| Draft | NITC | TTD | Q1 | 11 | |--------------|------|-----|-----|----| | Drait | 1M12 | HK | יוה | 44 | | 1 | Draft NISTIR 8144 | |--------|------------------------------------| | 2 | Assessing Threats to | | 3 | Mobile Devices & Infrastructure | | 4 | The Mobile Threat Catalogue | | 5 | Christopher Brown | | 6 | Spike Dog | | 7 | Joshua M Franklin | | 8
9 | Neil McNab
Sharon Voss-Northrop | | 10 | Michael Peck | | 11 | Bart Stidham | | 12 | | | 13 | | | 14 | | | 15 | | | 16 | | | 17 | | | | | | Draft NISTIR 8144 | 19 | |--|----------------| | Assessing Threats to | 20 | | Mobile Devices & Infrastructure | 21 | | The Mobile Threat Catalogue | 22 | | Joshua M Franklin | 23 | | National Cybersecurity Center of Excellence | 24 | | National Institute of Standards and Technology | 25 | | | 26 | | Christopher Brown | 27 | | Spike Dog | 28 | | Neil McNab | 29 | | Sharon Voss-Northrop | 30 | | Michael Peck | 31 | | The MITRE Corporation | 32 | | McLean, VA | 33 | | | 34 | | Bart Stidham | 35 | | STS Mobile | 36 | | | 37 | | | 38 | | | 39 | | September 2016 | 40 | | - | 41 | | STATES OF MILES | 42
43 | | U.S. Department of Commerce Penny Pritzker, Secretary | 44
45 | | National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director | 46
47
48 | National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director | 49
50 | National Institute of Standards and Technology Interagency Report 8144 50 pages (September 2016) | |----------------------------------|---| | 51 | | | 52
53
54
55 | Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. | | 56
57
58
59
60
61 | There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST. | | 62
63
64 | Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at http://csrc.nist.gov/publications . | | 65 | | | 66 | Public comment period: September 12, 2016 through October 12, 2016 | National Institute of Standards and Technology Attn: Computer Security Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 Email: nistir8144@nist.gov All comments are subject to release under the Freedom of Information Act (FOIA). | 73 | Reports on Computer Systems Technology | |--|---| | 74
75
76
77
78
79
80
81 | The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation's measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL's responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal information systems. | | 82 | Abstract | | 83
84
85
86
87
88 | Mobile devices pose a unique set of threats, yet typical enterprise protections fail to address the larger picture. In order to fully address the threats presented by mobile devices, a wider view of the mobile security ecosystem is necessary. This document discusses the <i>Mobile Threat Catalogue</i> , which describes, identifies, and structures the threats posed to mobile information systems. | | 89 | Keywords | | 90
91 | cellular security; enterprise mobility; mobility management; mobile; mobile device; mobile security; mobile device management; telecommunications | | 92 | | | 93 | | | 94 | Acknowledgements | | 95
96
97 | The NCCoE and NIST would like to thank Michael Ogata and Andrew Regenscheid of NIST; Vincent Sritapan of the Department of Homeland Security (DHS) Science & Technology Directorate; and Kori Fisk and Mary Yang of MITRE for their contributions to this document. | | 98 | Note to Readers | | 99
100
101
102
103 | The development of this interagency report and the <i>Mobile Threat Catalogue</i> supports the <i>Study on Mobile Device Security</i> , as a part of the Cybersecurity Act of 2015 - Title IV, Section 401. Mobile threats and mitigations supporting the Congressional Study on Mobile Device Security and the <i>Mobile Threat Catalogue</i> may incorporate submissions from request for information (RFI) – Mobile Threats & Defenses from FedBizOps solicitation number: QTA00NS16SDI0003. | | 104 | Trademark Information | | 105
106 | All product names are registered trademarks or trademarks of their respective companies. The Bluetooth logo is property of the Bluetooth Special Interest Group (SIG). | | 107 | | | | Table of Contents | | |-----|---|-------|---------|---|----| | 108 | 1 | Intro | ductio | n | 1 | | 109 | | 1.1 | Purpo | se | 1 | | 110 | | 1.2 | Scope | 9 | 1 | | 111 | | 1.3 | Audie | nce | 2 | | 112 | | 1.4 | Docur | ment Structure | 2 | | 113 | | 1.5 | Docur | ment Conventions | 2 | | 114 | 2 | Mob | ile Dev | rice & Infrastructure Attack Surface | 3 | | 115 | | 2.1 | Mobile | e Technology Stack | 3 | | 116 | | 2.2 | Comn | nunication Mechanisms | 5 | | 117 | | | 2.2.1 | Subscriber Identity Module (SIM) | 5 | | 118 | | | 2.2.2 | Cellular Air Interface | 6 | | 119 | | | 2.2.3 | WiFi | 6 | | 120 | | | 2.2.4 | Global Navigation Satellite System (GNSS) | 7 | | 121 | | | 2.2.5 | Bluetooth | 7 | | 122 | | | 2.2.6 | Near Field Communication (NFC) | 7 | | 123 | | | 2.2.7 | Secure Digital (SD) Card | 7 | | 124 | | | 2.2.8 | Power & Synchronization Port | 8 | | 125 | | 2.3 | Suppl | y Chain | 8 | | 126 | | 2.4 | Mobile | e Ecosystem | 8 | | 127 | | | 2.4.1 | Cellular Infrastructure | 9 | | 128 | | | 2.4.2 | Public Application Stores | 9 | | 129 | | | 2.4.3 | Private Application Stores | 10 | | 130 | | | 2.4.4 | Device & OS Vendor Infrastructure | 10 | | 131 | | | 2.4.5 | Enterprise Mobility Management Systems | 10 | | 132 | | | 2.4.6 | Enterprise Mobile Services | 10 | | 133 | 3 | Mob | ile Thr | eat Catalogue | 11 | | 134 | | 3.1 | Metho | odology | 11 | | 135 | | 3.2 | Catalo | ogue Structure | 11 | | 136 | | 3.3 | Categ | ory Descriptions | 12 | | 137 | | | 3.3.1 | Mobile Device Technology Stack | 12 | | 138 | | | 3.3.2 | Network Protocols, Technologies, and Infrastructure | 13 | | 139 | 3.3.3 Auth | entication | 14 | |------------|-----------------------|-------------------------------|----| | 140 | 3.3.4 Supp | oly Chain | 15 | | 141 | 3.3.5 Phys | ical Access | 15 | | 142 | 3.3.6 Ecos | ystem | 15 | | 143 | 3.3.7 Ente | rprise Mobility | 15 | | 144 | 3.3.8 Payr | nent | 16 | | 145 | 3.4 Next Steps | | 16 | | 146
147 | | List of Appendices | | | 148 | Appendix A— Acron | yms | 17 | | 149 | Appendix B— Refere | ences | 19 | | 150 | Appendix C— Mobile | e Threat Catalogue References | 21 | | 151 | | | | | 152 | | List of Figures | | | 153 | Figure 1 - Mobile Dev | ice Technology Stack | 4 | | 154 | Figure 2 - Mobile Dev | ice Communication Mechanisms | 5 | | 155 | Figure 3 - Mobile Eco | system | 9 | | 156 | | | | ## 157 1 Introduction - Mobile devices pose a unique set of threats to enterprises. Typical enterprise protections, such as - isolated enterprise sandboxes and the ability to remote wipe a device, may fail to fully mitigate - the security challenges associated with these complex mobile
information systems. With this in - mind, a set of security controls and countermeasures that address mobile threats in a holistic - manner must be identified, necessitating a broader view of the entire mobile security ecosystem. - This view must go beyond devices to include, as an example, the cellular networks and cloud - infrastructure used to support mobile applications and native mobile services. ## 1.1 Purpose 165 - 166 This document outlines a catalogue of threats to mobile devices and associated mobile - infrastructure to support development and implementation of mobile security capabilities, best - practices, and security solutions to better protect enterprise information technology (IT). Threats - are divided into broad categories, primarily focused upon mobile applications and software, the - network stack and associated infrastructure, mobile device and software supply chain, and the - greater mobile ecosystem. Each threat identified is catalogued alongside explanatory and - vulnerability information where possible, and alongside applicable mitigation strategies. - 173 Background information on mobile systems and their attack surface is provided to assist readers - in understanding threats contained within the Mobile Threat Catalogue (MTC). Readers are - encouraged to take advantage of resources identified and referenced within the MTC for more - detailed information, all of which are also referenced within Appendix C of this document. - 177 The MTC is a separate document located at the Computer Security Resource Center (CSRC) [1]. ### 178 **1.2 Scope** 180 181 182 183 184 185 186 NIST Special Publication (SP) 800-53 [10] defines a mobile device as: "A portable computing device that: (i) has a small form factor such that it can easily be carried by a single individual; (ii) is designed to operate without a physical connection (e.g., wirelessly transmit or receive information); (iii) possesses local, non-removable or removable data storage; and (iv) includes a self-contained power source. Mobile devices may also include voice communication capabilities, on-board sensors that allow the devices to capture information, and/or built-in features for synchronizing local data with remote locations. Examples include smart phones, tablets, and E-readers." - 187 With this definition in mind, smart phones and tablets running modern mobile operating systems - are the primary target of this analysis. Devices typically classified within the Internet of Things - 189 (IoT) category are excluded from the scope of this document. Although some devices contain - capabilities to communicate via the auxiliary port and infrared, these are also excluded from the - scope of this effort as they are not common methods of attack. - 192 Cellular networks are prominently featured within the catalogue, and accordingly comprise a - large portion of this document's information. However, although cellular networks are becoming - increasingly intertwined with the internet and private packet switched networks, internet protocol - 195 (IP) network security is covered extensively by other resources and not within the scope of this - work. Finally, threats specific to the Public Switched Telephone Network (PSTN) are also - 197 excluded. ## 198 **1.3 Audience** - 199 Mobile security engineers and architects can leverage this document to inform risk assessments, - build threat models, enumerate the attack surface of their mobile infrastructure, and identify - 201 mitigations for their mobile deployments. Other audiences for this document include mobile - operating system (OS) developers, device manufacturers, mobile network operators (MNOs) - 203 (e.g., carriers), mobile application developers and information system security professionals who - are responsible for managing the mobile devices in an enterprise environment. - This document may also be useful when developing enterprise-wide procurement and - deployment strategies for mobile devices and when evaluating the risk mobile devices pose to - 207 otherwise secure parts of the enterprise. The material in this document is technically oriented, - and it is assumed that readers have an understanding of system and network security. ## 209 1.4 Document Structure - 210 The remainder of this document is organized into the following major sections: - Section 2 provides a background on the attack surface of mobile devices and their associated infrastructure. - Section 3 details the structure of the MTC and the methodology used to create it. - 214 The document also contains appendices with supporting material: - Appendix A defines selected acronyms and abbreviations used in this publication, - Appendix B contains a list of references used in the development of this document, and - Appendix C contains a list of references from the MTC. ### 218 **1.5 Document Conventions** - The following conventions are used throughout the Interagency Report: - This work is not specific to a given mobile platform or operating system (OS). Most identified threats are agnostic to a specific platform; however, the catalogue specifically distinguishes any instance where that is not the case. - All products and services mentioned are owned by their respective organizations. ## 224 2 Mobile Device & Infrastructure Attack Surface - 225 The functionality provided by mobile devices has significantly evolved over the past two - decades and continues to rapidly advance. When first introduced, mobile devices were basic - cellular phones designed to make telephone calls. Although carriers were targeted by malicious - actors wanting to make free phone calls, users and their data were rarely the target of criminals. - Once modern mobile OSs were introduced over a decade later, the threat landscape drastically - changed as users began trusting these devices with large quantities of sensitive personal - information. Enterprises also started allowing employees to use mobile devices and applications - 232 to access enterprise email, contacts, and calendar functionality. Shortly after the wide scale - adoption of modern smartphones, a large upscale in the use and deployment of cloud services - occurred. While this reduced costs and simplified operations for businesses, it altered the threat - landscape in its own unique way. - The following sections describe primary components of the mobile attack surface: mobile device - 237 technology stack, mobile and local network protocol stacks, supply chain, and the greater mobile - ecosystem. 239 ## 2.1 Mobile Technology Stack - 240 Mobile devices share some architectural similarities with their desktop counterparts, but there are - significant distinctions between personal computers and these portable information systems. In - addition to cellular functionality, including a number of radios, modern smartphones and tablets - typically include a full suite of environmental sensors, cryptographic processors, and multiple - 244 wireless and wired communication methods. They also include a touch screen, audio interface, - one or more high definition (HD) video cameras, and in odd edge cases unusual capabilities like - video projectors. - Figure 1 illustrates the mobile device technology stack, described in additional detail further - below. Figure 1 - Mobile Device Technology Stack For smart phones and tablets with cellular capabilities, a separation exists between the hardware and firmware used to access cellular networks and the hardware and firmware used to operate the general purpose mobile OS. The hardware and firmware used to access the cellular network, often referred to as the telephony subsystem, typically runs a real-time operating system (RTOS). This telephony subsystem is colloquially named the *baseband processor*, and may be implemented on a dedicated System on a Chip (SoC), or included as part of the SoC containing the application processor also running the general purpose mobile OS. The firmware necessary to boot the mobile OS (i.e., bootloader) may verify additional device initialization code, device drivers used for peripherals, and portions of the mobile OS – all before a user can use the device. If the initialization code is modified or tampered with in some manner, the device may not properly function. Many modern mobile devices contain an isolated execution environment, which are used specifically for security-critical functions [7]. For example, these environments may be used for sensitive cryptographic operations, to verify integrity, or to support Digital Rights Management. These environments typically have access to some amount of secure storage which is only accessible within that environment. The mobile OS enables a rich set of functionality by supporting the use of mobile applications written by third-party developers. Accordingly, it is common for mobile applications to be sandboxed in some manner to prevent unexpected and unwanted interaction between the system, its applications, and those applications' respective data (including user data). Mobile applications may be written in native code running closely to the hardware, in interpreted languages, or in high-level web languages. The degree of functionality of mobile applications is highly dependent 273 upon the application programming interfaces (APIs) exposed by the mobile OS.¹ #### 2.2 Communication Mechanisms Contemporary mobile devices contain integrated hardware components to support a variety of I/O mechanisms. While some of the communication mechanisms are wireless (i.e., cellular, WiFi, Bluetooth, GPS, NFC), others require a physical connection (i.e., power and synchronization cable, SIM, external storage). As seen in Figure 2, each of these different wireless and wired device communication mechanisms exposes the device to a distinct set of threats and must be secured or the overall security of the device may be compromised. 281 274 275 276 277 278279 280 282 283 285 286 287 288 289 290 291 292 293
Figure 2 - Mobile Device Communication Mechanisms The following sections provide a brief overview of each communication mechanism. ## 2.2.1 Subscriber Identity Module (SIM) This removable hardware token is colloquially referred to as the Subscriber Identity Module (SIM) card, although current standards use the term Universal Integrated Circuit Card (UICC). This System on a Chip (SoC) houses the subscriber identity (i.e., International Mobile Subscriber Identity), pre-shared cryptographic keys, and configuration information needed to obtain access to cellular networks. The UICC is essentially a smartcard that runs a Java application known as the Universal Subscriber Identity Module (USIM), which is used to run a set of applications that control the phone's access and authentication with the MNO's cellular networks and roaming partners. It is possible to develop and run other applications on the Java Card platform, such as ¹ For additional information about mobile application security, see NIST SP 800-163 – Vetting the Security of Mobile Applications [5]. - 294 games and mobile payment applications. - As of the writing of this Interagency Report, a technology called Embedded SIM (eSIM) is being - integrated into some mobile devices [4]. eSIMs will allow MNOs to remotely provision - subscriber information during initial device setup, and allow the remote changing of subscription - 298 from one MNO to another. While this technology may radically change the way mobile devices - are provisioned on the carrier network and therefore introduces a new set of threats. #### 2.2.2 Cellular Air Interface - 301 The cellular air interface is arguably the defining networking interface for modern mobile - devices. Initial cellular systems, such as second generation (2G) Global System for Mobile - 303 Communications (GSM) and third generation (3G) Universal Mobile Telecommunications - 304 System, were modeled after the traditional wireline circuit-switched telephone system. Each call - was provided with a dedicated circuit providing a user making a telephone call with a baseline - 306 guarantee of service. In contrast, newer fourth generation (4G) Long Term Evolution (LTE) - 307 networks were designed to utilize a packet-switched model for both data and voice. An LTE - 308 network provides consistent IP connectivity between an end user's mobile device and IP-based - services on the packet data network (PDN). - There are many cellular network types, each with its own air interface standards. The cellular air - interface is the technical term for the radio connection between a mobile device and the cellular - 312 tower. This air interface can generally communicate with many types of base stations (e.g., - 313 cellular towers) which come in many sizes and types cellular repeater / relay nodes, and even - 314 other handsets. 300 - 315 MNOs strive to run high availability "carrier grade" services that operate over the air interface at - 316 the network level, and can integrate with other systems they operate. These services may include - 317 circuit switched calling, VoLTE (Voice over LTE), Unstructured Supplementary Service Data - 318 (USSD), integrated voicemail with notifications, and messaging (e.g., Short Messaging Service - 319 (SMS)). Carrier-grade messaging services are commonly referred to as text messages, but - include SMS, the extension to SMS known as Multimedia Messaging Service (MMS), and the - new Rich Communication Services (RCS). USSD is an aging method for establishing a real-time - 322 session with a service or application to quickly share short messages. Although not common - within the United States, USSD is used in emerging markets for a number of services, including - 324 mobile banking. - For additional discussion of LTE security architecture see NISTIR 8071 LTE Architecture - 326 Overview and Security Analysis [16]. #### 327 **2.2.3** WiFi - WiFi is a wireless local area network (WLAN) technology based on the IEEE 802.11 series of - standards. WiFi is used by most mobile devices as an alternative to cellular data channels, or - even the primary data egress point in WiFi-only mobile devies. WLANs typically consist of a - group of wireless devices within a contained physical area, such as an apartment, office, or - coffee shop, but more expansive enterprise or campus deployments are also common. While not - guaranteed, campus or enterprise deployments are more likely to implement security features - such as WPA2 encryption. Smartphones, laptops, and other devices utilizing WiFi often need to - connect back to a central wireless access point (APs), but may work in a device-to-device ad hoc - 336 mode. - Readers looking for additional guidance for the installation, configuration, deployment, and - 338 security of WiFi can see NIST SP 800-153 Guidelines for Securing Wireless Local Area - Networks [14] or SP 800-97 Establishing Wireless Robust Security Networks: A Guide to - 340 IEEE 802.11i [15]. ### 341 2.2.4 Global Navigation Satellite System (GNSS) - A GNSS provides worldwide geo-spatial positioning via the global positioning system (GPS), - which uses line of sight communication with a satellite constellation in orbit to help a handset - determine its location. These systems run independently of cellular networks. The US Federal - Government operates a GPS constellation, although mobile devices may use other systems (e.g., - 346 GLONASS, Galileo). It should be noted that the GPS system is not the only way for a mobile - device to identify its location. Other techniques include Wi-Fi assisted positioning, which - leverages databases of known service set identifiers (SSIDs) and geolocation of IP addresses. #### 349 **2.2.5** Bluetooth - 350 Bluetooth is a short-range wireless communication technology. Bluetooth technology is used - primarily to establish wireless personal area networks (PANs). Bluetooth technology has been - integrated into many types of business and consumer devices including cell phones, laptops, - automobiles, medical devices, printers, keyboards, mice, headphones, and headsets. This allows - users to form *ad hoc* networks between a wide variety of devices to transfer data. - For additional information about Bluetooth security, see NIST SP 800-121 Revision 1 Guide to - 356 Bluetooth Security [13]. #### 357 **2.2.6** Near Field Communication (NFC) - 358 NFC uses radio frequency emissions to establish low throughput, short-range communication - between NFC-enabled devices. It is typically optimized for distances of less than 4 inches, but - can potentially operate at and pose a threat at much greater distances. NFC is based on the radio - 361 frequency identification (RFID) set of standards. Mobile payment technology relies on NFC, - which has led to NFC's increasing visibility in recent years as newer mobile wallet technologies - are being deployed on a large scale. The use of NFC for financial transactions make it attractive - to criminal attackers with the goal of financial gain. - For additional information on the security challenges associated with RFID, refer to NIST SP - 366 800-98 Guidelines for Securing Radio Frequency Identification (RFID) Systems [12]. #### 2.2.7 Secure Digital (SD) Card - 368 The SD card standard comprises various form factors that offer different performance ratings and - storage capacities. SD cards are typically used to expand the storage capacity of mobile devices - to store data such as photos, videos, music, and application data. SD cards are not integrated into - every mobile device, although the use of SD cards is particularly popular in developing nations - where built-in storage may be uncommon. # 373 **2.2.8 Power & Synchronization Port** - 374 The power and synchronization port on a mobile device is most often used to charge a mobile - device, and may take the form of Universal Serial Bus (USB) Type-C, Micro-USB, Apple - Lightning, or Apple 30 pin. The cable is also used to carry data to, or access the device from, - another information system. Use cases include data synchronization with or backup to a PC, or - 378 provisioning into an Enterprise Mobility Management system. This cable may also be used to - 379 charge another device in some circumstances. Because of this dual use of power and data, this - interface is used as a vector for a number of attacks. ## 2.3 Supply Chain 381 401 - Mobile devices are designed, manufactured, distributed, used, and disposed of in a manner - similar to other commercial electronics. Unique threats to mobile devices exist at every part of - 384 this lifecycle. Supply chain threats are particularly difficult to mitigate because mobile device - components are under constant development and are sourced from tens of thousands of original - equipment manufacturers (OEMs). Some subcomponents of mobile devices (e.g., baseband - processors) require matched firmware developed by the OEM. This firmware can itself contain - 388 software vulnerabilities and can increase the overall attack surface of the mobile device. - Of the layers presented in the mobile device technology stack featured in Figure 1, a variety of - 390 different organizations own or control different parts. In the case of Apple's highly vertically - integrated iOS devices, Apple develops the mobile operating system, as well as the majority of - 392 the specialized firmware and hardware components. In contrast, Google's Android ecosystem is - 393 almost completely vertically sliced with both hardware and software components being supplied - by tens of thousands of vendors. Google does not manufacture any hardware components, - 395 although they do form partnerships to create the Google-branded Nexus series of Android - reference devices. An independent handset manufacturer may design a majority of the hardware - and firmware to operate an Android device, and even customize the Android user interface; - 398 however, they still need Google's core Android OS to
be part of the massive Android application - 399 ecosystem. This entire design and manufacturing process has the potential to markedly influence - 400 the security architecture of the resulting mobile device. ## 2.4 Mobile Ecosystem - 402 Mobile devices do not exist in a vacuum a series networks and interconnected systems exist to - support modern mobility. The utility of modern mobile devices is greatly enhanced by software - 404 applications and their supporting cloud services. Mobile OSs provide dedicated application - stores for end users offering a convenient and customized means of adding functionality. - 406 Application stores pose an additional threat vector for attackers to distribute malware or other - 407 harmful software to end users. This is especially true of third-party application stores not directly - 408 supervised by mobile OS vendors. - 409 Mobile applications may traverse many networks and interact with systems owned and operated by many parties to accomplish their intended goals. This mobile ecosystem is depicted in the Figure 3. 412 413 414 415 416 417 418 419 420 421 Figure 3 - Mobile Ecosystem #### 2.4.1 Cellular Infrastructure - MNOs build out cellular base stations over a large geographic area. These base stations modulate and demodulate radio signals to communicate with mobile devices. Base stations forward mobile device information, such as calls, messages, and other data, to other base stations and a cellular network core. The cellular network core contains anchor points to communicate with other networks, such as other MNO's cellular networks, WiFi networks, the Internet, and the PSTN. Cellular network cores also rely upon authentication servers to use and store customer - 422 **2.4.2** Public Application Stores authentication information. Major mobile operating vendors own and operate their own native mobile application stores, which host mobile applications for users to download and install. These stores also provide music, movies, video games, and more. Access to these stores is natively installed and configured into mobile devices. Third-party mobile application stores also exist for most mobile operating systems. These third-party application stores may be explicitly built into the mobile OS, or they may be added as additional functionality for jailbroken or rooted devices. Third- ² Jailbreaking or rooting a mobile device bypasses built-in restrictions on security. While this may provide the user more freedom to control their device, at the same time may compromise the security architecture of the mobile device. - party application stores may be completely legitimate, but may also host applications that - commit substantial copyright violations or "cracked" versions of applications that allow users to - install and use paid applications for free. - The native application stores are hosted and operated by their respective mobile OS developers. ## 433 **2.4.3 Private Application Stores** - 434 Many enterprises and other organizations host their own mobile application stores. These stores - either host, or link to, a set of applications for an organization's users to access. These - applications may be privately developed applications that organizations do not wish to be made - public, or they may be publicly available applications that have been specifically approved for - enterprise use. The servers used to host these applications may be privately hosted and operated - by the enterprise, or hosted and operated by a third-party cloud provider. ## 440 2.4.4 Device & OS Vendor Infrastructure - 441 Mobile OS developers often host infrastructure to provide updates and patches to a mobile - device's OS and native applications. Other cloud-based applications may be provided as well, - including functionality to locate, lock, or wipe a missing device or to store user data (e.g., - 444 pictures, notes, music). ## 445 2.4.5 Enterprise Mobility Management Systems - Enterprise Mobility Management (EMM) systems are a common way of managing mobile - devices in an enterprise. Although EMMs are not directly classified as a security technology, - they can help to deploy policies to an enterprise's device pool and to monitor a device's state. - Mobile OS developers provide APIs for EMM systems to deliver mobile policies, such as only - allowing a whitelisted set of applications to run; ensuring a lock screen security policy is met; - and disabling certain device peripherals (e.g., camera). EMMs can also use APIs to gather data - about various aspects of a mobile device's state. - 453 For more information about the management and security of EMMs, see NIST SP 800-124 – - Guidelines for Managing the Security of Mobile Devices in the Enterprise [2]. ## 455 **2.4.6 Enterprise Mobile Services** - Email, contacts, and calendars are common workforce drivers, and are the cornerstone - 457 applications in mobile devices that are deployed by enterprises. Directory services are also - deployed in an enterprise and used by mobile devices. Enterprises may also make other services - available to mobile devices depending on their specific mission needs and requirements... 461 465 485 492 493 494 495 ## 3 Mobile Threat Catalogue - The MTC captures a broad range of the threats posed to mobile devices and their associated - infrastructure. The following section describes the structure of the catalogue and the - 464 methodology used to create it. ## 3.1 Methodology - 466 NCCoE's mobile security engineers performed a foundational review of mobile security - literature in order to identify major categories of mobile threats. Building upon this knowledge, - threats were identified using a modified NIST SP 800-30 risk assessment process [6]. One of the - primary drivers for change was the lack of a specific information system under review. A single - 470 mobile deployment was not under review instead the threats posed to foundational mobile - 471 technologies were analyzed. Therefore, key risk information necessitated by NIST SP 800-30 - such as likelihood, impact, and overall risk was unavailable and not included. Threats were - identified in communication mechanisms, the mobile supply chain, and at each level of the - 474 mobile device technology stack. These threats were then placed into threat categories alongside - information pertaining to specific instantiations of these threats. - During the threat identification process, it was necessary to identify which associated systems - 477 would be included and applicable mitigation capabilities. The mitigation capabilities are - 478 inclusive of a mobile security literature review and submissions resulting from the request for - information on mobile threats and defenses³, which support the congressional study on mobile - device security. A broad scope was used in an effort to be comprehensive. The threats listed in - 481 the catalogue are sector-agnostic. For instance, threats pertaining to the use of mobile devices in - a medical setting are not included. The exception to this is the inclusion of threats pertaining to - 483 the telecommunications industry, since this includes threats to cellular networks and - infrastructure by definition. ### 3.2 Catalogue Structure - Threats are presented in categories and subcategories within the catalogue. NIST 800-30 - Revision 1 defines a threat as "any circumstance or event with the potential to adversely impact - organizational operations and assets, individuals, other organizations, or the Nation through an - 489 information system via unauthorized access, destruction, disclosure, or modification of - information, and/or denial of service" [6]. For each threat identified within our analysis, the - 491 following information is provided: - **Threat Category:** The major topic area pertaining to this threat. Topic areas are further divided when necessary, and are discussed in section 3.3. - Threat Identifier (ID): The Threat ID is a unique identifier for referencing a specific threat. The broad identifier categories used within the MTC are: ³ FedBizOps solicitation number: QTA00NSTS16SDI0003 | 496 | o APP: Application | |-------------------|---| | 497 | o STA: Stack | | 498 | o CEL: Cellular | | 499 | o GPS: Global Positioning System | | 500 | o LPN: Local Area Network & Personal Area Network | | 501 | o AUT: Authentication | | 502 | o SPC: Supply Chain | | 503 | o PHY: Physical | | 504 | o ECO: Ecosystem | | 505 | o <i>EMM</i> : Enterprise Mobility Management | | 506 | o PAY: Payment | | 507 | • Threat Origin: Reference to the source material used to initially identify the threat. | | 508
509 | • Exploit Example : A reference to the vulnerability's origin or examples of specific instances of this threat. | | 510
511
512 | • Common Vulnerability and Exposure (CVE) Reference: A specific vulnerability located within the National Vulnerability Database (NVD) [10]. A vulnerability origin may describe a specific vulnerability, which may, or may not, be associated with a CVE. | | 513
514
515 | • Possible Countermeasure : Security controls or mitigations that could reduce the impact of a particular threat. If a countermeasure is not present, it may be an area for future research. | | 516
517 | The CVE is a dictionary of publicly known information security vulnerabilities and exposures [11]. | | 518 | 3.3 Category Descriptions | | 519
520 | There are 12 tabs within the MTC, each acting as general threat categories with subcategories defined as necessary. | | 521 | 3.3.1 Mobile Device Technology Stack | | 522
523 | As discussed in Section 2.1, the mobile device technology stack consists of the hardware, firmware, and software used to host and
operate the mobile device. | | 524 | Mobile Applications: The Applications tab contains threats related to software | | 525 | application developed for a mobile device, or more specifically a mobile operating | | |-----|--|-----| | 526 | system. Note: The Applications category was separated into its own tab to enhance the | , | | 527 | usability of the catalogue. All of the other items are listed under the Stack tab. | | | 341 | usability of the calalogue. All of the other tiems are tisted under the stack tab. | | | 528 | o Vulnerable Applications: This subcategory contains threats related to discrete | | | 529 | software vulnerabilities residing within mobile applications running on top the | | | 530 | mobile operating system. <i>Note: Some vulnerabilities may be specific to a</i> | | | 531 | particular mobile OS, while others may be generally applicable. | | | | particular movies os, white others may be generally appreciate. | | | 532 | Malicious or Privacy-Invasive Applications: This subcategory identifies mobile | • | | 533 | malware based threats, based in part on Google's mobile classification taxonon | 1y | | 534 | [3]. There are no specific software vulnerabilities within this subcategory, and | • | | 535 | accordingly no CVEs are cited. Additional malware categories are included | | | 536 | within subcategory to augment Google's classification taxonomy. | | | 330 | within subcategory to augment Google's classification taxonomy. | | | 537 | • Mobile Operating System: Operating system specifically designed for a mobile device | | | 538 | and running mobile applications. | | | | | | | 539 | • Device Drivers: Plug-ins used to interact with device hardware and other peripherals | | | 540 | (e.g., camera, accelerometer). | | | | | | | 541 | • Isolated Execution Environments: Hardware or firmware-based environment built into | | | 542 | the mobile device that may provide many capabilities such as trusted key storage, code | , | | 543 | verification, code integrity, and trusted execution for security relevant processes. | | | | , , , , , , , , , , , , , , , , , , , | | | 544 | • SD Card: SD cards are removable memory used to expand the storage capacity of mob | ile | | 545 | devices to store data such as photos, videos, music, and application data. | | | | | | | 546 | • Boot Firmware: The firmware necessary to boot the mobile OS (i.e., bootloader). | | | 547 | Firmware may verify additional device initialization code, device drivers used for | | | 548 | peripherals, and portions of the mobile OS – all before a user can use the device. | | | | r r | | | 549 | • Baseband Subsystem: The collection of hardware and firmware used to communicate | | | 550 | with the cellular network via the cellular radio. | | | | | | | 551 | • SIM Card: This removable hardware token is a SoC housing the IMSI, pre-shared | | | 552 | cryptographic keys, and configuration information needed to obtain access to cellular | | | 553 | networks. | | | 555 | networks. | | ## 3.3.2 Network Protocols, Technologies, and Infrastructure 554 555 556 557 558 - Although divided into multiple sections within the mobile threat catalogue, this category includes wireless protocols and technologies used by mobile devices. - Cellular: Threats exist to a number of cellular systems, broken into the following subcategories: - o Air Interface: The cellular air interface is the radio connection between a handset | 560561562563564 | | | and a base station. There are many cellular network types each with its own air interface standards which as a total set are extremely flexible and primarily communicate with base stations. <i>Note: While a number of general threats to the cellular air interface are listed, specific threats to particular cellular protocols (e.g., GSM, CDMA, LTE) are also included.</i> | |---|--------|--------------|--| | 565
566 | | 0 | Consumer grade small cell: Small cells are often used to extend cellular network coverage into homes, offices, and other locations lacking service. | | 567
568
569
570
571 | | 0 | Carrier-grade Messaging Services: Messaging services (i.e., SMS, MMS, RCS) allow text, photos, and more to be sent from one device to another. Although third-party messaging services exist, carrier-grade messaging services are preinstalled on nearly every mobile phone, and are interoperable with most MNOs' networks. | | 572
573
574 | | 0 | USSD: A method for establishing real-time sessions with a service or application to quickly share short messages. Although USSD messages may travel over SMS, the protocol itself is distinct. | | 575
576 | | 0 | Carrier Infrastructure: This category includes threats to the base stations, backhaul and cellular network cores. | | 577
578 | | 0 | Carrier Interoperability: This subcategory is primarily reserved for signaling threats associated with the Signaling System No. 7 (SS7) network. | | 579
580
581 | | 0 | VoLTE: The packet switched network application used for making voice calls within LTE. Although not supported in all MNO networks, large-scale rollouts are underway throughout the world. | | 582
583 | • | LAN & techno | & PAN: This threat category consists of local and personal area wireless network logies. | | 584 | | 0 | WiFi: WiFi is a WLAN technology based on the IEEE 802.11 series of standards. | | 585
586 | | 0 | Bluetooth: Bluetooth is a medium-range, lower power, wireless communication technology. | | 587
588
589 | | 0 | NFC: NFC is a short range wireless communication technology commonly used for mobile wallet technologies and peripheral configuration, although a number of other applications exist. | | 590 | • | GPS: A | A network of orbiting satellites used to help a device determine its location. | | 591 | 3.3.3 | Authe | ntication | | 592
593
594 | creder | ntial and | n mechanisms are grouped within the three subcategories listed below. Individual token types are not broken into their own categories and are instead included these three broad categories. | - User to Device: Mechanisms used to authenticate with a mobile device, such as passwords, fingerprints, or voice recognition. This is most often local authentication to a device's lock screen. - User or Device to Remote Service: Mechanisms a user or a distinct non-person entity (NPE) uses to remotely authenticate to an external process, service, or device. - User or Device to Network: Mechanisms a user, mobile device, or peripheral uses to authenticate to a network (e.g., Wi-Fi, cellular). This commonly includes proving possession of a cryptographic token. #### 3.3.4 Supply Chain 600 601 602 603 619 620 621 - This category includes threats related to the device and component supply chain. To the extent - 605 that they are included, software supply chain related threats are noted within the Exploitation of - 606 Vulnerabilities in Applications category. ## 607 3.3.5 Physical Access - This category includes general threats originating from outside of the device, such as device loss - and malicious charging stations. ## 610 **3.3.6 Ecosystem** - This category includes threats related to the greater mobile ecosystem includes a number of - 612 items, including EMMs, mobile OS vendor infrastructure, and mobile enterprise services such as - email, contacts, and calendar. - Mobile OS Vendor Infrastructure: Infrastructure provided by the OS developer to provide OS and application updates, alongside auxiliary services such as cloud storage. - Native Public Stores: Major mobile operating system vendors own and operate their own native mobile application stores, which host mobile applications alongside music, movies, games, etc. for users to download and install. - Private Enterprise Stores: Application stores may be owned and operated by private enterprises to host applications not meant for public distribution, such as applications developed and used solely within the organization. - Third-Party Stores: Other legitimate, and illegitimate, application stores may be owned and operated by organizations external to the major mobile operating system vendors. #### 624 3.3.7 Enterprise Mobility - This threat category comprises enterprise mobility management systems and threats to - enterprises services. ## 627 **3.3.8 Payment** - Threats related to mobile payments are included within this category, including a variety of - mobile payment technologies such as USSD, NFC-based payments, and credit card tokenization. - Although general threats relating to USSD and NFC are included elsewhere, threats relating to - payment specific use cases are captured here. ## 3.4 Next Steps - The NCCoE aims to construct a series of mobile security projects to address the threats listed in - 634 the MTC. A subset of the threats listed in the MTC may be identified for each project. Example - projects could include mobile application vetting, mobile security for public safety handsets, and - cellular security for the LTE air interface. Additionally, the NCCoE has partnered with the Cyber - 637 Security Division at the DHS Science & Technology Directorate in mobile security research for - future research and development to spur innovation. The list of mobile threats lacking mitigation - capabilities will be considered primary areas for future research and development projects in - mobile security. - The NCCoE is
interested in receiving comments on the Mobile Threat Catalogue, ideas for - 642 future mobile security projects, and mobile security architectures operating and/or managing - enterprise mobile deployments. The NCCoE is also interested in feedback from mobile - technology vendors who may wish to work in collaboration to solve mobile security challenges. - Please connect with the NCCoE's mobile security team at <u>mobile-nccoe@nist.gov</u>. - If you have specific comments on this document, please email us at nistir8144@nist.gov. 647 ## Appendix A—Acronyms Selected acronyms and abbreviations used in this paper are defined below. 2G 2nd Generation 3G 3rd Generation 4G 4th Generation AP Access Point API Application Programming Interface BYOD Bring Your Own Device COPE Corporately Owned Personally Enabled COTS Commercially Available off the Shelf CSRC Computer Security Resource Center CVE Common Vulnerabilities & Exposures DoS Denial of Service EMM Enterprise Mobility Management GNSS Global Navigation Satellite System GSM Global System for Mobile Communications FIPS Federal Information Processing Standard HD High Definition IoT Internet of Things IP Internet Protocol IT Information Technology LTE Long Term Evolution MDM Mobile Device Management MNO Mobile Network Operator MMS Multimedia Messaging Service MTC Mobile Threat Catalogue NCCoE National Cybersecurity Center of Excellence NFC Near Field Communication NIST National Institute of Standards and Technology NISTIR NIST Interagency Report NPE Non-Person Entity OS Operating System PAN Personal Area network PSTN Public Switched Telephone Networks RCS Rich Communication Services RFID Radio Frequency Identification SD Secure Digital SIG Special Interest Group SIM Subscriber Identity Module SMS Short Message Service SoC System on a Chip SP Special Publication SS7 Signaling System No. 7 SSID Service Set Identifier UICC Universal Integrated Circuit Card UMTS Universal Mobile Telecommunications System USIM Universal Subscriber Identity Module USSD Unstructured Supplementary Service Data VPN Winturah PPiriyatete Netwookk WLAN Wireless Local Area Network | 649 | Appendix B—F | References | |-----|--------------|--| | | [1] | National Institute of Standards and Technology, <i>Computer Security Resource Center</i> , 2016. [web page] http://csrc.nist.gov [accessed 8/23/16]. | | | [2] | M. Souppaya and K. Scarfone, <i>Guidelines for Managing the Security of Mobile Devices in the Enterprise</i> , NIST SP 800-124 Revision 1, NIST, June 2013. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-124r1.pdf [accessed 8/23/15]. | | | [3] | Google, The Google Android Security Team's Classifications for Potentially Harmful Applications, April 2016.
https://static.googleusercontent.com/media/source.android.com/en//security/reports/Google Android Security PHA classifications.pdf | | | [4] | GSMA, Embedded SIM Remote Provisioning Architecture, Version 1.1, December 2013. http://www.gsma.com/connectedliving/wp-content/uploads/2014/01/1GSMA-Embedded-SIM-Remote-Provisioning-Architecture-Version-1.1.pdf | | | [5] | S. Quirolgico et. al., <i>Vetting the Security of Mobile Applications</i> , NIST SP 800-163, NIST, January 2015.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-163.pdf | | | [6] | National Institute of Standards and Technology, Guide for Conducting Risk Assessments, NIST SP 800-30 Revision 1, NIST, September 2012.
http://csrc.nist.gov/publications/nistpubs/800-30-rev1/sp800_30_r1.pdf | | | [7] | Mandt, Solnik, and Wang, <i>Demystifying the Secure Enclave Processor</i> , Blackhat 2016.
https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf | | | [8] | Delugré, Guillaume, <i>Reverse engineering a Qualcomm baseband</i> , Sogeti / ESEC R&D, 2011. https://events.ccc.de/congress/2011/Fahrplan/attachments/2022_11-ccc-qcombb | | | [9] | National Institute of Standards and Technology, <i>National Vulnerability Database</i> , 2015. http://nvd.nist.gov [accessed 9/2/2015]. | | | [10] | National Institute of Standards and Technology, <i>Security and Privacy Controls</i> for Federal Information Systems and Organizations, NIST SP 800-53 Revision 4, April 2013. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800- | 53r4.pdf [accessed 9/9/15]. | [11] | MITRE, Common Vulnerabilities and Exposures, 2016. [Web page] http://cve.mitre.org/ [accessed 8/22/2016] | |------|--| | [12] | T. Karygiannis, et al., <i>NIST SP 800-98 Guidelines for Securing Radio Frequency Identification (RFID) Systems</i> , National Institute of Standards and Technology, April 2007. http://csrc.nist.gov/publications/nistpubs/800-98/SP800-98 RFID-2007.pdf | | [13] | J. Padgette, K. Scarfone, L. Chen, <i>NIST SP 800-121 Revision 1 – Guide to Bluetooth Security</i> , National Institute of Standards and Technology, June 2012. http://csrc.nist.gov/publications/nistpubs/800-121-rev1/sp800-121_rev1.pdf | | [14] | M. Souppaya, K. Scarfone, <i>NIST SP 800-153 - Guidelines for Securing Wireless Local Area Networks (WLANs)</i> , National Institute of Standards and Technology, February 2012. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-153.pdf | | [15] | S. Frankel, B. Eydt, L. Owens, K. Scarfone, <i>NIST 800-97 - Establishing Wireless Robust Security Networks: A Guide to IEEE 802.11i</i> , National Institute of Standards and Technology, February 2007. http://csrc.nist.gov/publications/nistpubs/800-97/SP800-97.pdf | | [16] | J. Cichonski, M. Bartock, J. Franklin, <i>NISTIR 8071 - LTE Architecture Overview and Security Analysis (DRAFT)</i> , NIST, April 2106. http://csrc.nist.gov/publications/drafts/nistir-8071/nistir_8071_draft.pdf | | [17] | Google, The Google Android Security Team's Classifications for Potentially Harmful Applications, April 2016. https://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_PHA_classifications.pdf | | [18] | S. Frankel, B. Eydt, L Owens, K Scarefone, <i>Establishing Wireless Robust Security Networks: A Guide to IEEE 802.11i</i> , NIST, February 2007. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-97.pdf | ## **Appendix C— Mobile Threat Catalogue References** The following table contains references used to inform the Mobile Threat Catalogue. - [1] N.O. Tippenhauer et al., "On the requirements for successful GPS spoofing attacks", in *Proceedings of the 18th ACM conference on Computer and communications security*,2011, pp. 75-86; www.cs.ox.ac.uk/files/6489/gps.pdf [accessed 8/23/2016] - [2] T.E. Humpreys et al. "Assessing the spoofing threat: Development of a portable GPS civilian spoofer." in *Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation*, 2008, pp. 2314-2325; https://gps.mae.cornell.edu/humphreys_etal_iongnss2008.pdf [accessed 8/23/2016] - [3] S. Andrivet, *The Security of MDM systems*, presented at Hack In Paris, 20 June 2013; https://hackinparis.com/data/slides/2013/MDM-HIP_2013.pdf [accessed 8/23/2016] - [4] S. Breen, *Mobile Device Mismanagement*, presented at Blackhat, Aug. 2014; www.blackhat.com/docs/us-14/materials/us-14-Breen-Mobile-Device-Mismanagement.pdf [accessed 8/23/2016] - [5] N.S. Evans, A. Benameur, and Y. Shen, "All Your Root Checks Are Belong to Us: The Sad State of Root Detection", in *Proceedings of the 13th ACM International Symposium on Mobility Management and Wireless Access*, 2015, pp. 81–88; http://dx.doi.org/10.1145/2810362.2810364 [accessed 8/23/2016] - [6] D. Kravets, "Worker fired for disabling GPS app that track her 24 hours a day [Updated]", *Ars Technica*, 11 May 2015; http://arstechnica.com/techpolicy/2015/05/worker-fired-for-disabling-gps-app-that-tracked-her-24-hours-a-day/ [accessed 8/23/2016] - [7] D. Denslow, "Personal Data Security and the "BYOD" Problem: Who is Truly at Risk?", blog, 19 Nov. 2014; http://jolt.richmond.edu/index.php/blog-personal-data-security-and-the-byod-problem-who-is-truly-at-risk/ [accessed 8/24/2016] - [8] S. Raghuram, "Man in the Cloud: Threat,
Impact, Resolution and the Bigger Picture", blog, 2015; www.skyhighnetworks.com/cloud-security-blog/man-in-the-cloud-threat-impact-resolution-and-the-bigger-picture/ [accessed 8/23/2016] - [9] "Mobile Top 10 2016", Mar. 2016; www.owasp.org/index.php/Mobile_Top_10_2016-Top_10 [accessed 8/23/2016] - [11] L. Francis et al., "Practical NFC peer-to-peer relay attack using mobile phones", in *Proceedings of the 6th international conference on Radio frequency identification: security and privacy issues* (RFIDSec'10), 2010, pp. 35-49; https://eprint.iacr.org/2010/228.pdf [accessed 8/24/2016] - [12] O. Cox, "Demystifying Point of Sale Malware and Attacks", blog, 25 Nov. 2015; www.symantec.com/connect/blogs/demystifying-point-sale-malware-and-attacks [accessed 8/24/2016] - [13] "Home Depot Hit By Same Malware as Target", 14 Sept. 2014; http://krebsonsecurity.com/2014/09/home-depot-hit-by-same-malware-astarget/ [accessed 8/24/2016] - [14] M. Geuss, "The weak link in Apple Pay's strong chain is bank verification. Who's to blame?", *Ars Technica*, 3 Mar. 2015; http://arstechnica.com/apple/2015/03/the-weak-link-in-apple-pays-strong-chain-is-bank-verification-whos-to-blame/ [accessed 8/24/2016] - [15] M. Georgiev et al., "The most dangerous code in the world: validating SSL certificates in non-browser software", in *Proceedings of the 2012 ACM conference on Computer and communications security* (CCS '12), 2012, pp. 38-49; http://dx.doi.org/10.1145/2382196.2382204 [accessed 8/24/2016] - [16] M. Souppaya and K. Scarfone, *Guidelines for Securing Wireless Local Area Networks (WLANs)*, SP 800-163, National Institute of Standards and Technology, 2016; http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-153.pdf [accessed 8/24/2016] - [17] K. Zetter, "Darkhotel: A Sophisticated New Hacking Attack Targets High-Profile Hotel Guests", *Wired*, 10 Nov. 2014; www.wired.com/2014/11/darkhotel-malware/ [accessed 8/24/2016] - [18] "CAPEC-613: WiFi SSID Tracking (Version 2.8)", MITRE, 7 Dec. 2015; http://capec.mitre.org/data/definitions/613.html [accessed 8/24/2016] - [19] A. Stubblefield, J. Ioannidis and A.D. Rubin, *Using the Fluhrer, Mantin, and Shamir Attack to Break WEP*, tech. report TD-4ZCPZZ, AT&T Labs, 2001; www.isoc.org/isoc/conferences/ndss/02/papers/stubbl.pdf [accessed 8/24/2016] - [20] D. Richardson, "Using spoofed Wi-Fi to attack mobile devices", blog, 21 Apr. 2016; https://blog.lookout.com/blog/2016/04/21/spoofed-wi-fi-60-minutes/ [accessed 8/24/2016] - [21] G. Fleishman, "FCC fines Marriott \$600,000 for jamming hotel Wi-Fi", blog, 3 Oct. 2014; http://boingboing.net/2014/10/03/fcc-fines-marriott-for-jamming.html [accessed 8/24/2016] - [22] B. Weis, *IEEE 802 Privacy Threat Analysis*, Cisco Systems, 2016; www.ieee802.org/1/files/public/docs2016/802E-weis-privacy-threat-analysis-0718-v01.pdf [accessed 8/24/2016] - [23] B. Fung, "How stores use your phone's WiFi to track your shopping habits", *The Washington Post*, 19 Oct. 2013; www.washingtonpost.com/blogs/the-switch/wp/2013/10/19/how-stores-use-your-phones-wifi-to-track-your-shopping-habits [accessed 8/24/2016] - [24] S. Clifford and Q. Hardy, "Attention, Shoppers: Store Is Tracking Your Cell", *The New York Times*, 14 July 2013; www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html [accessed 8/24/2016] - [25] S. Mlot, "FTC Goes After Firm for Tracking Shoppers' Cell Phones", PCMag, 24 Apr. 2015; www.pcmag.com/article2/0,2817,2482985,00.asp [accessed 8/24/2016] - "How Retailers Use Smartphones To Track Shoppers In The Store", *All Things Considered*, National Public Radio, 16 June 2014, transcript; www.npr.org/2014/06/16/322597862/how-retailers-use-smartphones-to-track-shoppers-in-the-store [accessed 8/24/2016] - [27] GPS, Wi-Fi, and Cell Phone Jammers Frequently Asked Questions (FAQs), Federal Communications Commission; https://transition.fcc.gov/eb/jammerenforcement/jamfaq.pdf [accessed 8/24/2016] - J. Padgette, K. Scarfone and L. Chen, *Guide to Bluetooth Security*, SP 800-121 rev. 1, National Institute of Standards and Technology, 2012; http://csrc.nist.gov/publications/nistpubs/800-121-rev1/sp800-121_rev1.pdf [accessed 8/24/2016] - [29] C. Mulliner and M. Herfurt, "Blueprinting", 2013; http://trifinite.org/trifinite_stuff_blueprinting.html [accessed 8/24/2016] - [30] L. Carettoni, C. Merloni and S. Zanero, "Studying Bluetooth Malware Propagation: The BlueBag Project", *Proceedings of the 2007 IEEE Symposium on Security and Privacy*, pp. 17-25, 2007; http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4140986 [accessed 8/24/2016] - [31] Z. Wang et al., "Implementation and Analysis of a Practical NFC Relay Attack Example", in *Proceedings of the 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication, and Control*, 2012, pp 143-146. - [32] M. Maass et al., *Demo: NFCGate An NFC Relay Application for Android [Extended Abstract]*, presented at 8th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 26 June 2015; https://github.com/nfcgate/nfcgate [accessed 8/24/2016] - [33] G. Vaughan, NFC Threat Landscape, OWASP Toronto chapter meeting, 31 Mar. 2013; www.owasp.org/images/3/38/NFC_Threat_Landscape_OWASP_Toronto_March_2013.pdf [accessed 8/24/2016] - [34] C. Miller, *Exploring the NFC Attack Surface*, presented at Blackhat, 5 July 2012; https://media.blackhat.com/bh-us-12/Briefings/C_Miller/BH_US_12_Miller_NFC_attack_surface_WP.pdf [accessed 8/24/2016] - [35] "Android 6.0 Changes", https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id [accessed on 8/24/2016] - [36] D. Stites and K. Skinner, *User Privacy on iOS and OS X*, presented at Apple Worldwide Developer Conference, June 2014; http://devstreaming.apple.com/videos/wwdc/2014/715xx4loqo5can9/715/71 5_user_privacy_in_ios_and_os_x.pdf [accessed 8/24/2016] - [37] Specification of the Bluetooth System version 1.0 B, Bluetooth Special Interest Group, 1999; http://grouper.ieee.org/groups/802/15/Bluetooth/profile_10_b.pdf [accessed 8/24/2016] - [38] "Security, Bluetooth Smart (Low Energy)", 2016; https://developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx [accessed 8/24/2016] - [39] S. Cobb, "QR Codes and NFC Chips: Preview-and-authorize should be default", blog, 23 Apr. 2012; www.welivesecurity.com/2012/04/23/qr-codes-and-nfc-chips-preview-and-authorize-should-be-default/ [accessed] 8/24/2016] - [40] S. Lawson, "Ten Ways Your Smartphone Knows Where you Are", PCWorld, 6 Apr. 2012; www.pcworld.com/article/253354/ten_ways_your_smartphone_knows_where_you_are.html [accessed 8/25/2016] - [41] J.S. Warner and R.G. Johnston, *GPS Spoofing Countermeasures*, tech. report LAUR-03-6163, Los Alamos National Laboratory, 2003; http://lewisperdue.com/DieByWire/GPS-Vulnerability-LosAlamos.pdf [accessed 8/25/2016] - [42] "Malware Targeting Point of Sale Systems", US-CERT alert TA14-002A, US-CERT, 5 Feb. 2014; www.us-cert.gov/ncas/alerts/TA14-002A [accessed 8/25/2016] - [43] C. Xiao, "YiSpecter: First iOS Malware That Attacks Non-jailbroken Apple iOS Devices by Abusing Private APIs," blog, 25 Oct. 2015; http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/ - [44] T. Claburn, "iOS SideStepper Vulnerability Undermines MDM Services: Check Point," *InformationWeek*, 31 Mar. 2016; www.informationweek.com/mobile/mobile-devices/ios-sidestepper-vulnerability-undermines-mdm-services-check-point/d/d-id/1324920 - [45] L. Tung, "Apple iPhone, iPad iOS 9 security flaw lets malicious apps sneak onto enterprise devices," *ZDNet*, 1 Apr. 2016; www.zdnet.com/article/apple-iphone-ipad-ios-9-security-flaw-lets-malicious-apps-sneak-onto-enterprise-devices/ - [46] B. Lau et al., MACTANS: Injecting Malware Into iOS Devices Via Malicious Chargers, presented at BlackHat, 3-4 Aug. 2013. https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf [accessed 8/23/16]. - [47] M. Mendoza, "Xiaomi Locks Mi Devices' Bootloaders On Fears Of Malware And Security Risks: Up To 21 Days To Unlock," Tech Times, 20 Jan. 2016; www.techtimes.com/articles/125681/20160120/xiaomi-locks-mi-devices-bootloaders-on-fears-of-malware-and-security-risks-up-to21-days-to-unlock.htm [accessed 8/26/2016] - [48] D. Pauli, "Samsung S6 calls open to man-in-the-middle base station snooping," *The Register*, 12 Nov. 2015; www.theregister.co.uk/2015/11/12/mobile_pwn2own1/ - [49] D. Goodin, "Software flaw puts mobile phones and networks at risk of complete takeover," *Ars Technica*, 19 July 2016; http://arstechnica.com/security/2016/07/software-flaw-puts-mobile-phones-and-networks-at-risk-of-complete-takeover/ - [50] R. Weinmann, Baseband Attacks: Remote Exploitation of Memory Corruptions in Cellular Protocol Stacks, presented at 6th USENIX Workshop on Offensive Technologies, 6-7 Aug. 2012; www.usenix.org/system/files/conference/woot12/woot12-final24.pdf [accessed 8/23/16]. - [51] G. Williams, "4 Surprising Ways Your Identity Can Be Stolen," *U.S. News & World Report*, 9 June 2015; http://money.usnews.com/money/personal-finance/articles/2015/06/09/4-surprising-ways-your-identity-can-be-stolen - [52] "AT&T SIM-Card Switch Scam", New York Department of State; www.dos.ny.gov/consumerprotection/scams/att-sim.html [accessed 8/23/16]. - [53] R. Chirgwin, "This is what a root debug backdoor in a Linux kernel looks like," *The Register*, 9 May. 2016; www.theregister.co.uk/2016/05/09/allwinners_allloser_custom_kernel_has_a_nasty_root_backdoor/ [accessed 8/26/2016] - [54] *iOS Security: iOS 9.3 or later, white paper, Apple, 2016. www.apple.com/business/docs/iOS_Security_Guide.pdf* [accessed 8/24/16]. - [55] R. Welton, "Remote Code Execution as System User on Samsung Phones", blog, 16 June 2015; www.nowsecure.com/blog/2015/06/16/remote-code-execution-as-system-user-on-samsung-phones/ [accessed 8/25/2016] - J.
V. Dyke, "Insecurity Cameras and Mobile Apps: Surveillance or Exposure?", blog, 6 Jan. 2016; www.nowsecure.com/blog/2016/01/06/insecurity-cameras-and-mobile-apps-surveillance-or-exposure/ [accessed 8/25/2016] - [57] J. Oberheide and Z. Lanier, "Team Joch vs. Android", presented at ShmooCon 2011, 28-30 Jan. 2011, slide 54; https://jon.oberheide.org/files/shmoo11-teamjoch.pdf [accessed 8/25/2016] - [61] L. Neely, Mobile Threat Protection: A Holistic Approach to Securing Mobile Data and Devices, SANS Institute, 2016; www.sans.org/reading-room/whitepapers/analyst/mobile-threat-protection-holistic-approach-securing-mobile-data-devices-36715 [accessed 8/25/2016] - [62] S. Fahl et al, "Why Eve and Mallory Love Android: An Analysis of Android - SSL (In)Security", in *Proceedings of the 2012 ACM conference on Computer and Communications Security*, 2012, pp. 50-61; http://dl.acm.org/citation.cfm?id=2382205 [accessed 8/25/2016] - [63] D. Sounthiraraj et al, "SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps", in *Proceedings of the 2014 Network and Distributed System Security Symposium*, 2014; www.internetsociety.org/sites/default/files/10_3_1.pdf [accessed 8/25/2016] - [64] A. Mettler et al, "SSL Vulnerabilities: Who Listens When Android Applications Talk?", 20 Aug. 2014; www.fireeye.com/blog/threat-research/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-talk.html [accessed 8/25/2016] - J. Montelibano and W. Dormann, *How We Discovered Thousands of Vulnerable Android Apps in 1 Day*, presented at RSA Conference USA 2015, 19 Apr. 2015; www.rsaconference.com/writable/presentations/file_upload/hta-t08-how-wediscovered-thousands-of-vulnerable-android-apps-in-1-day_final.pdf [accessed 8/25/2016] - "Fandango, Credit Karma Settle FTC Charges that They Deceived Consumers By Failing to Securely Transmit Sensitive Personal Information", Federal Trade Commission, 28 Mar. 2014; www.ftc.gov/news-events/press-releases/2014/03/fandango-credit-karma-settle-ftc-charges-they-deceived-consumers [accessed 8/25/2016] - J. Case, "Exclusive: Vulnerability In Skype For Android Is Exposing Your Name, Phone Number, Chat Logs, And A Lot More", blog, 14 Apr. 2011; www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is-exposing-your-name-phone-number-chat-logs-and-a-lot-more/# [accessed 8/25/2016] - [68] J. V. Dyke, "World Writable Code Is Bad, MMMMKAY", blog, 10 Aug. 2015; www.nowsecure.com/blog/2015/08/10/world-writable-code-is-bad-mmmkay/ [accessed 8/25/2016] - [69] "[Vulnerability Identifier]: LOOK-11-001", blog, 1 Feb. 2011; https://blog.lookout.com/look-11-001/ [accessed 8/25/2016] - [70] A. Donenfeld, *Stumping the Mobile Chipset*, presented at DEFCON 24, 7 Aug. 2016; https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Adam-Donenfeld-Stumping-The-Mobile-Chipset.pdf [accessed 8/25/2016] - [71] A. Brandt, "Android Towelroot Exploit Used to Deliver Dogspectus Ransomware", blog, 25 Apr. 2016; www.bluecoat.com/security-blog/2016-04-25/android-exploit-delivers-dogspectus-ransomware [accessed 8/25/2016] - [72] JailbreakMe; https://jailbreakme.qoid.us [accessed 8/25/2016] - [73] R. Welton, "A Pattern for Remote Code Execution using Arbitrary File Writes and MultiDex Applications", blog, 15 June 2015; www.nowsecure.com/blog/2015/06/15/a-pattern-for-remote-code-execution-using-arbitrary-file-writes-and-multidex-applications/ [accessed 8/25/2016] - [74] M. Grace et al, "Unsafe Exposure Analysis of Mobile In-App Advertisements", in *Proceedings of the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks*, 2012, pp. 101-112; http://dl.acm.org/citation.cfm?id=2185464 [accessed 8/25/2016] - [75] S. Guerrero, "eBay for Android Content Provider Injection Vulnerability", blog, 4 Oct. 2013; www.nowsecure.com/blog/2013/10/04/ebay-for-android-content-provider-injection-vulnerability/ [accessed 8/25/2016] - [76] X. Jiang, "Smishing Vulnerability in Multiple Android Platforms (including Gingerbread, Ice Cream Sandwich, and Jelly Bean)", 28 Nov. 2012; www.csc.ncsu.edu/faculty/jiang/smishing.html [accessed 8/25/2016] - [77] T. Cannon, "Android SMS Spoofer", GitHub repository, 14 Dec. 2012; https://github.com/thomascannon/android-sms-spoof [accessed 8/25/2016] - [78] K. Okuyama, "Content provider permission bypass allows malicious application to access data", Mozilla Foundation Security Advisory 2016-41, Mozilla Foundation, 26 Apr. 2016; www.mozilla.org/en-US/security/advisories/mfsa2016-41/ [accessed 8/25/2016] - [79] "WebView addJavaScriptInterface Remote Code Execution", 24 Sept. 2013; https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-execution/ [accessed 8/25/2016] - [80] F. Long, "DRD13. Do not provide addJavascriptInterface method access in a WebView which could contain untrusted content. (API level JELLY_BEAN or below)", 8 Apr. 2015; www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=1298 59614 [accessed 8/25/2016] - [81] T. Sutcliffe, "Remote code execution on Android devices", blog, 31 July 2014; https://labs.bromium.com/2014/07/31/remote-code-execution-on- android-devices/ [accessed 8/25/2016] - [82] D. Andzakovic, FortiClient Multiple Vulnerabilities, vulnerability disclosure, 29 Jan. 2015; www.security-assessment.com/files/documents/advisory/Fortinet_FortiClient_Multiple_Vulnerabilities.pdf [accessed 8/25/2016] - [83] The Google Android Security Team's Classifications for Potentially Harmful Applications, Apr. 2016; https://static.googleusercontent.com/media/source.android.com/en//security/reports/Google_Android_Security_PHA_classifications.pdf [accessed 8/25/2016] - [84] W. Zhou et al., "Slembunk: An Evolving Android Trojan Family Targeting Users of Worldwide Banking Apps", blog, 17 Dec. 2015; www.fireeye.com/blog/threat-research/2015/12/slembunk_an_evolvin.html [accessed 8/25/2016] - [85] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution", in *Proceedings of the 2012 IEEE Symposium on Security and Privacy*, 2012, pp 95-109; http://ieeexplore.ieee.org/document/6234407/?arnumber=6234407 [accessed 8/25/2016] - [86] C. Zheng and Z. Xu, "New Android Malware Family Evades Antivirus Detection by Using Popular Ad Libraries", blog, 7 July 2015; http://researchcenter.paloaltonetworks.com/2015/07/new-android-malware-family-evades-antivirus-detection-by-using-popular-ad-libraries/ [accessed 8/25/2016] - [87] "Unauthorized App Discovered", in Incident Response for Android and iOS, www.nowsecure.com/resources/mobile-incident-response/en/case-studies/unauthorized-app-discovered.html [accessed 8/25/2016] - [88] M. Kelly, "Cloned banking app stealing usernames sneaks into Google Play", blog, 24 June 2014; https://blog.lookout.com/blog/2014/06/24/bankmirage/ [accessed 8/25/2016] - [89] D. Richardson, "Change to sideloading apps in iOS 9 is a security win", blog, 10 Sept. 2015; https://blog.lookout.com/blog/2015/09/10/ios-9-sideloading/ [accessed 8/25/2016] - [90] Mobile Security: Threats and Countermeasures, white paper, MobileIron; www.mobileiron.com/sites/default/files/security/Mobile-Security-Threats-and-Countermeasures-WP-MKT-6361-V1.pdf [accessed 8/25/2016] - [91] D. Richardson, "Jailbreaking not a requirement for infecting iPhones with Hacking Team spyware", blog, 10 July 2015; https://blog.lookout.com/blog/2015/07/10/hacking-team/ [accessed 8/25/2016] - [92] L. Sun, et al, "Pawn Storm Update: iOS Espionage App Found", blog, 4 Feb. 2015; http://blog.trendmicro.com/trendlabs-security-intelligence/pawn-storm-update-ios-espionage-app-found/ [accessed 8/25/2016] - [93] C. Xiao, "WireLurker: A New Era in OS X and iOS Malware", blog, 5 Nov. 2014; http://researchcenter.paloaltonetworks.com/2014/11/wirelurker-new-era-os-x-ios-malware/ [accessed 8/25/2016] - [94] C. Page, "MKero: Android malware secretly subscribes victims to premium SMS services", *The Inquirer*, 9 Sept. 2015; www.theinquirer.net/inquirer/news/2425201/mkero-android-malware-secretly-subscribes-victims-to-premium-sms-services [accessed 8/25/2016] - [95] T. Espiner, "Chinese Android botnet 'netting millions', says Symantec", *ZDNet*, 10 Feb. 2012; www.zdnet.com/article/chinese-android-botnet-netting-millions-says-symantec/ [accessed 8/25/2016] - [96] C. Zheng, et al, "New Android Trojan XBot Phishes Credit Cards and Bank Accounts, Encrypts Devices for Ransom", blog, 18 Feb. 2016; http://researchcenter.paloaltonetworks.com/2016/02/new-android-trojan-xbot-phishes-credit-cards-and-bank-accounts-encrypts-devices-for-ransom/[accessed 8/25/2016] - [97] R. K. Konoth, Victor van der Veen, and Herbert Bos, "How Anywhere Computing Just Killed Your Phone-Based Two-Factor Authentication", *Proceedings of the 20th Conference on Financial Cryptography and Data Security*, 2016; http://fc16.ifca.ai/preproceedings/24_Konoth.pdf [accessed 8/25/2016] - [98] Android Security 2015 Year In Review, Google, 2016; https://source.android.com/security/reports/Google_Android_Security_2015 _Report_Final.pdf [accessed 8/25/2016] - [99] D. Goodin, "Malware designed to take over cameras and record audio enters Google Play", *Ars Technica*, 7 Mar. 2014; http://arstechnica.com/security/2014/03/malware-designed-to-take-over-cameras-and-record-audio-enters-google-play/ [accessed 8/25/2016] - [100] J. Oberheide, *Android Hax*, presented at Summercon, 10 June 2010; https://jon.oberheide.org/files/summercon10-androidhax-jonoberheide.pdf [accessed 8/25/2016] - [101] P. Ducklin, "How to clean up the Duh iPhone worm", *Naked Security*, Sophos, 24 Nov. 2009; https://nakedsecurity.sophos.com/2009/11/24/clean-up-iPhone-worm/ [accessed 8/25/2016] - [102] C. Dehghanpoor, "Brain Test re-emerges: 13 apps found in Google Play", blog, 6 Jan. 2016; https://blog.lookout.com/blog/2016/01/06/brain-test-re-emerges/ [accessed 8/25/2016] - [103] V. Chebyshev and R. Unuchek, "Mobile Malware Evolution: 2013", blog, 24 Feb. 2014;
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/ [accessed 8/25/2016] - [104] A. Coletta et al, "DroydSeuss: A Mobile Banking Trojan Tracker A Short Paper", in *Proceedings of Financial Cryptography and Data Security 2016*, 2016; http://fc16.ifca.ai/preproceedings/14_Coletta.pdf [accessed 8/25/2016] - [105] A.P. Felt and D. Wagner, *Phishing on Mobile Devices*, presented at Web 2.0 Security & Privacy 2011, 26 May 2011; http://w2spconf.com/2011/papers/felt-mobilephishing.pdf [accessed 8/25/2016] - [106] R. Hassell, *Exploiting Androids for Fun and Profit*, presented at Hack In The Box Security Conference 2011, 12-13 Oct. 2011; http://conference.hitb.org/hitbsecconf2011kul/materials/D1T1 Riley Hassell Exploiting Androids for Fun and Profit.pdf [accessed 8/25/2016] - [107] W. Zhou et al., "The Latest Android Overlay Malware Spreading via SMS Phishing in Europe", blog, 28 June 2016; www.fireeye.com/blog/threat-research/2016/06/latest-android-overlay-malware-spreading-in-europe.html [accessed 8/25/2016] - [108] J. Clover, "Password-Stealing Instagram App 'InstaAgent' Reappears in App Store Under New Name", *MacRumors*, 22 Mar. 2016; www.macrumors.com/2016/03/22/password-stealing-instaagent-appreappears/ [accessed 8/25/2016] - [109] T. Fox-Brewster, "Hackers Sneak Malware Into Apple App Store 'To Steal iCloud Passwords'", *Forbes*, 18 Sept. 2015; www.forbes.com/sites/thomasbrewster/2015/09/18/xcodeghost-malware-wants-your-icloud/ [accessed 8/25/2016] - [110] Internet Security Threat Report vol. 21, Symantec, 2016. | [111] | T. Wang et al., "Jekyll on iOS: When Benign Apps Become Evil", in <i>Proceedings of the 22nd USENIX Security Symposium</i> , 2013; www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_wang_2.pdf [accessed 8/25/2016] | |-------|--| | [112] | D. Storm, "Mobile RAT attack makes Android the ultimate spy tool" <i>Computerworld</i> , 1 Mar. 2012; | [113] L. Fair, "Device Squad: The story behind the FTC's first case against a mobile device maker", blog, 22 Feb. 2013; www.ftc.gov/news-events/blogs/business-blog/2013/02/device-squad-story-behind-ftcs-first- www.computerworld.com/article/2472441/cybercrime-hacking/mobile-rat-attack-makes-android-the-ultimate-spy-tool.html [accessed 8/25/2016] - [114] Check Point Security Team, "Certifi-gate: Hundreds of Millions of Android Devices Could Be Pwned", blog, 6 Aug. 2015; http://blog.checkpoint.com/2015/08/06/certifigate/ [accessed 8/25/2016] - [115] "Samsung Keyboard Security Risk Disclosed", 16 June 2015; www.nowsecure.com/keyboard-vulnerability/ [accessed 8/25/2016] case-against-mobile [accessed 8/25/2016] - [116] CBS App & Mobility Website, Wandera Threat Advisory No. 192, Wandera, 23 Mar. 2016; www.wandera.com/resources/dl/TA_CBS.pdf [accessed 8/24/2016] - [117] The Fork, Wandera Threat Advisory No. 154, Wandera, 14 Jan. 2016; www.wandera.com/resources/dl/TA_The_Fork.pdf [accessed 8/24/2016] - [118] Star Q8, Wandera Threat Advisory No. 152, Wandera, 10 Jan. 2016; www.wandera.com/resources/dl/TA_StarQ8.pdf [accessed 8/24/2016] - [119] Corriere Della Sera App, Wandera Threat Advisory No. 74, Wandera, 29 Aug. 2015; www.wandera.com/resources/dl/TA_CorriereDellaSeraApp.pdf (accessed 24 Aug 2016) - [120] *La Tribune*, Wandera Threat Advisory No. 84, Wandera, 2 Oct. 2015; www.wandera.com/resources/dl/TA_LaTribune.pdf [accessed 8/24/2016] - [121] *Card Crypt*, Wandera Threat Advisory No. 142, Wandera, 9 Dec. 2015; www.wandera.com/resources/dl/TA_CardCrypt.pdf [accessed 8/24/2016] - [122] E. Schuman, "Starbucks Caught Storing Mobile Passwords in Clear Text", *Computerworld*, 15 Jan. 2014; www.computerworld.com/article/2487743/security0/evan-schuman-- - starbucks-caught-storing-mobile-passwords-in-clear-text.html [accessed 8/25/2016] - [124] A. Aviv et al., "Smudge Attacks on Smartphone Touch Screens", in *Proceedings of the 4th USENIX Conference on Offensive technologies*, 2010; www.usenix.org/legacy/event/woot10/tech/full_papers/Aviv.pdf [accessed 8/24/2016]. - [125] P. Ducklin, "Black Box" Brouhaha Breaks Out Over Brute Forcing of iPhone Pin Lock", *Naked Security*, Sophos, 17 Mar. 2015; https://nakedsecurity.sophos.com/2015/03/17/black-box-brouhaha-breaks-out-over-brute-forcing-of-iphone-pin-lock/ [accessed 8/25/2016] - [126] T. Simonite, "Black Hat: Google Glass Can Steal Your Passcodes", *MIT Technology Review*, 7 Aug. 2014; www.technologyreview.com/s/529896/black-hat-google-glass-can-steal-your-passcodes/ [accessed 8/25/2016] - [127] L. Tung, "iOS 9 LockScreen Bypass Exposes Photos and Contacts", *ZDNet*, 24 Sept. 2015; www.zdnet.com/article/ios-9-lockscreen-bypass-exposes-photos-and-contacts/ [accessed 8/25/2016] - [128] S. Hill, "Your Smartphone Isn't As Safe As You'd Think, Techradar, 29 Nov. 2013; www.techradar.com/us/news/phone-and-communications/mobile-phones/your-smartphone-pin-isn-t-as-safe-as-you-d-think-1203510 [accessed 8/25/2016] - [129] D. Goodin, "How hackers can access iPhone contacts and photos without a password", *Ars Technica*, 25 Sept. 2015; http://arstechnica.com/security/2015/09/how-hackers-can-access-iphone-contacts-and-photos-without-a-password/ [accessed 8/25/2016] - [130] D. Goodin, "Serious OS X and iOS Flaws Let Hackers Steal Keychain, 1Password Contents", *Ars Technica*, 17 June 2015; http://arstechnica.com/security/2015/06/serious-os-x-and-ios-flaws-let-hackers-steal-keychain-1password-contents/ [accessed 8/25/2016] - [131] J. Lemonnier, "Which is the most secure Android Smart Lock?", 4 June 2016; http://now.avg.com/which-is-the-most-secure-android-smart-lock/ [accessed 8/25/2016] - [132] J. Trader, "Liveness Detection to Fight Biometric Spoofing", blog, 22 July 2014; http://blog.m2sys.com/scanning-and-efficiency/liveness-detection-fight-biometric-spoofing/ [accessed 8/25/2016] - [133] M. Rogers "Why I hacked TouchID (again) and still think it's awesome", blog, 23 Sept. 2016; https://blog.lookout.com/blog/2014/09/23/iphone-6-touchid-hack; [accessed 8/25/2016] - [134] D. Richardson, "Using Spoofed Wi-Fi to Attack Mobile Devices", blog, 21 Apr. 2016; https://blog.lookout.com/blog/2016/04/21/spoofed-wi-fi-60-minutes/ [accessed 8/25/2016] - [135] SRLabs, "iPhone 5S Touch ID susceptible to fingerprint spoofs", YouTube video, 25 Sept. 2013; www.youtube.com/watch?v=h1n_tS9zxMc [accessed 8/25/2016]; Note, URL https://srlabs.de/spoofing-fingerprints/ not available - [136] "Man-in-the-Middle Attack", 31 Aug. 2015; www.owasp.org/index.php/Man-in-the-middle_attack [accessed 8/25/2016] - [138] R. Graves, Phishing Defenses for Webmail Providers, white paper, SANS Institute, 2013; www.sans.org/reading-room/whitepapers/email/phishing-detecton-remediation-34082 [accessed 8/258/2016] - [139] C. Boyd, "'Your Account PayPal Has Been Limited' Phishing Scam", blog, 8 May 2015; https://blog.malwarebytes.com/cybercrime/2015/05/your-account-paypal-has-been-limited-phishing-scam/ [accessed 8/25/2016] - [140] A. Wulf, "Stealing Passwords is Easy in Native Mobile Apps Despite OAuth", blog, 12 Jan. 2011; http://welcome.totheinter.net/2011/01/12/stealing-passwords-is-easy-in-native-mobile-apps-despite-oauth/ [accessed 8/25/2016] - [141] W. Denniss and J. Bradley, "OAuth 2.0 for Native Apps", IETF Internet Draft, work in progress, July 2016. - [142] J.F. Miller, "Supply Chain Attack Framework and Attack Patterns", tech. report, MITRE, Dec. 2013; www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf - [143] Z. Wang and A. Stavrou, "Exploiting Smart-Phone USB Connectivity for Fun and Profit", in *Proceedings of 26th Annual Computer Security Applications Conference*, 2010, pp. 357-365 - [144] A. Stavrou, Z. Wang, *Exploiting Smart-Phone USB Connectivity For Fun And Profit*, presented at Blackhat, 4 Aug. 2011; https://media.blackhat.com/bh-dc-11/Stavrou-Wang/BlackHat_DC_2011_Stavrou_Zhaohui_USB_exploits-Slides.pdf ## [accessed 8/25/2016] - [145] M. Brignall, "Sim-Swap Fraud Claims Another Mobile Banking Victim", *The Guardian*, 16 Apr. 2016; www.theguardian.com/money/2016/apr/16/sim-swap-fraud-mobile-banking-fraudsters [accessed 8/25/2016] - [146] BYOD & Mobile Security, Information Security Community on LinkedIn, Apr. 2016; http://get.skycure.com/hubfs/Reports/BYOD_and_Mobile_Security_Report_ 2016.pdf [accessed 8/25/2016] - [147] V. Blue, "Researchers Show How to Hack an iPhone in 60 Seconds", *ZDNet*, 31 July 2013; www.zdnet.com/article/researchers-reveal-how-to-hack-an-iphone-in-60-seconds/ [accessed 8/25/2016] - [149] A. O'Donnell, "How to Protect Yourself From Malicious QR Codes", blog, http://netsecurity.about.com/od/securityadvisorie1/a/How-To-Protect-Yourself-From-Malicious-QR-Codes.htm [accessed 8/25/16]. - [150] G. Gruman, "Keep out hijackers: Secure your app store dev account," *InfoWorld*, 5 Dec. 2014; www.infoworld.com/article/2854963/mobile-development/how-to-keep-your-app-store-dev-account-from-being-hijacked.html - [151] D. Fisher, "Researchers Find Methods for Bypassing Google's Bouncer Android Security," blog, 4 June 2012; https://threatpost.com/researchers-find-methods-bypassing-googles-bouncer-android-security-060412/76643/ - [152] C. Welch, "Major security hole allows Apple passwords to be reset with only email address, date of birth (update)," *The Verge*, 22 Mar. 2013; www.theverge.com/2013/3/22/4136242/major-security-hole-allows-apple-id-passwords-reset-with-email-date-of-birth - [153] D. Harkness et al., "Google Play Store seems blocked now from China. How can I update my Quora app?", forum thread, 6 Dec. 2014, www.quora.com/Google-Play-Store-seems-blocked-now-from-China-How-can-I-update-my-Quora-app [accessed 8/25/16]. - [154] J. Cheng, "'Find and Call' app becomes first trojan to appear on iOS App Store," *Ars
Technica*, 5 July 2012; http://arstechnica.com/apple/2012/07/find-and-call-app-becomes-first-trojan-to-appear-on-ios-app-store/ - [155] J. Miller and C. Oberheide, *Dissecting the Android Bouncer*, Summercon, - June 2012. https://jon.oberheide.org/files/summercon12-bouncer.pdf [accessed 8/25/16]. - [156] N.J. Percoco and S. Schulte, *Adventures in BouncerLand*, presented at BlackHat, 25 July 2012. https://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_W P.pdf [accessed 8/25/16]. - [158] "Setup an FDroid App Repo", wiki entry, 3 May 2016, https://f-droid.org/wiki/page/Setup_an_FDroid_App_Repo [accessed 8/25/16]. - [159] "Protect your developer account", Google, 2016, https://support.google.com/googleplay/android-developer/answer/2543765?hl=en [accessed 8/25/16]. - "Security and your Apple ID", Apple, 2016, https://support.apple.com/en-us/HT201303 [accessed 8/25/16]. - "Maintaining Your Signing Identities and Certificates", Apple, 5 July 2016, https://developer.apple.com/library/prerelease/content/documentation/IDEs/ Conceptual/AppDistributionGuide/MaintainingCertificates/MaintainingCertificates.html [accessed 8/25/16]. - [162] "Secure Your Private Key", in *User Guide*, https://developer.android.com/studio/publish/app-signing.html#secure-key [accessed 8/25/16]. - [164] D. Goodin, "New Attack Steals Secret Crypto Keys from Android and iOS Phones", *Ars Technica*, 3 Mar. 2016; http://arstechnica.com/security/2016/03/new-attack-steals-secret-crypto-keys-from-android-and-ios-phones/ [accessed 8/25/2016] - [165] 3G Security; Security Threats and Requirements (Release 4), 3GPP TS 21.133 V4.0.0, 3rd Generation Partnership Project, 2003; www.3gpp.org/ftp/tsg_sa/wg3_security/_specs/Old_Vsns/21133-400.pdf [Accessed 8/23/2016] - [166] J. Cichonski, J.M. Franklin, and M. Bartock, LTE Architecture Overview and Security Analysis, Draft NISTIR 8071, National Institute of Standards and Technology, 2016; http://csrc.nist.gov/publications/drafts/nistir-8071/nistir_8071_draft.pdf [Accessed 8/23/2016] - [167] R.P. Jover, *LTE Security and Protocol Exploits*, presented at ShmooCon, 3 Jan. 2016; www.ee.columbia.edu/~roger/ShmooCon_talk_final_01162016.pdf [accessed 8/23/2016] - [168] J. Vijayan, "Researchers Exploit Cellular Tech Flaws to Intercept Phone Calls", *ComputerWorld*, 1 Aug. 2013; http://www.computerworld.com/article/2484538/cybercrime-hacking/researchers-exploit-cellular-tech-flaws-to-intercept-phone-calls.html [accessed 8/23/2016] - [169] J. Kakar et al. "Analysis and Mitigation of Interference to the LTE Physical Control Format Indicator Channel", in *Proceedings of 2014 IEEE Military Communications Conference*, 2014, pp. 228-234. - [170] C.-Y. Li et al. "Insecurity of Voice Solution VoLTE in LTE Mobile Networks", In *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (CCS '15)*, 2015, pp. 316-327; http://dx.doi.org/10.1145/2810103.2813618 [accessed 8/23/2016] - [171] Safe Use of Mobile Devices and the Internet, CESG, 2016; www.cesg.gov.uk/guidance/safe-use-mobile-devices-and-internet [accessed 8/23/2016] - [172] P. Langlois, *SCTPscan Finding Entry Points to SS7 Networks & Telecommunication Backbones*, presented at Blackhat EU, 29 Mar. 2007; www.blackhat.com/presentations/bh-europe-07/Langlois/Presentation/bh-eu-07-langlois-ppt-apr19.pdf [accessed 8/23/2016] - [173] K. Nohl, *GSM Sniffing*, 27th Chaos Communication Congress, Dec. 2010; https://events.ccc.de/congress/2010/Fahrplan/attachments/1783_101228.27C 3.GSM-Sniffing.Nohl_Munaut.pdf [accessed 8/23/2016] - [174] P. Langlois, *Toward the HLR: Attacking the SS7 & SIGTRAN Applications*, presented at H2HC, Dec. 2009; www.h2hc.org.br/repositorio/2009/files/Philippe.en.pdf [accessed 8/23/2016] - [175] K. Nohl, *Attacking Phone Privacy*, presented at Blackhat, 29 July 2010; https://media.blackhat.com/bh-ad-10/Nohl/BlackHat-AD-2010-Nohl-Attacking-Phone-Privacy-wp.pdf [accessed 8/23/2016] - [176] U. Meyer and S. Wetzel, "A Man-in-the-Middle Attack on UMTS", Proceedings of the 3rd ACM workshop on Wireless security, 2004, pp. 90-97; http://dx.doi.org/10.1145/1023646.1023662 [accessed 8/23/2016] - [177] H. Schmidt and B. Butterly, *Attacking BaseStations an Odyssey through a Telco's Network*, presented at DEFCON 24, 7 Aug. 2016; - https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Hendrik-Schmidt-Brian-Butter-Attacking-BaseStations.pdf [accessed 8/23/2016] - [178] C. Feest, *Protecting Mobile Networks from SS7 Attacks*, white paper, Telesoft Technologies Inc., 2015; http://telesoft-technologies.com/document-library/milborne-ss7-firewall-ips/12-telesoft-whitepaper-protecting-mobile-networks-from-ss7-attacks/file [accessed 8/23/2016] - [179] H. Hu and N. Wei, "A Study of GPS Jamming and Anti-Jamming", in *Proceedings of Power Electronics and Intelligent Transportation System* (PEITS), 2009 2nd International Conference on, 2009, pp. 388-391. - [180] D. DePerry and T. Ritter, *I Can Hear You Now: Traffic Interception and Remote Mobile Phone Cloning with a Compromised CDMA Femtocell*, presented at DEFCON 21, 2 Aug. 2013; www.defcon.org/images/defcon-21/dc-21-presentations/DePerry-Ritter/DEFCON-21-DePerry-Ritter-Femtocell-Updated.pdf [accessed 8/29/2016] - [181] G.-H. Tu et al., "How Voice Call Technology Poses Security Threats in 4G LTE Networks", in *Proceedings of 2015 IEEE Conference on Communications and Network Security (CNS)*, 2015. - [182] Z. Lackey, *Attacking SMS*, presented at Blackhat, 30 July 2009; www.blackhat.com/presentations/bh-usa-09/LACKEY/BHUSA09-Lackey-AttackingSMS-SLIDES.pdf [accessed 8/29/2016] - [183] D. Goodin, "Beware of the Text Massage That Crashes iPhones", *Ars Technica*, 27 May 2015; http://arstechnica.com/security/2015/05/beware-of-the-text-message-that-crashes-iphones/ [accessed 8/29/2016] - [184] P. Traynor et al., "Mitigating Attacks on Open Functionality in SMS-Capable Cellular Networks", in *IEEE/ACM Transaction on Networking 17.1*, 2009; http://www.cc.gatech.edu/~traynor/papers/mobicom06.pdf [accessed 8/29/2016] - [185] N.J. Croft and M.S. Olivier, "A Silent SMS Denial of Servie (DoS) Attack", in *Information and Computer Security Architectures (ICSA) Research Group South Africa*, 2007; http://mo.co.za/open/silentdos.pdf [accessed 8/29/2016] - [186] Z. Avraham, J. Drake, and N. Bassen, "Zimperium zLabs is Raising the Volume: New Vulnerability Processing MP3/MP4 Media", blog, 1 Oct. 2015; https://blog.zimperium.com/zimperium-zlabs-is-raising-the-volume-new-vulnerability-processing-mp3mp4-media/ [accessed 8/29/2016] - [187] M. Smith, "'Dirty USSD' Code Could Automatically Wipe Your Samsung TouchWize Device (Updated)", *Engadget*, 25 Oct. 2012; https://www.engadget.com/2012/09/25/dirty-ussd-code-samsung-hack-wipe/ [accessed 8/29/2016] - [188] "Remote USSD Code Execution on Android Devices", 29 Oct. 2012, https://www.nowsecure.com/blog/2012/09/25/remote-ussd-code-execution-on-android-devices/ [accessed 8/29/2016] - [189] K. Nohn, *Mobile Self-Defense*, presented at 31st Chaos Communication Congress, 27 Dec. 2014; https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2493/original/Mobile_Self_Defense-Karsten_Nohl-31C3-v1.pdf [accessed 8/29/2016] - [190] "New VMSA-2014-0014 AirWatch by VMWare Product Update Addresses Information Disclosure Vulnerabilities", 10 Dec. 2014; http://seclists.org/fulldisclosure/2014/Dec/44 [accessed 8/29/2016] - [191] G. Lorenz et al., "Securing SS7 Telecommunications Networks", in *Workshop on Information Assurance and Security vol.* 2, 2001. - [192] C. Xiao, "BackStab: Mobile Backup Data Under Attack from Malware", paloalto, 7 Dec. 2015; http://researchcenter.paloaltonetworks.com/2015/12/backstab-mobile-backup-data-under-attack-from-malware/ [accessed 8/29/2016] - [193] "BackStab: Mobile Backup Data Under Attack From Malware", 7 Dec. 2015; https://www.paloaltonetworks.com/resources/research/unit42-backstab-mobile-backup-data-under-attack-from-malware.html [accessed 8/29/2016] - [194] "Elcomsoft Phone Breaker"; https://www.elcomsoft.com/eppb.html [accessed 8/29/2016] - [195] Q4 Mobile Security and Risk Review, white paper, MobileIron; https://www.mobileiron.com/sites/default/files/qsreports/files/security-report-Q415-v1.2-EN.pdf [accessed 8/25/2016] - [196] Security Guidance for Critical Areas of Mobile Computing, white paper, Cloud Security Alliance; https://downloads.cloudsecurityalliance.org/initiatives/mobile/Mobile_Guidance_v1.pdf [accessed 8/29/2016] - [197] M. Honan, "How Apple Aan Amazon Security Flaws Led To My Epic Hacking", *Wired*, 6 Aug. 2012; http://www.wired.com/2012/08/apple- amazon-mat-honan-hacking/ [accessed 8/24/2016] - [198] B. Thompson, "UAE Blackberry update was spyware", 21 Jul. 2009, http://news.bbc.co.uk/2/hi/8161190.stm [accessed 8/29/2016] - [199] Appthority, "The State of the Mobile Ecosystem, Appthority Unveils New Security Research at Black Hat", 4 Aug. 2015, https://www.appthority.com/company/news-and-events/press-releases/the-state-of-the-mobile-ecosystem-appthority-unveils-new-security-research-at-black-hat/ [accessed 8/29/2015] - [200] J. Oberheide, "How I Almost Won Pwn2Own via XSS", 07 Mar. 2011; https://jon.oberheide.org/blog/2011/03/07/how-i-almost-won-pwn2own-via-xss/ [accessed 8/25/2016] - [201] R. Konoth, V. van der Veen et al., "How Anywhere Computing Just Killed Your Phone-Based Two-Factor Authentication", in Proceedings of the 20th Conference on Financial Cryptography and Data Security, 2016 - [202] J. Forristal, *Android: One Root to Own Them All*, presented at Blackhat, 2013; https://media.blackhat.com/us-13/US-13-Forristal-Android-One-Root-to-Own-Them-All-Slides.pdf [accessed 8/24/2016] - [203] J. Timmer, "UAE cellular carrier rolls out spyware as a 3G 'update'", *Ars Technica*, 23 Jul 2009; http://arstechnica.com/business/2009/07/mobile-carrier-rolls-out-spyware-as-a-3g-update/ [accessed 8/23/2016] - "Government Mobile and Wireless Security Baseline", CIO Council, 23
May 2013 - [205] Y. Amit, "Malicious Profiles The Sleeping Giant of iOS Security", *Skycure Blog*, 12 Mar. 2013; https://www.skycure.com/blog/malicious-profiles-the-sleeping-giant-of-ios-security/ [accessed 8/23/2016] - [206] "Android Security Bulletin—June 2016", 8 Dec. 2016; http://source.android.com/security/bulletin/2016-06-01.html [accessed 8/29/2016] - [207] R. Chirgwin, "This is what a root debug backdoor in a Linux kernel looks like," *The Register*, 9 May. 2016; http://www.theregister.co.uk/2016/05/09/allwinners_allloser_custom_kernel_has_a_nasty_root_backdoor/ - [208] S. Gallagher, "Chinese ARM vendor left developer backdoor in kernel for Android, other devices," *Ars Technica*, 11 May 2016; | http://arstechnica.com/security/2016/05/chinese-arm-vendor-left-develope | r | |--|---| | backdoor-in-kernel-for-android-pi-devices/ | | - [209] laginimaineb, "Extracting Qualcomm's KeyMaster Keys Breaking Android Full Disk Encryption," blog, 30 Jun. 2016; https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html - [210] ARM Security Technology Building a Secure System using TrustZone Technology; http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s03s03.html [accessed 8/23/16]. - [211] The SRLabs Team, *Rooting SIM cards*, presented at BlackHat, 2013. https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf [accessed 8/23/16]. - [212] H. Ko and R. Caytiles, "A Review of Smartcard Security Issues," Journal of Security Engineering, 8, no. 3 (2011): 6. http://www.sersc.org/journals/JSE/vol8_no3_2011/3.pdf [accessed 8/23/16]. - [213] zLabs, "Zimperium Applauds Google's Rapid Response to Unpatched Kernel Exploit," Zimperium, 25 Mar. 2016; https://blog.zimperium.com/zimperium-applauds-googles-rapid-response-to-unpatched-kernel-exploit/ - [214] W. Xu and Y. Fu, Own your Android! Yet Another Universal Root, presented at BlackHat, 2015. https://www.blackhat.com/docs/us-15/materials/us-15-Xu-Ah-Universal-Android-Rooting-Is-Back-wp.pdf [accessed 8/23/16]. - [215] TALOS Vulnerability Report; http://www.talosintelligence.com/reports/TALOS-2016-0186/ [accessed 8/23/16]. - [216] windknown, "iOS 8.4.1 Kernel Vulnerabilities in AppleHDQGasGaugeControl," Pangu, 08 Sept. 2015; http://blog.pangu.io/ios-8-4-1-kernel-vulns/ - [217] B. Lau et. al., Injecting Malware into iOS Devices via Maliscious Chargers, presented at BlackHat, 2013. https://media.blackhat.com/us-13/US-13-Lau-Mactans-Injecting-Malware-into-iOS-Devices-via-Malicious-Chargers-WP.pdf [accessed 8/23/16]. - [218] Threat Advisory Semi Jailbreak; https://www.wandera.com/resources/dl/TA_SemiJailbreak.pdf [accessed 8/23/16]. - [219] A. Chaykin, "Spoofing and intercepting SIM commands through STK framework," blog, 26 Aug. 2015; http://blog.0xb.in/2015/08/spoofing-and-intercepting-sim-commands.html - [220] "Security Enhancements in Android 4.3"; https://source.android.com/security/enhancements/enhancements43.html [accessed 8/29/2016] - [221] "Security Enhancements in Android 6.0"; https://source.android.com/security/enhancements/enhancements60.html [accessed 8/29/2016] - [222] "Trusty TEE"; https://source.android.com/security/trusty/index.html#third-party_trusty_applications [accessed 8/29/2016] - [223] B. Krebs, "Beware of Juice-Jacking", 11 Aug. 2011; http://krebsonsecurity.com/2011/08/beware-of-juice-jacking/ [accessed 8/24/2016] - [224] P. Paganini, "Hacking Samsung Galaxy via Modem interface exposed via USB", 13 Apr. 2016; http://securityaffairs.co/wordpress/46287/hacking/hacking-samsung-galaxy.html [accessed 8/24/2016] - [225] "Phone Theft in America: What really happens when your phone gets grabbed", blog, 7 May 2014; https://blog.lookout.com/blog/2014/05/07/phone-theft-in-america/ [accessed 8/25/2016] - [226] C. Deitrick, "Smartphone thefts drop as kill switch usage grows", Consumer Reports, 11 Jun 2015; http://www.consumerreports.org/cro/news/2015/06/smartphone-thefts-on-the-decline/index.htm [accessed 8/30/2016] - [227] "Security Tips", https://developer.android.com/training/articles/security-tips.html [accessed on 8/24/2016] - [228] "GenericKeychain", https://developer.apple.com/library/ios/samplecode/GenericKeychain/Introd uction/Intro.html#//apple_ref/doc/uid/DTS40007797 [accessed 8/25/16] - [229] D. Genkin et al., ECDSA Key Extraction from Mobile Devices Via Nonintrusive Physical Side Channels, tech. report 2016/230, Cryptology | ePrint Archive, 2016; https://www.tau.ac.il/~tromer/mobilesc/mobile | sc.pdf | |---|--------| | [accessed 8/31/2016] | | - [230] "FAQ on Lost/Stolen Devices", in *Your Wireless Life*, July 2016; http://www.ctia.org/your-wireless-life/consumer-tips/how-to-detersmartphone-thefts-and-protect-your-data/faq-on-lost-stolen-devices#anti-theft-commitment [accessed 8/31/2016] - [231] "Eight Ways to Keep Your Smartphone Safe", in *BullGuard Security Centre*; www.bullguard.com/bullguard-security-center/mobile-security/mobile-protection-resources/8-ways-to-keep-your-smartphone-safe.aspx [accessed 8/31/2016] - [232] G. Sims, "New Malware Tries to Infect Android Devices Via USB Cable", 27 Jan. 2014; www.androidauthority.com/new-malware-tries-infect-android-devices-via-usb-cable-339356/ [accessed 8/31/2016] - [233] P. Warren, "Who's Got Your Old Phone's Data?", *The Guardian*, 23 Sept. 2008; www.theguardian.com/technology/2008/sep/25/news.mobilephones [accessed 8/31/2016] - [234] The Current State of Android Security, infographic, Duo Labs, Jan 2016; https://duo.com/assets/infographics/The State of Android Security 72.png [accessed 8/31/2016] - [235] L. Jordaan and B. von Solms, "A Biometrics-Based Solution to Combat SIM Swap Fraud", in *Open Research Problems in Network Security*, pp. 70-87, 2011 - [236] Juniper Networks Third Annual Mobile Threats Report, white paper, Juniper Networks; http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2012-mobile-threats-report.pdf [accessed 8/31/16] - [237] M. Rogers, "Dendroid malware can take over your camera, record audio, and sneak into Google Play", blog, 6 Mar. 2014;https://blog.lookout.com/blog/2014/03/06/dendroid/ [accessed 8/31/16] - [238] X. Zhang and W. Du, "Attacks on Android Clipboard", Detection of Intrusions and Malware and Vulnerability Assessment: 11th International Conference, 2014;http://www.cis.syr.edu/~wedu/Research/paper/clipboard_attack_dimva 2014.pdf [accessed 8/31/16] - [239] C. Xiao, "Update: XcodeGhost Attacker Can Phish Passwords and Open URLs Through Infected Apps", blog, 18 Sep. 2015;http://researchcenter.paloaltonetworks.com/2015/09/update-xcodeghost-attacker-can-phish-passwords-and-open-urls-though-infected-apps/ [accessed 8/31/16] - [240] S. Poeplau et al, "Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading in Android Applications", in Proceedings of the 2014 Network and Distributed System Security Symposium, 2014; http://www.internetsociety.org/doc/execute-analyzing-unsafe-and-malicious-dynamic-code-loading-android-applications [accessed 8/31/16] - J. Xie et al, "Hot or Not? The Benefits and Risks of iOS Remote Hot Patching", blog, 27 Jan. 2016; https://www.fireeye.com/blog/threat-research/2016/01/hot_or_not_the_bene.html [accessed 8/31/16] - [242] M. Thompson, "Method Swizzling", blog, 17 Feb. 2014; http://nshipster.com/method-swizzling/ [accessed 8/31/16]