

 NIST Cybersecurity White Paper csrc.nist.gov

A Data Structure for Integrity Protection
with Erasure Capability

D. Richard Kuhn
Computer Security Division
Information Technology Laboratory

May 31, 2018

MAY 31, 2018 (DRAFT) A DATA STRUCTURE FOR INTEGRITY
 PROTECTION WITH ERASURE CAPABILITY

Abstract

This note describes a data structure, which can be referred to as a block matrix, that supports the ongoing
addition of hash-linked records while also allowing the deletion of arbitrary records, preserving hash-
based integrity assurance that other blocks are unchanged. The block matrix data structure may have
utility for incorporation into applications requiring integrity protection that currently use permissioned
blockchains. This capability could for example be useful in meeting privacy requirements such as the
European Union General Data Protection Regulation (GDPR), which requires that organizations make it
possible to delete all information related to a particular individual, at that person's request.

Keywords

cryptographic hash; data structure; distributed ledger; integrity protection

Disclaimer
Any mention of commercial products or reference to commercial organizations is for information only; it
does not imply recommendation or endorsement by NIST, nor does it imply that the products
mentioned are necessarily the best available for the purpose.

Additional Information

For additional information on NIST’s Cybersecurity programs, projects and publications, visit the
Computer Security Resource Center, csrc.nist.gov. Information on other efforts at NIST and in the
Information Technology Laboratory (ITL) is available at www.nist.gov and www.nist.gov/itl.

Public Comment Period: May 31, 2018 through August 3, 2018
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: block-matrix@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA).

https://csrc.nist.gov/publications
http://www.nist.gov/
http://www.nist.gov/itl

MAY 31, 2018 (DRAFT) A DATA STRUCTURE FOR INTEGRITY
 PROTECTION WITH ERASURE CAPABILITY

1

1 Background
This note describes a data structure, which can be
referred to as a block matrix, that supports the
ongoing addition of hash-linked records while also
allowing the deletion of arbitrary records, preserving
hash-based integrity assurance that other blocks are
unchanged.

2 Data Structure
Consider a matrix as shown in Fig. 1, with rows and
columns numbered indexing data blocks, where a
block may contain unspecified data (e.g., single
record or multiple transactions). Each row and
column is terminated with a hash of that row or
column, e.g., H0,- is the hash of row 0. Alternatively,
the hash value can be stored in the last block of the
row or column. A second alternative could be to
concatenate hashes of each block in a row or column
and use the hash of this concatenation as the hash
value for that row or column.

 0 1 2 3 4
0 H0,-
1 H1,-
2 H2,-
3 X H3,-
4 H4,-
 H-,0 H-,1 H-,2 H-,3 H-,4

Figure 1. Block matrix

Suppose that it is desired to delete the block labeled
"X", by writing all zeroes to that block, or otherwise
change it. This change disrupts the hash values of H3,-

 and H-,2 for row 3 and column 2. However, the
integrity of all blocks except the one containing "X"
is still ensured by the other hash values. That is, other
blocks of row 3 are included in the hashes for
columns 0, 1, 3, and 4. Similarly, other blocks of
column 2 are included in the hashes for rows 0, 1, 2,
and 4. Thus the integrity of blocks that have not been
deleted is assured. An algorithm to maintain this
structure is given below and its properties described.

3 Algorithm
Blocks are numbered 1..k, and are added to the data
structure starting with cell 0,1. (It is desirable to keep
cells on the diagonal null, for reasons explained
later.)

while (new blocks) {// i, j = row, column indices
 if (i == j) {add null block; i = 0; j++;}
 else if (i < j) {add block(i,j); swap(i,j);}
 else if (i > j) {add block(i,j); j++; swap(i,j);}
}

where swap(i,j) exchanges the values of i and j, i.e.,
i' = j and j' = i. With this algorithm, cells are filled as
shown in Fig. 2.

 0 1 2 3 4
0 • 1 3 7 13 H0,-
1 2 • 5 9 15 H1,-
2 4 6 • 11 17 H2,-
3 8 10 12 • 19 H3,-
4 14 16 18 20 • H4,-
 H-,0 H-,1 H-,2 H-,3 H-,4 etc.

Figure 2. Block matrix with numbered cells

4 Properties
We can show that certain desirable properties are
maintained with this data structure.

Balance: Cells are filled in a balanced manner, so that
the upper half (above diagonal) contains at most one
additional cell more than the lower half. Note that the
following invariant is maintained for each iteration of
the loop:
 (𝑖𝑖 = 𝑗𝑗 ⋁ 𝑖𝑖 < 𝑗𝑗) ⋀ 𝑢𝑢 = 𝑙𝑙 ⋁ 𝑖𝑖 > 𝑗𝑗 ⋀ 𝑢𝑢 = 𝑙𝑙 + 1

where u = number of cells above diagonal, and l =
number of cells below diagonal.

Hash chain length: The number of blocks in a row
or column hash chain is proportional to √𝑁𝑁 for a
matrix with N blocks, by the balance property.

Block dispersal: No consecutive blocks appear in the
same row or column, i.e., for any two blocks
numbered a, b, where b = a+1, in rows ia and ib, and
columns ja and jb respectively, ia ≠ ib and ja ≠ jb.
This can be shown by considering cases below.

1. If i < j, then block a will be written to cell (ia,
ja) and then i and j swapped, so that in the next
iteration, i > j, and block b written to cell (ib,
jb). Since ib = ja and jb = ia, and i ≠ j, ia ≠ ib
and ja ≠ jb.

MAY 31, 2018 (DRAFT) A DATA STRUCTURE FOR INTEGRITY
 PROTECTION WITH ERASURE CAPABILITY

2

2. If i > j, then block a will be written to cell
(ia,ja), j incremented, and then i and j
swapped. Then either the relationship is
unchanged, with i > j, or i = j.
• If i = j, then no data block will be written

in the next iteration, but i will be set to 0
and j will be incremented such that i<j,
and the next data block written with ib =
0 and jb = ja+1, ensuring that ia ≠ ib and
ja ≠ jb.

• if i > j, then on the next iteration, block b
will be written with ib = ja and jb = ia,
and i ≠ j, so that ia ≠ ib and ja ≠ jb.

Because no two consecutive blocks appear in the
same row or column, it is possible to delete two
consecutive blocks simultaneously without
disturbing integrity protection for others. This is
possible because the diagonal is null. Without this
property, for example, the following could occur:

 0 1 2 3
0 1 2 5 10
1 3 4 7 12
2 6 8 9 14
3 11 13 15 16

Figure 3. Block matrix with diagonal used

In Fig. 3, if blocks 7 and 8 are deleted, then integrity
protection for 4 and 9 would be lost as well, because
hashes would be invalidated for row 1, column 2, and
row 2, column 1. Then cells (1,1) and (2,2) have
neither row nor column hashes.

Number of blocks: The total number of data blocks
in the matrix is 𝑁𝑁2 − 𝑁𝑁 since the diagonal is null.
Thus, the last numbered block in a filled matrix of N
rows and columns is number 𝑁𝑁2 − 𝑁𝑁. With rows
and columns numbered from 0, i = N-1 and the last
data block in the lower half (below diagonal) is (i+1)2
- (i+1) = i2 + i, and for any row i, the last data block
in the lower half is numbered i2 + i. Thus the last
data block in row i -1 in the lower half is i2 - i and the
first in row i is i2 - i + 2. Similarly, the last upper half
data block in column j is j2 + j -1.

5 Block location
With the relations above, we can derive expressions
to locate a given block within the matrix. For a block
B in the lower half (B is even):

𝑠𝑠 = �√𝐵𝐵�
𝑖𝑖 = 𝐵𝐵 ≤ 𝑠𝑠2 + 𝑠𝑠 ? 𝑠𝑠 ∶ 𝑠𝑠 + 1
𝑗𝑗 = (𝐵𝐵 − (𝑖𝑖2 − 𝑖𝑖 + 2))/2

and for block B in the upper half (B is odd):

𝑠𝑠 = �√𝐵𝐵 + 1�
𝑗𝑗 = 𝐵𝐵 < 𝑠𝑠2 + 𝑠𝑠 ? 𝑠𝑠 ∶ 𝑠𝑠 + 1
𝑖𝑖 = (𝐵𝐵 − (𝑗𝑗2 − 𝑗𝑗 + 1))/2

Blocks can now be deleted by overwriting with
zeroes, with one row and one column hash
recalculated; specifically, after deleting block i, j,
row i and column j hash values are recalculated.

The block matrix data structure may have utility for
incorporation into applications requiring integrity
protection that currently use permissioned
blockchains. This capability could for example be
useful in meeting privacy requirements such as the
European Union General Data Protection Regulation
(GDPR), which requires that organizations make it
possible to delete all information related to a
particular individual, at that person's request. This
requirement may be incompatible with current
blockchain data structures, including private
(permissioned) blockchains [1],[2],[3], because
blockchains are designed to ensure that block
contents are immutable. Any change in a blockchain
will invalidate subsequent hashes in following
blocks, losing integrity protection. The block matrix
structure retains integrity protection of non-deleted
blocks. Note that this data structure could also be
extended beyond two dimensions to an arbitrary
number of dimensions, with straightforward
extensions to the algorithms above.
References

[1] M. Berberich and M. Steiner, “Blockchain
Technology and the GDPR,” 2 Eur. Data Protection
Law Review. 422, 2016.

[2] H.Chang, “Blockchain: Disrupting Data Protection?”,
Privacy Law and Business Intl. Rpt., Nov.2017.

[3] O. Kharif, “Is Your Blockchain Doomed?”,
Bloomberg Business Week, Mar. 22, 2018.

Acknowledgments: Many thanks to Lee Badger, Jeff Voas,
Sandy Ressler, Dylan Yaga, and Peter Mell for review and
discussion. Thanks to Peter for suggesting the alternative of
hashing a concatenation of block hashes.
Disclaimer: Products may be identified in this document, but
identification does not imply recommendation or endorsement by
NIST, nor that the products identified are necessarily the best
available for the purpose.

	1 Background
	2 Data Structure
	3 Algorithm
	4 Properties
	5 Block location

