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Abstract 

This short paper introduces an approach to producing explanations or justifications of decisions 
made in some artificial intelligence and machine learning (AI/ML) systems, using methods derived 
from those for fault location in combinatorial testing. We show that validation and explainability 
issues are closely related to the problem of fault location in combinatorial testing, and that certain 
methods and tools developed for fault location can also be applied to this problem. This approach 
is particularly useful in classification problems, where the goal is to determine an object’s 
membership in a set based on its characteristics. We use a conceptually simple scheme to make it 
easy to justify classification decisions: identifying combinations of features that are present in 
members of the identified class but absent or rare in non-members. The method has been 
implemented in a prototype tool called ComXAI, and examples of its application are given. 
Examples from a range of application domains are included to show the utility of these methods.  
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1 Background 

Artificial intelligence and machine learning (AI/ML) 
systems have exceeded human performance in nearly 
every application where they have been tried. AI is also 
starting to be incorporated into commercial applications 
such as loan qualification, diagnostics, and steering and 
braking functions in passenger vehicles.  This trend is 
accelerating, and AI will be increasingly used in safety-
critical systems. AI systems are good, but sometimes make 
mistakes, and human users will not trust their decisions 
without explainable justification. There is a tradeoff 
between AI accuracy and explainability:  the most accurate 
methods, such as convolutional neural nets (CNNs), 
provide no explanations;  understandable methods, such as 
rule-based, tend to be less accurate [1][2][3][4]. 

Traditional expert systems based on rules such as "if 
symptom A is present with symptom B or C, then diagnosis 
is X" provide understandable explanations, but their 
accuracy is typically lower than obtained through methods 
such as neural networks. Conversely, neural nets provide 
a conclusion with no explanation of internal calculations 
that led to a particular result. Such black-box predictions 
are generally inadequate, because explanations must be 
understandable by non-specialists, who know their own 
subject area but may not be familiar with AI/ML 
algorithms. Subject matter experts are more likely to think 
in terms of the original expert systems, looking for the 
presence or absence of various values or properties that 
indicate a particular result. Consequently, an extensive 
body of research has been developed with the goal of 
explaining black-box AI/ML predictions [2][3]. 

In many ways, the classification problem in machine 
learning is closely related to the problem of fault location 
in combinatorial testing for software. The objective in both 
cases is to identify combinations of properties or values, 
out of a very large number that trigger a failure in the 
system under test (in combinatorial testing) or produce a 
conclusion (in machine learning). Methods and tools 
developed for fault location in combinatorial testing can 
be adapted to ML problems, to identify those rare 
combinations of variable values that produce conclusions 
in these systems. 

2 Fault location 

The fault location problem in combinatorial testing is 
extremely difficult to solve, but simple to state:  given a 
set of tests for which the system under test fails, which 
combinations of the values of only a few factors triggered 
the failure? The reason this is a challenging problem is that 
more than one factor may be involved in triggering a 
failure of the system. For example, if four factors or values 

must be present to induce a failure, and we have 15 input 
variables, every test includes �15

4 � =  1365 4-way 
combinations.  If there are multiple failing tests, then the 
number of failure-triggering combinations which need to 
be checked can number in the thousands. The question for 
testers is which of these thousands of combinations of the 
values of only a few factors cause the failure. 

The conventional paradigm for solving this problem is to 
identify combinations that occur in failing tests but not in 
passing tests. If a combination of factor values occurs in a 
passing test, then clearly it did not trigger the failure. Thus, 
combinations that occur only in failing tests are those that 
are considered in narrowing down the set of suspect 
combinations. This is illustrated in Fig. 1. Some 
combinations occur in both passing tests (P/pattern) and 
failing tests (F/gray), but those in failing tests only are the 
suspect combinations. 

 
Figure 1: Passing and failing combinations 

After identifying combinations that appear in only failing 
tests, a variety of heuristics can be used in identifying the 
likely cause of a failure. For example, combinations that 
occur more frequently in failing tests may be considered 
first. Additional tests containing suspect combinations can 
then be executed (run) to rule out irrelevant combinations 
and incrementally reduce the set of potential causes. In all 
cases, though, there are combinations of the values of only 
a few factors that are unique to the failing tests. 

Now consider the classification problem for AI/ML.  
Given an individual item in a particular class, what is it 
about this item that distinguishes it from non-class 
members?  For example, a cat may have features furry, 
brown, whiskers, claws, and so on, while living things not 
in the cat class do not have these features.  In other words, 
certain combinations of features justify classifying the 
animal as a cat, and not some other animal. The individual 
animal shares features with cat class but does not share 
features with non-cat classes. As shown in Fig. 2, there is 
a parallel with the fault location problem in combinatorial 
testing. Some combinations of features occur in both non-
class (N) and class (C) items, but others are unique to the 
cat class, explaining why a particular animal can be 
categorized as a cat. 

P F 
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Figure 2: Class and non-class combinations. 

A combinatorial testing tool, referred to as ComXAI, that 
applies this strategy has been developed and can be used 
to identify combinations that explain a classification 
result, treating the classifier as a black box system and not 
requiring any modification of the AI/ML algorithms. 

The ComXAI tool is designed to accept as input a single 
observation of a particular classification, or a small 
number of observations. A much larger set of observations 
outside of the classification is also entered. Observations 
contain fields of categorical data, or partitions of 
numeric/continuous value data. For example, Fig. 3 shows 
a portion of the data used in Example 1, with 16 fields of 
categorical data (see Table 1), an observation classified as 
a reptile, and 96 observations classified as non-reptile. 
Also shown are the number of combinations for each t-way 
set:  �16

2 � =  120 2-way combinations, 560 3-way 
combinations, etc. Traits or properties of the class 
observation are shown as well. 

To determine combinations of traits or properties that are 
relevant in making a classification, ComXAI computes the 
proportion of t-way combinations of traits that occur in 
non-class observations. In example 1, single-value 
observations are shown in Fig. 3 and 2-way combinations 
are shown in Fig. 4.  As seen in Fig. 4, 2.1 % of the non-
reptiles have properties toothed=0 and number of legs = 4. 
Thus this 2-way combination of traits does not uniquely 
identify a reptile and therefore does not explain why the 
“reptile” conclusion was reached. 

 
Figure 3: ComXAI example. 

3 Examples 

Example 1, animal classification:  Consider the problem 
of explaining why an animal with the traits shown in Table 
1 is classified as a reptile, where 0 = trait absent, 1 = trait 
present [5][6]. 

Table 1: Animal traits for identification. 

hair=0, feathers=0 egg laying=1 milk=0 
airborne=0 aquatic=0 predator=0 toothed=0 
backbone=1 breathes=1 venomous=0 fins=0 
nlegs=4 tail=1 domestic=0 cat size=1 

Fig. 4 shows the proportion of other animals, i.e., non-
reptiles, in the database that possess the specified traits.  
Clearly no single feature is sufficient to identify the animal 
as a reptile, because it shares any of these single traits with 
more than 40 % of the other animals (e.g., 55.2 % are 
hairless, 79.2 % are featherless, etc.). 

 
Figure 4: Animal traits. 

Similarly, no pair of features is sufficient to identify the 
animal as a reptile, as shown in Fig. 5. For example, 2.1 % 
of the non-reptiles are both toothless and have four legs, 
5.2 % are hairless and have four legs, and so on. 

However, consider the 3-way combinations of traits shown 
in Fig. 6.  Non-reptiles in the database do not have these 
3-way combinations. 

 
Figure 5: 2-way combinations of traits. 

 
Figure 6: 3-way combinations of traits. 

N C 
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Thus, each of these 3-way combinations will distinguish 
this animal from other animal types in this database.  Only 
reptiles have these combinations of features 

not aquatic AND not toothed AND four legs 
OR egg-laying AND not aquatic AND four legs 

OR not hairy AND four legs AND cat size 
OR not milk-producing AND not aquatic AND four legs 

OR not milk-producing AND four legs AND cat size 
OR not predator AND not toothed AND four legs 

In other words, the presence of any of these combinations 
of traits justifies the conclusion that the animal is a reptile.  
A single trait would not justify this conclusion, because the 
individual traits are present in large percentages of other 
animals (Fig. 4). Similarly, no pair of features (Fig. 5) is 
unique to reptiles, because small percentages of the other 
animals have these pairs as well. However, by considering 
3-way combinations of traits, we can produce the easily 
understood rule below: 

IF not aquatic AND not toothed AND four legs 
OR egg-laying AND not aquatic AND four legs 
OR not hairy AND four legs AND cat size 
OR not milk-producing AND not aquatic AND four legs 
OR not milk-producing AND four legs AND cat size 
OR not predator AND not toothed AND four legs 

THEN classification = reptile 

Example 2, sensor data analysis: Another example [7][8] 
is a data set captured from sensors deployed for 
determining if rooms are empty or human-occupied.  
Variables are temperature, humidity, light, CO2, and 
humidity ratio.  The objective is to develop rules to 
determine if a room is occupied, based on sensor readings.  
A variety of machine learning algorithms provide 
successful predictions, but an explanation is needed.  No 
single variable value is sufficient, and as shown in Fig. 7, 
2-way combinations include some strong indications of 
occupancy, but do not uniquely identify an occupied room. 

That is, there are two combinations, with particular ranges 
of humidity/light, and light/CO2, that occur in only 0.2 % 
of empty rooms, so these value combinations suggest that 
the room is occupied.  Considering 3-way combinations, 
shown in Fig. 8, we have a combination that is not found 
in any empty room, i.e., it occurs only in occupied rooms. 

 
Figure 7: Sensor data, room occupancy. 

 
Figure 8: Sensor data, 3-way combinations. 

An explanation for the conclusion of occupied for this data 
set could thus point out to the user that this 3-way 
combination of light, CO2, and humidity ratio is unique to 
occupied rooms, and that there are two 2-way 
combinations that are hardly ever found (0.2 %) in empty 
rooms. 

Example 3:  Lymphography.  A lymphography data set that 
has been used in several machine learning experiments 
provides categorical data with 18 attributes on lymphoma 
[9][10].  Four possible class values to be predicted from 
the attributes are normal find, metastases, malign lymph, 
fibrosis. 

 
Figure 9: Lymphography data set 2-way combinations. 
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Analysis shown in Fig. 9 identifies seven 2-way 
combinations, out of 1358, that are unique to the example 
case. These combinations are characteristic of lymphoma 
that arises in a lymph node instead of metastatic that spread 
to the node from somewhere else. 

4 Discussion 

The method and tool described in this paper have been 
designed to provide intuitive explanations by identifying t-
way combinations that are present in a given member of a 
class, and not present or extremely rare in non-members of 
the class. We believe this is a natural form of explanation 
because it relies on observable features but quantifies the 
degree to which feature combinations occur in the class 
and non-class sets.  Using methods developed for fault 
location makes it possible to apply the approach across a 
very large number of t-way combinations, providing 
strong justifications for AI/ML conclusions. 

It should also be noted that identifying t-way combinations 
of features that distinguish a class member is essentially 
the same as specifying predicates in a rule-based expert 
system. Referring back to Example 1, the six 3-way 
combinations could be mapped directly to a rule such as 
“if not aquatic && not toothed && four legs || egg-laying 
&& not aquatic && four legs ….  then genus = Testudo”.  
It is often suggested that rule-based expert systems are the 
most interpretable, so this correspondence between t-way 
combinations and rule-based predicates also suggests that 
the ComXAI explanations can be understood well by 
users. At this preliminary stage, the approach has not been 
validated with human users, but this will be done in future 
research. 

The correspondence between t-way predicates and rules 
discussed above also suggests the possibility of using the 
ComXAI approach to implement a machine learning 
algorithm for building a classification model, rather than 
only for explaining conclusions of other ML algorithms.  
While this may be practical, and could be considered in the 
future, there may be some limitations for this type of 
application. Since thousands of combinations can be 
included for even small problems, rule sets may become 
very large.  Overfitting, in which a learning model 
incorporates noise variation from the training data, might 
be a problem with using combinations in this way.  Work 
would be needed to determine if overfitting would occur 
and if it could be avoided to produce useful models, in 
addition to determining the accuracy that could be 
achieved. 

5 Conclusions and Research Directions 

The methods described in this note have been successfully 
implemented for fault location in combinatorial testing, 

and show potential for explanations in AI/ML. For both 
problems, the objective is to identify a combination of the 
values of only a few factors that lead to a specified result, 
either triggering an identified error, or uniquely 
identifying an individual observation as part of a class. As 
shown in this paper, after identifying combinations that are 
unique to a class, it is trivial to map these combinations 
into the form of if-then rules that are considered the most 
easily understandable AI/ML scheme for human users. 
This method can be applied to any black-box machine 
learning algorithm. 

In future work, the approach described here may be 
implemented in tools with improved user interfaces or 
integrated into existing AI/ML platforms. This method 
may also have utility for validation of AI models.  
Combinations of few factor values that characterize a class 
should conform with user expectations. If not, there may 
be a deficiency in the derived model, or some 
unanticipated relationship may be affecting results, in 
either case leading to better understanding of the model. 
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