
NIST Special Publication 800-56:

RECOMMENDATION ON KEY ESTABLISHMENT SCHEMES

Draft 2.0
January 2003

NIST requests that comments on this document be provided by April 3, 2003, although
comments will be accepted at any time. Please send comments to kmscomments@nist.gov.
Thanks.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 2

Table of Contents
1. Introduction ...6

2. Scope and Purpose ...6

3. Definitions, Symbols and Abbreviations ...6

3.1 Definitions .. 6

3.2 Symbols and Abbreviations ... 9

4. Key Establishment Schemes Overview ...12

5. Cryptographic Elements ..12

5.1 Domain Parameters.. 12

5.1.1 Domain Parameter Generation... 13

5.1.1.1 FFC Domain Parameter Generation.. 13

5.1.1.2 ECC Domain Parameter Generation... 13

5.1.2 Assurances of Domain Parameter Validity.. 14

5.1.3 Domain Parameter Management .. 15

5.2 Private and Public Keys ... 15

5.2.1 Private/Public Key Pair Generation... 15

5.2.2 Assurances of the Arithmetic Validity of a Public Key..................................... 15

5.2.2.1 Owner Assurances of Static Public Key Validity............................... 16

5.2.2.2 Recipient Assurances of Static Public Key Validity........................... 16

5.2.2.3 Owner Assurances of Ephemeral Public Key Validity....................... 17

5.2.2.4 Recipient Assurances of Ephemeral Public Key Validity 17

5.2.2.5 FFC Full Public Key Validation Routine .. 17

5.2.2.6 ECC Full Public Key Validation Routine ... 18

5.2.2.7 ECC Partial Public Key Validation Routine 18

5.2.3 Assurances of Possession of Private Key .. 19

5.2.4 Key Pair Management .. 19

5.2.4.1 Common Requirements on Static and Ephemeral Key Pairs.............. 19

5.2.4.2 Specific Requirements on Static Key Pairs .. 20

5.2.4.3 Specific Requirements on Ephemeral Key Pairs 20

5.3 Key Derivation Function (KDF) .. 21

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 3

5.3.1 Concatenation Key Derivation Function (Default) .. 21

5.3.2 ASN.1 Key Derivation Function (Optional) .. 22

5.4 Message Authentication Code (MAC) Algorithm... 24

5.4.1 MacTag computation ... 25

5.4.2 MacTag Checking .. 25

5.4.3 Implementation Validation Message ... 25

5.5 Associate Value Function (ECC MQV Only) ... 25

5.6 Cryptographic Hash Functions .. 26

5.7 Random Number Generation... 26

5.8 DLC Primitives .. 26

5.8.1 Diffie-Hellman Primitives.. 27

5.8.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive........ 27

5.8.1.2 Elliptic Curve Cryptography Cofactor Diffie Hellman (ECC CDH)
Primitive.. 27

5.8.2 MQV Primitives ... 28

5.8.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive 28

5.8.2.1.1 FFC MQV2 Form of the FFC MQV Primitive 28

5.8.2.1.2 FFC MQV1 Form of the FFC MQV Primitive 29

5.8.2.2 Elliptic Curve Cryptography MQV (ECC MQV) Primitive 29

5.8.2.2.1 ECC Full MQV Form of the ECC MQV Primitive 30

5.8.2.2.2 ECC One-Pass Form of the ECC MQV MQV Primitive 30

5.9 RSA Primitives .. 30

5.10 Symmetric Key Wrapping Primitive ... 30

6. Key Agreement ...31

6.1 Schemes Using Two Ephemeral Key Pairs, C(2) .. 33

6.1.1 Each Party Has a Static Key Pair and Generates an Ephemeral Key Pair: C(2,2)
.. 34

6.1.1.1 dhHybrid1, C(2,2,FFC DH) .. 34

6.1.1.2 Full Unified Model, C(2,2,ECC CDH)... 35

6.1.1.3 MQV2, C(2,2,FFC MQV) .. 36

6.1.1.4 Full MQV, C(2,2,ECC MQV) .. 37

6.1.1.5 Security Attributes of C(2,2) Schemes ... 38

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 4

6.1.2 Each Party Generates an Ephemeral Key Pair; No Static Keys are Used: C(2,0)
.. 38

6.1.2.1 dhEphem, C(2,0,FFC DH) .. 39

6.1.2.2 Ephemeral Unified Model, C(2,0,ECC CDH) 40

6.1.2.3 Security Attributes of C(2,0) Schemes ... 40

6.2 Schemes Using One Ephemeral Key Pair, C(1) .. 41

6.2.1 Initiator Has a Static Key Pair and Generates an Ephemeral Key Pair;
Responder Has a Static Key Pair, C(1,2)... 41

6.2.1.1 dhHybridOneFlow, C(1,2,FFC DH) ... 42

6.2.1.2 One-Pass Unified Model, C(1,2,ECC CDH) 43

6.2.1.3 MQV1, C(1,2,FFC MQV) .. 43

6.2.1.4 One-Pass MQV, C(1,2,ECC MQV).. 44

6.2.1.5 Security Attributes of C(1,2) Schemes ... 45

6.2.2 Initiator Generates Only an Ephemeral Key Pair; Responder Has Only a Static
Key Pair, C(1,1) ... 46

6.2.2.1 dhOneFlow, C(1,1,FFC DH) .. 46

6.2.2.2 One-Pass Diffie-Hellman, C(1,1,ECC CDH) 47

6.2.2.3 Security Attributes of C(1,1) Schemes ... 48

6.3 Scheme Using No Ephemeral Key Pairs, C(0,2) ... 49

6.3.1 dhStatic, C(0,2,FFC DH) ... 49

6.3.2 Static Unified Model, C(0,2,ECC CDH) ... 50

6.3.3 Security Attributes of C(0,2) Schemes .. 50

7. Key Transport ...51

7.1 Symmetric-key-based Key Transport .. 51

7.2 DLC-based Key Transport... 52

7.3 IFC-based Key Transport... 52

8. Key Confirmation (KC)..52

8.1 Unilateral Key Confirmation for Key Agreement Schemes .. 54

8.2 Bilateral Key Confirmation for Key Agreement Schemes .. 55

8.3 Incorporating Key Confirmation into Key Agreement Scheme Flow........................... 55

8.3.1 C(2,2) Scheme with Bilateral Key Confirmation .. 55

8.3.2 C(2,2) Scheme with Unilateral Key Confirmation .. 57

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 5

8.3.3 C(1,2) Scheme with Bilateral Key Confirmation .. 58

8.3.4 C(1,2) Scheme with Unilateral Key Confirmation from the Initiator to the
Responder... 59

8.3.5 C(1,2) Scheme with Unilateral Key Confirmation from the Responder to the
Initiator... 60

8.3.6 C(1,1) Scheme with Unilateral Key Confirmation from the Responder to the
Initiator... 61

8.3.7 C(0,2) Scheme with Bilateral Key Confirmation .. 62

8.3.8 C(0,2) Scheme with Unilateral Key Confirmation .. 64

8.4 Incorporating Key Confirmation in the DLC-based Key Transport Scheme with
Unilateral Key Confirmation ... 65

9. Key Recovery..66

10. Implementation Validation...67

Appendix A: Summary of Differences between this Recommendation and ANSI X9
Standards (Informative)..68

Appendix B: References (Informative) ...70

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 6

1. Introduction

Many U.S. Government Information Technology (IT) systems need to employ well-established
cryptographic schemes to protect the integrity and confidentiality of the data that they process.
Algorithms such as the Advanced Encryption Standard (AES) as defined in Federal Information
Processing Standard (FIPS) 197, Triple DES as adopted in FIPS 46-3, and HMAC as defined in
FIPS 198 make attractive choices for the provision of these services. These algorithms have
been standardized to facilitate interoperability between systems. However, the use of these
algorithms requires the establishment of shared keying material in advance. Trusted couriers
may manually distribute this keying material. However, as the number of entities using a system
grows, the work involved in the distribution of the keying material could grow exponentially.
Therefore, it is essential to support the cryptographic algorithms used in modern U.S.
Government applications with automated key establishment schemes.

2. Scope and Purpose

This Recommendation provides specifications of key establishment schemes that are appropriate
for use by the U.S. Federal Government based on standards developed by the American National
Standards Institute (ANSI) X9, Inc.: ANSI X9.42 Agreement of Symmetric Keys using Discrete
Logarithm Cryptography and ANSI X9.63 Key Agreement and Key Transport using Elliptic
Curve Cryptography. In addition, an asymmetric-key-based key transport scheme is specified as
well as a symmetric-key-based key transport scheme. It is intended that this key establishment
schemes Recommendation will be updated to contain key transport scheme(s) from ANSI X9.44
Key Agreement and Key Transport using Factoring-Based Cryptography, when they become
available.

This Recommendation provides a high level description of selected schemes from ANSI X9
standards and assumes that the reader is familiar with the details and basic concepts within those
standards. The implementation of these schemes, including details such as data conversion rules,
arithmetic, basis, encoding rules, etc., are available in the appropriate ANSI X9 standard. When
there are differences between this Recommendation and the referenced ANSI X9 standards, this
key establishment schemes Recommendation shall have precedence for U.S. Government
applications.

This Recommendation is intended to be used in conjunction with NIST Special Publication 800-
57, Guidelines for Key Management [8]. This key establishment schemes Recommendation, the
Key Management Guideline [8], and the referenced ANSI X9 standards are intended to provide
sufficient information for a vendor to implement secure key establishment us ing asymmetric
algorithms in FIPS 140-2 [1] validated modules.

3. Definitions, Symbols and Abbreviations

3.1 Definitions

Approved FIPS approved or NIST Recommended.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 7

Bit length The length in bits of a bit string.

Cofactor The order of the elliptic curve group divided by the order of the prime
subgroup.

Deterministic
Random Bit
Generator (DRBG)

An algorithm that produces a sequence of bits from an initial value called
a seed. A DRBG is often called a Pseudorandom Number (or Bit)
Generator.

Entity An individual (person), organization, device, or process. “Party” is a
synonym.

Ephemeral key An ephemeral key is intended for use in exactly one instantiation of one
cryptographic scheme. Contrast with static key.

Identifier A bit string that is associated with a person, device or organization. It
may be an identifying name, or may be something more abstract (e.g., a
string consisting of an IP address and timestamp) depending on the
application.

Initiator The party that begins a key agreement transaction. Contrast with
responder.

Key Agreement
(KA)

A method of establishing keying material, whereby two parties (the
initiator and the responder) contribute to the value of a shared secret from
which (secret) keying material is then derived.

Key Agreement
Transaction

The procedure that results in shared keying material among different
parties using a key agreement scheme.

Key Confirmation
(KC)

The assurance of the legitimate participants in a key establishment
protocol that the parties intended to share the keying material actually
possess the shared secret. The parties are called a provider and a
recipient.

Key Establishment
(KE)

The procedure that results in shared keying material among different
parties. Key establishment may be achieved through the use of either key
transport or key agreement.

Key Establishment
Transaction

An instance of establishing keying material using a key establishment
scheme.

Key Transport (KT) A method of establishing a key whereby one of two parties (the sender)
selects a value for their shared secret keying material and then informs
the other party (the receiver) of that value.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 8

Key Transport
Transaction

The procedure that results in shared keying material between different
parties using a key transport scheme.

Key Wrap A method of encrypting keys (along with associated integrity
information) that provides both confidentiality and integrity protection
using a symmetric key.

Keying material The data (e.g., a key or keys and/or other data, e.g., IVs) that is necessary
to establish and maintain cryptographic keying relationships. Keying
material may include keys, IVs or other information.

MacTag Additional information that is attached to data to provide integrity
protection. This information is computed on the data using a message
authentication primitive. A MacTag provides data origin authentication as
well as data integrity.

Message
Authentication Code
(MAC) algorithm

Defines a family of one-way (MAC) functions that is parameterized by a
symmetric key.

Nonce A time-varying value that has at most a negligible chance of repeating,
for example, a random value that is generated anew for each instance, a
timestamp, a sequence number, or some combination of these.

Owner (1) For static keys, the entity that is authorized to use the private key,
whether that entity generated the static key itself or a trusted party
generated the key for the entity.

(2) For ephemeral keys, the entity that generated the public/private key
pair.

Party An individual (person), organization, device, or process. “Entity” is a
synonym for party.

Provider The party in a key confirmation message exchange that provides
assurance to the other party (the recipient) that they have indeed
established a shared secret.

Receiver The party that receives keying ma terial via a key transport transaction.
Contrast with sender.

Recipient The party that receives assurance from another party, such as an
assurance of the validity of a candidate public key, assurance of
possession of a private key associated with a public key, or assurance of
key confirmation.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 9

Responder The party that receives keying material from the initiator in a key
agreement transaction.

Seed An initialization value that is used (1) as input for a deterministic random
number generator (DRBG) or (2) during domain parameter generation to
provide assurance at a later time that the resulting domain parameters
were generated randomly. For domain parameter generation, the seed
may be selected arbitrarily; for a DRBG, the seed must be selected
randomly, either with or without replacement.

Sender The party that sends keying material to the receiver using a key transport
transaction.

Shared keying
material

The keying material that is derived by applying the key derivation
function to the shared secret and other shared information.

Shared secret A secret value that has been computed using a key agreement scheme and
is used as input to a key derivation function.

Static key A static key is intended for use for a relatively long period of time and is
typically intended for use in many instances of a cryptographic key
establishment scheme. Contrast with an ephemeral key.

Statistically unique For the generation of n-bit quantities, the probability of repeating an

explicit value is less than or equal to
n2

1
.

3.2 Symbols and Abbreviations

General:

CA Certification Authority, a trusted third party that performs services for its clients,
such as creating public key certificates.

CDH The cofactor Diffie-Hellman key agreement scheme.

DH The (non-cofactor) Diffie-Hellman key agreement scheme.

DLC Discrete Logarithm Cryptography, which is comprised of both Finite Field
Cryptography (FFC) and Elliptic Curve Cryptography (ECC).

EC Elliptic Curve.

ECC Elliptic Curve Cryptography, the public key cryp tographic methods using an
elliptic curve, e.g., ANSI X9.63 Key Establishment [11].

FF Finite Field.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 10

FFC Finite Field Cryptography, the public key cryptographic methods using a finite
field, e.g., ANSI X9.42 Key Agreement [9].

IF Integer Factorization.

IFC Integer Factorization Cryptography, the public key cryptographic methods based
on the difficultly of the integer factorization problem, e.g., ANSI X9.44 IF Key
Establishment [10].

H An Approved hash function.

MQV The Menezes-Qu-Vanstone key agreement scheme.

Text1, Text2 An optional bit string that may be used during key confirmation and that is sent
between the parties establishing keying material.

U The first entity of a key establishment process, or the bit string denoting the
identifier of that entity.

V The second entity of a key establishment process, or the bit string denoting the
identifier of that entity.

[X] Indicates that the inclusion of string X is optional.

||s|| Bit length of bit string s.

X||Y Concatenation of two strings X and Y.

x The ceiling of x; the smallest integer ≥ x. For example, 5 = 5, 5.3 = 6.

The following notations are consistent with those used in the ANSI X9 standards; however, it
should be recognized that the notation between the standards is inconsistent (e.g., x and y are
used as the private and public keys in ANSI X9.42, whereas x and y are used as the coordinates
of a point in ANSI X9.63).

ANSI X9.42:

(p, q, g, [SEED,
pgenCounter])

The FFC domain parameters. p is the (large) prime field order. q is the
(small) prime multiplicative subgroup order. g is the generator of the
subgroup of order q. SEED and pgenCounter are used in the canonical
domain parameter generation process to help ensure that p and q are
generated verifiably at random.

mod p The reduction modulo p on an integer value.

rU, rV Party U or Party V’s ephemeral private key.

tU, tV Party U or Party V’s ephemeral public key.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 11

xU, xV Party U or Party V’s static private key.

yU, yV Party U or Party V’s static public key.

Z A shared secret that is used to derive keying material using a key derivation
function.

Ze An ephemeral shared secret that is computed using the Diffie-Hellman
primitive.

Zs A static shared secret that is computed using the Diffie-Hellman primitive.

ANSI X9.63:

a, b Field elements that define the equation of an elliptic curve.

avf(P) The associate value of the elliptic curve point P.

de,U, de,V Party U’s and Party V’s ephemeral private keys.

ds,U, ds,V Party U’s and Party V’s static private keys.

FR An indication of the basis used.

G A distinguished point on an elliptic curve.

h The cofactor, which is calculated as the order of the elliptic curve divided by the
order of the point G.

n The order of the point G.

O The point at infinity, a special point in an elliptic curve group that serves as the
(additive) identity.

q The field size.

Qe,U, Qe,V Party U’s and Party V’s ephemeral public keys.

Qs,U, Qs,V Party U’s and Party V’s static public keys.

xP The x-coordinate of a point P.

yP The y-coordinate of a point P.

Z A shared secret that is used to derive key using a key derivation function.

Ze An ephemeral shared secret that is computed using the Diffie-Hellman primitive.

Zs A static shared secret that is computed using the Diffie-Hellman primitive.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 12

4. Key Establishment Schemes Overview

Cryptographic keying material may be electronically established between parties by using a key
establishment scheme, i.e., by using either a key agreement (KA) scheme or a key transport
scheme. During key agreement (where both parties contribute to the derived keying material),
the keying material to be established is not sent directly; rather, information is exchanged
between both parties that allows each party to derive the keying material. Key agreement
schemes may use either symmetric key or asymmetric key (public key) techniques. The key
agreement schemes described in this Recommendation use public key techniques. During key
transport (where one party determines the keying material), wrapped (i.e., encrypted) keying
material is transported from the sender, who selects that keying material and sends it to the
receiver. Key transport schemes may use either symmetric key or public key techniques; both
techniques are described in this Recommendation, as is the method of wrapping the keying
material to be transported.

The security of the Discrete Logarithm Cryptography (DLC) schemes in this Recommendation is
based on the intractability of the discrete logarithm problem. The schemes calculated over a
finite field (FF) are based on ANSI X9.42. The schemes calculated using elliptic curves (EC) are
based on ANSI X9.63.

This Recommendation specifies several processes that are used during key establishment (e.g., a
process for generating domain parameters or a process for deriving keying material from a
shared secret). In each case, an equivalent process may be used. Two processes are equivalent if,
when the same values are input to each process (either as input parameters or as values made
available during the process), the same output is produced.

5. Cryptographic Elements

This Recommendation assumes that the reader has, and is familiar with, ANSI X9.42 and ANSI
X9.63. These standards should be consulted to obtain specific guidance, including data
conversion rules. All calculations in an implementation shall be done in such a way that the user
of the implementation has assurance that the arithmetic calculations are correct.

5.1 Domain Parameters

Discrete Logarithm Cryptography (DLC), that is, Finite Field Cryptography (FFC) and Elliptic
Curve Cryptography (ECC), requires that the public and private key pairs be generated with
respect to a particular set of domain parameters. A user of a candidate set of domain parameters
shall have assurance of their validity prior to using them. Although domain parameters are
public information, they shall be managed so that the correct correspondence between a given
key pair and its set of domain parameters is maintained for all parties that use the key pair.
Domain parameters may remain fixed for an extended time period, and one set of domain
parameters may be used with multiple key establishment schemes.

Some schemes in ANSI X9.42 and X9.63 allow the set of domain parameters used and
associated with static keys to be different from the set of domain parameters used and associated
with ephemeral keys. For this Recommendation, however, only one set of domain parameters
shall be used during any key establishment transaction using any such scheme (i.e., the static-

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 13

key domain parameters and the ephemeral-key domain parameters used in one scheme shall be
the same).

5.1.1 Domain Parameter Generation

5.1.1.1 FFC Domain Parameter Generation
Domain parameters for FFC schemes are of the form (p, q, g,[SEED, pgenCounter]), where p is
the (larger) prime field order, q is the (smaller) prime (multiplicative) subgroup order, g is a
generator of the q-order cyclic subgroup of GF(p)*; and SEED and pgenCounter are values used
in the canonical process of generating and validating p and q. Note that ANSI X9.42 only
identifies SEED and pgenCounter as being among the domain parameters in Appendix A, but
this Recommendation lists them explicitly to be consistent with ANSI X9.63.

Table 1: FFC Equivalent Strengths

As shown in Table 1, there are five security levels that may be chosen for use in U.S.
Government applications. These five levels are given in terms of bits of security and are 80, 112,
128, 192 and 256 bits; these security levels/strengths correspond to roughly 280, 2112, 2128, 2192,
and 2256 operations (respectively) in order to have a reasonable expectation of breaking one key
using the best of currently known attacks. This table is based on the security equivalence table in
the Key Management Guideline [8], with the slight exception that the size of p that is associated
with 192 bits of security has been rounded up to 8192 so that all sizes of p are multiples of 1024
bits.

In general, longer FFC keys provide more security assurance but take more time and space to
use. The Key Management Guideline [8] gives guidance on selecting an appropriate security
level.

For this Recommendation, the size of p is specified as a multiple of 1024 bits. Note that ANSI
X9.42 specifies the granularity of p in 256-bit increments, but this Recommendation is less
granular. For this Recommendation, the bit length of q is an exact length for a specific bit length
of p, unlike ANSI X9.42 where the length of q is a minimum length that depends on the length of
p. See [3] for routines that will utilize a stronger hash function and will specify how to generate
and validate p and q in a canonical way using either probabilistic primality tests or constructive
(provable) primes using the Shawe-Taylor algorithm. [3] will also specify how to calculate the
generator g, either without transitive trust, or with transitive trust in a way to that can be
validated.

5.1.1.2 ECC Domain Parameter Generation
Domain parameters for ECC schemes are of the form (q, FR, a, b, [SEED], G, n, h), where q is
the field size; FR is an indication of the basis used; a and b are two field elements that define the

Bits of security

Bit length of subgroup order q

Bit length of field order p

80

160

1024

112

224

2048

128

256

3072

192

384

8192

256

512

15360

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 14

equation of the curve; SEED is an optional bit string if the elliptic curve was randomly generated
in a verifiable fashion; G is a generating point, (xG, yG) of prime order on the curve; n is the order
of the point G; and h is the cofactor (which is equal to the order of the curve divided by n). Note
that the field size q may be either a prime p (where p is an odd prime) or 2m, where m is an odd
prime.

FIPS 186-3 [3] specifies recommended elliptic curves for the Federal Government that may be
used as ECC domain parameters.

Table 2: ECC Equivalent Strengths

As shown in Table 2, there are five security levels that may be chosen for use in U.S.
Government applications. These five levels are given in terms of bits of security and are 80, 112,
128, 192 and 256 bits, these security levels/strengths correspond to roughly 280, 2112, 2128, 2192,
and 2256 operations (respectively) in order to have a reasonable expectation of breaking one key
using the best of currently known attacks. This table is based on the security equivalence table in
the Key Management Guideline [8].

In general, longer ECC keys provide more security assurance but take more time and space to
use. The Key Management Guideline [8] gives guidance on selecting an appropriate security
level.

All elliptic curves for use by the Federal Government shall have a cofactor less than or equal to
65,536 (i.e., 216). This ensures that the large subgroup is unique and ensures that using the
cofactor is reasonably efficient. See the ANSI X9.62-2 ECDSA Revision draft [19] Annex A for
routines that will support the generation and validation of ECC domain parameters using a
stronger hash function. Note that ANSI X9.62 does not have the restriction on the maximum
size of the cofactor h. This ANSI X9.62 draft will also specify how to calculate the generator G
either without transitive trust, or with transitive trust in a way that can be validated.

5.1.2 Assurances of Domain Parameter Validity
Secure key establishment depends on the arithmetic validity of the set of domain parameters used
by the parties. Each party shall have assurance of the validity of a candidate set of domain
parameters. Each party shall obtain assurance that the candidate set of domain parameters is
valid in at least one of the following three ways:

1. The party itself generates the set of domain parameters according to the specified
requirements.

2. The party performs an explicit domain parameter validation as specified in:

a. FIPS 186-3 (revision of FIPS 186-2) for FFC, including a keysize check on the primes.

Bits of security

Minimum bit length of subgroup order n

Maximum value of ECC cofactor h

80

160

65536

112

224

65536

128

256

65536

192

384

65536

256

512

65536

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 15

b. X9.62-2 ECDSA Revision for ECC, including a keysize check on the subgroup order
and a cofactor check to ensure the cofactor is 65,536 or less.

3. The party has received assurance from a trusted third party (e.g., a CA or NIST1) that the
set of domain parameters were valid at the time that they were generated by reason of
either item 1 or 2 above.

The party shall know which method(s) of assurance were used in order for the party to determine
that the provided assurance is sufficient and appropriate to meet the application’s requirements.

Note: Since SHA-1 provides 80 bits of security against collision-type attacks, it is anticipated
that the use of SHA-1 for certain purposes (such as hashing a message to produce a message
digest for a digital signature) will be deprecated at some time in the future. Previously validated
domain parameters (that is, those that had assurance of validity before SHA-1 becomes
deprecated for some purposes) are expected to continue to be considered verifiably random even
when the use of SHA-1 for other purposes (such as digital signatures) is deprecated.

5.1.3 Domain Parameter Management
A particular set of domain parameters shall be protected against modification or substitution
until the set is destroyed (if and when it is no longer needed). Each private/public key pair shall
be correctly associated with its specific set of domain parameters (e.g., by using a public key
certificate).

5.2 Private and Public Keys

5.2.1 Private/Public Key Pair Generation
Static and ephemeral key pairs are generated using the same primitive.

For the FFC schemes, generate a private key x and a public key y using the domain parameters
(p, q, g, [SEED, pgenCounter]). Each private key shall be statistically unique, unpredictable,
and created using an Approved random number generator. See ANSI X9.42 for details.

For the ECC schemes, generate a private key d and a public key Q using the domain parameters
(q, FR, a, b, [SEED], G, n, h). Each private key shall be statistically unique, unpredictable, and
created using an Approved random number generator. See ANSI X9.63 for details.

5.2.2 Assurances of the Arithmetic Validity of a Public Key
Secure key establishment depends on the arithmetic validity of the public key. To explain the
assurance requirements, some terminology needs to be defined. The owner of a static public key
is the entity that is associated with the key; this is independent of whether or not the owner
generated the key pair. The recipient of a static public key is the entity that is participating in a
key agreement transaction with the owner. The owner of an ephemeral public key is the entity
that generated the key as part of a key agreement transaction. The recipient of an ephemeral
public key is the entity that receives the key during a key agreement transaction with the owner.

1 If using an elliptic curve from the list of NIST recommended curves in FIPS 186-2[3].

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 16

Both the owner and a recipient of a candidate public key shall have assurance of its arithmetic
validity before using it, as specified below, and shall know the type of assurance provided.

5.2.2.1 Owner Assurances of Static Public Key Validity
The owner of a static public key shall obtain assurance of its validity in one or more of the
following ways:

1. Owner Full Validation - The owner performs a successful full public key validation (see
Sections 5.2.2.5 and 5.2.2.6). For example, the key generation routine may do full public
key validation as part of its processing.

2. TTP Full Validation – The owner receives assurance that a trusted third party (trusted by
the owner) has performed a successful full public key validation (see Sections 5.2.2.5 and
5.2.2.6).

3. Owner Generation – The owner generates the public key from the private key.

4. TTP Generation – The owner has received assurance that a trusted third party (trusted by
the owner) has generated the public/private key pair and has provided the key pair to the
owner.

The owner shall know which method(s) of assurance were used in order for the owner to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements. Note that the use of a TTP to generate a key pair for an owner means that the TTP
must be trusted (by both the owner and any recipient) to not use the owner’s private key to
masquerade as the owner.

5.2.2.2 Recipient Assurances of Static Public Key Validity
The recipient of a static public key shall obtain assurance of its validity in one or more of the
following ways:

1. Recipient Full Validation - The recipient performs a successful full public key validation
(see Sections 5.2.2.5 and 5.2.2.6).

2. TTP Full Validation – The recipient receives assurance that a trusted third party (trusted
by the recipient) has performed a successful full public key validation (see Sections
5.2.2.5 and 5.2.2.6).

3. TTP Generation – The recipient receivesd assurance that a trusted third party (trusted by
the recipient) has generated the public/private key pair and has provided the key pair to
the owner.

The recipient shall know which method(s) of assurance were used in order for the recipient to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements. Note that the use of a TTP to generate a key means that the TTP must be trusted
(by both the recipient and the owner) to not use the owner’s private key to masquerade as the
owner.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 17

5.2.2.3 Owner Assurances of Ephemeral Public Key Validity
The owner of an ephemeral public key has assurance of its validity because the owner generated
the key.

5.2.2.4 Recipient Assurances of Ephemeral Public Key Validity
The recipient of an ephemeral public key shall obtain assurance of its validity in one or more of
the following ways:

1. Recipient Full Validation - The recipient performs a successful full public key validation
(see Sections 5.2.2.5 and 5.2.2.6).

2. TTP Full Validation – The recipient receives assurance that a trusted third party (trusted
by the recipient) has performed a successful full public key validation (see Sections
5.2.2.5 and 5.2.2.6). For example, a trusted processor may only forward an ephemeral
public key to the recipient if the public key passes a full public key validation.

3. Recipient ECC Partial Validation - If using an ECC method (only), the recipient performs
a successful partial public key validation (see Section 5.2.2.7).

4. TTP ECC Partial Validation – If using an ECC method (only), the recipient receives
assurance that a trusted third party (trusted by the recipient) has performed a successful
partial public key validation (see Section 5.2.2.7). For example, a trusted processor may
only forward an ECC ephemeral public key to the recipient if it passes a partial public
key validation.

The recipient shall know which method of assurance was used in order for the recipient to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements.

5.2.2.5 FFC Full Public Key Validation Routine
 candidate FFC public key to ensure that it has the unique correct representation in the correct
subgroup (and therefore is also in the correct multiplicative group) of the finite field specified by
the associated FFC domain parameters. FFC full public key validation does not require
knowledge of the associated private key and so may be done at any time by anyone. This
method shall be used with static and ephemeral FFC public keys when assurance of the validity
of the keys is obtained by method 1 or method 2 of Sections 5.2.2.1, 5.2.2.2, and 5.2.2.4.

Input:
1. (p, q, g [, seed, pgenCounter]):A valid set of FFC domain parameters, and

2. y: A candidate FFC public key.

Process:
1. Verify that 2 ≤ y ≤ p-2.

 (Ensure that the key has the unique correct representation and range in the field.)

2. Verify that yq = 1 (mod p).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 18

 (Ensure that the key has the correct order in the subgroup.)

Output: If either of the above checks fails, then output “invalid”. Otherwise, output “full
validation success”.

5.2.2.6 ECC Full Public Key Validation Routine
ECC full public key validation refers to the process of checking all the arithmetic properties of a
candidate ECC public key to ensure that it has the unique correct representation in the correct
(additive) subgroup (and therefore is also in the correct EC group) specified by the associated
ECC domain parameters. ECC full public key validation does not require knowledge of the
associated private key and so may be done at any time by anyone. This method may be used for
a static ECC public key or an ephemeral ECC public key when assurance of the validity of the
key is obtained by method 1 or method 2 of Sections 5.2.2.1, 5.2.2.2, and 5.2.2.4.

Input:
1. (q, FR, a, b, [SEED,] G, n, h): A valid set of ECC domain parameters, and

2. Q’=(xQ’, yQ’): A candidate ECC public key.

Process:

1. Verify that Q’ is not the point at infinity O.

 (Partial check of the public key for an invalid range in the EC group.)

2. Verify that xQ’ and yQ’ are integers in the interval [0, p-1] in the case that q = p is an odd
prime, or that xQ’ and yQ’ are bit strings of length m bits in the case that q = 2m).

 (Ensures that each coordinate of the public key has the unique correct representation of
an element in the underlying field.)

3. If q = p is an odd prime, verify that (yQ’)2
 ≡ (xQ’)3 + axQ’ + b (mod p).

 If q = 2m, verify that (yQ’)2 + xQ’ yQ’ = (xQ’)3 + a(xQ’)2 + b in GF(2m).

 (Ensures that the public key is in the correct EC group.)

4. Verify that nQ’=O.

 (Ensures that the public key has the correct order. Along with check 1, ensures that the
public key is in the correct range in the correct EC subgroup.)

Output: If any of the above checks fail, then output ‘invalid’. Otherwise, output ‘full validation
success’.

5.2.2.7 ECC Partial Public Key Validation Routine
ECC partial public key validation refers to the process of checking some (but not all) of the
arithmetic properties of a candidate ECC public key to ensure that it is in the correct group (but
not necessarily the correct subgroup) specified by the associated ECC domain parameters. ECC
Partial Public Key Validation omits the validation of subgroup membership, and therefore is
usually faster than ECC Full Public Key Validation. ECC partial public key validation does not

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 19

require knowledge of the associated private key and so may be done at any time by anyone. This
method may only be used for an ephemeral ECC public key when assurance of the validity of the
key is obtained by method 3 or 4 of Section 5.2.2.4

Input:
1. (q, FR, a, b, [SEED,] G, n, h): A valid set of ECC domain parameters, and

2. Q’=(xQ’, yQ’): A candidate ECC public key.

Process:

1. Verify that Q’ is not the point at infinity O.

 (Partial check of the public key for an invalid range in the EC group.)

2. Verify that xQ’ and yQ’ are integers in the interval [0, p-1] in the case that q = p is an odd
prime, or that xQ’ and yQ’ are bit strings of length m bits in the case that q = 2m.

(Ensures that each coordinate of the public key has the unique correct representation of
an element in the underlying field.)

3. If q = p is an odd prime, verify that (yQ’) 2
 ≡ (xQ’)3 + axQ’ + b (mod p).

 If q = 2m, verify that (yQ’)2 + xQ’ yQ’ = (xQ’)3 + a(xQ’)2 + b in GF(2m).

 (Ensures that the public key is in the correct EC group.)

 (Note: Since its order is not verified, there is no check that the public key is in the EC
subgroup.)

Output: If any of the above checks fail, then output ‘invalid’. Otherwise, output ‘partial
validation success’.

5.2.3 Assurances of Possession of Private Key
Text for this section will be published in a later version of this Recommendation.

5.2.4 Key Pair Management

5.2.4.1 Common Requirements on Static and Ephemeral Key Pairs
The following are common requirements on static and ephemeral key pairs:

1. A public/private key pair shall be correctly associated with its corresponding specific set
of domain parameters. Each key pair shall not be used with more than one set of domain
parameters. See the Key Management Guideline [8].

2. Each private key shall be statistically unique, unpredictable, and created using an
Approved random number generator.

3. Private keys shall be protected from unauthorized access, disclosure, modification or
substitution. See the Key Management Guideline [8].

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 20

4. Public keys shall be protected from unauthorized modification or substitution. This is
often accomplished by using public key certificates signed by a certificate authority
(CA). See the Key Management Guideline [8].

5.2.4.2 Specific Requirements on Static Key Pairs
The specific requirements on static key pairs are as follows:

1. An entity’s static key pair shall be generated before the generation of any ephemeral key
pairs with which the static key pair will be used, this includes the entity’s own ephemeral
keys (if any) and the ephemeral keys of the other communicating party (if any). Note:
This requirement is enforced during the generation of ephemeral keys (see Section
5.2.4.3).

2. A recipient of a static public key shall be assured of the association between the public
key, the set of domain parameters for that key, and the entity that owns the key pair (i.e.,
the party with whom the recipient intends to establish a key). This assurance is often
provided by verifying a public-key certificate signed by a trusted third party (e.g., a CA).

3. Static public keys shall be obtained in a trusted manner, e.g., from a certificate signed by
a CA that the entity trusts, or directly from the public key owner, provided that the public
key owner is trusted by the receiving party and can be authenticated as the source of the
data that is received.

4. A static key pair may be used in more than one key establishment scheme. However, one
static public/private key pair shall not be used for different purposes (e.g., a digital
signature key pair shall not be used for key establishment or vice versa).

5. An owner and a recipient of a static public key shall have assurance of the validity of the
public key and each shall know the type(s) of assurance provided. This assurance may
be provided through the use of a public key certificate if the CA provides sufficient
assurance of validity as part of its certification process. See Section 5.2.2.

6. An owner and a recipient of a static public key shall have assurance of possession of the
associated private key by the claimed owner of the key pair. The owner shall know the
type of assurance associated with the possession of his own private key; the recipient
shall know the type of assurance for the possession of the private key by the other party
(the claimed owner) (see Section 5.2.3). This assurance may be provided through the use
of a public key certificate if the CA provides sufficient assurance of possession as part of
its certification process. See Section 5.2.3.

5.2.4.3 Specific Requirements on Ephemeral Key Pairs
The specific requirements on ephemeral key pairs are as follows:

1. An ephemeral private key is intended for exactly one use, during which it is created, used
in the calculation of a cryptographic key establishment primitive and then destroyed. As
such, an ephemeral private key shall be used only once in one key establishment
transaction.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 21

2. An ephemeral key pair should be generated as close to its time of use as possible.
Ideally, an ephemeral key pair is generated just before the ephemeral public key is
transmitted.

3. If using a scheme where the other party (B) uses a static key pair, an entity (A) shall be
assured that its ephemeral public key was transmitted strictly after the other party’s (B’s)
static key pair was generated. This assurance can be provided by the entity (A) actually
possessing a copy of the other party’s (B’s) static public key before generating the its
own (A’s) ephemeral key pair; another way to obtain this assurance is by comparing the
time of ephemeral key generation with a timestamp certified by a trusted third party on
the other party’s (B’s) static public key.

4. An ephemeral private key shall be destroyed immediately after the shared secret is
computed.

5. A recipient of an ephemeral public key shall have assurance of validity of the public key
and shall know the type(s) of assurance provided. See Section 5.2.2.

5.3 Key Derivation Function (KDF)

A key derivation function (KDF) shall be used to derive keying material from a shared secret.
There are two Approved KDF’s. The concatenation KDF is the default KDF; it should be used
if no prior arrangement is made. The ASN.1 KDF is an optional KDF that may be used if both
communicating parties agree upon its use. The hash function used in the KDF shall be
Approved (see Section 5.6 for the selection of an appropriate hash function).

5.3.1 Concatenation Key Derivation Function (Default)
This section specifies the key derivation function based on concatenation. This is the default
KDF.

The concatenation KDF is as follows:

Function call: kdf(Z, OtherInput),

where OtherInput is U, V, keydatalen, hashlen, [SharedInfo].

Input:
1. Z: A bit string that is the shared secret,

2. U and V: Bit strings that denote the identifiers of the participating parties (see notes
below),

3. keydatalen: An integer that is the length in bits of the keying material to be generated;
keydatalen shall be less than hashlen × (232-1),

4. hashlen: An integer that is the length in bits of the hash function to be used to derive the
keying material, and

5. SharedInfo: An optional bit string that consists of data shared by parties U and V.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 22

Process:
1. Initiate a 32-bit, big-endian bit string counter as 0000000116.

2. j =  keydatalen / hashlen.

3. For i=1 to j by 1, do the following:

3.1 Compute Hashi = H(Z || counter || U || V || [SharedInfo]).

3.2 Increment counter.

4. Let Hhash be set to Hashj if (keylen ⁄ hashlen) is an integer, otherwise let it be set to the
(keydatalen-(hashlen × (j-1))) leftmost bits of Hashj.

5. Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashj-1 || Hhash.

Output: The bit string DerivedKeyingMaterial of keydatalen bits.

The shared secret shall be zeroized before outputting any portion of the DerivedKeyingMaterial;
this implies that the entire DerivedKeyingMaterial shall be computed before outputting any
portion of it. The derived keying material may be parsed into one or more keys or other
cryptographic keying material (e.g., IVs).

Any scheme attempting to call the key derivation function for a bit string of length greater than
or equal to hashlen × (232-1) bits shall output “invalid” and stop.

Notes:

1. The values for U and V are each an identifier (i.e., a bit string that is associated with a
person, device or organization). An identifier may be an identifying name, but it is not
required to be so; an identifier may be something more abstract (e.g., e an IP address and
timestamp) depending on the application. The values for U and V should be as specific
as feasible for their intended use.

2. When the scheme is such that the calculations performed by the initiator are different (see
Section 6.2) than the calculations performed by the responder, then U shall be the
initiator, and V shall be the responder. In a scheme where both parties do the same
calculations (see Sections 6.1 and 6.3), it is up to the protocol designer to decide who
serves as U and V. The protocol designer may decide that U is the initiator, and V is the
responder, or the protocol may choose to select U based on alphabetic or some other
order. The requirement is that the assignment of U and V shall be unambiguous.

5.3.2 ASN.1 Key Derivation Function (Optional)
This section specifies the key derivation function based on ASN.1 DER encoding. It may be used
if both communicating parties agree on its use.

Keying data shall be calculated as fo llows:

Let hashlen denote the length of the output of the hash function chosen, and let maxhashlen
denote the maximum length of the input to the hash function.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 23

Function call: kdf(Z, OtherInput)

where OtherInput is keydatalen, hashlen, OtherInfo, and OtherInfo is AlgorithmID, counter,
PartyUInfo, PartyVInfo [, SuppPrivInfo][, SuppPubInfo].

Input:
1. Z: A bit string that is the shared secret,

2. keydatalen: An integer that is the length in bits of the keying data to be generated.
keydatalen shall be less than (hashlen × (232–1)),

3. OtherInfo: A bit string specified in ASN.1 DER encoding, that consists of the following
information.

3.1 Key specification information consisting of:

3.1.1 AlgorithmID: A unique object identifier that indicates the algorithm(s) for
which the keying data will be used, e.g., bits 1-128 are for a 128-bit AES
key and bits 129-208 are for an 80-bit HMAC key.

3.1.2 counter: A 32-bit octet string with initial value 0000000116. This counter
may be incremented during the following process.

3.2 PartyUInfo: A bit string that contains public information contributed by the
initiator. At a minimum, PartyUInfo shall consist of the identifier of party U;
PartyUInfo may contain other data contributed by the initiator. See notes below.

3.3 PartyVInfo: A bit string that contains public information contributed by the
recipient. At a minimum, PartyVInfo shall consist of the identifier of party V;
PartyVInfo may contain other data contributed by the recipient. See notes below.

3.4 (Optional) SuppPrivInfo: A bit string that contains some additional, mutually-
known private information, e.g. a shared secret symmetric key communicated
through a separate channel.

3.5 (Optional) SuppPubInfo: A bit string that contains some additional, mutually-
known public information.

Note that the public information referred to above is specified in the protocols that
use this standard.

Actions: The key derivation function is computed as follows:

1. Let d = keydatalen / hashlen.

2. Initialize counter= 0000000116.

3. For i = 1 to d,

3.1 Compute hi = H (Z || OtherInfo) where hi denotes the hash value computed using the
appropriate hash function.

3.2 Convert counter to an integer.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 24

3.3 Increment counter.

3.4 Convert counter to an octet string.

4. Compute DerivedKeyingMaterial = leftmost keydatalen bits of h1 || h2 || … || hd.

Output: The DerivedKeyingMaterial as a bit string of length keydatalen bits.

The shared secret shall be zeroized before outputting any portion of the DerivedKeyingMaterial;
this implies that the ent ire DerivedKeyingMaterial shall be computed before outputting any
portion of it.

The key derivation function based on ASN.1 DER encoding produces keying material that is less
than (hashlen × (232–1)) bits in length. It is assumed that all key derivation function calls are for
bit strings that are less than (hashlen × (232–1)) bits in length. Any scheme attempting to call the
key derivation function using a bit string that is greater than or equal to (hashlen × (232–1)) bits
shall output “invalid” and stop. Similarly, it is assumed that all key derivation function calls do
not involve hashing a bit string that is more than maxhashlen bits in length. Any scheme
attempting to call the key derivation function on a call involving hashing a bit string that is
greater than maxhashlen bits shall output “invalid” and stop.

Notes:

1. The values for U and V are each an identifier (i.e., a bit string that is associated with a
person, device or organization). An identifier may be an identifying name, but it is not
required to be so, instead an identifier may be something more abstract (e.g., an IP
address and a timestamp) depending on the application. The values for U and V should
be as specific as feasible for their intended use.

2. When the scheme is such that the calculations performed by the initiator are different
than the calculations performed by the responder (see Section 6.2), then U shall be the
initiator, and V shall be the responder. In a scheme where both parties do the same
calculations (see Sections 6.1 and 6.3), it is up to the protocol designer to decide who
serves as U and V. The protocol designer may decide that U is the initiator, and V is the
responder, or the protocol may choose to select U based on alphabetic or some other
order. The requirement is that the assignment of U and V shall be unambiguous.

5.4 Message Authentication Code (MAC) Algorithm

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions
that is parameterized by a symmetric key. In key establishment schemes, an entity is sometimes
required to compute a MacTag on received or derived data using the MAC function determined
by a symmetric key derived from a shared secret. The MacTag is sent to another entity in order
to confirm that the shared secret was correctly computed. This Recommendation requires that an
Approved MAC algorithm be used to compute a MacTag, e.g., HMAC [6].

The MAC algorithm shall be used to provide key confirmation, when desired, and shall be used
to validate implementations of the key establishment schemes specified in this
Recommendation.. MacTag computation and checking are defined in Sections 5.4.1 and 5.4.2 of
this Recommendation, in Section 7.8 of ANSI X9.42 and in Section 5.7 of ANSI X9.63.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 25

5.4.1 MacTag computation
The computation of the MacTag is represented as follows:

MacTag = MACMacKey (MacData).

The MacTag computation shall be performed using an Approved MAC algorithm. In the above
equation, MAC represents an Approved MAC algorithm, MacKey represents a symmetric key,
MACMacKey represents the MAC function that is determined by MacKey, and MacData represents
the data on which that function is evaluated.

5.4.2 MacTag Checking
To check a MacTag for a given MacKey and MacData, the MacTag is computed by the receiver
using the received or derived MacData (as specified in Section 5.4.1) and compared with the
received MacTag. If the two MacTag values are equal, then it may be inferred that the MacKey
and MacData values computed by each party are equal.

5.4.3 Implementation Validation Message
For purposes of validating an implementation of the schemes in this Recommendation during an
implementation validation test, the value of MacData shall be the string “Standard Test
Message” followed by 16 bytes containing a 128-bit field for a nonce. The default value for this
field is all zeros. Different values for this field will be specified during testing.

Note: ANSI X9.42 defines MacData as “ANSI X9.42 Testing Message”. ANSI X9.63 does not
address implementation validation at this level of detail. Note that the implementation test
message used for NIST validation is a different text string from the implementation test message
for ANSI X9.42 validation.

5.5 Associate Value Function (ECC MQV Only)

The associate value function is used by the ECC MQV family of key agreement schemes to
compute an integer associated with an elliptic curve point. This Recommendation defines avf(P)
to be the associate value function of a point P (assurance of the validity of P has already been
obtained) as defined in Section 5.6.1 of ANSI X9.63 using the domain parameters (q, FR a, b,
[SEED], G, n, h).

Input:
1. (q, FR, a, b, [SEED], G, n, h): Domain parameters, and

2. P: A point not equal to the point at infinity.

Process:
1. Convert xP to an integer using the convention specified in Section 4.3.5 of ANSI X9.63.

2. Calculate

xP
’
 = xP mod  2/2 f (where f =  n2log).

3. Calculate associate value function

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 26

avf(P) = xP
’ +  2/2 f .

Output: avf(P), the associate value of P

5.6 Cryptographic Hash Functions

An Approved hash function shall be used when a hash function is required (e.g., for the key
derivation function or to compute a MAC when HMAC as specified in FIPS 198 is used). FIPS
180-2 [2] specifies Approved hash functions. The hash function shall be selected in accordance
with the security level provided by the domain parameters and private/public key pairs (see
Table 3).

Table 3: Hash Function Selection

Bits of security 80 112 128 192 256

Hash function SHA1 SHA224 SHA256 SHA384 SHA512

The Approved hash functions are defined in [2] except for SHA224, which is defined as follows:

SHA224(M) = the leftmost 224 bits of SHA256(M),

where M is the data to be hashed.

5.7 Random Number Generation

Whenever this Recommendation requires the use of a randomly generated value (e.g., for keys or
nonces), the values shall be generated using an Approved random number generator.

5.8 DLC Primitives

Primitives for the calculation of the shared secrets are defined in the ANSI X9.42 and X9.63
standards. A primitive is a relatively simple operation that is defined as such to facilitate
implementation in hardware or in a software subroutine. Each key establishment scheme
requires the use of exactly one primitive. The four primitives that shall be used by the schemes
in Section 6 are:

1. The FFC DH primitive (Section 5.8.1.1 of this Recommendation and Section 7.5.1 in
ANSI X9.42): This primitive shall be used by the dhHybrid1, dhEphem,
dhHybridOneFlow, dhOneFlow and dhStatic schemes, which are based on finite field
cryptography and the Diffie-Hellman algorithm.

2. The ECC CDH primitive (Section 5.8.1.2 of this Recommendation and called the
Modified Diffie-Hellman primitive in Section 5.4.2 of ANSI X9.63): This primitive
shall be used by the Full Unified Model, Ephemeral Unified Model, One-Pass Unified
Model, One-Pass Diffie-Hellman and Static Unified Model schemes, which are based on
elliptic curve cryptography and the Diffie-Hellman algorithm.

3. The FFC MQV primitive (Section 5.8.2.1 of this Recommendation): This primitive shall
be used by the MQV2 and MQV1 schemes, which are based on finite field cryptography
and the MQV algorithm.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 27

4. The ECC MQV primitive (Section 5.8.2.2 of this Recommendation and Section 5.5 of
ANSI X9.63): This primitive shall be used by the Full MQV and One-Pass MQV
schemes, which are based on elliptic curve cryptography and the MQV algorithm.

The shared secret shall be used as input to a key derivation function (see Section 5.3).

5.8.1 Diffie-Hellman Primitives

5.8.1.1 Finite Field Cryptography Diffie -Hellman (FFC DH) Primitive
The shared secret Z is computed using the domain parameters (p, q, g, [SEED, pgenCounter]),
the other party’s public key and one’s own private key. This primitive is used in Section 6 by the
dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes. Assume that the
party performing the computation is party A, and the other party is party B. Note that party A
could be either the initiator U or the responder V.

Input:
1. (p, q, g, [SEED, pgenCounter]): Domain parameters,

2. xA : One’s own private key , and

3. yB : The other party’s public key.

Process:

1. pyZ Ax
B mod=

2. If Z=1, output “Failure”.

3. Else, output Z .

Output: The shared secret Z or “Failure”.

5.8.1.2 Elliptic Curve Cryptography Cofactor Diffie Hellman (ECC CDH) Primitive
The shared secret Z is computed using the domain parameters (q, FR, a, b, [SEED], G, n, h), the
other party’s public key, and one’s own private key. This primitive is used in Section 6 by the
Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-
Hellman and Static Unified Model schemes. Assume that the party performing the computation
is party A, and the other party is party B. Note that party A could be either the initiator U or the
responder V.

Input:
1. (p, FR, a, b, [SEED], G, n, h): Domain parameters,

2. dA : One’s own private key , and

3. QB : The other party’s public key.

Process:
1. Compute the point P=hdAQB.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 28

2. If P=O, output “Failure”.

3. Z=xP , where xP is the x-coordinate of P.

Output: The shared secret Z or “Failure”.

5.8.2 MQV Primitives

5.8.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive
The shared secret Z is computed using the domain parameters (p, q, g, [SEED, pgenCounter]),
the other party’s public keys and one’s own public and private keys. Assume that the party
performing the computation is party A, and the other party is party B. Note that party A could be
either the initiator U or the responder V.

Input:
1. (p, q, g [, SEED, pgenCounter]): Domain parameters,

2. xA : One’s own static private key,

3. yB : The other party’s static public key,

4. rA : One’s own second private key,

5. tA : One’s own second public key, and

6. tB : The other party’s second public key .

Process:
1.  2/qw = .

2. ww
AA tT 2)2mod(+= .

3. qxTrS AAAA mod)(+= .

4. ww
BB tT 2)2mod(+= .

5. pytZ AB ST
BB mod)))(((= .

6. If Z=1, output “Failure”. Else, output Z.

Output: The shared secret Z or “Failure”.

5.8.2.1.1 FFC MQV2 Form of the FFC MQV Primitive
This form of invoking the FFC MQV primitive is used in Section 6.1.1.3 by the MQV2 scheme.
In this form, each party has both a static key pair and an ephemeral key pair. Assume that the
party performing the computation is party A, and the other party is party B. Note that party A
could be either the initiator U or the responder V.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 29

In this form, one’s own second private and public pairs (input 4 and 5 in Section 5.8.2.1) are
one’s own ephemeral private and public keys (rA and tA), and the other party’s second public key
(input 6 in Section 5.8.2.1) is the other party’s ephemeral public key (tB).

5.8.2.1.2 FFC MQV1 Form of the FFC MQV Primitive
This form of invoking the FFC MQV primitive is used in Section 6.2.1.3 by the MQV1 scheme.
In this form, the initiator has a static key pair and an ephemeral key pair, but the responder has
only a static key pair. One-Pass MQV (store and forward form) is done using the MQV
primitive by using the responder’s static key pair as the responder’s second key pair (as the
responder has no ephemeral key pair).

The initiator uses the responder’s static public key for the responder’s second public key, i.e.,
when the initiator uses the algorithm in Section 5.8.2.1, input 6 becomes the other party’s static
public key (yA).

The responder uses his static private key for his second private key, i.e., when the responder uses
the algorithm in Section 5.8.2.1, input 4 becomes the responder’s static private key xA, and input
5 becomes the responder’s static public key (yA).

5.8.2.2 Elliptic Curve Cryptography MQV (ECC MQV) Primitive
The ECC MQV primitive is computed using the domain parameters (q, FR, a, b, [SEED], G, n,
h), the other party’s public keys, and one’s own public and private keys. The ECC version of
MQV uses the cofactor h in its calculations. Assume that the party performing the computation
is party A, and the other party is party B. Note that party A could be either the scheme initiator
U or the scheme responder V.

Input:
1. (q, FR, a, b, [SEED], G, n, h): Domain parameters,

2. ds,A : One’s own static private key,

3. Qs,B : The other party’s static public key,

4. de,A : One’s own second private key,

5. Qe,A : One’s own second public key, and

6. Qe,B : The other party’s second public key.

Process:
1. implicitsigA = (de,A + avf(Qe,A)ds,A) mod n.

2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B)).

3. If P = O, output “Failure”.

4. Z=xP , where xP is the x-coordinate of P.

Output: Z or “Failure”.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 30

5.8.2.2.1 ECC Full MQV Form of the ECC MQV Primitive
This form of invoking the FFC MQV primitive is used in Section 6.1.1.4 by the Full MQV
scheme. In this form, each party has both a static key pair and an ephemeral key pair. Assume
that the party performing the computation is party A, and the other party is party B. Note that
party A could be either the initiator U or the responder V.

In this form one’s own second key pair is one’s own ephemeral key pair and the other party’s
second key pair is the other party’s ephemeral key pair.

5.8.2.2.2 ECC One-Pass Form of the ECC MQV MQV Primitive
This form of invoking the ECC MQV primitive is used in Section 6.2.1.4 by the One-Pass MQV
scheme. In this form, the initiator has a static key pair and an ephemeral key pair, but the
responder has only a static key pair. One-Pass MQV (store and forward form) is done using the
MQV primitive using the responder’s static key pair as the responder’s second key pair (as the
responder has no ephemeral keys).

The initiator uses the responder’s static public key as the responder’s second pub lic key. When
the initiator uses the algorithm in Section 5.8.2.2, input 6 becomes the other party’s static public
key (Qs,B).

The responder uses his static private key as his second private key. When the responder uses the
algorithm in Section 5.8.2.2, input 4 becomes the responder’s static private key ds,A, and input 5
becomes the responder’s static public key (Qs,A).

5.9 RSA Primitives

To be added as ANSI X9.44 [10] becomes a standard.

5.10 Symmetric Key Wrapping Primitive

See the AES key wrapping specification [16].

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 31

6. Key Agreement

This Recommendation provides three categories of key agreement schemes (See Table 4). The
classification of the categories is based on the number of ephemeral keys used by the two parties
to the key agreement process, parties U and V. In category C(i), parties U and V have a total of i
ephemeral key pairs. The first category, C(2), consists of schemes requiring the generation of
ephemeral key pairs by both parties; a C(2) scheme is suitable for an interactive scenario. The
second category, C(1), consists of schemes requiring the generation of an ephemeral key pair by
only one party; a C(1) scheme is suitable for a store and forward scenario, but may also be used
in an interactive scenario. The third category, C(0), consists of schemes that do not use
ephemeral keys; C(0) schemes are suitable for static scenarios (e.g., public bulletin boards), but
may also be used in interactive and store-and-forward scenarios.

Key confirmation may be added to any scheme if desired, see Section 8 for details on obtaining
key confirmation.

Table 4: Key Agreement Scheme Categories

Category Comment

C(2): Two ephemeral keys Each party generates an ephemeral key pair.

C(1): One ephemeral key Only the initiator generates an ephemeral key pair.

C(0): Zero ephemeral keys No ephemeral keys are used.

Each category is comprised of one or more subcategories that are classified by the use of static
keys by the parties (see Table 5). In subcategory C(i,j), parties U and V have a total of i
ephemeral key pairs and j static key pairs.

Table 5: Key Agreement Scheme Subcategories

Category Subcategory

C(2,2): Each party generates an ephemeral key pair and has a
static key pair.

C(2): Two ephemeral keys

C(2,0): Each party generates an ephemeral key pair; no static
keys are used.

C(1,2): The initiator generates an ephemeral key pair and has a
static key pair; the responder has only a static key pair.

C(1): One ephemeral key

C(1,1): The initiator generates an ephemeral key pair, but has no
static key pair; the responder has only a static key pair.

C(0): Zero ephemeral keys C(0,2): Each party has only static keys.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 32

The schemes may be further classified by whether they use FF cryptography as specified in
ANSI X9.42 or EC cryptography as specified in ANSI X9.63. Note: the schemes are
summarized in this Recommendation; see ANSI X9.42 or X9.63 for more details. A scheme
may use either Diffie-Hellman or MQV primitives (see Section 5.8). Thus, for example,
C(2,2,FFC DH) completely classifies the dhHybrid1 scheme as a scheme with two ephemeral
keys and two static keys that uses finite field cryptography and a Diffie-Hellman primitive (see
Table 6).

Table 6: Key Agreement Schemes

Category Subcategory Primitive Scheme Full
Classification

C(2) C(2,2) FFC DH dhHybrid1 C(2,2,FFC DH)

C(2) C(2,2) ECC CDH (Cofactor) Full Unified Model C(2,2,ECC CDH)

C(2) C(2,2) FFC MQV MQV2 C(2,2,FFC MQV)

C(2) C(2,2) ECC MQV Full MQV C(2,2,ECC MQV)

C(2) C(2,0) FFC DH dhEphem C(2,0,FFC DH)

C(2) C(2,0) ECC CDH (Cofactor) Ephemeral Unified
Model

C(2,0,ECC CDH)

C(1) C(1,2) FFC DH dhHybridOneFlow C(1,2,FFC DH)

C(1) C(1,2) ECC CDH (Cofactor) One-Pass Unified
Model

C(1,2,ECC CDH)

C(1) C(1,2) FFC MQV MQV1 C(1,2,FFC MQV)

C(1) C(1,2) ECC MQV One-Pass MQV C(1,2,ECC MQV)

C(1) C(1,1) FFC DH dhOneFlow C(1,1,FFC DH)

C(1) C(1,1) ECC CDH (Cofactor) One-Pass Diffie-
Hellman

C(1,1,ECC CDH)

C(0) C(0,2) FFC DH dhStatic C(0,2,FFC DH)

C(0) C(0,2) ECC CDH Cofactor Static Unified Model C(0,2,ECC CDH)

Each party in a key agreement process shall use the same set of domain parameters. These
parameters shall be established prior to the initiation of the key agreement process. See Section
5.1 for a discussion of domain parameters.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 33

A general flow diagram is provided for each subcategory of schemes. The dotted- line arrows
represent the distribution of static public keys that may be distributed by the parties themselves
or by a third party, such as a Certification Authority (CA). The solid- line arrows represent the
distribution of ephemeral public keys that occur during the key agreement process. Note that the
flow diagrams and the scheme descriptions in this Recommendation omit explicit mention of
various validation checks that are required. The flow diagrams and descriptions in this
Recommendation assume a successful completion of the key establishment process. The required
checks are provided in the applicable ANSI standard and elsewhere in this Recommendation.

The descriptions in this section assume that an assurance of the domain parameter validity has
been obtained as specified in Section 5.1.2, an assurance of static public key validity is obtained
as specified in Section 5.2.2.1, and an assurance of ephemeral public key validity is obtained as
specified in Section 5.2.2.2 (i.e., these processes are not mentioned in the descriptions). If these
assurances are not obtained, the key establishment process shall be discontinued.

A description of the security attributes for each subcategory, C(i,j), is included. These sections
will provide the user or developer with additional information to help make a choice as to which
key establishment scheme to use. In general the attributes for each scheme within a subcategory
are the same; when this is not the case, the exceptions are pointed out. See Section 6.1.1.5
specifically. These sections do not constitute an in-depth discussion of all possible security
attributes of all schemes; for example, the compromise of a static private key will allow an
adversary to impersonate the owner of that key, regardless of which scheme is used. For further
discussion, see Annex E of ANSI X9.42 (specifically E.2.2) and Annex H of ANSI X9.63
(specifically H.4.3). Note that key confirmation may be added to any scheme and is needed in
some cases to establish all the security attributes possible for a scheme.

It is important that a scheme not be chosen based only on the number of security attributes it
possesses. Rather, a scheme should be selected based on how well the scheme fulfills the system
requirements. For instance, in a bandwidth-constrained system, a scheme with fewer passes per-
exchange might be preferable to a scheme with more passes and more security attributes.

6.1 Schemes Using Two Ephemeral Key Pairs, C(2)

In this category, each party generates an ephemeral key pair and sends the ephemeral public key
to the other party. The two parties perform similar computations to derive their shared secret;
however, the key derivation calculation (see Section 6.3) and the key confirmation calculation (if
used - see Section 8) differ for the initiator and responder. In this situation, the scheme
descriptions should be interpreted with U designating the initiator and V designating the
responder.

This category consists of two subcategories that are determined by the use of static keys by the
parties. In the first subcategory, each party has both static and ephemeral keys (see Section
6.1.1), while in the second subcategory, each party has only ephemeral keys (see Section 6.1.2).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 34

6.1.1 Each Party Has a Static Key Pair and Generates an Ephemeral Key Pair:
C(2,2)

For these schemes, each party (U and V) has a static key pair and generates an ephemeral key
pair during the key agreement process. All key pairs shall be generated using the same domain
parameters. Party U and party V obtain each other’s static public keys, which have been
generated prior to the key establishment process. Both parties generate ephemeral private/public
key pairs and exchange the ephemeral public keys. Using the static and ephemeral keys, both
parties generate a shared secret. The shared keying material is derived from the shared secret
(see Figure 1).

6.1.1.1 dhHybrid1, C(2,2,FFC DH)
This is a summary of the dhHybrid1 scheme from ANSI X9.42. For simplicity of presentation,
some important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 8.1.4 of ANSI X9.42 for details.

In this scheme, each party has a static key pair (x, y) that was previously generated as specified in
Section 5.2.1 using the same domain parameters (p, q, g, [SEED, pgenCounter]). Party U has
(xU, yU); party V has (xV, yV). Each party shall obtain the other party’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, each party generates an ephemeral key pair (r, t) using the
same domain parameters (p, q, g, [SEED, pgenCounter]) that were used to generate the static key
pair and sends the ephemeral public key t to the other party. Party U generates (rU, tU) and sends

U V
U’s Ephemeral Public Key

V’s Ephemeral Public Key

U’s Static Public Key

V’s Static Public Key

.

1. U uses its static and ephemeral private
keys and V’s static and ephemeral
public keys to compute a shared secret.

2. U invokes the Key Derivation Function
using the shared secret.

1. V uses its static and ephemeral private
keys and U’s static and ephemeral
public keys to compute a shared secret.

2. V invokes the Key Derivation Function
using the shared secret.

Figure 1: General Protocol When Each Party Has Both Static and Ephemeral
Key Pairs

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 35

tU to party V; party V generates (rV, tV) and sends tV to party U. Each party computes the shared
secret Z using the FFC DH primitive (see Section 5.8.1.1) as shown in Table 7, and then
computes the shared keying material by invoking the key derivation function using Z (see
Section 5.3).

Table 7: dhHybrid1 Key Agreement Scheme

 Party U Party V

Static Data

1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), xU, yV, rU, tV (p, q, g), xV, yU, rV, tU

Computation Compute Zs by calling FFC DH
using U’s static private key and V’s
static public key.

Compute Ze by calling FFC DH
using U’s ephemeral private key and
V’s ephemeral public key.

Compute Z = Ze || Zs

Compute Zs by calling FFC DH
using V’s static private key and U’s
static public key.

Compute Ze by calling FFC DH
using V’s ephemeral private key and
U’s ephemeral public key.

Compute Z = Ze || Zs

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.1.1.2 Full Unified Model, C(2,2,ECC CDH)
This is a summary of the Full Unified Model scheme from ANSI X9.63. For simplicity of
presentation, some important steps (e.g., error checking and handling, and obtaining assurance of
validity and possession) have been omitted. See Section 6.6 of ANSI X9.63 for details.

In this scheme, each party has a static key pair (ds, Qs) that was previously generated as specified
in Section 5.2.1 using the same domain parameters (q, FR, a, b, [SEED], G, n, h). Party U has
(ds,U, Qs,U); party V has (ds,V, Qs,V). Each party shall obtain the other party’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, each party generates an ephemeral key pair (de, Qe) using the
same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate the static key
pair and sends the ephemeral public key Qe to the other party. Party U generates (de,U, Qe,U) and
sends Qe,U to party V; party V generates (de,V, Qe,V) and sends Qe,V to party U. Each party
computes the shared secret Z using the ECC CDH primitive (see Section 5.8.1.2) as shown in
Table 8, and then computes the shared keying material by invoking the key derivation function
using Z (see Section 5.3).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 36

Table 8: Full Unified Model Key Agreement Scheme

 Party U Party V

Static Data

1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input

(q, FR a, b, [SEED], G, n, h),

de,U, Qe,V, ds,U, Qs,V

(q, FR, a, b, [SEED] G, n, h),

de,V, Qe,U, ds,V, Qs,U

Computation Compute Zs by calling ECC CDH
using U’s static private key and V’s
static public key.

Compute Ze by calling ECC CDH
using U’s ephemeral private key and
V’s ephemeral public key.

Compute Z = Ze || Zs

Compute Zs by calling ECC CDH
using V’s static private key and U’s
static public key.

Compute Ze by calling ECC CDH
using V’s ephemeral private key and
U’s ephemeral public key.

Compute Z = Ze || Zs

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.1.1.3 MQV2, C(2,2,FFC MQV)
This is a summary of the MQV2 scheme from ANSI X9.42. For simplicity of presentation, some
important steps (e.g., error checking and handling, and obtaining assurance of va lidity and
possession) have been omitted. See Section 8.2.1 of ANSI X9.42 for details.

For the MQV2 scheme, each party has a static key pair (x, y) that was previously generated as
specified in Section 5.2.1 using the same domain parameters (p, q, g, [SEED, pgenCounter]).
Party U has (xU, yU); party V has (xV, yV). Each party shall obtain the other party’s static public
key in a trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, each party generates an ephemeral key pair (r, t) using the
same domain parameters (p, q, g, [SEED, pgenCounter]) that were used to generate the static key
pair and sends the ephemeral public key t to the other party. Party U generates (rU, tU) and sends
tU to party V; party V generates (rV, tV) and sends tV to party U. Each party computes the shared
secret Z using the FFC MQV2 form of the FFC MQV primitive (see Section 5.8.2.1.1) as shown
in Table 9, and then computes the shared keying material by invoking the key derivation function
using Z (see Section 5.3).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 37

Table 9: MQV2 Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), xU, yV, rU, tU, tV (p, q, g), xV, yU, rV, tV, tU

Computation Compute Z by calling FFC MQV
using U’s static private key, V’s
static public key, U’s ephemeral
private key U’s ephemeral public
key and V’s ephemeral public key.

Compute Z by calling FFC MQV
using V’s static private key, U’s
static public key, V’s ephemeral
private key, V’s ephemeral public
key and U’s ephemeral public key.

Derive Keying
Material

Compute kdf(Z, OtherInput) Compute kdf(Z, OtherInput)

6.1.1.4 Full MQV, C(2,2,ECC MQV)
This is a summary of the Full MQV scheme from ANSI X9.63. For simplicity of presentation,
some important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 6.10 of ANSI X9.63 for details.

For the Full MQV scheme, each party has a static key pair (ds, Qs) that was previously generated
as specified in Section 5.2.1 using the same domain parameters (q, FR, a, b, [SEED], G, n, h).
Party U has (ds,U, Qs,U); party V has (ds,V, Qs,V). Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, each party generates an ephemeral key pair (de, Qe) using the
same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate the static key
pair and sends the ephemeral public key Qe to the other party. Party U generates (de,U, Qe,U) and
sends Qe,U to party V; party V generates (de,V, Qe,V) and sends Qe,V to party U. Each party
computes the shared secret Z using the ECC Full MQV form of the ECC MQV primitive (see
Section 5.8.2.2.1) as shown in Table 10, and then computes the shared keying material by
invoking the key derivation function using Z (see Section 5.3).

Table 10: Full MQV Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key ds,U 1. Static private key ds,V

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 38

 2. Static public key Qs,U 2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input

(q, FR a, b, [SEED], G, n, h),

de,U, Qe,V, ds,U, Qe,U, Qs,V

(q, FR, a, b, [SEED] G, n, h),

de,V, Qe,U, ds,V, Qe,V, Qs,U

Computation Compute Z by calling ECC MQV
using U’s static private key, V’s
static public key, U’s ephemeral
private key, U’s ephemeral public
key and V’s ephemeral public key.

Compute Z by calling ECC MQV
using V’s static private key, U’s
static public key, V’s ephemeral
private key, V’s ephemeral public
key and U’s ephemeral public key.

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.1.1.5 Security Attributes of C(2,2) Schemes
These schemes provide assurance to both parties that no unintended party can compute the
shared secret without the compromise of secret material.

Each party is provided with assurance that the shared secret varies from one key establishment
transaction to the next. If both static and ephemeral private keys from one transaction are
compromised, the shared secrets from other legitimate C(2,2) transactions are still protected by
the use of different ephemeral private keys.

Key confirmation can be provided in both directions for these schemes. Upon completion of a
Unilateral Key Confirmation (see Section 8.1), the recipient of the confirmation has assurance as
to the identifier of the provider (through the identifier bound to the static key) as well as
confirmation as to the active participation of the provider.

The MQV schemes (MQV2 and Full MQV) provide assurance to each party that if a malicious
party compromises their static private key, the malicious party cannot masquerade as a third
party to the party whose key was compromised. In other words, if a malicious party, E,
compromises party A’s static private key, then E cannot masquerade as any other party to A.
The dhHybrid1 and Full Unified Model do not provide this assurance to either party.

6.1.2 Each Party Generates an Ephemeral Key Pair; No Static Keys are Used:
C(2,0)

For this category, only Diffie-Hellman schemes are specified. Each party generates ephemeral
key pairs with the same domain parameters. The two parties exchange ephemeral public keys
and then compute the shared secret. The keying material is derived using the shared secret (see
Figure 2).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 39

6.1.2.1 dhEphem, C(2,0,FFC DH)
This is a summary of the dhEphem scheme from ANSI X9.42. For simplicity of presentation,
some important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 8.1.2 of ANSI X9.42 for details.

In this scheme, each party generates an ephemeral key pair (r, t) as specified in Section 5.2.1
using the same domain parameters (p, q, g, [SEED, pgenCounter]) and sends the ephemeral
public key t to the other party. Each party computes a shared secret Z using the FFC DH
primitive (see Section 5.8.1.1) as shown in Table 11. The shared keying material is computed by
invoking the key derivation function using Z (see Section 5.3).

Table 11: dhEphem Key Agreement Scheme

 Party U Party V

Static Data N/A N/A

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), rU, tV (p, q, g), rV, tU

Computation Compute Z by calling FFC DH using
U’s ephemeral private key and V’s
ephemeral public key.

Compute Z by calling FFC DH using
V’s ephemeral private key and U’s
ephemeral public key.

U V

U’s Ephemeral Public Key

V’s Ephemeral Public Key

1. U uses its ephemeral private key
and V’s ephemeral public key to
form a shared secret.

2. U invokes the Key Derivation
Function using the shared secret.

1. V uses its ephemeral private key
and U’s ephemeral public key to
form a shared secret.

2. V invokes the Key Derivation
Function using the shared secret.

Figure 2: General Protocol When Each Party Generates Ephemeral Key Pairs; No
Static Keys are Used

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 40

Derive Keying
Material

Compute kdf(Z,OtherInput)

Compute kdf(Z,OtherInput)

6.1.2.2 Ephemeral Unified Model, C(2,0,ECC CDH)
This is a summary of the Ephemeral Unified Model scheme from ANSI X9.63. For simplicity of
presentation, some important steps (e.g., error checking and handling, and obtaining assurance of
validity and possession) have been omitted. See Section 6.1 of ANSI X9.63 for details.

In this scheme, each party generates an ephemeral key pair (de, Qe) as specified in Section 5.2.1
using the domain parameters (q, FR, a, b, [SEED], G, n, h) and sends the ephemeral public key
Qe to the other party. Party U generates (de,u, Qe,u) and sends Qe,u to party V; party V generates
(de,V, Qe,V) and sends Qe,V to party U. Each party calculates a shared secret Z using the ECC
CDH primitive (see Section 5.8.1.2) as shown in Table 12. The shared keying material is
computed by invoking the key derivation function using Z (see Section 5.3).

Table 12: Ephemeral Unified Model Key Agreement Scheme

 Party U Party V

Static Data N/A N/A

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input

(q, FR a, b, [SEED,] G, n, h),

de,U, Qe,V

(q, FR, a, b, [SEED,] G, n, h),

deV, Qe,U

Computation Compute Z by calling ECC CDH
using U’s ephemeral private key and
V’s ephemeral public key.

Compute Z by calling ECC CDH
using V’s ephemeral private key and
U’s ephemeral public key.

Derive Keying
Material

Compute kdf(Z,OtherInput)

Compute kdf(Z,OtherInput)

6.1.2.3 Security Attributes of C(2,0) Schemes
These schemes offer no assurance to either party as to the identifier of the entity with whom they
are communicating, although this can be considered a security attribute itself.

These schemes offer assurance to both parties that the current shared secret is isola ted from past
and future compromises of shared secrets and private keys because all cryptographic material
used in the computation of the shared secret is ephemeral and is destroyed immediately after use.

Despite the fact that these schemes offer very few assurances, they are useful in many
applications. For applications where, for one reason or another, there is no need to know the

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 41

identifier of the party with whom one is communicating, or where the identifier information is
verified through some other method, these schemes may be appropriate.

These schemes have the property of being relatively fast to compute, due to the lack of any
certificate validation. They also require no support in the form of a certificate authority. These
schemes are also often used as building blocks in larger protocols where other parts of the
protocol add additional security attributes.

Key Confirmation cannot be added to these schemes and, therefore, offers no additional
assurances.

6.2 Schemes Using One Ephemeral Key Pair, C(1)

In this category, the parties participating in a key agreement perform different calculations to
determine the shared secret, depending on whether or not they initiate the key agreement process.
Let party U serve as the initiator, and party V serve as the responder. Only the initiator (party U)
generates an ephemeral key pair.

This category consists of two subcategories that are determined by the possession of static key
pairs by the parties. In the first subcategory, both the initiator and the responder have static key
pairs, and the initiator also generates an ephemeral key pair (see Section 6.2.1). In the second
subcategory, the initiator generates an ephemeral key pair, but has no static key pair; the
responder has only a static key pair (see Section 6.2.2).

6.2.1 Initiator Has a Static Key Pair and Generates an Ephemeral Key Pair;
Responder Has a Static Key Pair, C(1,2)

For these schemes, party U (the initiator) uses both static and ephemeral private/public key pairs.
Party V (the responder) uses only a static private/public key pair. Party U and party V obtain

U VU’s Ephemeral Public Key

U’s Static Public Key

V’s Static Public Key

1. U uses its static and ephemeral
 private keys and V’s static public
 key to form a shared secret
2. U invokes the Key Derivation
 Function using the shared secret

1. V uses its static private key and
 U’s static and ephemeral public
 keys to form a shared secret
2. V invokes the Key Derivation
 Function using the shared secret

Figure 3: General Protocol When the Initiator Has Both Static and Ephemeral Key
Pairs, and the Responder Has only a Static Key Pair

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 42

each other’s static public keys in a trusted manner. Party U also sends its ephemeral public key to
party V. A shared secret is generated by both parties using the available static and ephemeral
keys. The shared keying material is derived using the shared secret (see Figure 3).

6.2.1.1 dhHybridOneFlow, C(1,2,FFC DH)
This is a summary of the dhHybridOneFlow scheme from ANSI X9.42. For simplicity of
presentation, some important steps (e.g., error checking and handling, and obtaining assurance of
validity and possession) have been omitted. See Section 8.1.6 of ANSI X9.42 for details.

In this scheme, each party has a static key pair (x, y) that was previously generated as specified in
Section 5.2.1 using the same domain parameters (p, q, g, [SEED, pgenCounter]). Party U has
(xU, yU); party V has (xV, yV). Each party shall obtain the other party’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA. During the key agreement
process, party U (the initiator) generates an ephemeral key pair (rU, tU) using the same domain
parameters (p, q, g, [SEED, pgenCounter]) that were used to generate the static key pair and
sends the ephemeral public key tU to party V (the responder). Each party computes the shared
secret Z using the FFC DH primitive (see Section 5.8.1.1) as shown in Table 13, and then
computes the shared keying material by invoking the key derivation function using Z (see
Section 5.3).

Table 13: dhHybridOneFlow Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), xU, rU, yV (p, q, g), xV, yU, tU

Computation Compute Zs by calling FFC DH
using U’s static private key and V’s
static public key.

Compute Ze by calling FFC DH
using U’s ephemeral private key and
V’s static public key.

Compute Z = Ze || Zs

Compute Zs by calling FFC DH
using V’s static private key and U’s
static public key.

Compute Ze by calling FFC DH
using V’s static private key and U’s
ephemeral public key.

Compute Z = Ze || Zs

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 43

6.2.1.2 One-Pass Unified Model, C(1,2,ECC CDH)
This is a summary of the 1-Pass Unified Model scheme from ANSI X9.63. For simplicity of
presentation, some important steps (e.g., error checking and handling, and obtaining assurance of
validity and possession) have been omitted. See Section 6.5 of ANSI X9.63 for details.

In this scheme, each party has a static key pair (ds, Qs) that was previously generated as specified
in Section 5.2.1 using the same domain parameters (q, FR, a, b, [SEED], G, n, h). Party U has
(dsU, QsU); party V has (ds,V, Qs,V). Each party shall obtain the other party’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (de,U,
Qe,U) using the same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate
the static key pair and sends the ephemeral public key Qe,U to party V (the responder). Each
party computes the shared secret Z using the ECC CDH primitive (see Section 5.8.1.2) as shown
in Table 14, and then computes the shared keying material by invoking the key derivation
function using Z (see Section 5.3).

Table 14: One-Pass Unified Model Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), ds,U,
de,U, Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,U, Qe,U

Computation Compute Zs by calling ECC CDH
using U’s static private key and V’s
static public key.

Compute Ze by calling ECC CDH
using U’s ephemeral private key and
V’s static public key.

Compute Z = Ze || Zs

Compute Zs by calling ECC DH
using V’s static private key and U’s
static public key.

Compute Ze by calling ECC DH
using V’s static private key and U’s
ephemeral public key.

Compute Z = Ze || Zs

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.1.3 MQV1, C(1,2,FFC MQV)
This is a summary of the MQV1 scheme from ANSI X9.42. For simplicity of presentation, some
important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 8.2.2 of ANSI X9.42 for details.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 44

For the MQV1 scheme, each party has a static key pair (x, y) that was previously generated as
specified in Section 5.2.1 using the same domain parameters (p, q, g, [SEED, pgenCounter]).
Party U has (xU, yU); party V has (xV, yV). Each party shall obtain the other party’s static public
key in a trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (rU, tU)
using the same domain parameters (p, q, g, [SEED, pgenCounter]) that were used to generate the
static key pair and sends the ephemeral public key tU to party V (the responder). Each party
computes the shared secret Z using the FFC MQV1 form of the FFC MQV primitive (see Section
5.8.2.1.2) as shown in Table 15, and then computes the shared keying material by invoking the
key derivation function using Z (see Section 5.3).

Table 15: MQV1 Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), xU, yV, rU, tU (p, q, g), xV, yU, tU

Computation
C

Compute Z by calling FFC MQV
using U’s static private key, V’s
static public key, U’s ephemeral
private key, U’s ephemeral public
key, and V’s static public key
(again).

Compute Z by calling FFC MQV
using V’s static private key, U’s
static public key, V’s static private
key (again), V’s static public key and
U’s ephemeral public key.

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.1.4 One-Pass MQV, C(1,2,ECC MQV)
This is a summary of the 1-Pass MQV scheme from ANSI X9.63. For simplicity of presentation,
some important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 6.9 of ANSI X9.63 for details.

For the One-Pass MQV scheme, each party has a static key pair (ds, Qs) that was previously
generated as specified in Section 5.2.1 using the same domain parameters (q, FR, a, b, [SEED],
G, n, h). Party U has (dsU, QsU); party V has (ds,V, Qs,V). Each party shall obtain the other party’s
static public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 45

Table 16:One-Pass MQV Model Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), de,U,
ds,U, Qe,U, Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,V, Qe,U, Qs,U

Computation Compute Z by calling ECC MQV
using U’s static private key, V’s
static public key, U’s ephemeral
private key, U’s ephemeral public
key, and V’s static public key
(again).

Compute Z by calling ECC MQV
using V’s static private key, U’s
static public key, V’s static private
key (again), V’s static public key and
U’s ephemeral public key.

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

During the key agreement process, party U (the initiator) generates an ephemeral key pair (de,U,
Qe,U) using the same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate
the static key pair and sends the ephemeral public key Qe,U to party V (the responder). Each
party computes the shared secret Z using the ECC One-Pass MQV form of the ECC MQV
primitive (see Section 5.8.2.2.2) as shown in Table 16, and then computes the shared keying
material by invoking the key derivation function using Z (see Section 5.3).

6.2.1.5 Security Attributes of C(1,2) Schemes
These schemes offer different assurances to different parties participating in the exchange. One
party has both static and ephemeral keys and is called the initiator. The other party has only a
static key and is called the responder.

Both parties are assured that only themselves and the other intended party can compute the
shared secret. The initiator, by virtue of its ephemeral contribution, has assurance that a previous
shared secret will not be reused. (Note that the addition of a per-key establishment transaction
field in the [SharedInfo] input to the Key Derivation Function would provide assurance of non-
reuse of derived keying material to any party that contributes “fresh” data to that field.)

A compromise of the static private key of the initiator does not by itself compromise past or
future shared secrets (and therefore, keying material) of legitimate C(1,2) transactions, nor does
the compromise of only the initiator’s ephemeral private key. However, the compromise of the
static private key of the responder leads to compromise of all future shared secrets where this
party acts as responder. Additionally, a previous shared secret (and therefore, keying material)

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 46

computed with this party acting as responder becomes compromised if a malicious party stored
the initiator’s ephemeral public key.

Key confirmation can be provided in both directions. The key confirmation recipient obtains
assurance of the key confirmation provider’s identity and active participation.

6.2.2 Initiator Generates Only an Ephemeral Key Pair; Responder Has Only a
Static Key Pair, C(1,1)

For these schemes, Party U generates an ephemeral key pair, but has no static key pair; party V
has only a static key pair. Party U obtains party V’s static public key in a trusted manner (e.g.,
from a certificate signed by a trusted CA) and sends its ephemeral public key to Party V. The
parties compute a shared secret using their private keys and the other party’s public key. Each
party uses the shared secret to derive keying material (see Figure 4).

6.2.2.1 dhOneFlow, C(1,1,FFC DH)
This is a summary of the dhOneFlow scheme from ANSI X9.42. For simplicity of presentation,
some important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 8.1.3 of ANSI X9.42 for details.

In this scheme, party V has a static key pair (xV, yV) that was previously generated as specified in
Section 5.2.1 using domain parameters (p, q, g, [SEED, pgenCounter]). Party U shall obtain
party V’s static public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (rU, tU)
using the same domain parameters (p, q, g, [SEED, pgenCounter]) that were used to generate
party V’s static key pair and sends the ephemeral public key tU to party V (the responder). Each
party computes the shared secret Z using the FFC DH primitive (see Section 5.8.1.1) as shown in

U V

V’s Static Public Key

U’s Ephemeral Public Key

1. U uses its ephemeral private key
and V’s static public key to form
a shared secret

2. U invokes the Key Derivation
Function using the shared secret

1. V uses its static private key and
U’s ephemeral public key to form
a shared secret

2. V invokes the Key Derivation
Function using the shared secret

Figure 4: General Protocol When the Initiator Has Only an Ephemeral Key
Pair, and the Responder Has Only a Static Key Pair

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 47

Table 17, and then computes the shared keying material by invoking the key derivation function
using Z (see Section 5.3).

Table 17 : dhOneFlow Key Agreement Scheme

 Party U Party V

Static Data N/A 1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), rU, yV (p, q, g), xV, tU

Computation Compute Z by calling FFC DH using
U’s ephemeral private key and V’s
static public key.

Compute Z by calling FFC DH using
V’s static private key and U’s
ephemeral public key.

Derive Keying
Material

Compute kdf(Z,OtherInput)

Compute kdf(Z,OtherInput)

 6.2.2.2 One-Pass Diffie -Hellman, C(1,1,ECC CDH)
This is a summary of the 1-Pass Diffie-Hellman scheme from ANSI X9.63. For simplicity of
presentation, some important steps (e.g., error checking and handling, and obtaining assurance of
validity and possession) have been omitted. See Section 6.2 of ANSI X9.63 for details.

In this scheme, party V has a static key pair (ds,V, Qs,V) that was previously generated as specified
in Section 5.2.1 using domain parameters (q, FR, a, b, [SEED], G, n, h). Party U shall obtain
party V’s static public key (Qs,V) in a trusted manner, e.g., from a certificate signed by a trusted
CA.

During the key agreement process, party U (the initiator) generates an ephemeral key pair (de,U,
Qe,U) using the same domain parameters (q, FR, a, b, [SEED], G, n, h) that were used to generate
party V’s static key pair and sends the ephemeral public key Qe,U to party V (the responder).
Each party computes the shared secret Z using the ECC CDH primitive (see Section 5.1.8.2) as
shown in Table 18, and then computes the shared keying material by invoking the key derivation
function using Z (see Section 5.3).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 48

Table 18: One-Pass Diffie-Hellman Model Key Agreement Scheme

 Party U Party V

Static Data N/A 1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), de,U,
Qs,V

(q, FR, a, b, [SEED], G, n, h), dsV,
Qe,U

Computation Compute Z by calling ECC CDH
using U’s ephemeral private key and
V’s static public key.

Compute Z by calling ECC CDH
using V’s static private key and U’s
ephemeral public key.

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.2.3 Security Attributes of C(1,1) Schemes
In these schemes, one party (the initiator) has only an ephemeral key, while the other party (the
responder) has only a static key. Different assurances are given to the different parties in the key
establishment transaction.

These schemes provide assurance to the initiator that no unintended party can compute the
shared secret without the compromise of private material. The responder has no such assurance,
since the responder has no assurance about who is providing the key.

The initiator (by virtue of the ephemeral contribution) has the assurance that a previous shared
secret will not be reused. The responder has no such assurance. However, the addition of a per-
transaction data field to the [SharedInfo] field of the KDF would provide this assurance to any
party that contributes “fresh” data to the per-transaction data fie ld.

There is no assurance to either party that the security of the shared secret is isolated from
compromises of private keys or shared secrets from past or future C(1,1) transactions. A
compromise of the initiator’s ephemeral private key compromises the shared secret for that
individual transaction only. However, a compromise of the responder’s static private key
compromises all shared secrets resulting from future C(1,1) transactions in which that party is a
responder, as well as any shared secrets resulting from past C(1,1) transactions for which a
malicious party stored the ephemeral public keys.

The responder does not have any assurances as to the identifier of the initiator.

The responder may provide Key Confirmation to the initiator, giving the initiator assurance as to
the identifier and active participation of the responder.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 49

6.3 Scheme Using No Ephemeral Key Pairs, C(0,2)

In this category, each party has only static key pairs that have been generated using the same
domain parameters. Each party obtains the other party’s static public keys and calculates the
shared secret by using their own static private key and the other party’s static public key. Keying
material is derived using the key derivation function and the shared secret (see Figure 5).

6.3.1 dhStatic, C(0,2,FFC DH)
This is a summary of the dhStatic1 scheme from ANSI X9.42. For simplicity of presentation,
some important steps (e.g., error checking and handling, and obtaining assurance of validity and
possession) have been omitted. See Section 8.1.1 of ANSI X9.42 for details.

In this scheme, each party has a static key pair (x, y) that was previously generated as specified in
Section 5.2.1 using the same domain parameters (p, q, g, [SEED, pgenCounter]). Party U has
(xU, yU); party V has (xV, yV). Each party shall obtain the other party’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA.

Each party computes the shared secret Z using the FFC DH primitive (see Section 5.8.1.1) as
shown in Table 19, and then computes the shared keying material by invoking the key derivation
function using Z (see Section 5.3).

Table 19: dhStatic Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral
Data

N/A N/A

U V

U’s Static Public Key

V’s Static Public Key

1. U uses its static private key
and V’s static public key to
form a shared secret

2. U invokes the Key Derivation
Function using the shared secret

1. V uses its static private key
and U’s static public key to
form a shared secret

2. U invokes the Key Derivation
Function using the shared secret

Figure 5: Each Party Has Only a Static Key Pair

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 50

Input (p, q, g), xU, yV (p, q, g), xV, yU

Computation Compute Z by calling FFC DH using
U’s static private key and V’s static
public key.

Compute Z by calling FFC DH using
V’s static private key and U’s static
public key.

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

 6.3.2 Static Unified Model, C(0,2,ECC CDH)
This is a summary of the Static Unified Model scheme from ANSI X9.63. For simplicity of
presentation, some important steps (e.g., error checking and handling, and obtaining assurance of
validity and possession) have been omitted. See Section 6.3 of ANSI X9.63 for details.

In this scheme, each party has a static key pair (ds, Qs) that was previously generated as specified
in Section 5.2.1 using the same domain parameters (q, FR, a, b, [SEED], G, n, h). Party U has
(dsU, QsU); party V has (ds,V, Qs,V). Each party shall obtain the other party’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA.

Each party computes the shared secret Z using the ECC CDH primitive (see Section 5.1.8.2) as
shown in Table 20, and then computes the shared keying material by invoking the key derivation
function using Z (see Section 5.3).

Table 20: Static Unified Mode l Key Agreement Scheme

 Party U Party V

Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data N/A N/A

Input (q, FR, a, b, [SEED], G, n, h), ds,U,
Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,U

Computation Compute Z by calling ECC CDH
using U’s static private key and V’s
static public key.

Compute Z by calling ECC CDH
using V’s static private key and U’s
static public key.

Derive Keying
Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.3.3 Security Attributes of C(0,2) Schemes
These schemes provide each party with assurance that the intended party and no other party can
compute the shared secret.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 51

Also, there is no variability in the shared secret computation. As described, the two participating
parties will always compute the same shared secret. Variability can be provided by the addition
of some per-transaction data in the [SharedInfo] field of the Key Derivation Function, such as a
timestamp.

If an entity’s private key is compromised, then all shared secrets of past and future C(0,2)
transactions involving that party are compromised.

Key confirmation can be provided for these schemes to either party. Upon completion of a
Unilateral Key Confirmation (Section 8.1) the recipient of the confirmation has assurance of the
provider’s identifier (as bound to the static key) as well as confirmation as to the active
participation of the provider.

7. Key Transport

Key Transport schemes have two parties, the sender and the receiver. The sender determines the
key to be transported, wraps (i.e., encrypts) the key, and sends the wrapped key to the receiver,
who then unwraps (i.e., decrypts) the key. The key to be transported is wrapped using a key
wrapping key (i.e., a key used to encrypt the transported key).

7.1 Symmetric-key-based Key Transport

This method uses symmetric keys to transport keying material (that is, a key or keys and/or other
data to be transported) from the sender to the receiver. Both the sender and the receiver shall
have manually established a symmetric key to be used as the key-wrapping key between the two
parties. The key-wrapping key shall have a security in bits that is equal to or higher than the
application’s requirements (see the Key Management Guidelines [8]). The sender selects the
keying material to be transported, wraps it using a NIST-approved key-wrapping algorithm (such
as the AES key wrap algorithm [16]), and sends the wrapped keying material to the receiver.
The receiver unwraps the transported keying material. The process is as follows:

1. The sender and receiver share a manually established symmetric KeyWrappingKey.

2. The sender selects keying material, KeyingMaterial, to transport to the receiver.

3. The sender calculates WrappedKey = KeyWrap(KeyWrappingKey, KeyingMaterial)
using KeyWrap(), an Approved key wrapping algorithm.

4. The sender sends WrappedKey to the receiver.

5. The receiver receives WrappedKey from the sender.

6. The receiver calculates KeyingMaterial = KeyUnwrap(KeyWrappingKey, WrappedKey)
using KeyUnwrap(), the corresponding key unwrapping algorithm.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 52

7.2 DLC-based Key Transport

The FFC and ECC key agreement schemes in this Recommendation that employ a receiver’s
static key2 may be transformed into a key transport scheme using a NIST-approved key-
wrapping algorithm, such as the AES key wrap algorithm [16]). Schemes fulfilling these
requirements are specified as the C(2,2), C(1,2), C(1,1) and C(0,2) schemes (see Sections 6).
Key-Wrapping Key and the public keys shall be of an appropriate security level for the
application’s requirements, see the Key Management Guidelines [8]. The DLC-based key
transport scheme is as follows:

1. A key agreement scheme is used to establish a shared secret between the sender and the
receiver.

2. The sender obtains a KeyWrappingKey from the DerivedKeyingMaterial that is computed
by applying the key derivation function to the shared secret.

3. The sender selects keying material, KeyingMaterial, to transport to the receiver.

4. The sender calculates WrappedKey = KeyWrap(KeyWrappingKey, KeyingMaterial)
using KeyWrap(), an Approved key wrapping algorithm.

5. The sender sends WrappedKey to the receiver.

6. The receiver receives WrappedKey from the sender.

7. The receiver obtains a KeyWrappingKey from the DerivedKeyingMaterial that is
computed by applying the key derivation function to the shared secret.

8. The receiver calculates KeyingMaterial = KeyUnwrap(KeyWrappingKey, WrappedKey)
using KeyUnwrap(), the corresponding key unwrapping algorithm.

Note that if the key agreement scheme used in step 1 is such that the receiver does not contribute
an ephemeral key pair to the calculation of the shared secret (that is, using either a C(1,2) or
C(1,1) scheme), then steps 1 through 5 can be done by the sender without direct involvement of
the receiver. This can be useful in a store-and-forward environment, such as e-mail.

7.3 IFC-based Key Transport

To be added as ANSI X9.44 becomes a standard. ANSI X9.44 is expected to specify the use of
an Approved key-wrap algorithm.

8. Key Confirmation (KC)

Key confirmation is used to provide assurance to one or both participants in a key establishment
process that a shared secret (e.g., Z, in the case of key agreement) has actually been established
with the party that is believed to be the other participant. A key establishment scheme is said to
provide “unilateral key confirmation” when it provides this assurance to only one of the
participants, and the scheme is said to provide “bilateral key confirmation” when this assurance

2 To prevent receiver identifier spoofing, since the sender would know the identifier of the intended receiver.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 53

is provided to both participants (i.e., unilateral key confirmation is provided in both directions).
Oftentimes, key confirmation is provided by a means outside of the key establishment scheme
(for example, by decrypting an encrypted message from the other party using a key derived from
the shared secret), but this is not always the case. In some cases, it may be appropriate to include
the exchange of key confirmation messages within the key establishment process itself. If key
confirmation is desired in one or both directions, then it may be incorporated into key
establishment schemes as specified in this section.

For each unilateral direction, the party that is providing the assurance will be referred to as the
key confirmation provider, and the party that receives the assurance will be referred to as the key
confirmation recipient. Unilateral key confirmation may be incorporated into any scheme where
the provider possesses a static key pair. This will provide assurance to the other party (the
recipient) that the individual associated with that static key pair has derived the same value for
the shared secret. Bilateral key confirmation may be added to any scheme in which each party
possesses a static key pair.

Table 21 provides a summary of the scheme classes for which unilateral or bilateral key
confirmation is appropriate. Note that key confirmation for the C(2,0) schemes cannot be
provided in the key agreement schemes, since neither party has a static key pair; if needed, key
confirmation would have to be provided by some other means.

Table 21: Schemes Using Unilateral and Bilateral Key Confirmation

Scheme Class Unilateral Bilateral

C(2,2) U to V and V to U Yes

C(2,0) No No

C(1,2) U to V and V to U Yes

C(1,1) V to U No

C(0,2) U to V and V to U Yes

If key confirmation is incorporated into a scheme in which a recipient does not possess an
ephemeral key pair, the recipient will need to generate a nonce that will be transmitted to the
provider.

The process used to provide key confirmation requires string representations of the ephemeral
public keys. The same notation will be used to represent these keys for schemes based on Finite
Field cryptography (FFC) and elliptic curve cryptography (ECC):

EphemPubKeyi = the octet string representation of a participant’s ephemeral public key
(ti or Qe,i), where i may be P to designate a provider, R to designate a
recipient, or either U or V to designate the scheme initiator (party U) or
the scheme responder (party V).

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 54

For FFC schemes, an ephemeral public key, ti, is converted from a field element in Fq to an octet
string by representing the field element as an integer in the interval [0, q-1], and then converting
the integer to an octet string as specified in ANSI X9.42, Section 7.6.3.

For ECC, the ephemeral public key, Qe, i, is converted from a point to an octet string as specified
in ANSI X9.63, Section 4.3.6.

8.1 Unilateral Key Confirmation for Key Agreement Schemes

Unilateral key confirmation occurs when one participant in a key establishment scheme (the
“provider”) provides assurance to the other participant (the “recipient”) that a shared secret has
actually been established with the intended party. This is an optional feature for any scheme in
which the provider possesses a static key pair. If the intended key confirmation recipient doe not
contribute an ephemeral public key to the key establishment process, then the recipient will be
required to generate a nonce to send to the key confirmation provider.Unilateral Key
Confirmation may be added in either direction to the C(2,2), C(1,2) and C(0,2) schemes; it may
be also be added to the C(1,1) schemes, but in one direction only: with the scheme Responder
(V) is the key confirmation provider, and the scheme Initiator (U) is the key confirmation
recipient (see Table 21).

To include unilateral key confirmation from a provider (who has a static key pair) to a recipient,
the following steps shall be incorporated into the scheme. Note that the provider may be either
the scheme initiator (party U) or the scheme responder (party V), as long as the provider has a
static key pair, and the recipient is the other party. In the following description, P and R are the
identifiers of the provider and the recipient, respectively.

1. If the recipient does not have an ephemeral key pair, then the recipient shall generate a
nonce and send it to the provider to serve as the recipient’s ephemeral data. A nonce is a
time-varying value that has (at most) a negligible chance of repeating; for example, a
random value generated anew for each instance, a timestamp, or a sequence number.

2. The provider computes

MacDataP = message_numberP || P || R || [EphemDataP] || EphemDataR || [Text1]

where message_numberP is an integer (a one byte field) indicating the pass in the
protocol that is used to transmit MacTagP. The message number will be either 2 or 3. If
key confirmation is unilateral, the message number will always be a 2; if key
confirmation is bilateral, then the message number will be 2 for the first MacTag that is
sent, and 3 for the second MacTag (see the appropriate class of schemes in Section 8.3).

EphemDataP = EphemPubKeyP (if available)

Nonce (if available and there is no EphemPubKeyP)

 Null (otherwise)

EphemDataR = EphemPubKeyR (if available)

Nonce (otherwise)

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 55

3. After computing the shared secret and applying the key derivation function to obtain
DerivedKeyingMaterial (see Section 5.3), the provider parses DerivedKeyingMaterial
into two keys, MacKey and KeyData:

MacKey || KeyData = DerivedKeyingMaterial

4. The provider computes MacTagP (see Section 5.4.1) and sends it to the recipient:

MacTagP = MACMacKey(MacDataP)

5. The recipient computes MacDataP, MacKey, KeyData and MacTagP in the same manner
as the provider, and then compares its computed MacTagP to the value received from the
provider. If the received value is equal to the derived value, then the recipient is assured
that the provider has derived the same value for MacKey and that the provider shares the
recipient’s value of MacTagP. The assurance of a shared value for MacKey provides
assurance to the recipient that the provider also shares the secret value (Z) from which
MacKey and KeyData are derived (see Section 5.3).

8.2 Bilateral Key Confirmation for Key Agreement Schemes

Bilateral key confirmation is obtained by unilateral key confirmation in both directions: from a
provider V to a recipient U, and from a provider U to a recipient V. Bilateral key confirmation
may be added to the C(2,2), C(1,2) and C(0,2) schemes, as shown in the relevant subsections of
Section 8.3.

8.3 Incorporating Key Confirmation into Key Agreement Scheme Flow

This section provides the flow of information that is required to obtain key confirmation using
the schemes of Section 6. Note that an actual communication protocol may have messages in
addition to those used for key establishment.

The scheme flow descriptions in this section assume that an assurance of the domain parameter
validity has been obtained as specified in Section 5.1.2, an assurance of static public key validity
is obtained as specified in Section 5.2.2.1, and an assurance of ephemeral public key validity is
obtained as specified in Section 5.2.2.2 (i.e., these processes are not mentioned in the flow
descriptions below). If these assurances are not obtained, the key establishment process shall be
discontinued.

The scheme flow descriptions also assume that the received MacTags are successfully verified as
specified in Section 5.4.2. If the MacTags do not verify, key confirmation has not been obtained,
and the key establishment process should be discontinued.

8.3.1 C(2,2) Scheme with Bilateral Key Confirmation
Figure 6 depicts the scheme flow for a C(2,2) scheme with bilateral key confirmation. In this
method, party U, the scheme initiator, and party V, the scheme responder, assume the roles of
both the provider and the recipient in order to obtain bilateral key confirmation. The successful
completion of this process provides both parties with assurance that the other party has derived
the same secret Z value and that each party has actively participated in the key establishment
process.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 56

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. Party U generates an ephemeral key pair (see Section 5.2.1) and sends the ephemeral
public key (EphemPubKeyU) to party V in the first message of the key establishment
process.

2. Upon receiving party U’s ephemeral public key, party V generates an ephemeral key pair
(see Section 5.2.1) and a MacTag, and sends the ephemeral public key (EphemPubKeyV)
and the MacTag (MacTagV) to party U. The MacTag is generated as specified in
Sections 5.4.1 and 8.1 using the following as the MacData and sent to party V.

MacDataV = 02 || V || U || EphemPubKeyV || EphemPubKeyU || [Text1]

3. Upon receiving party V’s ephemeral public key and the MacTag, party U verifies the
MacTag (see Section 5.4.2). If the received and computed MacTags have the same value,
then party U has assurance that party V has derived the same secret Z value as party U,
and that party V is actively participating in the key establishment process.

4. Party U then generates a MacTag (MacTagU) as specified in Sections 5.4.1 and 8.1, and
sends the MacTag to party V. The MacData for the MacTag is:

MacDataU = 03 || U || V || EphemPubKeyU || EphemPubKeyV || [Text2]

5. Upon receiving MacTagU, party V verifies the MacTag. If the received and computed
MacTags have the same value, then party V has assurance that party U has derived the

MacTagU

Party U Party VEphemPubKeyU

EphemPubKeyV, MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

MacTagU

Party U Party VEphemPubKeyU

EphemPubKeyV, MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

Figure 6: C(2,2) Scheme with Bilateral Key Confirmation

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 57

same secret Z value as party V, and that party U is actively participating in the key
establishment process.

8.3.2 C(2,2) Scheme with Unilateral Key Confirmation
Figure 7 depicts the scheme flow for a C(2,2) scheme with unilateral key confirmation. In a
C(2,2) scheme, party U and party V each have static key pairs, which allows either party to
assume the role of the provider in a key confirmation process. Each party also has an ephemeral
key pair, which allows them to assume the role of a key confirmation recipient. Therefore, either
party may assume the role of provider or recipient using this key confirmation method.

The successful completion of the key confirmation process assures the recipient that the provider
has derived the same secret Z value as the recipient, and that the provider has actively
participated in the key establishment process.

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. The recipient generates an ephemeral key pair (see Section 5.2.1) and sends the
ephemeral public key (EphemPubKeyR) to the provider in the first message of the key
establishment process.

2. Upon receiving the ephemeral public key, the provider generates an ephemeral key pair
and a MacTag, and sends the ephemeral public key (EphemPubKeyP) and the MacTag
(MacTagP) to the recipient. The MacTag is generated as specified in Sections 5.4.1 and
8.1 using the following as the MacData:

MacDatap = 02 || P || R || EphemPubKeyP || EphemPubKeyR || [Text1]

3. Upon receiving MacTagp, the recipient verifies the MacTag (see Section 5.4.2). If the
received and computed MacTags have the same value, then the recipient has assurance

Provider RecipientEphemPubKeyR

EphemPubKeyP, MacTagP

Provider’s Static Public Key

Recipient’s Static Public Key

Figure 7: C(2,2) Scheme with Unilateral Key Confirmation

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 58

that the provider has derived the same secret Z value as the recipient, and that the
provider is actively participating in the key establishment process.

8.3.3 C(1,2) Scheme with Bilateral Key Confirmation
Figure 8 depicts the scheme flow for a C(1,2) scheme with bilateral key confirmation. In this
method, party U, the scheme initiator, and party V, the scheme responder, assume the roles of
both the provider and recipient in order to obtain bilateral key confirmation. However, party V
does not have an ephemeral key pair to send to party U; therefore, party V shall send a nonce to
party U in order to obtain key confirmation assurance from party U.

The successful completion of this process provides both parties with assurance that the other
party has derived the same secret Z value and that each party has actively3 participated in the key
establishment process.

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. Party U generates an ephemeral key pair (see Section 5.2.1) and sends the ephemeral
public key (EphemPubKeyU) to party V in the first message of the key establishment
process.

3 Party V obtains assurance of active participation by Party U only if the number of unpredictable bits of the nonce
sent by Party V to Party U is equal to or greater than the desired security level. For example, if 80 bits of security is
desired, party V obtains assurance of active participation by party U only if the number of unpredictable bits in the
nonce sent by party V to party U is equal to or greater than 80.

MacTagU

Party U Party V
EphemPubKeyU

NonceV, MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

MacTagU

Party U Party V
EphemPubKeyU

NonceV, MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

Figure 8: C(1,2) Scheme with Bilateral Key Confirmation

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 59

2. Upon receiving party U’s ephemeral public key, party V generates a nonce (NonceV) and
a MacTag (MacTagV) and sends the nonce and the MacTag to party U. The MacTag is
generated as specified in Sections 5.4.2 and 8.1 using the following as the MacData:

MacDataV = 02 || V || U || NonceV || EphemPubKeyU || [Text1]

3. Upon receiving party V’s nonce and the MacTag, party U verifies the MacTag (see
Section 5.4.2). If the received and computed MacTags have the same value, then party U
has received assurance that party V has derived the same secret Z value as party U and
that party V is actively participating in the key establishment process.

4. Party U then generates a MacTag (MacTagU) as specified in Sections 5.4.1 and 8.1 and
sends the MacTag to party V. The MacData for the MacTag is:

MacDataU = 03 || U || V || EphemPubKeyU || NonceV || [Text2]

5. Upon receiving MacTagU, party V verifies the MacTag (see Section 5.4.2). If the
received and computed MacTags have the same value, then party V has assurance that
party U has derived the same secret Z value as party V, and that party U is actively
participating in the key establishment process.

8.3.4 C(1,2) Scheme with Unilateral Key Confirmation from the Initiator to the
Responder

Figure 9 depicts the scheme flow for a C(1,2) scheme with unilateral key confirmation from the
initiator (party U) to the responder (party V). In a C(1,2) scheme, party U and party V each have
static key pairs. Therefore, either party may assume the role of the provider in a key
confirmation process. However, only one party has an ephemeral key pair. This section
specifies a method for providing key confirmation to party V, who does not have an ephemeral
key pair. In order for party V to obtain key confirmation from party U, party V shall send a
nonce to party U. Section 8.3.5 specifies a method for providing key confirmation to party U,
who has an ephemeral key pair.

This method of key confirmation may be used to provide party V (who is the key confirmation
recipient for this method) with assurance that party U (who is the provider) has derived the same
secret Z value as party V, and that party U has actively4 participated in the key establishment
process.

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

4 Party V obtains assurance of active participation by Party U only if the number of unpredictable bits of the nonce
sent by Party V to Party U is equal to or greater than the desired security level.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 60

The flow proceeds as follows:

1. Party V generates a nonce (NonceV) and sends it to party U in the first message of the key
establishment process.

2. Upon receiving party V’s nonce, party U generates an ephemeral key pair (see Section
5.2.1) and a MacTag and sends the ephemeral public key (EphemPubKeyU) and the
MacTag (MacTagU) to party V. The MacTag is generated as specified in Sections 5.4.1
and 8.1 using the following as the MacData:

MacDataU = 02 || U || V || EphemPubKeyU || NonceV || [Text1]

3. Upon receiving MacTagU, party V verifies the MacTag (see Section 5.4.2). If the
received and computed MacTags have the same value, then party V has assurance that
party U has derived the same secret Z value as party V, and that party U is actively
participating in the key establishment process.

8.3.5 C(1,2) Scheme with Unilateral Key Confirmation from the Responder to the
Initiator

Figure 10 depicts the scheme flow for a C(1,2) scheme with unilateral key confirmation from the
responder (party V) to the initiator (party U). In a C(1,2) scheme, party U and party V each have
static key pairs. Therefore, either party may assume the role of the provider in a key
confirmation process. However, only one party has an ephemeral key pair. This section
specifies a method for providing key confirmation to party U, who has an ephemeral key pair.
Section 8.3.4 specifies a method for providing key confirmation to party V, who does not have
an ephemeral key pair.

This method of key confirmation may be used to provide party U (who is the key confirmation
recipient for this method) with assurance that party V (who is the provider) has derived the same
secret Z value as party U, and that party V has actively participated in the key establishment
process.

Party U Party V
NonceV

EphemPubKeyU, MacTagU

Party U’s Static Public Key

Party V’s Static Public Key

Figure 9: C(1,2) Scheme with Unilateral Key Confirmation from Party U to Party V

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 61

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. Party U generates an ephemeral key pair (see Section 5.2.1) and sends the ephemeral
public key (EphemPubKeyU) to party V in the first message of the key establishment
process.

2. Upon receiving party U’s ephemeral public key, party V generates a MacTag (MacTagV)
and sends it to party U. The MacTag is generated as specified in Sections 5.4.1 and 8.1
using the following as the MacData:

MacDataV = 02 || V || U || Null || EphemPubKeyU || [Text1]

where Null is a null (empty) string.

3. Upon receiving MacTagV, party U verifies MacTag (see Section 5.4.2). If the received
and computed MacTags have the same value, then party U has assurance that party V has
derived the same secret Z value as party U, and that party V is actively participating in
the key establishment process.

8.3.6 C(1,1) Scheme with Unilateral Key Confirmation from the Responder to the
Initiator

Figure 11 depicts the scheme flow for a C(1,1) scheme with unilateral key confirmation from the
responder (party V) to the initiator (party U). In a C(1,1) scheme, party U has an ephemeral key
pair, but no static key pair. Therefore, party U cannot assume the role of the provider in a key
confirmation process; but party U can be the recipient in the process. Party V has a static key
pair and, therefore, can assume the role of the key confirmation provider.

Party U Party VEphemPubKeyU

MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

Figure 10: C(1,2) Scheme with Unilateral Key Confirmation from Party V to Party U

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 62

This method of key confirmation may be used to provide party U (who is the key confirmation
recipient for this method) with assurance that party V (who is the provider) has derived the same
secret Z value as party U, and that the party V has actively participated in the key establishment
process.

In this scheme, party V has a static key pair that was previously generated as specified in Section
5.2.1 using the same domain parameters. Party U shall obtain party V’s static public key in a
trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. Party U generates an ephemeral key pair (see Section 5.2.1) and sends the ephemeral
public key (EphemPubKeyU) to party V in the first message of the key establishment
process.

2. Upon receiving party U’s ephemeral public key, party V generates a MacTag (MacTagV)
and sends it to party U. The MacTag is generated as specified in Sections 5.4.1 and 8.1
using the following as the MacData:

MacDataV = 02 || V || U || Null || EphemPubKeyU || [Text1]

where Null is a null (empty) string.

3. Upon receiving MacTagV, party U verifies the MacTag (see Section 5.4.2). If the
received and computed MacTags have the same value, then party U has assurance that
party V has derived the same secret Z value as party U, and that party V is actively
participating in the key establishment process.

8.3.7 C(0,2) Scheme with Bilateral Key Confirmation
Figure 12 depicts the scheme flow for a C(0,2) scheme with bilateral key confirmation. In a
C(0,2) scheme, party U (the scheme initiator) and party V (the scheme responder) each have
static key pairs. Therefore, either party may assume the role of the provider in a bilateral key
confirmation process. However, neither party has an ephemeral key pair; therefore, with this key
confirmation method, ephemeral information is provided by each party as a nonce.

Party U Party V
EphemPubKeyU

MacTagV

Party V’s Static Public Key

Figure 11: C(1,1) Scheme with Unilateral Key Confirmation from Party V to Party U

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 63

In this method, party U and party V assume the roles of both the provider and recipient in order
to obtain bilateral key confirmation. The successful completion of this process provides both
parties with assurance that the other party has derived the same secret Z value and that each party
has actively5 participated in the key establishment process.

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. Party V generates a nonce (NonceV) and sends it to party U in the first message of the key
establishment process.

2. Upon receiving party V’s nonce, party U generates a nonce (NonceU) and a MacTag
(MacTagU) and sends them to party V. The MacTag is generated as specified in Sections
5.4.1 and 8.1 using the following as the MacData:

MacDataU = 02 || U || V || NonceU|| NonceV || [Text1]

3. Upon receiving party U’s nonce and the MacTag, party V verifies the MacTag (see
Section 5.4.2). If the received and computed MacTags have the same value, then party V

5 Assurance of active participation is obtained only if the number of unpredictable bits of a nonce is equal to or
greater than the desired security level. For example, if 80 bits of security is desired, party V obtains assurance of
active participation by Party U only if the number of unpredictable bits of the nonce sent by Party V to Party U is
equal to or greater than 80; party U obtains assurance of active participation by Party V only if the number of
unpredictable bits of the nonce sent by Party U to Party V is equal to or greater than 80.

MacTagV

Party U Party V
NonceV

NonceU, MacTagU

Party U’s Static Public Key

Party V’s Static Public Key

MacTagV

Party U Party V
NonceV

NonceU, MacTagU

Party U’s Static Public Key

Party V’s Static Public Key

Figure 12: C(0,2) Scheme with Bilateral Key Confirmation

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 64

has assurance that party U has derived the same secret Z value as party V, and that party
U is actively participating in the key establishment process.

4. Party V then generates a MacTag (MacTagV) as specified in Sections 5.4.1 and 8.1 and
sends the MacTag to party U. The MacData for the MacTag is:

MacDataV = 03 || V || U || NonceV || NonceU || [Text2]

5. Upon receiving MacTagV, party U verifies the MacTag (see Section 5.4.2). If the
received and computed MacTags have the same value, then U has assurance that party V
has derived the same secret Z value as party U, and that party V is actively participating
in the key establishment process.

8.3.8 C(0,2) Scheme with Unilateral Key Confirmation
Figure 13 depicts the scheme flow for a C(0,2) scheme with unilateral key confirmation. In a
C(0,2) scheme, both parties have static key pairs. Therefore, either party may assume the role of
the provider in a key confirmation process. However, neither party has an ephemeral key pair;
therefore, with this key confirmation method, ephemeral information is provided by the key
confirmation recipient as a nonce.

The successful completion of the key confirmation process assures the recipient that the provider
has derived the same secret Z value as the recipient, and that the provider has actively
participated6 in the key establishment process.

6 The key confirmation recipient obtains assurance of active participation by the provider only if the number of
unpredictable bits of the nonce sent by the recipient to the provider is equal to or greater than the desired security
level.

Provider Recipient
NonceR

MacTagP

Provider’s Static Public Key

Recipient’s Static Public Key

Provider Recipient
NonceR

MacTagP

Provider’s Static Public Key

Recipient’s Static Public Key

Figure 13: C(0,2) Scheme with Unilateral Key Confirmation

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 65

In this scheme, each party has a static key pair that was previously generated as specified in
Section 5.2.1 using the same domain parameters. Each party shall obtain the other party’s static
public key in a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. The recipient generates a nonce (NonceR) and sends it to the provider in the first message
of the key establishment process.

2. Upon receiving the nonce, the provider generates a MacTag (MacTagP) and sends it to
the recipient. The MacTag is generated as specified in Sections 5.4.1 and 8.1 using the
following as the MacData:

MacDataP = 02 || P || R || Null || NonceR || [Text1]

where Null is a null (empty) string.

3. Upon receiving MacTagP, the recipient verifies the MacTag (see Section 5.4.2). If the
received and computed MacTags have the same value, then the recipient has assurance
that the provider has derived the same secret Z value as the recipient, and that the
provider is actively participating in the key establishment process.

8.4 Incorporating Key Confirmation in the DLC-based Key Transport Scheme
with Unilateral Key Confirmation

Figure 14 depicts the data scheme flow for a key transport scheme based on Section 7.2 with
unilateral key confirmation from the receiver (party V) to the sender (party U). In a key
transport scheme, the sender selects the keying material and is assumed to be able to use it
correctly; however, the sender may wish to confirm that the receiver was able to correctly
unwrap the wrapped keying material. Party V has a static key pair and assumes the role of the
key confirmation provider to Party U. Party U has an ephemeral key pair and assumes the role
of the key confirmation recipient. If it is appropriate for the key agreement scheme selected,
Party U sends a static public key to the receiver along with the ephemeral public key. For key
confirmation to be possible, a MAC key shall be included in the keying material that is sent by
Party U.

Party U Party V

EphemPubKeyU, WrappedKey

MacTagV

Party U’s Static Public Key, if needed

Party V’s Static Public Key

Figure 14: DLC Key Transport Scheme with Unilateral Key Confirmation

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 66

This method of key confirmation may be used to provide party U (who is the key confirmation
recipient for this method) with assurance that party V (who is the provider) has correctly
unwrapped the wrapped keying material sent from party U, and that party V is actively
participating in the key establishment process.

In this scheme, party V always has a static key pair that was previously generated as specified in
Section 5.2.1; party U shall obtain the party V’s static public key in a trusted manner, e.g., from
a certificate signed by a trusted CA. If the scheme selected is such tha t party U has a static key,
then party U has a static key pair that was previously generated as specified in Section 5.2.1
using the same domain parameters as party V. Party V shall obtain party U’s static public key in
a trusted manner, e.g., from a certificate signed by a trusted CA.

The flow proceeds as follows:

1. Party U follows the procedure in Section 7.2, which includes generating an ephemeral
key pair and creating the wrapped keying material. The keying material shall include a
MAC key. Party U sends EphemPubKeyU and WrappedKey to party V in the first
message of the key transport process.

2. Upon receiving EphemPubKeyU, party V unwraps the WrappedKey, recovers the keying
material, obtains the MAC key, generates a MacTag (MacTagV) and sends it to party U.
The MacTag is generated as specified in Sections 5.4.1 and 8.1 using the following as
the MacData:

MacDataV = 02 || V || U || Null || EphemPubKeyU || [Text1]

where Null is a null (empty) string.

3. Upon receiving MacTag, party U verifies the MacTag (see Section 5.4.2). If the received
and computed MacTags have the same value, then party U has assurance that party V has
correctly unwrapped the keying material that party U sent, and that party V is actively
participating in the key establishment process.

9. Key Recovery

For some applications, the keying material used to protect data may need to be recovered (e.g., if
the normal reference copy of the keying material is lost or corrupted). In this case, either the
keying material or sufficient information to reconstruct the keying material needs to be available
(e.g., the keys, domain parameters and other inputs to the scheme used to perform the key
establishment process).

Keys used during the key establishment process shall be handled in accordance with the
following:

1. A static key pair may be saved (see the Key Management Guideline [8] for
recommended protections); for example, a static public key could be saved in a public
key certificate.

2. An ephemeral public key may be saved.

3. An ephemeral private key shall be destroyed after use and, therefore, is not recoverable.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 67

4. A symmetric key may be saved.

Note: This implies that keys derived from schemes where both parties generate ephemeral key
pairs (see Section 6.1) cannot be made recoverable by reconstruction of the keying material. For
those schemes where only the initiator generates an ephemeral key pair (see Section 6.2), only
the responder can recover the keying material by reconstruction.

General guidance on key recovery and the protections required for each type of key is provided
in the Key Management Guideline [8].

10. Implementation Validation

Implementations of the schemes in this Recommendation shall be tested and validated as
conforming to this Recommendation in order to claim compliance with this Recommendation.
Information on NIST’s cryptographic module testing program is available at
http://csrc.nist.gov/cryptval/.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 68

Appendix A: Summary of Differences between this
Recommendation and ANSI X9 Standards (Informative)

This list is informational and not meant to be exhaustive, but is intended to summarize important
differences between this Recommendation and the indicated ANSI X9 standards. In general, this
Recommendation can be seen as being more restrictive than the ANSI X9 standards, but is
derived from them. The list of differences is as follows:

1. Random generation and validation of FFC and ECC domain parameters are being
extended to (A) support use of the SHA-512 algorithm for domain parameters supporting
larger key sizes, (B) support optional use of the Shawe-Taylor algorithm to construct and
validate FFC primes and (C) support verifiably random generation of the generator of the
subgroup. See the ANSI X9.30-2 DSA revision draft, the ANSI X9.62-2 ECDSA
revision draft, and the FIPS 186-3 DSS draft.

2. Some schemes in ANSI X9.42 and X9.63 allow one set of domain parameters to be used
with static keys and a different set of domain parameters to be used with ephemeral keys
in the same scheme. This Recommendation, however, requires the use of only one set of
domain parameters in a scheme; i.e., the same set of domain parameters shall be used
with the static and ephemeral keys in any given scheme. See Section 5.1 of this
Recommendation for more information.

3. For FFC domain parameters: (A) The allowable key sizes for p (field order) are multiples
of 1024 bits, rather than multiples of 256 bits as in ANSI X9.42. (B) The size of q
(subgroup order) shall be a specific length based on the size of p, unlike ANSI X9.42
where the size of q has a minimum length based on the size of p. FFC domain
parameters that conform to this Recommendation in this area also conform to ANSI
X9.42, although the reverse is not necessarily true. See Section 5.1.1.1 of this
Recommendation for more information.

4. For ECC domain parameters: The cofactor shall be 65,536 or less, which is more
restrictive than X9.63. ECC domain parameters that conform to this Recommendation
also conform to ANSI X9.63, although the reverse is not necessarily true. See Section
5.1.1.2 of this Recommendation for more information.

5. Assurances of the arithmetic validity of a public key are required in this
Recommendation. Assurance of validity is optional in ANSI X9.42, but required in ANSI
X9.63. In both cases, the means of obtaining that assurance is different than in this
Recommendation. See Section 5.2.2 of this Recommendation for more information.

6. Methods for a user to receive assurance of possession of the private key associated with a
given public key will be specified in this Recommendation. See Section 5.2.3 of this
Recommendation for a placeholder.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 69

7. Revised requirements are specifically listed for keys, including requirements specific to
static keys and requirements specific to ephemeral keys. See Section 5.2.4 of this
Recommendation for details.

8. Regarding the key derivation function (KDF):

a. The concatenation key derivation function (KDF) of Section 5.3.1 is the default;
the ASN.1 KDF of Section 5.3.2 (from X9.42) is optional; it is to be used only
when both parties agree on its use. ANSI X9.42 contains both methods, but does
not indicate a preference. ANSI X9.63 specifies only the concatenation method in
Section 5.6.3 of this Recommendation.

b. The KDF in this Recommendation requires the input of the identifiers of the
communicating parties; such information is not required in ANSI X9.42 and
X9.63, although these identifiers could be considered a part of the SharedInfo
field, which is optional and not defined as to contents.

c. The shared secret shall be zeroized before outputting any portion of the
DerivedKeyingMaterial output; this implies that the entire
DerivedKeyingMaterial shall be computed before outputting any portion of it.
The ANSI standards do not indicate when the shared secret needs to be zeroized,
deleted or destroyed.

A KDF that conforms with this Recommendation also conforms to ANSI X9.42, although
the reverse is not necessarily true. The use of the default concatenation KDF that
conforms with this Recommendation also conforms to ANSI X9.63, although the reverse
is not necessarily true. See Section 5.3 of this Recommendation for more details.

9. ANSI X9.42 defines MacData as “ANSI X9.42 Testing Message”. ANSI X9.63 does not
address implementation validation at this level of detail. Note that the implementation
test message used for NIST validation is a different text string from the implementation
test message for ANSI X9.42; therefore conformance to the method in this
Recommendation does not conform with the ANSI X9.42 method, although it does not
preclude it. See Section 5.4.3 of this Recommendation for more information.

10. ANSI X9.63 specifies both cofactor and non-cofactor methods. For this
Recommendation, ECC cofactor methods shall be used. The use of a method that
conforms to this Recommendation also conforms to ANSI X9.63, although the reverse is
not necessarily true. See Section 6 of this Recommendation for details.

11. FFC and ECC key transport use an Approved key-wrapping algorithm, such as the AES
key wrapping algorithm. ANSI X9.63 specifies the ECIES method, which is not allowed
in this Recommendation. ANSI X9.42 does not specify a key transport method.
Therefore, the use of the method that conforms to this Recommendation does not
conform to the method in ANSI X9.63. See Section 7.2 for details.

12. There is a comprehensive specification in this Recommendation of approved ways to do
Key Confirmation (KC), when KC is desired. See Section 8 of this Recommendation for
details. Key confirmation is not discussed in ANSI X9.42, but a few examples of key
confirmation are provided in ANSI X9.63.

 NIST SP 800-56: Recommendation on Key Establishment Schemes

DRAFT 2.0 January 2003 DRAFT 2.0

 70

Appendix B: References (Informative)

[1] FIPS 140-2, Security requirements for Cryptographic Modules, May 25, 2001.

[2] FIPS 180-2, Secure Hash Standard, August 2002.

[3] FIPS 186-3 (Draft), Digital Signature Standard, anticipated in spring 2003.

[4] FIPS 196, Entity Authentication Using Public Key Cryptography, February 1997.

[5] FIPS 197, Advanced Encryption Standard, November 2001.

[6] FIPS 198, The Keyed-Hash Message Authentication Code (HMAC), March 2002.

[7] NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation, December
2001.

[8] NIST SP 800-57 (Draft), Key Management Guideline, January 2003.

[9] ANSI X9.42-2001, Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography.

[10] ANSI X9.44 (Draft), Public Key Cryptography for the Financial Services Industry:
Agreement and Key Transport Using Factoring-Based Cryptography, December 2003.

[11] ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Key Cryptography.

[12] ANSI X9.80-2002, Prime number Generation, Primality Testing and Primality
Certificates (Revised).

[13] ANSI X9.82 (Draft), Random Bit Generation, 2003.

[14] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[15] B. Schneier, Applied Cryptography (Second Edition), John Wiley & Sons, Inc., 1996.

[16] AES Key Wrap Specification, 16 November 2001, currently available at
http://csrc.nist.gov/encryption/kms/key-wrap.pdf

[17] NIST Special Publication 800-38B DRAFT Recommendation for Block Cipher Modes of
Operation: The RMAC Authentication Mode, November 4, 2002, currently available at
http://csrc.nist.gov/publications/drafts/draft800-38B-110402.pdf

[18] ANSI X9.30-2 (Draft) Digital Signature Algorithm (Revised), December 2003.

[19] ANSI X9.62-2 (Draft) Elliptic Curve Digital Signature Algorithm (Revised), December
2002.

