any component can be described by a statement
of its major attributes: :

- Its functionality

- The external interface which it offers its environment

-~ The assumptions that it makes about its environment m order for it to work correctly.

This is true for the lowest level of component (basic component) or a component which is a composition of two or
more components (a target component). The definition of a component is therefore recursive. This is an important
point because a component can be broken down into further components until a basic component is finally reached.
An example is presented in Figure 2. .

Composition is the ‘bottom up’ process. of .
combining components in order to meet the Personal Computer

requirement on the ultimate target component
(in the case of evaluation the TOE). A target
t could therefore be f:
component co erefore be any o v v v
’ KEYBOARD CPU DISPLAY
- A system
- A product
- A component of a product or system. v v v — v
. DK MOTHERBOARD PROCESSOR CARD GRAPHICS CARD
. - CONTROLLER
Figure 2

Relevance to Development and Evaluation

To develop a target component (for instance a TOE) the three major attributes of the target component will be

_ specified in the overall design for the target component. These specifications form the predicates upon the result

of the composition process that have to hold in order that the target component is mplemented both correctly and
effectively. :

Notice that the definition of a component is, in essence, a re-stotement of a product’s security target: the ITSEC
has already assumed that a product will be designed as a component.

The statement of functionality for the tnrget component can specify either security enforcing, security relevant, or

security irrelevant functions. The functionality statement can range from a complete security policy to a description
of one necessary property of a component.

537

The functionality which a component’s interface provides can be either services to be exploited by another
component or services delivered to a user. -When components are composed the interface can therefore be a
consumer interface or a producer interface. The precision of description of the interface and the functionality that
it delivers depends on the component’s original target evaluation level.

There are two issues to consider regarding the assumptions that the component makes about its environment:

- Firstly, the assumptions made regarding the non-IT services it relies on in order to function correctly and
effectively (e.g. for confidentiality requirements that an attacker cannot physically access/change hardware - a
secure environment encapsulates the TOE)

- Secondly, assumptions made about the IT services (external to the component) it uses (i.e. requires in order to
function correctly and effectively) through its interface.

It should be noted that the greater the level of self-protection (for instance tamper-proofing) built into a component,
the fewer assumptions about its environment need to be made for it. Any assumptions need to be stated as part of
the component’s specification.

This discussion has highlighted an obvious issue: ar what stage in the development process is re-use of a component
relevant to evaluation? 1t is asserted here that components can only be re-used at the Architectural and Detailed
Design levels. A component cannot be re-used as part of the implementation of a TOE without having been
introduced at a higher design representation: to re-use a component in the implementation, its intended use must
have been specified in at least the Detailed Design.

However, there is a side issue here: a security target may identify specific components to be re-used (for instance
a specific hardware platform). If this is the case then the security target has already started to specify the
Architectural Design for the TOE. Further, a security target also specifies a strength of mechanisms rating. A
mechanism can be considered to be specified at the Detailed Design level. Therefore the security target has already
started to specify the Detailed Design for the TOE.

Problem Summary

The discussion above has treated components as ‘black boxes’. The primary effect of introducing an additional
attribute of a target component, that of its target evaluation level, is that the evidence required to meet the evaluation
level reveals to the evaluator some of the target component’s functionality, interface and environmental assumptions.
From this point onwards this paper assumes that the target component is the TOE to be evaluated.

The TOE will have been the result of a composition process. The evaluation level that the TOE is aimed at will
therefore also reveal to the evaluator some of the internal functionality, interface and environmental assumptions
for each of the components composed into the TOE. This is necessary for confidence in the TOE to be obtained.

In summary, for secure developments the following must hold:

- The TOE, and therefore each component that it contains, must be correctly implemented - this means that the
requirements on the TOE must be upheld correctly by the sum of the functionality provided by each component

- All interfacing between components must ‘match’

- The assumptions that each component makes about its environment must be upheld by the TOE

- Any known vulnerabilities in any of the components must not become exploitable in the TOE.

The following problems with demonstrating the above often occur:
- The functionality of the TOE is not fully provided by the functionality of the components - often components are

re-used in different ways for different purposes than they were originally intended (particularly true when non-
evaluated components are re-used in a TOE that is to be evaluated) and therefore bespoke components are needed

538

- Interfacing between components does not match because components only use subsets of the interfaces prov1ded

by other components or the interface descriptions are specified at different granularities
- Environmental assumptions for the TOE are dlfferent to those made for mdwxdual components when the

components were designed
- The confidence in the secure operation of each component (and therefore the confidence in the absence of
exploitable vulnerabilities in the TOE) is different - thie TOE has an assurance profile.

It should therefore be clear that some form of evaluation is always required for TOEs even when all components
(products) that are re-used have been previously evaluated to the same level as that specified for the TOE.

GENERIC GUIDANCE BASED ON DISCUSSION OF COMPOSITION

Generally, the results of correctness assessment can be re-used for the mternal functionality and mterface of a
component.

Effectiveness is concerned with compositions and addresses interfacing to the user, environmental assumptions and
vulnerabilities within and between components. It should be noted that a component may contain vulnerabilities
which become exploitable only after its incorporation into the TOE. Therefore effectiveness assessment must always
be re-performed whenever composition of components is undertaken.

In terms of the effectiveness of the composition of components:

- Suitability analysis has to establish whether the security enforcing functions for the TOE can be upheld by the
individual statements of functionality for each component of the TOE
- Binding analysis must then be performed on the TOE to ensure that the mterfacmg and assumptxons of each

" component are upheld -

- Construction vulnerability analysis must be performed on the TOE to ensure that vulnerabilities within each
component do not become exploitable as a result of the composition - the vulnerabilities of the components must
be listed in the report from their previous evaluation

- Ease of use analysis must be performed on the TOE.

OPTIONS

Introduction

A variety of options for accommodating re-use of evaluation results exist. Those considered here are:

- Assurance profiles
- Mixing rules for generating a single functlonahty statement/evaluation level from confidence profiles

- Expanding each relevant criterion of the ITSEC
- A combination of the above.

Assuraiice Profiles

Assurance profiles can be used (the ITSEC does make reference to these in Chapter 1). Assurance profiles allow
different sets of security enforcing functions to be evaluated to different evaluation levels through the use of multiple
security targets.

It is postulated here that what is actually required is:
- An overall system security target - which identifies one reqmred strength of mechanisms rating, the security

enforcmg functions togéther with thelr allocation to components, and the target evaluation levels for each
component (the target evaluation levels for each component will be determined based on a threat dlstnbutlon assessment)

539

- Individual security targets for each component - identifying the relevant security enforcing functions etc. and the
assumptions regarding the environment of the component made for the component to work securely.

To re-use the results of a previous evaluation of a component, the developer would then have to produce a rationale
as to how the functionality expected from the previously evaluated component is consistent with the previously
evaluated functionality: functionality of the component that was previously evaluated must conform to its new
predicates specified in its new security target.

This is clearly impractical for products without a clear statement of ‘mixing rules’ (see below), for a product may
have a rating of [[ES,F-B2},[E2,F-*¥]] which would be very difficult to incorporate sensibly into a system.
However, in the absence of any prescriptive guidance, an assurance profile may be acceptable to system accreditors.

Mixing Rules

Ideally, rules are required for composing components such as a security enforcing e.g. [ES,F-B2] component with
a security relevant e.g. [E3,F-**] component to produce a [ES,F-B2] system. However, the discussion above
demonstrates that the internal functionality of the security relevant [E3,F-**] component may result in an invalid
composition that fails to meet the [ES, F-B2] requirement without further work being performed by the developer

(and also see [TDI]).

However, this form of composition may be possible given the next option - extensions to the criteria.

Expansion of the Relevant ITSEC Criteria

A key aspect of the discussion above is the fact that components can be re-used only at the Architectural and
Detailed Design representations. This results in a limited impact of re-use on the criteria that can be resolved by
updating the individual criteria.

The ITSEC criteria for Architectural and Detailed Design would then need to include rules such as:

If a security enforcing component is specified then
If previously evaluated to > = overall target evaluation level then
Previous correctness assessment results are valid
If previously evaluated < overall target evaluation level then . :
Do additional correctness assessment actions, for overall target level, beyond previous evaluation level

{NB: Additional correctness actions include those for development environment etc. }

If a security relevant component is specified then
If previously evaluated to > = [overall target evaluation level-1] then
Previous correctness assessment results are valid
If previously evaluated to < [overall target level-1] then
Do additional correctness assessment actions, for [overall target level - 1], beyond previous evaluation level

Do effectiveness assessment at overall target evaluation level or highest evaluation level specified for a component

Of course, it may be the case that the additional evidence required for correctness (beyond the previous evaluation
level for the component) cannot be supplied. Then the proposed TOE would have to fail evaluation at its overall
target evaluation level.

It should be noted that the suggested update of the criteria in the way that security relevant components are evaluated
has an impact on all evaluations - not just those where re-use is an issue.

These are just examples to highlight what may be possible (and in fact relate to the inheritance aspect of
decomposition identified in safety critical standards such as DEF STAN 00-56 [DEF-STAN]).

540

Re-use of Strength Ratings

Strength ratings can be re-used according to the strict rule that the rating of high, medium or low of the individual
components must be greater or equal to the strength rating claimed for the TOE.

AN EXAMPLE COMPOSITION
Introduction

Consider the case of an information management system to be ilhplemented using a bespoke application e.g. bespoke
application software (including a Human Computer Interface - "HCI") together with two further components:

~ An ‘off the shelf’ database management system (COMP1)

- An underlying operating system/hardware platform (COMP2).

The new system is targeted at an evaluation level of E3. The security functionality required is based upon the F-B1
functionality class, with additional availability and integrity requirements. In this example of composmon many
design options are available to the developer.

Accounting And Audit Design Options

Some of the design options for meeting the accounting and audit requirements for this example are now considered
further. The design options considered here are:

- Exploit the operating system services available for both accounting and audit purposes (Option 1)

- Exploit the operating system accounting services and develop a bespoke audit tool (Option 2)

- Exploit the operating system accounting services and integrate a commercially available audit product (Option 3).
Option 1

The accounting and audit components of the operating system are to be re-used in the system. These are classed
as security enforcing components for the system and hence must be provided by an operating system previously
evaluated to E3. (Note that if requirements on these components were not specified in the security target for the
system, then they may have been classed as security relevant or even security irrelevant components.)

The set of predicates on the accounting and audit components are specified in the information management system
security target. The previously evaluated operating system security target must therefore be consulted to ensure that
the internal functionality will implement the predicates assumed for the components.

The previous Evaluation Technical Report for the operating system will have to be consulted to ensure that there
are no vulnerabilities that could become exploitable in some way in the new system context (as part of the new
system’s construction vulnerability analysis).

During detailed design the interfacing to the éccounting and audit facilities will have to be addressed. For instance,

" the HCI interface will have to be determined.

541

In summary, the correctness of the previous evaluation results can be assumed. However, the effectiveness
‘assessment will address:

- The suitability of the accounting and audit components of the operating system through a new suitability analysis
(which examines the original operating system’s security target)

- The binding of the accounting and audit services with the actual system implementation (and the HCI in particular)

- Any potential system construction vulnerabilities introduced - including any raised durmg the previous evaluatlon

- The ease of use of the new system implementation. v

Optlon 2

The major difference from Option 1 in using a bespoke auditing application is that the implementation of the audit
trail will form part of the evaluation. The auditing application will have to be targeted at E3 and developed and
evaluated accordingly.

Option 3
The major difference of this scenario from the previous two options is that the auditing product will either have to

have been previously evaluated or will have to form part of the development/evaluation at E3 - all the deliverables
to the evaluation associated with E3 must be available to the evaluators for the ‘monolithic’ evaluation.

If the audit product had previously been evaluated to E3 then the development/evaluation would proceed as in Option
1 above. If the developer intended to use an auditing package that was previously evaluated to E2, then the
developer could:

- Arrange for the additional evidence required for E3 to be delivered to the evaluators and evaluated

- Convince the certifier/accreditor to require only E2 for the audit component, thereby allowmg the correctness of
the previous evaluation results to be re-used, and the system to be ‘profiled’

- If possible, avoid stating the audit requirements in the system security target, thereby transformmg the audit
component into a security relevant or irrelevant component.

However, given the suggested updates to the ITSEC, if the accreditors accepted that the audit component was
security relevant, then the developer could re-use the audit product at E2 totally legitimately; additional work to
achieve E3 would not be required. .
WAY FORWARD
Introduction
As a result of the previous discussions, this section briefly proposes:
- How to handle re-use in the interim
- A longer term approach to resolving the re-use issue.
Preliminary Approach
Assurance profiles for systems are required in the short term - accreditors will have to assess the
threat/countermeasure distribution on the system on a case by case basis. Systems may be given profiled ratings

such as [[E3, F-B1][E2, F-**]...].

Development and evaluation of the overall system should always include effectiveness assessment commensurate
with the highest target evaluation level specified for a component.

542

Products should be targeted at a single evaluation level in order that sensible re-use of their evaluation results can
be made when they are incorporated into systems (products could be decomposed to a level such that they can be
targeted at one evaluation level, if necessary).

Longer Term Approach

The Architectural and Detailed Design criteria of the ITSEC should be updated to take composition of components
into account explicitly. In the light of the expanded criteria, and further utilisation of the discussion of composition,
it may be possible to derive mixing rules to allow an [E3, F-B1] component to be combined with an [E2, F-*¥]
component to produce an overall rating of [E3, F-B1].

Practical research is required, particularly in the area of how threat distribution might be used to enable valid mixing
rules to be formulated.

SUMMARY

Re-use of evaluation results is a hard problem. The above discussion has highlighted a2 potential way forward that
requires significant work and input from developers, accreditors, certifiers and evaluators.

Without resolution of the re-use issue via the provision of clear guidance product developers will find it difficult
to assess the marketability of their product at a particular target evaluation level.

REFERENCES

ITSEC Information Technology Security Evaluation Criteria, Harmonised Criteria of France, Germany,
the Netherlands, United Kingdom, Version 1.2, June 1991.

TCSEC Department of ‘Defense Trusted Computer System Evaluation Criteria, DOD 5200.28-STD,
Department of Defense, December 1985.

TDI Trusted Database Management System Interpretation, NCSC, April 1991.

DEF-STAN Hazard Analysis and Safety Classification of the Computer and Programmable Electronic System
Elements of Defence Equipment, Ministry of Defence, April 1991.

Since 1985 Admiral has been involved with the Communications - Electronics Security Group (CESG) in the
development and application of standards and procedures for security evaluation. In 1985 the Company commenced
operation of the lead Evaluation Facility for CESG, and in 1991 the Evaluation Facility was accredited by the
National Measurement Accreditation Service as a Commercial Licensed Evaluation Facility (CLEF).

Jonathan Smith is a member of the Admiral CLEF, and has been a contributor to the Information Technology
Security Evaluation Manual and UK IT Security Evaluation And Certification Scheme Publications.

543

RISK MANAGEMENT OF COMPLEX NETWORKS

‘ by Richard Cox and Dr. Michael O’ Neill |
CTA Incorporated 7150 Campus Drive, Suite 100, Colorado Springs CO 80920-3178
and Lt Col William Price, HQ AFSPACECOM/LKXS Peterson AFB CO 80914-5001

ABSTRACT

Regarding communications-computer systems security, current Department of Defense (DoD)

- guidance readily applies to standalone systems or simple networks. However, these documents
do not apply easily to complex evolving nerworks -- especially heterogeneous conglomerates
which have existed for several years and are evolving to meet operanonal requirements.

This paper describes a methodology for risk management of complex networks. There are
~three primary tasks: determining a security pohcy, constructing a security architecture, and
developmg an accreditation strategy.

According to DoD policy, all communication-computer Systems are subject to "risk
management,” a process to identify, evaluate, and reduce risks and vulnerabilities. The
ultimate goal of the risk management process is to operate at an acceptable level of risk. This
r;:)sults)m accreditation (written approval to operate) from a Des:gnated Approving Authority
(DAA

A non-trivial problem for many DAAs is how to apply current DoD guidance in accredmng
complex evolving networks. Publications such as DoD Directive 5200.28 [1], the "Orange
Book" [2], and the "Red Book” [3] apply best to systems such as standalone mainframes or
simple networks; these publications do not directly address complex networks. Combining
standalone systems into a network invariably results- in security issues (such as the cascading
problem) which are unique to networks. Recognizing this, the National Research Council
stated, “therensalsoaneedtoaddressbroadersystemsecuntyconcernsmamannerthat
- recogmzes the heterogeneity of mtegrated or conglomerate systems. " [4]

~Complex networks generally have the following characteristics:

- There are at least two interconnected networks. In some cases, there are many
interconnected systems or networks performing critical missions.

- There are many organizations involved in development and acquisition of components, so
there are multiple DAAs. There are usually two or more network DAAs.

- It is a multilevel network; computers or network nodes process different levels of
classified information while users have different clearances and need-to-know restrictions.

- The network has evolved over a period of years, and it continues to evolve. Many of the
' systems predate modern computer security features or capabilities, and subsequent evolutions
- have not explicitly followed these security practices. However, total upgrades or replacements
are neither operationally nor economically feasible.

= The operating command uses and controls the network, and although some components
may have individual approval to operate, the overall network "does not have accreditation.

- There is no overall network security policy.

544
Copyright 1992 CTA Incorporated

For such networks, the risk management process can be extremely complicated and resource
intensive. This paper proposes a risk management methodology which could be followed to
accredit any complex network. A key element of the methodology is reducing complexity to a
level of abstraction’ (mformatmn reduction) which allows meaningful application of current
DoD guidance while meeting operational reqmrements In the cybernetic systems disciplines
this is often referred to as the "Cones of Resolution,” or trying to comprehend the logic of the
basic elements as well as the relatlonshlps among the elements. [5]1 Recent literature refers to
this process as "transition engineering methodology” -- reducing complexity by using data
reduction gnd data abstraction as a means to describe and analyze large complex evolving
systems. [6]

Although the risk management methodology can be described as three tasks, they are not
discrete phases, but parallel and interwoven activities. For example, security pohcy usually
drives the security architecture; but complex networks which have evolved for years often do
not have an overall security pohcy It might be necessary to "reverse engineer” a security
solution for the network, so architectural analysis could precede policy determination to assist
‘in understanding the complexmes of the system. For any complex network, the three tasks
should evolve and iterate concurrently. Although there are several steps within each task, they
are identified according to the primary goal of that task. They are: -

- TaskI: . Determine a security pollcy.
- Task II: Construct a security architecture.
- Task III: Develop an accreditation strategy.

" Before Task I of the methodology, do prellmmary research to determme basic information
about the network: _

Flrst determine network boundaries. ~ Since the goal is to accredit a complex network,
determine boundaries to clearly discriminate between what is in the network and what is in the
environment; between what will be and what will not be accredited. Identify "core” systems
whose primary mission is to process data for the network, and “affiliated” systems whose
primary mission is something other than processing data for the network. : L

Second, review network documentation. Having determined the boundaries of the network,
collect and review all applicable documentation to: _

- Identify the overall mission and functions of the network.

- Identify how the network is managed and controlled.

- Identify the networks, sub-networks, and commumcatlons-computer system components to
be accredited as part of the overall network. These include (but are not limited to) data

sources, communications paths from the data sources, processing entities, and commumca&ons
paths to the users. v

| Third, identify the overall network DAA. Thls is the top-level DAA with authorlty to grant
approval to operate for the entire "network of networks. "

545

Because most complex networks have evolved for years, they often have significant
weaknesses by current security standards. Establishing an overall security policy suggests
solutions to security problems and provides guidelines for future evolution. The security
policy should accommodate the existing system as much as possible to minimize the cost of
changing the network. Task I produces a Network Secunty Policy (NSP) which should
address at least seven areas:

(1) Network Security Objectives. Identify pnmary and secondm;{’ security objecuves The
primary obJectlves will include confidentiality, integrity, and availability.

(2) Roles and Responsibilities. Establish specific duties and tasks for all personnel with
network -interfaces. These include (a) DAAs at all levels; (b) MAJCOM and Base Level
Communications-Computer Security Officers (CSOs), MAJCOM and Base Computer Systems
Secunty Managers (MCSSMs and BCSSMs); (c) Network Managers (NMs) and Network
Security Officers (NSOs); (d) Computer Systems Managers (CSMs) and Computer ‘Systems
Security Officers (CSSOs); (¢) Functional Area Managers (FAMs) and Terminal Area Security
Officers (TASOs); (f) systems analysts, programmers, and software support petsonnel (2)
system administrators; and (h) computer/network users.

(3 Life Cycle Management. Identify life cycle phases for network additions, deletions, and
m..difications, and especially for new systems being developed to interface with the network.
Explain how DAAs will accredit and reaccredit s‘y('stems throughout their life cycle.
Emphasize the need to continually monitor the network to ensure security measures remain
effective after system changes.

C)) Network Security Measures. Specify policies and procedures regarding:

- Physical security, which involves protection and survivability for personnel and
equipment; protection against intentional human threats such as theft, sabotage, and espnonage
and environmental security. ‘ ‘

- Procedural security, which protects against umntentlonal human threats such as madvertent
blunders, improper maintenance, etc.

and need to know.

‘- - Information security (INFOSEC), which includes procedures for handling classiﬁed and
sensitive unclassified information; magnetic remanence; fraud, waste, and abuse, etc.

- Personnel security, involving clearance (including access to categories or compartments)

- Communication security (COMSEC) to protect secure and sensitive communications.
- - Emanations security (TEMPEST) to prevent exploitation of electronic signal radiations.

- Operations security (OPSEC) to identify, control, and protect eiridence of ‘the planning
- and execution of sensitive activities. ,

546

- Trusted systems security, which includes trusted computing base (TCB) classes, modes of
operation, identification and authentication, discretionary and mandatory access control object
reuse, audit trails, labels, trusted paths, and documentation requirements.

- Hardware security, which involves nonvolatile storage media, penpheral security,

~ maintenance activities, penods processing, and firmware.

- Software securlty, which involves evaluated and non-evaluated products user-developed
software; public domain software, freeware, and shareware; software development, testing,
and debuggmg, security software; job control language; conﬁguratlon management; - trusted
software, data base management systems (DBMS); maintenance activities; and malicious logic.

- Integrity meastl_res such as device identification, rnessage management, protocols, and
integrity checks.

- Other security. considerations such as '»interface policies and resource allocation policies.

(5) Contingency and Emergency Plans. Establish criteria for developing and testing
contingency and emergency plans, espectally policies for making and storing backups.

(6) Education, Training, and Awareness Idenufy policies and procedures for all aspects of
security training, including initial and recurring training for all personnel, specialized training
requirements for personnel in key security positions, and minimum standards for NSO-
developed training. : .

(7) Incident and Vulnerabrhty Reportmg Establish policies and procedures for 1dent1fymg

and reporting incidents and vulnerabilities.

Policy development must focus on specifically tailoring DoD guidance to the network. The
Orange Book uses abstract terms such as subjects, objects, groups of subjects, need-to-know,
security labels, discretionary access controls, and mandatory access controls. The pohcy
should describe what these abstract terms mean in the context of the network. Key decisions
might be whether network nodes are subjects, or whether users or processes residing on the
nodes are processes. The former view allows the policy to operate at a higher, more abstract
level, while the latter leads to a more complex policy. If the former view were feasible, the
developer of a particular. node would refine the pohcy for the particular node. The refined
policy would have to address the users and processes operating on the node.

The policy should address specific issues such as the range of security labels which the
network must accommodate; specific objects having security labels; how- security labels are
determined for objects; the various users, communities, groups of users, and actions which are
subject to discretionary or mandatory access controls.

3 B .

Task 11 has three steps: construct the general archltecture, construct the security archrtectnre (a
subset of the general architecture), and identify security architecture issues. The. primary goal
of this task is constructmg the security architecture.

Step 1 Construct the general architecture. From hrgh—level perspectives, it is possrble to
construct many different general models of the network. The methodology suggests
constructing general architectures (including simple models or diagrams) from at least two
points of view:

547

- Mission architecture. Divide the primary mission into mission components, then
determine which centers and information processing centers support each component. Finally,
determine which elements of the network support the centers to accomplish their missions.
(Some elements may support more than one mission.) If the network has a command and
control structure, identify the flow of mission command and control from the highest agencies
controlling the network o the lowest agencies contributing to the network.

- Communications-computer system architecture. Identify data flow from individual
sources, through various communications channels, to processing entities such as correlation
‘centers through other commumcattons channels, to ‘the network users.

Step 2: Construct the security architecture. While general architectures can be done at a high
level, the security architecture must be very detailed. It must identify general security facts,
assess the network’s ability to meet primary security objectives, and describe protectlon
mechanisms used by the network

Frrst 1dentrfy general security facts about the entire network

- Highest and lowest classifications processed (including categones and compartments), or
types of sensitive unclassified being processed.

- Muumum and maximum user clearances and restrictions (i.e., user hmrtatlons based on
clearance, access to categories and compartments, or need to know)

- All security modes of operatron (dedicated, system hlgh partmoned or multilevel) used
throughout the network.

- All TCB classes (ranging from class D to class A1) used throughout the network.
Second, assess how the network achieves these three security objectives:

- How does the network protect classified or sensitive unclassified data from unauthorized
disclosure (confidentiality)?

- How does the network ensure system mtegnty (the ability to function ummpmred free
from deliberate or inadvertent unauthorized manipulation) and data integrity (i.e., data
correctly represents information, and authorized users and network processors handle and
manipulate the data properly)?

- How does the netvs;ork provide both assurance of service (for authorized users) and denial
of service (to unauthorized users)?

Third; specifically identify and describe mechanisms which protect against common threats and
vulnerabilities to the network. Be sure to cover all the disciplines mentioned in the NSP,
including physical security, procedural security, personnel security, INFOSEC, COMSEC,
TEMPEST, OPSEC, trusted systems security, hardware and software security, integrity
mechamsms and other secunty measures.

Step 3: Identify and document security architecture issues uncovered during network
investigation analysrs Make recommendations to resolve these issues.

548

TASK 1II -- ACCREDITATION STRATEGY
Core systems (whose primary mission 1s to process data for the network), follow a parucular
process to obtain "approval to operate,” while affiliated systems (whose primary mission is

somethmg other than processmg data for the network), follow drfferent procedures to obtam
"approval to connect.” _ ‘

For core systems, Task III has four steps: establish a security management structure, develop
risk analysis and certification procedures for security personnel establish standard procedures
‘for component DAAS to grant approval to operate (for core systems) or approval to. connect
(for afﬁlratedksystems), and establish a mechanism for the overall network DAA to accrednt the
entire networ

To illustrate this process, Figure 1 shows a relanvely simple "network of networks For
simplicity, there are only nine Central Processmg Units (CPUs) grouped .into three networks,
plus the overall "network of networks.” Because the CPUs are assumed to be geograplncally
separated, there are nine DAAs for the nine CPUs, three DAAs for the three networks, and
one nc;twork DAA for the "network of networks” - a total of 13 DAAs in this simple
example. L . PR

OVERALL NETWORK DAA

"NETWORK OF NETWORKS"

~ . Network-1DAA .

Network-2 DAA " Network-3DAA

Figure 1. A Simple "Network of Networks"

549

Step 1: Establish a security management structure to implement and enforce the NSP. Begin
by appointing the overall network DAA, then (throughout the entire network) ensure the
intment of component DAAs, network managers (NMs), computer system managers
(CSMs), network security officers (NSOs), and computer system security officers (CSSOs).
Finally, establish security working groups to represent the various interests and organizations
within the network. These groups are forums to identify and resolve security relevant issues.

Because there are multiple DAAs, approval is an iterative process, repeated at least once by
each of the component DAAs under the overall network DAA. Figure 2 shows a "pyramid”
of DAAsthwith the overall network DAA at the top and four levels of component DAAs
underneath.-

Approval starts at the bottom, when "Level 4" DAAs approve their systems and forward
paperwork to their "Level 3" DAAs. Then the "Level 3" DAAs approve their systems and
forward paperwork to their "Level 2" DAAs. The process continues until the "Overall
Network DAA" receives paperwork from the "Level 1" DAAs and accredits the entire
network. This iterative process means that steps 2 and 3 (risk analysis and certification, and
DAA approval) are repeated many times.

Overall
Network DAA

LEVEL 1 DAAs

Figure 2. A "Pyramid” of DAAs

550

Step 2: Establish standard risk management procedures for security personnel to perform a
_ risk analysis and provide certification to the DAA. :

The risk analysis includes:

- The security environment assessment, which includes a criticality assessment to determine
the relative importance of confidentiality, integrity, and availability; determining basic security
facts such as data sensitivity and user clearances and restrictions; the required mode of
operation; and the required TCB class. : -

- The risk assessment to analyze threats, vulnerabiliﬁes; and existing couhtermeasui‘és to
estimate the probabilities of threats exploiting vulnerabilities. The goal of risk assessment is to
determine residual risks. ;

- The Security Test and Evaluation (ST&E), to verify that countermeasures are working
properly to reduce threats and vulnerabilities to an acceptable level of risk. _

- The countermeasure assessment to determine what additional couhtermwsures, should be
used (or, perhaps, are already planned to be used) to further minimize risks, and to determine
the technical and economic feasibility of implementing the additional countermeasures.

Certification documentation includes all the written results of the risk analysis with a cover
letter to the DAA requesting approval to operate. Some attachments (such as the TEMPEST
countermeasure assessment) may be classified. - This documentation:

- Certifies the ability of the system to meet the requirements of the Network Security
Policy.

- Summarizes the result of the security environment assessment, including the criticality
assessment, basic security facts, the security mode of operation, and the required TCB class.

- Identifies and quantifies residual risks which the DAA must accept before accrediting the
system.

- Makes recommendations regarding the technical and economic feasibility of additional
countermeasures which should be used (or are planned to be used) to further minimize risks to
the system.

- Requests interim or final approval to operate.

Step 3: Establish procedures for component DAAs to grant approval to operate for their part
of the network (or approval to connect for their affiliated systems), and provide certification to
the next higher DAA. : ' 1

Using Figu:re‘ 1 as an example, key security personnel for each of the nine CPUs perform a
risk analysis and provide certification to %e nine DAAs. After each DAA accredits their
individual systems, they provide certification to their respective network DAAs.

For each of the three networks, key security personnel examine the certification documentation
provided by the DAAs for the standalone systems. A key security concern at this point must
be the "cascading problem,” which can result in serious security compromises. If cascading is
a problem, they must consider countermeasures such as upgrading systems to a higher class,
using guard processors, end-to-end encryption, etc. These key personnel perform a network
risk analysis and provide certification to their respective network DAAs. -

551.

Each of the three network DAAs accredit their md1v1dual networks and provide certification to
the overall network DAA. Security personnel who work for the overall network DAA
examine the certification documentation provided by the three network DAAs. Then they
perform a risk analysis for the entire "network of networks" and provide certification to the
overall network DAA.

Obviously, this example based on Figure 1 is very simple; real-world networks are
considerably more complex, and the process could involve many levels of iteration. '

Step 4 achieves the final goal: the overall network DAA accredits the entire "network of
networks," granting interim or final approval to operate. The approval documentation must
specify what time period or what events will require reaccreditation of the entire network. -

SUMMARY

Risk management of complex networks is difficult and resource intenmsive, but not an
impossible task. A

- During preliminary reseafch, determine network boundaries, review existing
documentation, and identify the overall network DAA. o

- Publish a Network Security Policy (NSP) which covers the full spectrum of
communications-computer system security disciplines and requirements.

- Construct a detailed security architecture which describes the mechanisms used to protect
against threats and vulnerabilities. Identify security issues uncovered during this task.

- Develop an accreditation strategy for the network. Establish a secunty ‘management
structure to implement and enforce the NSP. Set up an iterative process for security personnel
to perform risk analysis and provide certification documentation to the DAA. This process
begins at the lowest levels of the security management structure and gradually encompasses
more and more systems as successive DAAs accredit their portion of the network. Ultimately,
the overall network DAA accredits the entire network. .

REFERENCES

[1]1 DoD Directive 5200.28, Security Requirements for Automated Information Systems
(AIS), 21 Mar 88.

[2] DoD 5200.28-STD, Depamnent of Defense Trusted Computer System Evaluation Criteria
("Orange Book"), Dec 85.

[3] NCSC-TG-005, Trusted Network Interpretation of the Trusted Computer System
Evaluation Criteria ("Red Book"), 31 Jul 87.

[4] The National Research Council: Computers at Risk, 1991, page 140.

[5] Beer, Stafford, Management Science: The Business Use of Operat:ons Research, 1968;
Schoderbek Peter et al., Management Systems: Conceptual Considerations, 1975.

[6} Salasin, John and Chilli, Frank, "Transition Engineering Methodology”, IEEE
Proceedings, 1990, page 110.

552

AIS
BCSSM

COMSEC
CPU
CSM
CSO
CSSO

DAA
DBMS
DoD

FAM

IEEE
INFOSEC

MAJCOM
MCSSM

NCSC
NM
NSO
NSP

OPSEC
ST&E
TASO

TCB
TEMPEST

ACRONYMS
Automated Information System
Base Computer Systems Securityl Manager
Communications Security
Central Processing Unit
Computer Systems Manager

Communications-Computer Security Officer
Computer Systems Security Officer

Designated Approving Authority
Data Base Management System
Department of Defense

Functional Area Manager

Institute of Electrical and Electronics Engineers
Information Security

Major Command
MAJCOM Computer Systems Security Manager

National Computer Security Center

‘Network Manager

Network Security Officer
Network Security Policy

Operations Security

Security Test and Evaluation
Terminal Area Security Officer

Trusted Computing Base
Emanations Security

553

Role-Based Access Controls

David Ferraiolo and Richard Kuhn

National Institute of Standards and Technology
Technology Administration
U.S. Department of Commerce
Gaithersburg, Md. 20899 USA

ABSTRACT

While Mandatory Access Controls (MAC) are appropriate for multi-
level secure military applications, Discretionary Access Controls (DAC)
are often perceived as meeting the security processing needs of industry
and civilian government. This paper argues that reliance on DAC as the
principal method of access control is unfounded and inappropriate for
many commercial and civilian government organizations. The paper
describes a type of non-discretionary access control - role-based access
control (RBAC) - that is more central to the secure processing needs of
non-military systems then DAC. I

Keywords: access control, computer security, discretionary access control, integrity,
mandatory access control, role, TCSEC

1. Introduction

The U.S. government has been involved in developing security technology for com-
puter and communications systems for some time. Although advances have been great, it
is generally perceived that the current state of security technology has, to some extent
failed to address the needs of all. [1] , [2] This is especially true of organizations outside
the Department of Defense (DoD). [3]

The current set of security criteria, criteria interpretations, and guidelines has grown
out of research and development efforts on the part of the DoD over a period of twenty
plus years. Today the best known U.S. computer security standard is the Trusted Com-
puter System Evaluation Criteria (TCSEC [4]). It contains security features and
assurances, exclusively derived, engineered and rationalized based on DoD security pol-
icy, created to meet one major security objective -- preventing the unauthorized observa-
tion of classified information. The result is a collection of security products that do not
fully address security issues as they pertain to unclassified sensitive processing environ-
ments. Although existing security mechanisms have been partially successful in promot-
ing security solutions outside of the DoD [2] , in many instances these controls are less
then perfect, and are used in lieu of a more appropriate set of controls.

The TCSEC specifies two types of access controls: Discretionary Access Controls
(DAC) and Mandatory Access Controls (MAC). Since the TCSEC’s appearance in

554

December of 1983, DAC requirements have been perceived as being technically correct
for commercial and civilian government security needs, as well as for single-level mili-
tary systems. MAC is used for multi-level secure military systems, but its use in other
applications is rare. The premise of this paper is that there exists a third type of access
control, referred to as Role-Based Access Control (RBAC), that can be more appropriate
and central to the secure processing needs within industry and civilian government than
that of DAC, although the need for DAC will continue to exist.

2. Aspects of Security Policies

Recently, considerable attention has been paid to researching and addressing the
security needs of commercial and civilian government organizations. It is apparent that
significant and broad sweeping security requirements exist outside the Department of
Defense. [2] , [5] , [6] Civilian government and corporations also rely heavily on infor-
mation processing systems to meet their individual operational, financial, and informa-
tion technology requirements. The integrity, availability, and confidentiality of key
software systems, databases, and data networks are major concerns throughout all sec-
tors. The corruption, unauthorized disclosure, or theft of corporate resources could dis-
rupt an organization’s operations and have immediate, serious financial, legal, human
safety, personal privacy and public confidence impact.

Like DoD agencies, civilian government and commercial firms are very much con-
cerned with protecting the confidentiality of information. This includes the protection of
personnel data, marketing plans, product announcements, formulas, manufacturing and
development techniques. But many of these organizations have even greater concern for
integrity. [1]

Within industry and civilian government, integrity deals with broader issues of
security than confidentiality. Integrity is particularly relevant to such applications as
funds transfer, clinical medicine, environmental research, air traffic control, and avionics.
The importance of integrity concerns in defense systems has also been studied in recent
years. [7] , [8]

A wide gamut of security policies and needs exist within civilian government and
private organizations. An organizational meaning of security cannot be presupposed.
Each organization has unique security requirements, many of which are difficult to meet
using traditional MAC and DAC controls.

As defined in the TCSEC and commonly implemented, DAC is an access control
mechanism that permits system users to allow or disallow other users access to objects
under their control:

A means of restricting access to objects based on the identity of subjects and/or
groups to which they belong. The controls are discretionary in the sense that a
subject with a certain access permission is capable of passing that permission
(perhaps indirectly) on to any other subject (unless restrained by mandatory
access control). [4]

DAC, as the name implies, permits the granting and revoking of access privileges to be
left to the discretion of the individual users. A DAC mechanism allows users to grant or
revoke access to any of the objects under their control without the intercession of a sys-
tem administrator. ‘

555

In many organizations, the end users do not "own" the information for which they
are allowed access. For these organizations, the corporation or agency is the actual
"owner" of system objects as well as the programs that process it. Control is often based
on employee functions rather than data ownership.

Access control decisions are often determined by the roles individual users take on
as part of an organization. This includes the specification of duties, respons1b1ht1es and
qualifications. For example, the roles an individual associated with a hospital can
assume include doctor, nurse, clinician, and pharmacist. Roles in a bank include teller,
loan officer, and accountant. Roles can also apply to military systems; for example, tar-
get analyst, situation analyst, and traffic analyst are common roles in tactical systems. A
role based access control (RBAC) policy bases access control decisions on the functions
a user is allowed to perform within an organization. The users cannot pass access per-
missions on to other users at their discretion. This is a fundamental difference between
RBAC and DAC.

Security objectives often support a higher level organizational policy, such as main-
taining and enforcing the ethics associated with a judge’s chambers, or the laws and
respect-for privacy associated with the diagnosis of ailments, treatment of disease, and
the administering of medicine with a hospital. To support such policies, a capability to
centrally control and maintain access rights is required. The security administrator is
responsible for enforcing policy and represents the organization.

The determination of membershlp and the allocation of transactions to a role is not
so much in accordance with discretionary decisions on the part of a system administrator,
but rather in compliance with organization-specific protection guidelines. These policies
are derived from existing laws, ethics, regulations, or generally accepted practices.
These policies are non-discretionary in the sense that they are unavoidably imposed on
all users. For example, a doctor can be provided with the transaction to prescribe medi-
cine, but does not possess the authority to pass that transaction on to a nurse.

' RBAC is in fact a form of mandatory access control, but it is not based on multi-
level security requirements. As defined in the TCSEC, MAC is

A means of restricting access to objects based on the sensitivity (as represented
by a label) of the information contained in the objects and the formal authori-
zation (i.e. clearance) of subjects to access information of such sensitivity. [4]

Role based access control, in many applications (e.g. [9] , [10] , [11]) is concerned more
with access to functions and information than strictly with access to information.

The act of granting membership and specifying transactions for a role is loosely
analogous to the process of clearing users (granting membership) and the labeling (asso-
ciate operational sensitivities) of objects within the DoD. The military policy is with
respect to one type of capability: who can read what information. For these systems the
unauthorized flow of information from a high level to a low level is the principal con-
cern. As such, constraints on both reads and writes are in support of that rule. Within a
role-based system, the principal concern is protecting the integrity of information: "who
can perform what acts on what information."

A role can be thought of as a set of transactlons that a user or set.of users can per-
form within the context of an organization. Transactions are allocated to roles by a sys-
tem administrator. Such transactions include the ability for a doctor to enter a diagnosis,

556

prescribe medication, and add a entry to (not simply modify) a record of treatments per-
formed on a patient. The role of a pharmacist includes the transactions to dispense but
not prescribe prescription drugs. Membership in a role is also granted and revoked by a
system administrator.

Roles are group oriented. For each role, a set of transactions allocated the role is
maintained. A transaction can be thought of as a transformation procedure [1] (a pro-
gram or portion of a program) plus a set of associated data items. In addition, each role
has an associated set of individual members. As a result, RBACs provide a means of
naming and describing many-to-many relationships between individuals and rights. Fig-
ure 1 depicts the relationships between individual users, roles/groups, transformation pro-
cedures, and system objects. :

The term transaction is used in this paper as a convenience to refer 0a bmdmg of
transformation procedure and data storage access. This is not unlike conventional usage
of the term in commercial systems. For example, a savings deposit transaction is a pro-
cedure that updates a savings database and transaction file. A transaction may also be
quite general, e.g. "read savings file". Note however, that "read" is not a transaction in
the sense used here, because the read is not bound to a particular data item, as "read sav-
ings file" is. :

The importance of control over transactions, as opposed to simple read and write
access, can be seen by considering typical banking transactions. Tellers may execute a
savings deposit transaction, requiring read and write access to specific fields within a sav-
ings file and a transaction log file. An accounting supervisor may be able to execute
correction transactions, requiring exactly the same read and write access to the same files
as the teller. The difference is the process executed and the values written to the transac-

tion log file.

Object!

Object2

Figure t - Role relationships

The applicability of RBAC to commercial systems is apparent from its widespread
use. Baldwin [9] describes a database system using roles to control access. Nash and

557

Poland [10] discuss the application of role based access control to cryptographic authen-
tication devices commonly used in the banking industry. Working with industry groups,
the National Institute of Standards and Technology has developed a proposed standard,
"Security Requirements for Cryptographic Modules," (Federal Information Processing
Standard 140-1) [11] that will require support for access control and administration
through roles. To date, these role based systems have been developed by a variety of
organizations, with no commonly agreed upon definition or recognition in formal stan-
dards. Role based access controls described in this paper address security primarily for
application-level systems, as opposed to general purpose operating systems.

3. Formal Description of RBAC

To clarify the notions presented in the previous section, we give a simple formal
description, in terms of sets and relations, of role based access control. No particular
implementation mechanism is implied. ‘

For each subject, the active role is the one that the subject is currently using:
AR (s:subject) = {the active role for subject s}.

Each subject may be authorized to perform one or more roles:
RA (s:subject) = {authorized roles for subject s }.

Each role may be authorized to perform one or more transactions:

TA({r:role }) = {transactions authorized for role r }.
Subjects may execute transactions. The predicate exec(s,) is true if subject s can exe-
cute transaction ; at the current time, otherwise it is false:

exec (s:subject, t:tran) = true iff subject s can execute transaction .

Three basic rules are required:

(1) Role assignment: A subject can execute a transaction only if the subject has
selected or been assigned a role: : ‘

Vs:subject t:tran(exec(s,t) = AR (s) # D).
The identification and authentication process (e.g. login) is not considered a transaction.
All other user activities on the system are conducted through transactions. Thus all
active users are required to have some active role.
(2) Role authorization: A subject’s active role must be authorized for the subject:
Vs:subject (AR (s) c RA(s)).
With (1) above, this rule ensures that users can take on only roles for which they are
authorized.
(3) Transaction authorization: A subject can execute a transaction only if the transac-
tion is authorized for the subject’s active role:.
Vs :subject, t:tran(exec (s,t) = { € TA(AR(5))).

With (1) and (2), this rule ensures that users can execute only transactions for which they
are authorized. Note that, because the conditional is "only if", this rule allows the possi-
bility that additional restrictions may be placed on transaction execution. That is, the rule
does not guarantee a transaction to be executable just because it is in TA (AR (s)), the set of

558

transactions potentially executable by the subject’s active role. For example, a trainee for
a supervisory role may be assigned the role of "Supervisor”, but have restrictions applied
to his or her user role that limit accessible transactions to a subset of those normally
allowed for the Supervisor role.

In the preceding discussion, a transaction has been defined as a transformation pro-
cedure, plus a set of data items accessed by the transformation procedure. Access control
in the rules above does not require any checks on the user’s right to access a data object,
or on the transformation procedure’s right to access a data item, since the data accesses
are built into the transaction. Security issues are addressed by binding operations and
data into a transaction at design time, such as when privacy issues are addressed in an
insurance query transaction.

It is also possible to redefine the meaning of "transaction” in the above rules to refer
only to the transformation procedure, without including a binding to objects. This would
require a fourth rule to enforce control over the modes in which users can access objects
through transaction programs. For example, a fourth rule such as

(4) s:subject, t:tran, 0:0bject (exec (s, t) = access (AR (s),t,0,x))

could be defined using a transaction (redefined to transformation procedure) to object
access function access(r, ¢, 0, x) which indicates if it is permissible for a subject in role r
to access object o in mode x using transaction ¢, where x is taken from some set of modes
such as read, write, append. Note that the Clark-Wilson access control triple could be
implemented by letting the modes x be the access modes required by transaction ¢, and
having a one-to-one relationship between subjects and roles. RBAC, as presented in this
paper, thus includes Clark and Wilson access control as a special case.

Use of this fourth rule might be appropriate, for example, in a hospital setting. A
doctor could be provided with read/write access to a prescription file, while the hospital
pharmacist might have only read access. (Recall that use of the first three rules alone
requires binding the transaction program : and data objects that ¢ can access, and only
controls access to the transactions.) This alternative approach using the fourth rule might
be helpful in enforcing confidentiality requirements.

Another use of RBAC is to support integrity. Integrity has been defined in a variety
of ways, but one aspect [8] of integrity is a requirement that data and processes be
modified only in authorized ways by authorized users. This seems to be a reasonable
security objective for many real systems, and RBAC should be applicable to such sys-
tems.

In general, the problem of determining whether data have been modified only in
authorized ways can be as complex as the transaction that did the modification For this
reason, the practical approach is for transactions to be certified and trusted. If transac-
tions must be trusted then access control can be incorporated directly into each transac-
tion. Requiring the system to control access of transaction programs to objects through
the access function used in rule (4) might then be a useful form of redundancy, but it
could involve significant overhead for a limited benefit in enforcing integrity require-
ments. Therefore, inclusion of a transaction to object access control function in RBAC
would be useful in some, but not all applications.

559

o
|

.
8

4. Centrally Administering Security Using RBAC

RBAC is flexible in that it can take on organizational characteristics in terms of pol-

icy and structure. One of RBAC’s greatest virtues is the administrative capabilities it
supports. | L _
Once the transactions of a Role are established within a system, these transactions
tend to remain relatively constant or change slowly over time. The administrative task
consists of granting and revoking membership to the set of specified named roles within
the system. When a new person enters the organization, the administrator simply grants
membership to an existing role. When a person’s function changes within the organiza-
tion, the user membership to his existing roles can be easily deleted and new ones
granted. Finally, when a person leaves the organization, all memberships to all Roles are
deleted. For an organization that experiences a large turnover of personnel, a role-based
security policy is the only logical choice.

In addition, roles can be composed of roles. For example, a Healer within a hospital
can be composed of the roles Healer, Intern, and Doctor. Figure 2 depicts an example of
such a relationship.

By granting membership to the Role Doctor, it implies access to all transactions
defined by Intern and Healer, as well as those of a Doctor. On the other hand, by grant-
ing membership to the Intern role, this implies transactions of the Intern and Healer not
the Doctor. However, by granting membership to the Healer role, this only allows access
to those resources allowed under the role Healer.

5. Principle of Least Privilege

The principle of least privilege has been described as important for meeting
integrity objectives. [8] The principle of least privilege requires that a user be given no
more privilege than necessary to perform a job. Ensuring least privilege requires identi-
fying what the user’s job is, determining the minimum set of privileges required to per-
form that job, and restricting the user to a domain with those privileges and nothing
more. By denying to subjects transactions that are not necessary for the performance of
their duties, those denied privileges cannot be used to circumvent the organizational
security policy. Although the concept of least privilege currently exists within the con-
text of the TCSEC, requirements restrict those privileges of the system administrator.
Through the use of RBAC, enforced minimum privileges for general system users can be
easily achieved. '

6. Separation of Duties

RBAC mechanisms can be used by a system administrator in enforcing a policy of
separation of duties. Separation of duties is considered valuable in deterring fraud since
fraud can occur if an opportunity exists for collaboration between various job related
capabilities. Separation of duty requires that for particular sets of transactions, no single
individual be allowed to execute all transactions within the set. The most commonly
used examples are the separate transactions needed to initiaté a payment and to authorize
a payment. No single individual should be capable of executing both transactons.
Separation of duty is an important consideration in real systems. [1] , [12} , [13] ,[14]
The sets in question will vary depending on the application. In real situations, only -

560

objectt

)
s_b%

ser3
object2 _
member_of
object3
Object4
member_of
ObjectS
User?7

memoer ot User8

Object6 User9

Figure 2 - Multi-Rale relationships

certain transactions need to be restricted under separation of duty requirements. For
example, we would expect a ransaction for "authorize payment” to be restricted, but a
transaction "submit suggestion to administrator” would not be.

Separation of duty can be either static or dynamic. Compliance wuh static separa-
tion requirements can be determined simply by the assignment of individuals to roles and

allocation of transactions to roles. The more difficult case is dynamic separation of duty.
561

M
ol
: k)
=)

where compliance with requirements can only be determined during system operation.
The objective behind dynamic separation of duty is to allow more flexibility in opera-
tions. Consider the case of initiating and authorizing payments. A static policy could
require that no individual who can serve as payment initiator could also serve as payment
authorizor. This could be implemented by ensuring that no one who can perform the ini-
tiator role could also perform the authorizer role. Such a policy may be too rigid for
commercial use, making the cost of security greater than the loss that might be expected
without the security. More flexibility could be allowed by a dynamic policy that allows
the same individual to take on both initiator and authorizer roles, with the exception that
no one could authorize payments that he or she had initiated. The static policy could be
implemented by checking only roles of users; for the dynamic case, the system must use
both role and user ID in checking access to transactions.

Separation of duty is necessarily determined by conditions external to the computer
system. The Clark-Wilson [1] scheme includes the requirement that the system maintain
the separation of duty requirement expressed in the access control triples. Enforcement
is on a per-user basis, using the user ID from the access control triple. As discussed
above, user functions can be conveniently separated by role, since many users in an
organization typically perform the same function and have the same access rights on TPs
and data. Allocating access rights according to role is also helpful in defining separation
of duty in a way that can be enforced by the system.

7. Summary and Conclusions

In many organizations in industry and civilian government, the end users do not
"own" the information for which they are allowed access. For these organizations, the
corporation or agency is the actual "owner" of system objects; and discretionary access
control may not be appropriate. Role-Based Access Control (RBAC) is a non-
discretionary access control mechanism which allows and promotes the central adminis-
tration of an organizational specific security policy.

Access control decisions are often based on the roles individual users take on as part
of an organization. A role specifies a set of transactions that a user or set of users can
perform within the context of an organization. RBAC provide a means of naming and
describing relationships between individuals and rights, providing a method of meeting
the secure processing needs of many commercial and civilian government organizations.

Various forms of role based access control have been described and some are used
in commercial systems today, but there is no commonly accepted definition or formal
standards encompassing RBAC. As such, evaluation and testing programs for these sys-
tems have not been established as they have for systems conforming to the Trusted Com-
puter Security Evaluation Criteria. This paper proposed a definition of The requirements
and access control rules for RBAC proposed in this paper could be used as the basis for a
common definition of access controls based on user roles.

References

1. D.D. Clark and D.R. Wilson, "A Comparison of Commercial and Military Com-
puter Security Policies," IEEE Symposium on Computer Security and Privacy,
April, 1987.

562

10.

11.

12.

13.

14.

National Research Council, Computers at Risk, National Academy Press, 1991.

National Institute of Standards and Technology, Minimum Security Functionality
Requirements for Multi-User Operating Systems (draft), Computer Systems Labora-
tory, NIST, January 27, 1992.

Department of Defense, Trusted Computer Security Evaluation Criteria, DOD
5200.28-STD, 1985.

Z.G. Ruthberg and W.T. Polk, Editors, Repbrt of the Invitational Workshop on
Data Integrity, Natl. Inst. of Stds. and Technology, SP 500-168, 1989.

S.W. Katzke and Z.G. Ruthberg, Editors, Report of the Invitational Workshop on
Integrity Policy in Computer Information Systems, Natl. Inst. of Stds. and Technol-
ogy, SP 500-160, 1987.

J.E. Roskos, S.R. Welke, .M. Boone, and T. Mayfield, Integrity in Tactical and
Embedded Systems, Institute for Defense Analyses, HQ 89-034883/1, October,
1989. '

National Computer Security Center, Integrity in Automated Information Systems ,
September, 1991.

R.W. Baldwin, "Naming and Grouping Privileges to Simplify Security Management
in Large Databases," IEEE Symposium on Computer Security and Privacy, 1990.
M.J. Nash and K.R. Poland, "Some Conundrums Concerning Separation of Duty,"
IEEE Symposium on Computer Security and Privacy, 1990.

National Institute of Standards and Technology, Security Requirements for Crypto-
graphic Modules, Natl. Inst. of Stds. and Technology, FIPS 140-1, 1992.

W.R. Shockley, "Implementing the Clark/Wilson Integrity Policy Using Current
Technology," Proceedings of 11th National Computer Security Conference,
October, 1988.

R. Sandhu, "Transaction Control Expressions for Separation of Duties," Fourth
Aerospace Computer Security Applications Conference, December, 1988.

P. Terry and S. Wiseman, "A ’New’ Security Policy Model," IEEE Symposium on
Computer Security and Privacy, May, 1989.

563

AN SDNS PLATFORM FOR TRUSTED PRODUCTS

Ernie Borgoyne
- Motorola Inc., Government Electronics Group
8201 E. McDowell Road, Mail Stop H2250
Scottsdale, Arizona 85252

Ralph G. Puga
Trusted Information Systems, Inc.
3060 Washington Road (Rt. 97)
Glenwood, Maryland 21738

ABSTRACT

The Network Encryption System (NES) security platform is designed with an open architecture
that allows commercially available trusted products to be easily mtegrated with Secure Data
Network System (SDNS) technology. SDNS is the U.S. government's new mainstream secure
networking technology that offers significant cost benefits to users because of its scalability and
interoperability of services. This paper presents a brief overview of the Secure Data Network
System and a description of the SDNS based Network Encryption System. It then discusses the
work that is being done in developing a trusted SDNS interface for the NES by integrating
Trusted Xenix™ onto the NES security platform. :

INTRODUCTI

The NES was evaluated by the National Security Agency (NSA) under the Commercial
COMSEC Endorsement Program (CCEP). The NES is the first product designed to SDNS
standards, endorsed by NSA, and available today. The open architecture design of the NES
security platform provides the ability to integrate standard commercially available networking and
security technology, including network media interface boards, network routing and management
software, and COMPUSEC evaluated trusted computer products. The benefit of the NES open
COMSEC architecture, is that it provides an SDNS platform that can be used as a foundation for
a variety of new INFOSEC applications and products. Figure 1 illustrates the essence of this
commercial technology utilization by the NES security platform.

RADIO

= son ™

) - ™

HARDWARE = I =
i CIsC

~FIBER OPTICS
X25
- -
WANs

SECURE SECURITY LINK SECURITY SECURE
COMPUTER
ComPuTER SERVERS PRODUCTS GATEWAYS

Figure 1 INFOSEC PRODUCT Platform

,,,,,,

564

This paper will first present an overview of SDNS for the benefit of those who are not familiar
with this new technology. The NES will then be presented including a description of the NES
security platform's basic open architecture, which will allow the reader to understand how the
new SDNS technology can be easily utilized. A new configuration will then be presented called
the INFOSEC Computer Platform. The INFOSEC Computer Platform incorporates an
embedded 386-based processor board within the NES security platform, running Trusted
Xenix™ and a trusted interface to the SDNS functions. This interface will allow user application
software together with a B2+ level secure operating system to be integrated within the same
- physical environment. As the product evolves, this SDNS interface can be extended to allow
secure end-to-end communications via standard networks through the use of networking
applications. This paper will conclude by presenting some potential applications for this
proposed INFOSEC platform.

SECURE DATA NETWORK SYSTEM

SDNS is a set of standards for interoperability of data security devices over public and private
data networks. The SDNS standards were developed by a U.S. government and industry
consortium, and sponsored by the National Security Agency. Established in 1986, the
consortium has produced a set of security protocol specifications for the application of security
functions at various layers in the network communication stack. The SDNS protocols are based
on the International Standards Organization (ISO) - Open Systems Interconnection (OSI)
reference model, and provide security services designed to protect both government Classified
(Type I) and government Unclassified-Sensitive (Type II) information while being transmitted
over Unclassified networks.

The heart of the SDNS operation is the NSA's Electronic Key Management System (EKMS),
and is illustrated in Figure 2. The EKMS is a national resource that supports U.S. government
users and its contractors, in the enforcement of their security policies for handling Type I and 11
information between their automated data processing systems. Users order key material for each
SDNS device within their organization. In response, the EKMS provides a non-forgeable
certificate plus keying material, which are then loaded into the SDNS device by the user during
initialization. The certificates contain the user-specified rule-based access control policy for that
device to enforce.

User Key Material Requests

Security Certificate Security Certificate

: SDNS & Key Material
& Key Material ELECTRONIC Y
KEY MANAGEMENT
SYSTEM
(EKMS)
J Key Management Protocol . J
Certificate & Key Material
Exchange SONS
SDNS ; H
. ost
Host Device Device

Results in a unique shared
Traffic Encryption Key

Figure 2 SDNS Key Management and Distribution

The SDNS Key Management Protocol (KMP) provides a powerful authentication and access
control mechanism based on the exchange of the non-forgeable certificates between SDNS
security devices. KMP runs at the application layer on top of a full seven-layer OSI stack within

565

each SDNS device. During the certificate exchange process, KMP compares the fields to
determine if there is an intersection of security attributes. If there is an intersection, the keying
material is used by the SDNS key generation algorithms to create a unique pair-wise Traffic
Encryption Key (TEK) that is known only by those two devices. The TEK represents a secure
transmission channel between two SDNS devices that can be used for data that meets the security
criteria established during Key Management Protocol exchange.

Data is transmitted over the secure transmission channel using a security protocol designed for
operation at a particular layer in the communication stack. At the transport and network layers,
SDNS has defined Security Protocol layer 4 (SP4) and Security Protocol layer 3 (SP3)
respectively. These security protocols provide confidentiality by encryption using the established
TEK, integrity, and access control services for data at their respective layers. Proper handling of
labelled data by the security protocol is required to ensure that information is sent over the correct
channel.

In summary, SDNS provides a powerful set of tools for enforcing organizational security
policies dealing with the handling of data within automated processing systems serving all of
government and its contractors. The possiblities for interoperability among users is greatly
increased by SDNS, first because it is based on standards, and second because the Electronic
Key Management System (EKMS) is a national resource serving all of government and industry.
The EKMS is scalable because, unlike earlier key management systems which are required to
know about all authorized pair-wise connections, it is based on a rule-based access control
system.

The STU-III is an excellent example of the significance of interoperability and scalability to
information security. Approximately 250,000 STU-III terminals are deployed world-wide, and
virtually any pair of users with the proper clearance can communicate. SDNS is revolutionizing
data security, just as the STU-III has revolutionized voice security.

NETWORK ENCRYPTION SYSTEM

The Network Encryption System (NES) is a family of components offering a set of tools for
enforcing the user's automated data processing system security policy. The major components
include the SDNS Electronic Key Management System (EKMS), the NES Product Server, and
the NES security server. These components are shown in the Product Family in Figure 3.

The EKMS provides SDNS keying material to the NES security servers either in the form of a
physical operational key or seed key. The initial keying material is contained on a KSD-64A
(physically identical to a STU-III key) and loaded during device initialization. A Seed key is
used to establish a secure connection with the EKMS to receive operational key electronically.
The operational keying material, which is valid for one year, includes the non-forgeable
certificate with identification and security attributes, and information for generating Traffic
Encryption Keys (TEKSs) between pairs of NES security servers.

The NES Product Server provides Administration, Discretionary Access Control, and Audit
functions to support a domain of NES security servers. The system administrator enters the
configuration for each device, including addressing and access control information, then
generates a configuration disk. This disk containing application software, static routing tables
and identity based access control tables, is loaded into the security server during initialization.

An NES security server provides SDNS services to one or more Hosts/Workstations running on
a RED side LAN, and connects to a LAN or WAN on the unclassified BLACK side. The
security server application of the NES will be discussed in more detail, following a dlscusslon of
the basic NES security platform architecture.

566

Configuration Disks

‘ } To Security

servers =t
canaAR AT W/

W

WORKSTATION

NES PRODUCT Private Data Network 7 LAN SESURITY WORKSTATION
SERVER L\ A ERven)
Operational
or Seed Key ToS " WORKSTATION
o Security
} Servers Publlc Swntched o — k
_ Telephone Network 3 B ¥
""/ WANNSEESCUR” Y WORKSTATION
ELEﬁga{omc ﬁ- oo { SERVER) | o
MA;‘YAgI'EETIIEm m o ooe (FDDI LAN
& SERVER)
S~ MODEM___MODEM w2
g‘”m ”"(w
4 Value Added Network s—
H (Telenet, Tymnet FTS2000 §
"m\ tc) 3

(Token Ring LAM
SERVER)

WORKSTATION

Figure 3 NES Product Family
ritv_Platform Archi r

The NES security platform architecture shown in Figure 4, is a self-contained Tamper and
TEMPEST protected device with a front panel, and host, network and diagnostic interfaces on
the back panel. The front panel provides a keyceptacle for loading key material from the KSD-
64A data key supplied by the EKMS. Also, there is a disk drive for loading the configuration
information and application software contained on the configuration disk generated at the NES
Product Server. The key material and configuration disk are read by the security platform during
the start-up process. A cryptographic checksum, based on the key material and the configuration
information, is generated and written back to the disk binding the disk to the security platform.

Internally, the NES security platform contains a security kernel, and a separate RED and BLACK
VMEDbus! that can accomodate standard commercially available VMEDbus boards for running the
application software. This concept is shown also in Figure 4. Four VME boards can be
supported on the RED side, and two on the BLACK. The security kernel provides the basic
SDNS functions to support different applications and enforces the required COMSEC
assurances. Common Environment (CE) is the internal operating system running both on the
VME 1/O boards and in the kernel allowing task-to-task and board-to-board communication to
occur, and allowing tasks running on the processor boards to invoke the SDNS services that are
provided by the security kernel. :

1 VME (Versa Module Europe) is an IEEE standard defined by the P1014, IEC 47b working commiitee.

567

DIAGNOSTIC i
INTERFACE

INTERFACE |

HOUSING
LCD

CONFIGURATION

Figure 4 NES Security Platform Architecture
NES Security Server Applications

In the current applications, the NES security platform is viewed as a single-level secure
telecommunications server for hosts or workstations residing on a classified Local Area Network
(LAN). The RED side of the security server supports a LAN media interface allowing classified
hosts residing on the LAN to send datagrams to the security server for processing. The security
server then performs a source/destination address verification, adds an integrity checksum,
-encrypts the data, and sends the resulting unclassified data to the BLACK side. The BLACK
side of the security server supports a LAN, or other telecommunication media interface, and adds
a network layer header allowing the encrypted data to be sent to another remote SDNS device
over an unclassified network. The unclassified network can be a single network or multiple
networks (e.g., Internet), and can be made up of one or more LANs and/or Wide Area Networks
(WANs). The ability to pass classified information over existing unclassified
telelecommunication systems can offer a tremendous cost savings advantage to users.

The initial product (endorsed on March 13, 1991) supports an 802.3 (Ethernet) interface on both
the RED and BLACK sides of the NES security server. The upper right portion of the NES
Product Family in Figure 3 shows the Ethernet LAN server in a network environment. Three
versions of network application software are also provided for this server including DoD IP,
‘OS], and Transparent (for supporting proprietary network protocol environments). The Wide
Area Network (WAN) security server product, also shown in Figure 3, provides an Ethernet
interface on the RED side and an X.25 interface on the BLACK side. The WAN server
application allows direct X.25 connection to a Wide Area Network eliminating the need for an
external router. The ability to eliminate expensive network devices with the NES security device
offers significant cost advantages and drives down the cost of security. Two versions of
application software are currently supported with this product including DoD IP and OSI. Other
interfaces planned include FDDI and 802.5 (Token Ring).

568

INFOSEC COMPUTER PLATF RM

The INFOSEC Computer Platform utilizes the basic NES security platform architecture described
above. However, unlike the NES security server applications previously described, which
provide a host-side LAN media interface on the RED side, the INFOSEC Platform replaces the
media interface board on the RED side with a computer processor board capable of supporting a
variety of external peripherals and an internal hard disk. The INFOSEC Computer Platform
Block Diagram including the security boundaries is shown in Figure 5.

Quadrant ard TEMPEST Boundary INFOSEC Logic Boundary

Boundary \ » Disk

Network

Trusted ' Network interface
LAN/OI-:OST Computer | - szgtﬂﬁ £ Interface , ,
Perimmerals Products | el | Processor Diagnostic

Interface

Front Panet Supply
i Keyceptacl TED Display - Floppy Disk Battery

Figure 5 INFOSEC Computer Platform Block Diagram
DN ritv_Kernel Interf rvi

The security kernel interfaces electrically with the RED and BLACK VMEbus usmg the standard
VMEbus protocol, and functionally using Common Environment (CE) Apphcation software
uses CE to invoke the following secumy kernel services:

Key Manag_ement Services These services are used to create and manage Traffic Encryption
Keys (TEKSs) that are created by the SDNS Key Management Protocol during the process of
exchanging key material credentials with other SDNS devices. The TEKSs are identified by a Key
ID and provide a confidentiality service to applications running on the RED side at different
security levels. A RED application may request that a TEK be created for a single security level
or for a range of security levels, and for one or more compartments

System Management Services These services are used during initialization and operation to
configure and manage information on the RED and BLACK processor boards.

Application Control and Presentation Layer Services These services are used to
manage connections initiated on the RED side between NES devices on the BLACK side." The
NES identification, which is known on the RED side, is sent to the security kernel. This
identification is then sent to the BLACK side where an Association is established with the
destination NES using the seven layer OSI communication stack and the statically loaded
network addressing information. Thls association is then used by the SDNS Key Management
Protocol during key creation.

569

Encrypt/Decrypt Services These services allow security protocols running on the RED and
BLACK sides to encrypt or decrypt traffic using an established TEK identified by Key ID, which
- provide integrity. The TEK represents a cryptographic channel for passing single or multi-level
information over the Unclassified BLACK side. ‘

Logical Task Flow Description

The INFOSEC: Computer Platform logical flow is shown in Figure 6. The RED processor is a
VMEDbus compatible 386-based processor board running the Trusted Xenix™ Operating System,
the Trusted SDNS interface software, and application software. The operating system, SDNS
interface software and application software can be loaded from the internal disk (default), or the
external floppy disk. The Trusted SDNS interface provides a trusted Common Environment
interface between the security kernel and Trusted Xenix™ allowing applications at different
security levels running on the RED side to invoke the security kernel services.

N ~\
(TRUSTED PROCESSOR SECURITY KERNEL 4 NETWORK INTERFACE)
SUBSYSTEM PROCESSOR

XA ASSOCIATE REQUEST

Untrusted
Red

ASSOCIATE

Applications CONFIRMED

FOUR PART
KEY MANAGEMENT
EXCHANGE

Kkme |

"/

Trusted Certncate
SDNS Verification

NSTALL ._l BLACK MAPPER I I SESSION I

Peripheral
Devices

Interface

L s |
k——-—.—_____/ KMID TABLE
Plaintext y
¥ Data sP Encrypted Data

Kernal

Security "

[~ Management —%] KSM
C

Figure 6 Logical Flow Diagram

The Security kernel runs a firmware implementation of the SDNS functions including the Key
Management User Association (KMUA) process for Key Management, Application Control and
Presentation services; Key Management Protocol (KMP) for performing the SDNS Identification
& Authentication and key create functions; and the Security Protocol (SP) for performing the
basic encryption/decryption functionality.

The Black Interface processbr is one of a set of VMEbus compatible processor boards capable of

providing a media interface as described earlier. The processor runs application software loaded
from the security platform floppy disk during the INFOSEC Computer start-up process.

570

APPLICATIONS and CAPABILITIES

The INFOSEC Computer Platform is an evolutionary product built on previous CCEP and TPEP
technology. This section discusses some potential applications and capabilities for this proposed
INFOSEC platform, and suggests an evolutionary path to total communication security. Based
on available hardware that can currently be integrated onto the INFOSEC Platform, three
configurations are currently under consideration for development and NSA evaluation: the Multi-
Level Secure (MLS) Workstation, the Secure Gateway, and the Communication Port Server.

i-Level r r ion Application

The MLS Workstation includes a monitor, keyboard, floppy disk, and optionally a printer,
mouse, and streaming tape drive. The Trusted Xenix™ Operating System and user applications
are loaded from an internal hard disk. An application currently under development is the
Enhanced Product Server (EPS).

The EPS, in addition to performing all of the basic NES Product Server functions, will allow a
System Administrator to remotely manage Identity Based Access Control (IBAC) and Audit
information, and perform other system administration functions with NES Security Servers.
This application is illustrated in Figure 7. EPS management software runs on the Trusted
Operating system on the RED side of the MLS Workstation and communicates with EPS agents
running in application software on the NES security servers located througout the network. The
EPS agents collect audit information and respond to commands from the EPS manager to send
audit, receive IBAC table updates, and perform other system functions.

The EPS and NES security servers all communicate over a common unclassified network. The
NES security servers provide SDNS security services to LANs or hosts running at a single
security level. Each NES security server allows traffic to pass between it and another device
keyed at the same security level. The EPS will communicate with all NES security servers keyed
at different security levels. The EPS allows a user logged in at the Top-Secret level to manage
the data-base on the Red side of the Top-Secret NES security platform, and a user logged in at
the Secret level to manage the data-base on the Red side of the Secret NES security platform.

Top
Secret
MIB TOP
; SONS SECRET
| SECURITY > " llost/
| KERNEL :
Workstation
RED
UNCLASSIFIED NES Security Platform
NETWORK
M
SECRET
INFOSEC Computer Platform |—» Host/
(EPS Application) Workstation

NES Security Platform

Figure 7 Enhanced Product Server Application -

571

An NES application which can use the EPS capabilities is the Defense Simulation Internet (DSI).
The DSI is a worldwide network which consists of a set of subnets operating at different security
levels within the network domain. Each subnet is run by a local site administrator who receives
direction from a central system administrator. Currently there are two approaches for
administering this system.

The first approach involves putting an NES Product Server at each of the subnets to allow the
site administrator to locally create configuration disks for his set of local NES Security Servers.
Because each NES device requires a unique configuration diskette, which specifies all other NES
devices with which it is allowed to communicate - both within the local subnet and worldwide, it
is necessary for the site administrator of each NES grouping to duplicate the environment to
resemble all of the NES devices within a particular grouping. The second approach involves
using a single NES Product Server located at the system administrator's central site, to generate
the configuration disks for all NES devices and distribute them to each subnet. This approach
can be very time consuming due to mail delays, diskette failures, or as a result of improper mail
delivery. Since this scenario involves a worldwide network the central NES administrator option
seems impractical.

As one can see, each approach has its own drawbacks. In the first case, each site must contain
an NES Product Server, which can mean a more costly configuration. In the second case, mail
delays and other obstacles related to NES network configuration updates can result in lost time
and or money. In either case there is a lot of room for error or loss of time and or money. A
situation where errors could be propagated would be due to incorrect transmission of NES
network grouping updates from the central NES Product Server or by mail/email.

The application described above could be resolved much more efficiently and more cost
effectively with the EPS. If there were an EPS being used in this situation a Product Server at
each site would no longer be necessary. Additionally, with the EPS' multilevel capability, only
one EPS would be required for both of the subnets which were operating at different security
levels. Finally, the risk range for a B2 level of operation would be satisfied.

Secure Gateway Capabilities

The Secure Gateway configuration provides multiple Local Area Network interfaces allowing
loca] area networks running in a dedicated or system-high mode to communicate securely with
other remote networks or systems. The Trusted Xenix™ operating system and applications are
loaded from an internal hard disk. An application currently being developed for the Secure
Gateway configuration is a Trusted Guard. This application will allow two classified networks
to operate over an unclassified network and is illustrated in Figure 8.

The basic guard function consists of the Trusted Xenix™ Operating system which controls the
access to a Secret Local Area Network or Host, and a Top-Secret Local Area Network or Host.
A regrader function, executing as a trusted application, reads data from the higher Top Secret
network and analyzes the information for compliance with a rule set. If the information succeeds
the rule set analysis, the application performs a trusted write-down, allowing information to flow
to the Secret side. By integrating this function into the INFOSEC Computer Platform, the
function can be extended over an unclassified network.

Depending on the particular situation, the trusted write-down can be either performed manually
‘or automatically. The manual review before write-down can be implemented by a trusted
reviewer (e.g., using a UNIX-like 'more’ utility via the trusted path) and can be implemented to
reject or accept messages based on content. An automatic trusted write-down can be performed

572

with a process which scans messages based on strict formatting message content. In either case
Trusted Xenix auditing can be performed in order to log all security relevant events.

EE,\?I?_IET SECRET
/Host LAN/Host
N UNCLASSIFIED : Trusted f/
NETWORK —| 0os K TOP
TOP ™~
7 SECRET
SECRET - | LAN/Host
LAN/Host BLACK .= - RED
INFOSEC Computer Platform INFOSEC Computer Platform

(Trusted Guard Application) (Trusted Guard Application)

Figure 8 Trusted Guard Application

munication Por rver nfisuration

The Communication Port Server configuration provides multlple RS- 232 commumcanon ports
allowing Terminals, Hosts, or Workstations, authorized for different security levels, or
compartments, to communicate via the SDNS functions. It is envisioned that various multilevel
and single level operations can be supported using the Communication Port Server configuration
as well as other multi-level interfaces to external sources such as STU-IIIs as shown in Figure 9.

This example consists of a Communication Port Server with multiple interfaces to both STU-III
connections and to local single level terminals, communicating over an Unclassified data network
to a remote Trusted Guard which supports multiple single level LANs or Hosts. This, along
with other types of configurations, will allow for cost saving and convenient configurations
under which the NES platform can operate.

UNCLASSIFIED
Terminal W sTU. 11 Public Switched sTU i b SECRET
TelephoneNetwork L AN/Host
|| rusies e UNCLASSIFIED o _ -~
l os KERNEL] NETWORK KERNEL 0s - TOP
Terminal - SECRET
[. LAN/Host
RED BLACK BLACK
Terminal INFOSEC Computer Platform INFOSEC Computer Platform

(Communication Port Server) - (Trusted Guard Application)

Figure 9 Communication Port Server Application

SUMMARY

In summary, combining the NES hardware with a wide range of various secure applications
developed on Trusted Operating Systems, will provide cost effective and convenient methods of
implementing data and communication security.

573

SDNS SECURITY MANAGEMENT

Wayne A. Jansen
NIST
Technology Building, A-216
Gaithersburg, MD 20899

L. INTRODUCTION

The Secure Data Network System (SDNS) program began in August of 1986 through the sponsorship of the
National Security Agency (NSA). The goal of the program is to establish a communications architecture
and protocols for protecting both unclassified and classified computer networks. The SDNS standards are
intended to facilitate the secure interconnection of open systems within an internationally recognized
framework for communications. The SDNS architecture which provides such security services as integrity,
confidentiality, authentication, and access control of user data, as well as key management and systems
management capabilities, is based on the International Organization for Standardization (ISO) Reference
Model of Open Systems Interconnection (OSI) [1]. ‘

The SDNS program ended in 1989, and made its results available through the National Institute of Standards
and Technology (NIST) [2-4]. Those documents specify security protocols (SP) at the Network (SP3) and
Transport (SP4) layers of the ISO Reference Model, a message security protocol (MSP) at the application
layer, an application layer key management protocol (KMP), and a framework for access control. At the
conclusion of the SDNS program, it was recognized that areas of security management, outside of key
management, were incomplete. A follow-on effort to SDNS, the SDNS Upgrade Program (SUP), included
tasking for security management with a focus on the key management and lower layer security protocols.
The SUP produced an initial set of SDNS security management documents [5-9] by September 1991. They
contain a security management architecture and specifications for the elements of management information
for the SDNS protocols studied, including the underlying security mechanisms and cryptographic facilities
on which the protocols rely. This paper gives an overview of the SDNS security management framework
and elements of security management information.

2. SECURITY MANAGEMENT IN THE SDNS ARCHITECTURE

2.1 Management Services and Protocols

In keeping with the commitment to OS] communications standards, SDNS security management builds
directly upon OSI systems management. OSI systems management offers distributed network management
capabilities, comprising five functional areas: fault management, configuration management, accounting
management, performance management, and security management. It is the last of these functional areas
upon which SDNS security management is based.

The set of OSI systems management standards includes standards for an application layer service and
protocol [10,11], used to convey management information and perform management functions. The
management standards also include definitions of generic systems management information [12], and
guidelines for the specification of additional elements of management information [13].

OS] systems management provides mechanisms for monitoring, control, and coordination of resources within
the OSI environment. A managed object class is the abstraction used within OSI systems management to
represent a view of a resource. The view rendered by a managed object class consists of a set of attributes
that represent characteristics and properties of a resource.

A managed object is an instance of a managed object class in which the attributes have values assigned. A
managed object class can be thought of as a template for the instantiation of a managed object. The value
assigned to a particular attribute (i.e., the naming attribute) allows an object instance to be distinguished
from others of the same object class. All management activities are conducted through the manipulation

574

of managed objects. For the sake of brevity, whenever the intention is clear from the context, the term
"object" is used in this paper to indicate either an object class or an instance of an object class.

A collection of managed objects pertaining to an open system is referred to as a management information
base (MIB). Management applications interact according to a functional model based on asymmetric
manager/agent roles. Through the Common Management Information Services and Protocol (CMIS, CMIP)
[10,11], managers interact with agents to accomplish management activities. A system acting as an-agent
in relation to one manager, may in turn, play a manager’s role with regard to other sub-agents to enable
a broader span of control. Common operations for manipulating objects include the creation and deletion
of objects, the getting and setting of attribute values, the evoking of predefined actions, and the sending of
event reports.

Note that the security management functional area differentiates itself from the other functional areas
primarily by the sensitivity of objects managed, rather than the operations used to manage them. Objects
representing security services, protocols, and mechanisms can be viewed as residing within a security
management information base (SMIB). Depending upon the security policy of the system, the SMIB may
or may not coincide with the MIB. Security management functions include the ability to: (a) manage
security objects, their operational and administrative states, and the relationships between security objects
and other objects; (b) report, collect, and review security events; and (c) establish and configure security
audit trails. However, only the last two functions apply exclusively to security management.

22 Security of Management Operations

Management operations, particularly those dealing with security management, demand a high degree of
protection, due to their potential to interfere with systems operations. Two obvious ways to protect
management operations are either to build protection into the management protocol that operates at the
application layer, or alternatively, to have the management protocol protected by security protocols at the
lower layers. The former approach is appealing for near-term implementations of CMIS and CMIP since
it is self-contained and independent of the standardization progress of the lower layer security protocols.
Nevertheless, SDNS security management takes the latter approach since the standards for lower layer
security protocols and key management are already in place, and their use’ by management avoids having
redundant mechanisms elsewhere in the archltecture

The SDNS architecture prescribes a two-pronged scheme for the protection of communications, relying on
both the key management protocol and a lower layer security protocol. The key management protocol is
a self-protecting application layer protocol, used to establish security associations for lower layer security
protocols. Security associations consist of a set of negotiated security services, and associated traffic key
material. All other application protocols, including systems management, use an established security
association through a lower layer security protocol. The security protocol enforces the protection dictated
by the security association during the communications of the application. Because a management application
can manipulate sensitive information concerning the formation of security associations, including those for
itself, its operations must be protected ‘to the same degree as those of key manageément, and its role
restricted accordingly. '

The SDNS architecture requires key management functionality to be collocated with other applications
within an end-system, whenever a lower layer security protocol is employed. Although collocated, the
communication services afforded it are distinct to allow implementation in separate hardware components
for high assurance environments. In such arrangements, key management may be considered as a hidden
internal host. Figure 1 illustrates a dual stack model used to represent the partitioning of key management
communication services from normal user communication services [14]. 'Note that because the key
management protocol is the means by which keying material is provided to a lower layer security protocol
entity, it must be able to bypass the lower layer protecuon to avoid the problem of recursion.

SDNS key ‘management is viewed as a distinct, yet integrated part of security management. It is considered
